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S U M M A R Y
We present a methodology to invert seismic data for a localized area by combining source-
side wavefield injection and receiver-side extrapolation method. Despite the high resolving
power of seismic full waveform inversion, the computational cost for practical scale elastic
or viscoelastic waveform inversion remains a heavy burden. This can be much more severe
for time-lapse surveys, which require real-time seismic imaging on a daily or weekly basis.
Besides, changes of the structure during time-lapse surveys are likely to occur in a small
area rather than the whole region of seismic experiments, such as oil and gas reservoir or CO2

injection wells. We thus propose an approach that allows to image effectively and quantitatively
the localized structure changes far deep from both source and receiver arrays. In our method,
we perform both forward and back propagation only inside the target region. First, we look
for the equivalent source expression enclosing the region of interest by using the wavefield
injection method. Second, we extrapolate wavefield from physical receivers located near the
Earth’s surface or on the ocean bottom to an array of virtual receivers in the subsurface by
using correlation-type representation theorem. In this study, we present various 2-D elastic
numerical examples of the proposed method and quantitatively evaluate errors in obtained
models, in comparison to those of conventional full-model inversions. The results show that
the proposed localized waveform inversion is not only efficient and robust but also accurate
even under the existence of errors in both initial models and observed data.

Key words: Seismic monitoring and test-ban treaty verification; Body waves; Seismic to-
mography.

1 I N T RO D U C T I O N

Tomographic studies seek best models, of which synthetic data are
in concordance with observed data. In general, seismic data are
recorded on the Earth’s surface. Amongst many proposed tomog-
raphy methodologies in seismology, full waveform inversion has
emerged as one of the most promising and powerful techniques since
over three decades ago (Tarantola 1984; Woodhouse & Dziewonski
1984; Mora 1988; Pratt 1999; Virieux & Operto 2009; French & Ro-
manowicz 2014). However, waveform inversion requires full wave-
field modelling. It is thus computationally expensive to invert for a
large area.

Recently, there are several attempts to focus wave-equation based
seismic imaging methods on a small target area in the Earth rather
than the entire region. Wang et al. (2016) iteratively inverted for
a small region at the uppermost mantle in the vicinity of receiver
arrays using teleseismic events and wavefield injection method for
the source side. For the receiver side, wave extrapolation can mit-
igate the computational burden of waveform tomography. Dong
et al. (2009) shows after wavefield extrapolation, the computational
cost of reverse-time migration in a target region is significantly

reduced. Yang et al. (2012) shows localized inversion after double-
side wavefield extrapolation is computationally more efficient, and
converges faster compared to a standard full-model waveform inver-
sion. Haffinger et al. (2013) indicated that due to the reduced com-
putational domain after wavefield extrapolation, higher frequency
contents could be introduced into the waveform inversion, which
naturally improves the image quality. Baring the previous studies
cited above for local seismic imaging in mind, in this study, we
will (i) propose a methodology that allows to locally invert seismic
waveform data for the region disconnected from both source and
receiver arrays, combining source-side wavefield injection method
and receiver-side residual wavefield extrapolation; and (ii) examine
several 2-D synthetic tests to see the efficiency, robustness, accuracy
and limitations of the proposed method.

During the oil and gas production in the subsurface, it is cru-
cial to quantitatively estimate the model changes in the reservoir
fluids. Reservoir monitoring requires a huge investment. In order
to maximize the return on investment, one needs to take full ad-
vantage of a large volume of time-lapse seismic data. The method
that we are proposing can be particularly appealing for time-lapse
surveys. We have the ‘baseline’ data set that is acquired before the
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1700 S. Yuan et al.

Figure 1. A schematic illustration of the proposed localized inversion in a
layered model. Red star denotes the physical source. Grey and blue triangles
denote physical and virtual receivers, respectively. The dashed square rep-
resents the absorbing boundary and the solid square represents the source
injection boundary.

production and the ‘monitor’ data set that is acquired on a regu-
lar basis (daily or weekly) during or after production. We are then
to interpret data difference for model difference. Unfortunately,
full-model waveform inversion for every monitor data set would
be still too expensive. Since the production does not change the
overall substructures, there should be much redundancy in conven-
tional full-model inversions. Furthermore, the structural changes
will mainly occur in the region of fluid removal or replacement,
which are far from source and receiver arrays. As the model alter-
ations are small and deep, the corresponding changes in seismic
data go only a few per cents above the background noise. For the
reasons outlined above, it is indispensable to develop an efficient
and accurate waveform-based method to image the local structural
changes.

Fig. 1 shows how our methodology works. We have a source (ar-
ray) and a receiver array. Instead of performing inversion inside the
whole model region, we would like to focus on a subvolume in V+,
where the model changes are expected to occur. All forward and
backward simulations will be conducted within the reduced absorb-
ing boundary (the dashed square shown in Fig. 1). Such a strategy
of localized waveform inversion requires two levels of wavefield
reconstructions: (i) representation of seismic sources in the subdo-
main (wavefield injection method) and (ii) extrapolation of residual
wavefield between baseline and monitor surveys recorded at the
physical receivers to virtual receivers in the subdomain (residual
wavefield extrapolation). Borisov et al. (2015) proposed a localized
waveform inversion technique for time-lapse surveys within a tar-
get region disconnected from source arrays. However, there are few
studies that extended it to a region disconnected both from source
and receiver arrays. As we will show in the later sections, receiver-
side wavefield extrapolation combining with source-side wavefield
injection (Robertsson & Chapman 2000; Capdeville et al. 2003;
Singh & Royle 2010; Monteiller et al. 2013; Masson et al. 2014;
Borisov et al. 2015) can naturally filter out the non-physical extrap-
olated events caused by limited receiver aperture (the single-sided
illumination problem). We formalize localized waveform inversion

problem for time-lapse seismics and present the two levels of wave-
field reconstruction methodology. To demonstrate the feasibility
and robustness of our methodology, we perform a series of syn-
thetic tests with noise and uncertainties in both model and data
domain.

2 L O C A L I Z E D WAV E F O R M I N V E R S I O N
F O R T I M E - L A P S E S U RV E Y

In this section, we formulate localized waveform inversion for time-
lapse surveys. We first start with the classical L2 norm misfit function
of waveforms under the framework of Tarantola (1984) and Mora
(1987):

E(m) = 1

2
|d − u(m)|2 (1)

with d and u(m) being the gathered waveform data points of ob-
served and synthetic computed for a model m, respectively. By
evaluating the first variation of the misfit function, we obtain a
Newton method expression:

ATAδmi = AT(d − u(mi )) (2)

and

mi+1 = mi + δmi (3)

where

A = ∂u

∂m
, (4)

which is partial derivatives (or Fréchet derivatives) of the wave-
field with respect to model parameters and ATA is an approximated
Hessian matrix. The right-hand side of eq. (2) is the gradient direc-
tion ∂ E(m)/∂m that can be calculated by either cross-correlation
of partial derivatives and waveform difference between observed
and synthetics or back propagation of waveform difference in the
media mi . Multiple iterations (eq. 3) update model to overcome
the nonlinearity of this inverse problem. The details of waveform
inversion can be found in many literatures, some of which are cited
herein.

We use above formulation to obtain the ‘baseline’ full model
mbase before the production mode. We then obtain ‘monitor’ data
with some deformation in the subsurface media and we would
like to invert for the model alteration from the ‘baseline’ model
obtained during the first step. There are mainly three strategies
to monitor the changes of target regions through inversions (As-
naashari et al. 2015): (i) ‘parallel difference strategy’ indepen-
dently inverts time-lapse data sets, that is, the structure changes
will be calculated through the subtraction of inverted baseline model
from inverted monitor models; (ii) ‘sequential difference strategy’
will use the most recently acquired former monitor model as an
initial model for inversions; (iii) ‘double-difference strategy’ in-
verts only time-lapse data difference for a model change instead of
full-data inversions. Double-difference is widely applied in earth-
quake location and seismic imaging (Waldhauser & Ellsworth 2000;
Zhang & Thurber 2003; Zheng et al. 2011; Zhang & Huang 2013;
Asnaashari et al. 2015; Yang et al. 2015) and proves to be more ro-
bust and accurate in retrieving time-lapse variations and suppressing
artefacts of inversions. Double-difference strategy requires strict re-
peatability of seismic surveys, which is generally satisfied by the
state-of-the-art acquisitions, especially in time-lapse ocean-bottom
seismics (Granger et al. 2005; Ronen et al. 2005). We thus seek
to minimize the difference of observed and synthetic waveform
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2-D localized elastic FWI 1701

Figure 2. Snapshots of vertical component velocity wavefield using full-model and localized forward simulation. Dashed square denotes absorbing boundary
and solid square denotes wavefield injection boundary. Red star represents the physical source. (a–d) Simulations on an model with no perturbation inside the
injection boundary. (e–l) A perturbed model. (b,f,j) Snapshots of full-model simulations. (c,g,k) Snapshots of localized forward simulations through wavefield
injection. (d,h,l) Synthetic wavefield inside the red circle. Red curves and black curves denote the waveform obtained from full-model and localized simulations,
respectively.

residuals between baseline and monitor surveys:

E(mmon) = 1

2
|dmon − u(mmon)|2

� 1

2
|(dmon − u(mmon)) + (dbase − u(mbase))|2

= 1

2
|�d − �u(mmon)|2 (5)

with superscripts ‘base’ and ‘mon’ denoting baseline and monitor,
respectively. We define the waveform residual between baseline and
monitor data as

�d = dmon − dbase (6)

�u(mmon) = u(mmon) − u(mbase). (7)

To minimize the new cost function defined above, we assume that
the baseline model is close to the real structure and that the residuals
between observed and synthetic waveforms are of the same order
for baseline and monitor surveys. The Newton method for this new
cost function is

ATAδmmon
i = AT(�d − �u(mmon

i )). (8)

Note that A does not change from that of eq. (4).
Since we are interested in a model perturbation δmmon happening

inside the region far deep from the source and receiver arrays,
we reconstruct �d and �u inside the small region of interest by

wavefield injection method and residual wavefield extrapolation
method that we discuss in the following sections.

Forward modelling is performed using 2-D staggered grid elas-
tic isotropic finite-difference method with fourth-order accuracy in
space and second-order accuracy in time (Virieux 1986; Levan-
der 1988). We use the convolutional perfectly matched layers
(Roden & Gedney 2000; Komatitsch & Martin 2007) to absorb
undesirable seismic wave reflections from the model borders or
outside the target regions. The gradient is obtained from adjoint-
state method (Liu & Tromp 2006; Plessix 2006) and the conjugate
gradient method is used to approximate the Hessian matrix (Po-
lak 1971). Compressional wave speed (Vp) and shear wave speed
(Vs) are independently inverted, while Vs (Vs ≈ Vp/1.67) and the
density model is linearly linked to Vp (Gardner et al. 1974).

3 S O U RC E - S I D E WAV E F I E L D
I N J E C T I O N M E T H O D

Wavefield injection method reconstructs a source expression on the
surface of target regions, which is equivalent to a physical source
distribution situated outside the region. Alterman & Karal (1968)
introduced wavefield injection method, originally aiming at solv-
ing source singularity problems in finite-difference computations.
Robertsson & Chapman (2000) expanded this method to the lo-
calized forward modelling, which proves to be an efficient way of
calculating seismic wavefield after local model alterations. Opršal
et al. (2009) discussed and generalized the associated boundary
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1702 S. Yuan et al.

Figure 3. Wavefield extrapolation examples. (a,b) represent 2-D elastic layered Vp model. Red stars denote source positions. Grey and blue triangles denote
physical and extrapolated receivers, respectively. Panels (c) and (d) show the comparisons of observed (black curves) and extrapolated (red waveform) wavefield
of selected two shots in (a) and (b), respectively.

condition during wavefield injection. Borisov et al. (2015) applied
it to waveform inversion for 3-D media with physical receivers
inside the region.

Based on the injection boundary, the modelled region is divided
into two subdomains, V+ and V− (Fig. 1). The wavefield in either
subdomain satisfies the same elastodynamic equation and can be
expressed as

u+(x) = uc(x) = ub(x), x ∈ V +, (9a)

u−(x) = us(x) = uc(x) − ub(x), x ∈ V −, (9b)

where u denotes the displacement wavefield. The super-
script + and − denote the wavefield inside and outside the in-
jection boundary, respectively. The subscript c represents the com-
plete wavefield and s represents the scattered wavefield caused by
the model changes within injection boundary during time-lapse
surveys. ub denotes the displacement wavefield excited by the
stored boundary wavefield. The stress wavefield along the injec-
tion boundary satisfies the same condition as the displacement
wavefield.

Even though u+ in V+ and u− in V− are achieved simultane-
ously, they are decoupled due to the boundary condition applied on
injection boundary. Specifically, we add the stored boundary data
for the wavefield inside the injection boundary, while we subtract
the boundary data for that outside injection boundary. Since the
physical sources are extrapolated from the surface to the source
injection boundary during wavefield injection, we can naturally

decrease the size of absorbing boundary (the dashed square in
Fig. 1) in order to reduce the inversion area. This may prohibit
the interactions between the scattered wavefield and the structures
outside the absorbing boundary. However, the missing part of the
wavefield is only second or higher-order scattered wavefield, whose
amplitude is weaker and arrivals are later than that of the first inter-
actions. Also, it is numerically expedient considering the associated
computational cost by applying full-model absorbing boundary or
the so-called exact boundary condition (van Manen et al. 2007;
Willemsen et al. 2016).

In order to better illustrate the role that wavefield injection plays
as the localized modelling engine during time-lapse surveys, here
we perform a synthetic experiment and compare it with the full-
model simulations (Fig. 2). The 2-D baseline (a perturbation-free
model within the injection boundary) is 8 km in the x-direction
and 4 km in the z-direction, while the reduced modelling region is
2.8 km in the x-direction and 1.4 km in the z-direction. To store the
wavefield along injection boundary, we are supposed to perform
the full-model forward modelling once at the beginning for each
physical source. During time-lapse surveys, we assume that pertur-
bations occur only inside the injection boundary (Figs 2e and i).
Fig. 2 shows the synthetic wavefield before and after model pertur-
bations using full-model and localized simulations. The top panel in
Fig. 2 indicates the wavefield before perturbations while the middle
and bottom panels indicate the wavefield after perturbations. The
top and middle panels display the wave propagation at earlier time
steps while the bottom panel displays the later time step wavefield.
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2-D localized elastic FWI 1703

Figure 4. Vp and Vs models for full-model and localized inversion tests. (a,b) True time-lapse Vp and Vs model. The dashed square encloses the target zone
where we perform the localized inversion. (c,d) True baseline Vp and Vs models.

Table 1. Comparisons of Vp and Vs model errors for all the inversion experiments.

Test number Initial model Wavefield extrapolation Noise Vp error Vs error

#1( f ull) True baseline No No 23.8 per cent 18.4 per cent
#2(locali zed) True baseline Yes No 21.9 per cent 15.3 per cent
#3( f ull) True baseline No No 66.5 per cent 66.9 per cent
#3(locali zed) True baseline Yes No 22.6 per cent 29.1 per cent
#4(locali zed) True baseline Yes Yes 24.3 per cent 16.4 per cent
#5(locali zed) Perturbed baseline Yes No 22.2 per cent 17.1 per cent
#6(locali zed) Inverted baseline Yes No 22.1 per cent 17.2 per cent

At earlier stage, the scattered wavefield caused by the perturbations
have not propagated long enough to interact with medium outside
the target area. Thus the seismograms produced by full-model and
localized simulations are exactly the same (Figs 2d and h). How-
ever, at later times, the absorbing boundary in localized forward
modelling will prevent the interactions between scattered wavefield
and the medium outside the target region. Therefore, neglecting the
second- or higher-order wavefield when applying wavefield injec-
tion method will cause small errors at later time steps, as observed
in Fig. 2(l). However, we will show in Sections 5 and 6 that this
imposes limited effect on the final inversion results through various
synthetic experiments.

4 R E C E I V E R - S I D E R E S I D UA L
WAV E F I E L D E X T R A P O L AT I O N

Extrapolation of wavefield recorded at a physical (dense) receiver ar-
ray is needed in our methods in order to perform localized waveform
inversion. In this study, it is identical to what is applied commonly in
reverse time migration (Baysal et al. 1983; Schuster 2002). We ex-
trapolate residuals between baseline and monitor with a truncated
surface integral due to the receiver array geometry in frequency

domain (Oristaglio 1989; Wapenaar & Fokkema 2006):

u1
n(rA) ∼

∫
S′

dSn j

[
G0∗

in (r, rA)C0
i jklu

1
k,l (r)−u1

i (r)C0∗
i jkl G

0∗
kn,l (r, rA)

]
,

(10)

where S′ denotes the surface covered by the physical receiver array,
which cannot always be a closed boundary (cf. Fig. A1). u1

n(r)
is the ith component of perturbed displacement at r, nj denotes
the normal vector, G0

in(r, rA) denotes the ith component of Green
function from nth single force at rA to r for baseline model, whereas
C0

i jkl are elastic moduli for the baseline model. The derivation of
the equation above can be found in Appendix A.

This leads to the so-called single-sided illumination problems
which are commonly found in migration and seismic interferometry
community (Snieder et al. 2006; Wapenaar & Fokkema 2006; Löer
et al. 2014). The associated spurious events are particularly severe
when the subsurface is strongly inhomogeneous and receiver aper-
tures are very limited. In this study, we choose to apply the conven-
tional extrapolation approach. Other extrapolation techniques, such
as redatuming through multidimensional deconvolution (van der
Neut et al. 2011; Wapenaar et al. 2011), Marchenko redatuming
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1704 S. Yuan et al.

Figure 5. Full-model time-lapse inversion results. (a,b) Inverted time-lapse Vp and Vs model. (c,d) True time-lapse perturbation in the target zone, corresponding
to the difference between time-lapse and baseline model within the dashed square in panels (a) and (b). (e,f) Inverted time-lapse perturbation of Vp and Vs in
the target zone. The error in the title is obtained though eq. (11). Panels (g) and (h) correspond to the 1-D velocity profile along the dashed lines in panels (e)
and (f), respectively. Black, cyan and red curves denote the true, starting and inverted velocity respectively. For simplicity, we use the same notification in the
following experiments and we will not mention them repeatedly.

(Wapenaar et al. 2014; Meles et al. 2016), will be interesting to test
against our methods in the future work.

The Green’s functions G0∗
in (r, rA) between physical and virtual

receivers, serving as back-propagator in eq. (10) are calculated
and stored just once using the baseline model obtained by the first

full-model waveform inversion. We generate them by posing single
source forces at rA. The fact that we truncate the surface inte-
gral to S′ means that we neglect the interactions between perturbed
backpropagators (caused by time-lapse model variations) and the
recorded wavefield (Ravasi & Curtis 2013).
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2-D localized elastic FWI 1705

Figure 6. Localized time-lapse inversion results. (a,b) Inverted time-lapse perturbation of Vp and Vs. Panels (c) and (d) correspond to the 1-D velocity profile
along the dashed lines in panels (a) and (b), respectively. Panels (e) and (f) denote the initial and final residuals of localized inversion respectively.

The evaluation of the integral in eq. (10) requires observed data of
both displacement- (or particle velocity-) and stress-/strain-types.
This is practically difficult since only displacement components
(or velocity, acceleration) are recorded in most current land sur-
veys but not stress nor strains. Even though replacing stress tensor
by particle velocity can still guarantee the extrapolated wavefield
being kinematically correct, it would result in additional spurious
events. However, in marine surveys, stress tensor can be recorded
by ocean-bottom 4C acquisitions (3C displacement/velocity plus 1C
fluid pressure) since normal traction will be simplified to pressure
due to fluid-solid boundary condition (Ravasi & Curtis 2013). More-
over, ocean-bottom seismics have additional advantages compared
to conventional marine streamer acquisitions. Receivers fixed to the
ocean bottom will not only improve repeatability for time-lapse sur-
veys but also provide shear wave information, which leads to higher
resolution due to shorter wavelength. Therefore, ocean-bottom 4-D
acquisitions are particularly suitable for time-lapse monitoring and
elastic wavefield extrapolation.

4.1 Wavefield extrapolation - 2-D numerical examples

The proposed extrapolation method was tested on a 2-D elas-
tic layered model (P-wave velocity shown in Fig. 3a). Density
is linked to Vp through Gardner’s rule (Gardner et al. 1974).
In Fig. 3(a), grey triangles and blue triangles represent phys-
ical receivers and extrapolated receivers, respectively. Extrapo-
lated depth is 1 km. The time-lapse data difference is caused
by the ellipsoid perturbation enclosed in the solid black
square (Fig. 3a). Green’s functions are obtained from the
baseline model without the ellipsoid perturbation. Compar-
isons of observed (black curves) and extrapolated (red wave-
form) wavefield of selected two shots are shown in Figs 3(c)
and (d). We can see that the extrapolated wavefield is gen-
erally accurate both in phase and amplitude. Some spuri-
ous events come out especially when shot position is at the
edge of receiver plane due to loss of stationary phase points
(Snieder et al. 2006).
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1706 S. Yuan et al.

Figure 7. Single-shot full-model and localized inversion results. (a–d) Inverted time-lapse perturbation and corresponding 1-D velocity profile of single-short
full-model inversion. (e–h) Inverted time-lapse perturbation and corresponding 1-D velocity profile of single-shot localized inversion.

5 L O C A L I Z E D WAV E F O R M
I N V E R S I O N S - 2 - D N U M E R I C A L
E X A M P L E S W I T H L AY E R E D M O D E L S

In this section, we present numerical examples in order to examine
the efficiency, robustness and accuracy of the proposed localized
waveform inversion. Conventional full-model inversion is tested
against our method. The grid spacing for wave propagation is 20 m

and the time step is 2 ms. There are 31 point sources at the depth
of 220 m excited in the vertical direction with a spacing interval of
200 m. Source time function is a Ricker wavelet of 6.5 Hz central
frequency. 351 physical receivers are deployed at the depth 240 m
with an interval of 20 m. We extrapolate those physical receivers
to 56 virtual receivers at the depth of 1.32 km for the subsequent
localized waveform inversion. The layered baseline model (Figs 4c
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2-D localized elastic FWI 1707

Figure 8. Localized inversion with white noise. (a–d) Inverted time-lapse model and corresponding 1-D velocity profile along the dashed lines in panels (a)
and (b).

Figure 9. One shot example of extrapolated noisy wavefield (black curves)
and observed wavefield (red waveform).

and d) is 8 km in width and 4 km in depth. The time-lapse model
has a lens-shaped velocity perturbation inside V+ (Figs 4a and b),
which is around 6 per cent of the baseline velocity for both Vp and
Vs.

In this section, we assume that the baseline model is identical
to the ‘true’ baseline model except Sections 5.5 and 5.6, where
we use the unknowingly perturbed and inverted baseline model,
respectively. We define the model error associated with the inverted
time-lapse perturbation within the target region as

Model error (in per cent)

=
∫

V + dV
∣∣|mmon

inv −mbase
ini |−|mmon

true −mbase
true |∣∣2

∫
V + dV

∣∣mmon
true −mbase

true

∣∣2
× 100 per cent

(11)

with subscript ‘inv’ denotes inverted model, ‘ini’ the initial model
and ‘true’ the true model. Note that this error definition is di-
rectly measuring the model perturbation and not model param-
eters themselves, resulting in the fact that the face values are
deliberately large even for the best cases. There are still few lo-
calized waveform inversion studies where model error is defined:
we would like the reader to look at the relative differences in Table 1
rather than to compare the face values with other inversion publi-
cations. The comparisons of each experiment are summarized in
Table. 1, where the test number corresponds to the number included
in the title of following subsections. Note that all the full-model and
localized inversion results are obtained after the same iterations.

5.1 Full-model inversion (#1)

In the first experiment, we show the conventional full-model wave-
form inversion results starting from the true Vp and Vs baseline
model (Figs 4c and d). We invert for the full time-lapse model
shown in Figs 5(a) and (b), with the zoom-in of the target varia-
tion (Figs 5e and f). Besides the true perturbation (Figs 5c and d),
we also find some inversion artefacts outside the target region as
we can see in the 1-D velocity profile (Figs 5g and h). Due to the
high ill-posedness and nonlinearity of the inverse problems, it can
hardly ensure that the model update is solely focused on the target
time-lapse perturbation.

The more unfavourable fact is that it is unavoidable to calcu-
late the wavefield for the whole model every iteration, although the
time-lapse perturbation occurs only in a certain small target region.
Therefore, considering the computational cost, it is nearly impossi-
ble to conduct full-model waveform inversion on a daily or weekly
basis for practical scale problems.
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1708 S. Yuan et al.

Figure 10. Localized inversion results with unknown baseline perturbation. (a,b) Time-lapse Vp and Vs model with unknown perturbation at shallow depth.
(c–f) Inverted time-lapse perturbation and corresponding 1-D velocity profile along the dashed lines in panels (c) and (d).

5.2 Localized inversion (#2)

The injection boundary data and the Green’s functions are stored
beforehand through a series of full-model forward modelling. With
the source- and receiver-side extrapolation as we explained in Sec-
tions 3 and 4, the inversion area could be naturally reduced to a
smaller region (the dashed square shown in Figs 4a and b) where
time-lapse perturbation is expected to occur. Localized inversion
provide us with better results for both Vp and Vs (Figs 6a and b)
compared to the full-model inversion (Figs 5e and f). Since model
update is solely allowed within the target region, the potential in-
version artefacts can be mostly prevented. This is equivalent to a
preconditioning of inverse problems which leads to a more accurate
gradient direction. Also, localized inversion results look sharper
compared to the full-model inversion due to the reduced offset and
increased moveout, thus we obtain higher sensitivity to the small-
scale perturbations. More importantly, the computing time in this
test is reduced by a factor of 10 compared with the full-model inver-
sion. The achieved computational efficiency is actually proportional

to the size of the non-calculated area outside the target regions. This
shows the feasibility of time-lapse elastic full waveform inversion
in an efficient way for practical scale problems.

5.3 Single-shot inversion (#3)

In conventional waveform inversions, long-offset data sets are cru-
cial to retrieve the long wavelength information and mitigate cycle
skipping problems (Shipp & Singh 2002). However, during time-
lapse surveys, we expect that the long-wavelength structures (base-
line model) remain almost unchanged and then the importance of
long-offset can be reduced (Plessix et al. 2010). To invert small-
scale velocity perturbations occurred locally in a target region, there
is probably a redundancy when applying the same acquisitions for
baseline surveys. To show the capability of the proposed localized
inversion in reducing field cost (the number of shots and receivers),
we perform a single shot inversion for both full-model and localized
inversion. The results show that the full-model inversion (Figs 7a–d)
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2-D localized elastic FWI 1709

Figure 11. Extrapolated wavefield (black curves) and modelled wavefield
(red waveform) using the final inverted time-lapse model.

fails in inverting the local perturbation while the localized inversion
is still reliable (Figs 7e–h).

5.4 Localized inversion with white noise (#4)

In this test, we would like to show the robustness and accuracy of
the localized inversion in presence of random noise. Artificial Gaus-
sian white noise is added to the recorded data set before wavefield
extrapolation. The signal-to-noise ratio of extrapolated wavefield is
around 6 dB (black curves in Fig. 9). Even with strong white noise,
the localized inversion is still quite robust and accurate as it shows
in Fig. 8.

5.5 Localized inversion with unknown baseline
perturbation (#5)

In previous tests, there is an assumption that the baseline model (es-
pecially the parts outside the target regions) is unchanged during the
time-lapse surveys. However, it is possible that small perturbation
occurs during drilling or oil production. In order to test the robust-
ness of the localized inversion in the case of slight model changes
outside the target region, we introduce an unknown perturbation
outside the target zone during time-lapse surveys (Figs 10a and b).
Note that wavefield injection and extrapolation are still performed
using the original baseline model, which does not include the shal-
low perturbation. The inverted perturbations are still quite accurate
as is shown in Figs 10(c)–(f).

Due to the inaccurate extrapolation propagators which do not
contain the effect of the unknown shallow perturbation, some non-
physical events will appear in the extrapolated wavefield (Fig. 11).
The non-physical events result from the wrongly extrapolated shal-
low reflections caused by the unknown perturbations and come out
before the first arrival at the virtual receivers. We can notice that the
localized inversion does not fit the spurious events through com-
paring the modelled wavefield and extrapolated wavefield (black
curves in Fig. 11). This is because wavefield injection naturally
serves as anti-causal filters and exclude the effect of the short wave-
length extrapolation error existing before the physical first arrivals.
In other words, the cross-correlations between the spurious extrap-
olated events and partial derivatives are quasi-orthogonal (eq. 2).
It is interesting to refer to Kawai et al. (2014) who performed
3-D localized waveform inversion for the base of the mantle using
sources and receivers disconnected from the Earth’s surface. They

Figure 12. Extended baseline model inversion. (a,b) True baseline Vp and Vs model. (c,d) Starting Vp and Vs model obtained from the smoothed true baseline
model. (e,f) Inverted baseline Vp and Vs model.
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Figure 13. 1-D Vp and Vs velocity profile along the dashed lines from inverted baseline model in Figs 12(e) and (f).

also studied the risk of over-interpretation of data for the structure
outside the inversion box but it turned out that the error is small due
to quasi-orthogonality of partial derivatives for points inside and
outside the box.

However, in case of severe perturbations, for instance, the as-
sociated first arrivals are apparently different from those of the
unperturbed baseline model, we are supposed to do the full-model
inversion once again to make sure the long wavelength information
is accurate enough for wavefield injection and extrapolation. We
might be able to control this by looking at the kinematics of time-
lapse data difference. We can qualitatively conclude that slightly
perturbed baseline model will not seriously affect the accuracy of
the proposed localized inversion. In fact, as long as the baseline per-
turbations do not dramatically affect the first arrivals, the localized
inversion will be still reliable and stable.

5.6 Localized inversion using inverted baseline model (#6)

To acknowledge the fact that in practice, no precise information on
the interfaces and medium parameters is available, the boundary
data for wavefield injection and the Green’s functions for wavefield
extrapolation should be modelled in a more realistic baseline model.
Therefore, we divide inversions into two parts in this test: (i) baseline
model inversion (ii) time-lapse model inversion. Due to the lack
of illumination considering the sensitivity, we need to extend the
survey area to retrieve the desired baseline model (Figs 12a and
b). Starting from a smoothed model (Figs 12c and d), the baseline

models of Vp and Vs are inverted (Figs 12e and f) with associated
1-D velocity profiles shown in Figs 13(a)–(d).

With inverted baseline models, we repeat the same procedures
as in previous localized inversion experiments. The inverted local
perturbation (Figs 14a–d) seems still quite accurate as compared to
the localized inversion using true baseline model in Section 5.2.

6 L O C A L I Z E D WAV E F O R M
I N V E R S I O N S - 2 - D N U M E R I C A L
E X A M P L E S W I T H M O D I F I E D
M A R M O U S I M O D E L

We further validate our localized inversion strategy on the modified
Marmousi model (Institut Franais du Pétrole (IFP), 1988) in com-
parison to full-model inversions. The Vp model is 7.5 km × 2.5 km
(Fig. 15a). Vs (Vs ≈ Vp/1.5 + 300 m s−1) and density models are
linearly linked to the Vp model (Gardner et al. 1974). We generate
4 s of data recorded at 300 m depth with a regular spacing of 25 m.
In total 271 receivers record two components of velocity wavefield
plus stress wavefield. A Ricker wavelet with dominant frequency of
6.5 Hz is used as the source wavelet and added onto the vertical ve-
locity component. The grid spacing for the wave propagation is 25 m
and the time step is 2 ms. 55 sources are deployed at 275 m depth
with the interval of 125 m. The time-lapse velocity perturbations
are about 5 per cent of the average baseline model (Fig. 15a).

The 2-D Vp perturbations obtained from full-model and localized
inversions under true baseline model are shown in Figs 15(c) and
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2-D localized elastic FWI 1711

Figure 14. Localized inversion with inverted baseline model. (a,b) Inverted time-lapse perturbation of Vp and Vs. (c,d) corresponds to the 1-D velocity profile
along the dashed lines in (a) and (b). Panels (e) and (f) denote the initial and final residuals of localized inversion respectively.

(d), respectively. Compared to the conventional full-model inver-
sion, the localized inversion retrieves the velocity anomalies with
a higher accuracy after the same 100 iterations. The correspond-
ing 1-D velocity profiles are shown in Fig. 16. Fig. 17 shows the
vertical velocity components of initial and final residuals from one
shot gather. The residuals of the major events are better fitted after
localized inversion (Fig. 17d) in comparison to the final full-model
inversion residuals (Fig. 17b). We specially plot the theoretical ini-
tial residuals (Fig. 17e) in case that we directly record wavefield at
the same positions as the extrapolated virtual receivers. The residual
difference between Figs 17(c) and (e) is shown in Fig. 17(f). This
difference essentially represents the spurious events after wavefield
extrapolation. However, we notice that the localized inversion does
not ‘see’ those spurious events when comparing it with final resid-
uals of the localized inversion (Fig. 17d).

We finally apply the same strategy on a smoothed Marmousi
model without changing the geometry and inversion parameters
(Fig. 18). Besides the reduced computational cost, the localized in-

version is also more accurate than the full-model inversion (Fig. 19)
after the same 100 iterations.

7 D I S C U S S I O N

In order to develop a localized waveform inversion scheme, we com-
bine source-side wavefield injection and receiver-side extrapolation
methods, where we pose some simplifications and assumptions. The
closed surface integral over the source-side wavefield injection can
be conducted in a rigorous numerical way, while receiver-side resid-
ual wavefield extrapolation suffers from the truncation of surface
integral and sparseness of receivers. Also, it requires a challeng-
ing technology that efficiently measures strains or stresses if we
would like to rigorously complete all the terms in eq. (10). Dur-
ing the source-side wavefield injection method, we ignored higher
interactions due to local model changes between target region and
the model outside the reduced absorbing boundaries. However, it
turns out that it does not seriously affect the seismic images since
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1712 S. Yuan et al.

Figure 15. Time-lapse Vp model and inverted results. (a) The baseline Vp model selected from the true Marmousi model and the acquisition geometry. Red
star and grey triangles denote physical source and receivers, respectively. White triangles denote the extrapolated virtual receivers. Two arrows point to the
locations where time-lapse perturbation occurs. (b) The zooming true time-lapse Vp perturbation within the dashed square in (a). (c) Full-model inversion
result. (d) Localized inversion result. The two dashed lines (#1 and #2) in (c) and (d) indicate 1-D inverted velocity profiles and perturbations which are shown
in Fig. 16.

Figure 16. 1-D inverted Vp profiles and perturbations. The left two columns denote 1-D profiles from the full-model inversion result in Fig. 15(c) and the right
two columns denote the 1-D profiles from the localized inversion result in Fig. 15(d). (a–d) 1-D profiles with true (black curves), starting (cyan curves) and
inverted Vp. (e–h) 1-D true (black curves) and inverted (red curves) Vp perturbations.
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2-D localized elastic FWI 1713

Figure 17. Vertical component of inversion residuals from one shot example under true baseline Marmousi model. (a,b) Initial and final (after 100 iterations)
residuals using the full-model inversion. (c,d) Initial and final (after 100 iterations) residuals using the localized inversion. (e) Initial residuals of localized
inversion using the true wavefield directly observed at virtual receiver positions without extrapolation. (f) The residuals difference between (c) and (e), which
indicates that the localized inversion will not try to fit the spurious events caused the wavefield extrapolation.

Figure 18. (a) The smoothed baseline Vp model with the same acquisition geometry and time-lapse perturbations shown in Figs 15(a) and (b). The two dashed
lines (#1 and #2) indicate 1-D velocity profiles which are shown in (b) and (c). (b,c) 1-D profiles with true (black curves) and starting (cyan curves) velocities.
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Figure 19. Full-model and localized inversion using the smoothed Marmousi baseline model. (a) The time-lapse Vp perturbations from full-model inversion.
The two dashed lines (#1 and #2) indicate 1-D inverted perturbations which are shown in (b) and (c). (b,c) 1-D true (black curves) and inverted (red curves) Vp

perturbations from full-model inversion. (d) The time-lapse Vp perturbations from localized inversion. The two dashed lines (#1 and #2) indicate 1-D inverted
perturbations which are shown in (e) and (f). (e,f) 1-D true (black curves) and inverted (red curves) Vp perturbations from localized inversion.

higher-order interactions are weaker and only influence later phases
than that we use for inversions. Receiver-side residual wavefield ex-
trapolation is, in addition to the difficulty described above, assuming
no change (or error) in baseline model by definition. But it shows
that long-wavelength structures of the outer region is sufficient to
image the interior of target regions.

We show that wavefield injection is efficient and robust enough
even though part of the higher order scatter wavefield is neglected
due to the reduced modelling area. With the extrapolated wavefield,
albeit some spurious events due to one-side illumination problem
or slightly perturbed baseline model, the localized inversion is still
able to provide sufficiently accurate time-lapse images. The local-
ized inversion, which naturally focuses on the scattered wavefield
due to perturbations within target regions, will not only contribute
to the reduction of computational cost to a great extent, but also
to the suppression of spurious events that cause wrong model up-
date outside target zones. We further calculated the model errors
as a function of iteration indice in Fig. 20, showing that localized
inversions converge faster in both cases (layered and Marmousi-
models). Hence, the localized inversions require fewer iterations
to obtain models with the same accuracy as full-model inversions.
This will further enhance the speed-up and efficiency. Although
we fixed the number of iterations to be 100 for all the tests in
this paper, the truncation criteria should be discussed in our fu-
ture papers. The decreased computational areas will potentially im-
prove the capability in inverting higher frequency seismic data,
which will lead to a better resolution, even though it is not shown
here. Based on the synthetic examples we show, our methodol-
ogy is more accurate, efficient and robust for the same number of
iterations.

In data domain, after wavefield extrapolation, without losing the
field interaction, the overburden effect is mostly reduced so that the
nonlinearity of waveform inversion and associated cycle-skipping
problems are mitigated. This can partly explain why localized in-
versions converge faster and the final misfit is smaller compared
with conventional full-model inversion. In model domain, the lo-
calized inversion is equivalent to applying a precondition on the
gradient, which naturally prevents the spurious model update from
the non-target regions. This strategy is specially effective if we can
specify our target zones and assume that the baseline model has few
perturbations. In case of large baseline changes, we are supposed to
perform the full-model waveform inversion once more to achieve
better baseline model for wavefield injection and extrapolation. Al-
though we have focused on the residual waveform inversion, the
method proposed here is equally validated for localized inversion
of seismic data in general.

8 C O N C LU S I O N S A N D P E R S P E C T I V E S

We proposed and examined a methodology of inverting seismic
waveforms for localized structures and show its feasibility through
various synthetic experiments by adding errors in both model and
data domain. We combine wavefield injection and extrapolation
to perform the localized waveform inversion for time-lapse seis-
mic surveys. It shows that the localized inversion can enhance the
image quality of local time-lapse variation while reducing the com-
putational cost to a large extent. The proposed strategy reveals that
putting virtual sources and receivers in the vicinity of target region
contribute to improving the accuracy and robustness of waveform
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2-D localized elastic FWI 1715

Figure 20. Comparisons of inverted errors as a function of iteration number between full-model and localized waveform inversions. (a,b) Using layered model
(Sections 5.1 and 5.2). (c,d) Using modified Marmousi model (Section 6).

inversion even under uncertainties of the outside area. It is as if we
observed through a telescope to make the distant objects look closer
and thus more clearly, even without knowing what is happening be-
tween them and us.

Due to the reduced modelling size, the computing time of
2-D localized inversion in the experiments above is decreased by a
factor of 10 as compared to full-model inversions. We expect that
the more severe computational cost of 3-D elastic or viscoelastic
full waveform inversion during practical time-lapse surveys, could
be potentially reduced to a more acceptable and economic level.
Although the proposed methodology is examined on 2-D cases, the
extension to general 3-D cases should be straightforward.
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A P P E N D I X A : R E P R E S E N TAT I O N
T H E O R E M F O R A S M A L L M O D E L
C H A N G E

We review representation theorem for reconstruction of residual
wavefield extrapolation. Let be V+ the region where we have a
model change. Note that this definition of V+ is not always as same
as that in Section 3. Receiver-side residual wavefield extrapolation
is reconstructing the residual between baseline and monitor data
(�d in eq. 6) at some point just outside V+ from �d recorded at
the Earth’s surface (Fig. A1). As the representation theorem writes
in a compact form in frequency domain, we first recall the equation
of motion for an (an)elastic medium in frequency domain

ρ0ω2v0
i + (

C0
i jklv

0
k,l

)
, j

= −gi (A1)

where ω is angular frequency, ρ is the density, vi is the ith component
of displacement, Cijkl is the elastic moduli tensor and has complex
value when the medium is anelastic, gi is ith component of external
body force distribution. Any internal or external boundary condition
can be added in a form of surface integral to this equation but we
omit the discussion on this topic in this paper. The comma A,i

denotes spatial partial derivative with respect to ith direction. The
superscript A0 denotes the seismic structure of unperturbed model.
We can write the equation of motion for the perturbed model in the
same manner:

(ρ0 + ρ1)ω2
(
u0∗

i + u1∗
i

) + [(
C0∗

i jkl + C1∗
i jkl

) (
u0∗

k,l + u1∗
k,l

)]
, j

= − f ∗
i

(A2)

where ρ1 and C1
i jkl denotes the perturbation of seismic model with

respect to the initial model, u1
i is the perturbed wavefield due to

the model change with a source distribution fi. A∗ denotes the
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Figure A1. Schematic illustration of the geometry of representation the-
orem discussed in Appendix A. We would like to extrapolate (residual)
wavefield recorded at the surface S′ to the internal point rA by using only
Green’s functions inside V−.

complex conjugate in frequency domain or time-reversal invariance
in time-domain. Assuming the medium is lossless, we use complex
conjugate type (or time reversal in time domain) equation of motion
for eq. (A2) so that we can develop correlation type representation
theorem for backward wavefield extrapolation. When needed, it is
sufficient to take off all ∗ to obtain the representation theorem of
convolution type for forward wavefield extrapolation.

We then multiply eq. (A1) by u∗
i = (u0∗

i + u1∗
i ) and eq. (A2) by

v0
i , respectively, taking the difference and taking a volume integral

over an arbitrary V:

−
∫

V
dVρ1ω2v0

i u∗
i +

∫
V

dV
[
u∗

i

(
C0

i jklv
0
k,l

)
, j

− v0
i

((
C0∗

i jkl + C1∗
i jkl

)
u∗

k,l

)
, j

]
= −

∫
V

dV
(
gi u

∗
i − f ∗

i v0
i

)
. (A3)

This is the generalized reciprocity theorem that takes account for a
model change. Unlike the classical reciprocity theorem, the volume
integral over Cijkl does not have anymore symmetric form due to the
model change. Now we set the source distribution as

gi (r) = δinδ(r − rA) (A4)

where δin denotes Kronecker’s delta and δ(·) denotes Dirac’s delta
function. Substituting eq. (A4) into eq. (A1), taking the volume
integral over V, we obtain the equation of motion for Green’s func-
tion:∫

V
dVρ0ω2G0

in(r, rA) +
∫

V
dV

(
C0

i jkl G
0
kn,l (r, rA)

)
, j

= −
∫

V
dV δinδ(r − rA). (A5)

We then substitute eq. (A5) into eq. (A3), arranging it, we obtain a
representation theorem for a model change:

u∗
n(rA) =

∫
V

dV f ∗
i G0

in(r, rA)

+
∫

V ∩V −
dV

[
G0

in(r, rA)
(
C0∗

i jklu
∗
k,l (r)

)
, j

−u∗
i (r)

(
C0

i jkl G
0
kn,l (r, rA)

)
, j

]

+
∫

V ∩V +
dV

[
ρ1ω2u∗

i (r)G0
in(r, rA) + u∗

i (r)
(
C1

i jkl G
0
kn,l (r, rA)

)
, j

]

+
∫

V ∩V +
dV

[
G0

in(r, rA)
((

C0∗
i jkl + C1∗

i jkl

)
u∗

k,l (r)
)
, j

]

−
∫

V ∩V +
dV

[
u∗

i (r)
((

C0
i jkl + C1

i jkl

)
G0

kn,l (r, rA)
)
, j

]
(A6)

where, again, V+ is the region where the model is perturbed, that is

ρ1 ≡ 0 in V ∩ V − (A7)

C1
i jkl ≡ 0 in V ∩ V − (A8)

and

V − ≡ V +. (A9)

When we substitute ρ1 ≡ 0 and C1
i jkl ≡ 0 everywhere in V+ for

instance, we obtain an ordinary representation theorem of u0
n for the

unperturbed model:

u0∗
n (rA) =

∫
V

dV f ∗
i G0

in(r, rA) +
∫

V
dV

[
G0

in(r, rA)
(
C0∗

i jklu
0∗
k,l (r)

)
, j

−u0∗
i (r)

(
C0

i jkl G
0
kn,l (r, rA)

)
, j

]
. (A10)

In this paper, we are particularly interested in representation for
rA ∈ V − for residual wavefield extrapolation. We can thus drop off
integral contributions from V ∩ V+ in eq. (A6). We then transform
volume integrals to surface integrals by integrating by parts and
using Gauss’ theorem:

u∗
n(rA) =

∫
V −

dV f ∗
i G0

in(r, rA)

+
∫

∂V −
dSn j

[
G0

in(r, rA)C0∗
i jklu

∗
k,l (r) − u∗

i (r)C0
i jkl G

0
kn,l (r, rA)

]

(A11)

where nj denotes the normal vector and ∂V− is a closed surface
surrounding the volume V−. In our case, the source is not inside the
perturbation region V+, we have∫

V −
dV f ∗

i G0
in(r, rA) = u0∗

n (rA) (A12)

which leads to

u1∗
n (rA) =

∫
∂V −

dSn j

[
G0

in(r, rA)C0∗
i jklu

1∗
k,l (r)

− u1∗
i (r)C0

i jkl G
0
kn,l (r, rA)

]
. (A13)

∂V− has the two parts: (i) the outer surface including the Earth’s
surface and (ii) the internal surface of which the normal vector is
opposite to that of ∂V+. The latter surface integral can be then again
translated into the volume integral over V+ but from eq. (A3), this
term will vanish if the density perturbation ρ1 is 0. We thus only
have to take the surface integral over the outer surface of V−. When
taking V− as the Earth itself except V+, with a smaller contribution
from further regions from the source, physical and virtual receivers.
In the reality, the surface integral over the closed boundary (eq. A13)
can never be realized due to the acquisition geometry and we have
to truncate ∂V− to S′ as in Fig. A1. The formal analysis of the errors
of this truncation is difficult. In Section 4, we show some numerical
‘good’ and ‘bad’ examples of extrapolated waveforms. Despite the
significant errors in extrapolated waveforms as in Fig. 3, waveform
inversion scheme is filtering out those spurious events and give
robust models.
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