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S U M M A R Y
To describe errors in the data, Gaussian distributions naturally come to mind. In many practical
instances, indeed, Gaussian distributions are appropriate. In the broad field of geomagnetism,
however, it has repeatedly been noted that residuals between data and models often display
much sharper distributions, sometimes better described by a Laplace distribution. In this study,
we make the case that such non-Gaussian behaviours are very likely the result of what is known
as mixture of distributions in the statistical literature. Mixtures arise as soon as the data do not
follow a common distribution or are not properly normalized, the resulting global distribution
being a mix of the various distributions followed by subsets of the data, or even individual
datum. We provide examples of the way such mixtures can lead to distributions that are much
sharper than Gaussian distributions and discuss the reasons why such mixtures are likely the
cause of the non-Gaussian distributions observed in geomagnetism. We also show that when
properly selecting subdata sets based on geophysical criteria, statistical mixture can sometimes
be avoided and much more Gaussian behaviours recovered. We conclude with some general
recommendations and point out that although statistical mixture always tends to sharpen the
resulting distribution, it does not necessarily lead to a Laplacian distribution. This needs to be
taken into account when dealing with such non-Gaussian distributions.

Key words: Archaeomagnetism; Magnetic anomalies: modelling and interpretation; Mag-
netic field variations through time; Palaeomagnetism; Satellite magnetics; Probability
distributions.

1 I N T RO D U C T I O N

Geomagnetic field modeling consists in converting large sets of
data {γ i, si} (where γ i denotes a datum, typically a field compo-
nent, declination, inclination or intensity, measured at some loca-
tion and time, and si its assumed uncertainty) into a so-called model
m̃ = {m1, m2, . . . , mK } (where mj denotes model parameters). Such
models aim to provide the best mathematical description of the geo-
magnetic field accounting for the observed data when only a limited
number of parameters are being used. Such approaches are typi-
cally used to recover spherical harmonic representations of the main
field (e.g. Olsen et al. 2015), the lithospheric field (e.g. Thébault
et al. 2016) and the ionospheric field (e.g. Chulliat et al. 2016) when
using satellite data. They also are used to recover similar representa-
tions of the historical field when using historical data (e.g. Bloxham
et al. 1989; Jackson et al. 2000; Walker & Jackson 2000) and of the
archeomagnetic and time-averaged palaeomagnetic fields when us-
ing archeomagnetic, sediment and palaeomagnetic data (e.g. Licht
et al. 2013; Johnson & Constable 1997). They are further commonly
used to recover best representations of the temporal evolution of the

local field (e.g. Thébault & Gallet 2010; Panovska et al. 2012;
Hellio et al. 2014). For such modeling efforts, it is important that
appropriate statistical assumptions are being made for the a pri-
ori distribution of residuals (differences between the data and the
model’s predictions). The statistical properties of these residuals,
however, are not always well characterized. In such circumstances,
assuming that residuals follow a Gaussian distribution would make
sense, since such a distribution often arises naturally as a conse-
quence of the central limit theorem when errors act in an additive
manner (see e.g. Feller 1971). Relying on this assumption, and pro-
vided that si is an adequate measure of the standard deviation of
the residual expected for the datum γ i, standard maximum likeli-
hood estimations can then be used to infer the model m̃, in which
case, normalized residuals { γi −γ̂i

si
} (γ̃i being the datum value pre-

dicted by the model m̃) would be expected to follow a standard
normal distribution. Yet, this turns out to often not be the case,
with residuals often displaying a marked trend to display a sharper
distribution, sometimes much closer to that of a so-called Laplace
distribution (e.g. Jackson et al. 2000; Walker & Jackson 2000;
Panovska et al. 2012, 2015). Various strategies have been put
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On the non-Gaussian distribution of residuals 1037

Figure 1. Result of an equally probable mixture of nine Gaussian distributions with zero means and standard deviations σ = 0.1, . . . , 0.9. Green solid line
is for the resulting pdf w(x) = 1

9

∑9
i=1

10
i
√

2π
exp[− 1

2 ( 10x
i )2], dashed line is for a Laplace distribution best-fitting w(x), namely 1.3 exp (−2.6|x|). Left: linear

scale and right: decimal semi-logarithmic scale.

forward to take this into account, by acknowledging at the very
onset of the modeling procedure that residuals follow a Laplace,
rather than a Gaussian, distribution (e.g. Walker & Jackson 2000),
by allowing the modeling procedure to empirically seek, rather than
a priori assume, the distribution of residuals (e.g. Constable 1988),
or by implementing an Iteratively Reweighted Least Squares (IRLS)
method and Huber weights (Huber 1981) (see e.g. Olsen 2002;
Thébault & Gallet 2010). No studies, however, have yet looked into
the reason why such non-Gaussian behaviour arises in the geomag-
netic context. The purpose of this paper is precisely to look into
this and to show that the main cause can be traced back to the fact
that residuals are usually assumed to sample a common distribution,
whereas this may not be the case, and that normalized residuals may
be incorrectly normalized, resulting in both cases in what is known
in the statistical literature as mixture (or randomization) of distri-
butions (Feller 1971; Barndorff-Nielsen et al. 1982). Indeed, as we
will illustrate, such mixtures of otherwise normal distributions can
produce non-Gaussian distributions with high kurtosis, often very
close to Laplacian distributions.

2 M I X T U R E S O F R A N D O M
D I S T R I B U T I O N S

The simplest way to introduce the concept of mixtures of random
distributions consists in starting from a family of probability den-
sities (pdf) v(x, y) where x is the variable defining the values that a
random variable α may take and y is a parameter identifying each
pdf of the family. A mixture of such pdfs can then be defined as a
new pdf w(x) using the formula:

w(x) =
∞∫

−∞

v(x, y)u(y)dy (1)

where u(y) can be viewed as a weighing factor defining the contri-
bution of each v(x, y) pdf to the w(x) pdf mixture. This mixture,
however, can also be viewed as a randomization of the v(x, y) pdfs,
if the parameter y is itself viewed as an independent random variable
β with pdf u(y) (see e.g. Feller 1971).

Fig. 1 provides a first example of mixture of random distri-
butions when considering nine Gaussian distributions with zero
means and standard deviations σ = 0.1, . . . , 0.9. In this case, the
random variable β is assumed drawn with equal probability from
a set of nine values (0.1, . . . , 0.9, the u(y) distribution is there-
fore assumed discrete), and the random variable α is next drawn
from a Gaussian distribution with zero mean and standard devia-
tion σ = y, where y value is the value taken by β. Here, therefore,
v(x, y) = 1

y
√

2π
exp[− 1

2 ( x
y )2]. This trivially results in a mixed pdf

of the form w(x) = 1
9

∑9
i=1

10
i
√

2π
exp[− 1

2 ( 10x
i )2]. As can be seen,

this mixed pdf is much sharper than that of an individual Gaussian
distribution (Fig. 1, left). It in fact is much closer to a Laplace
distribution of the form a

2 exp(−a|x |), with a = 2.6 in the present
case, as can be inferred from a best linear fit to the semi-logarithmic
representation of this pdf (Fig. 1, right).

The above example is a simple one. More generally in geomag-
netism, one can expect residuals to consist in a collection {xn|n = 1,
2, . . . , N} of several populations Xk = {xi j | j = 1, 2, . . . , nk} of
residuals, each assumed to be drawn from a Gaussian distribution
with some expectation mk and standard deviation sk. Considering
the impact of mixtures of Gaussian distributions with different ex-
pectation mk, also modeled as drawn from a random distribution, is
of course possible (see Barndorff-Nielsen et al. 1982). Here, how-
ever, we ignore this possibility, and assume mk = 0 (as was already
the case in the previous example). The reason for this is twofold.
First, because such biases and their variability can be expected to be
small compared to the variability in the standard deviations sk, and
second and foremost, because variability in the biases will usually
result in some widening, and not sharpening, of the resulting mixed
distribution (as intuition would tell, and as can readily be checked
numerically).

In what follows, we thus focus on the consequences of the vari-
ability in the standard deviations sk. Then, the total set of residuals
{xn|n = 1, 2, . . . , N} can be considered as a sample population drawn
from a mixture (or randomization) of unbiased Gaussian distribu-
tions with random variable α, and standard deviations defined by a
random variable β independently drawn from its own distribution
fβ (y). In that case we may again write v(x, y) = 1

y
√

2π
exp[− 1

2 ( x
y )2],

which indeed defines an unbiased Gaussian probability for the α
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1038 A. Khokhlov and G. Hulot

Figure 2. Plots of the probability density function fξ (x) = 1√
8π

�(0, x2

2 ) when one considers uniform mixtures of unbiased Gaussian distributions with

standard deviations varying between 0 and 1. Note the divergence of this pdf when x goes to zero. Left: linear scale and right: decimal semi-logarithmic scale.

variable once a value y has been drawn for the β variable, and make
use of eq. (1) with u(y) = fβ (y) to infer the pdf fξ (x) of the resulting
mixed distribution:

fξ (x) = 1√
2π

∞∫
0

fβ (y) exp

(
−1

2

x2

y2

)
y−1dy. (2)

3 T Y P I C A L M I X T U R E S O F U N B I A S E D
G AU S S I A N D I S T R I B U T I O N S

Mixtures of unbiased Gaussian distributions can occur in many
forms, formally controlled by the distribution chosen for the stan-
dard deviation, that is, by the choice of fβ (y) in eq. (2). Fig. 1
already provided an example of a discrete case of mixture of nine
equally probable unbiased Gaussian. In this section, we consider
other mixtures of interest.

3.1 Uniform mixtures

We begin with the case of uniform mixtures of unbiased Gaussian
distributions with standard deviations varying between 0 and c, that
is,

fβ (y) =
{

1/c 0 ≤ y ≤ c
0 y > c

(3)

In that case, fξ (x) can be expressed in terms of an incomplete Gamma
function �(a, c) = ∫ ∞

c ta−1 exp(−t)dt after two variable substitu-
tions in the integral expression of eq. (2). The first substitution is
y = u−1:

1

c
√

2π

c∫
0

exp

(
−1

2

x2

y2

)
y−1dy

= 1

c
√

2π

∞∫
1/c

exp

(
−1

2
(xu)2

)
u−1du

and the second is t = 1
2 (xu)2:

1

c
√

2π

∞∫
1/c

exp

(
−1

2
(xu)2

)
u−1du = 1

2c
√

2π

∞∫
x2/(2c2)

t−1 exp(−t)dt

= 1

c
√

8π
�

(
0,

x2

2c2

)
leading to:

fξ (x) = 1

c
√

8π
�

(
0,

x2

2c2

)
(4)

In particular, when c = 1, that is, when one considers uniform mix-
tures of unbiased Gaussian distributions with standard deviations
varying between 0 and 1, this leads to:

fξ (x) = 1√
8π

�

(
0,

x2

2

)
. (5)

The corresponding plots are shown in Fig. 2. As can be seen, this
leads to a distribution which is extremely sharp, much sharper in its
central part than an a Laplace distribution, since fξ (x) actually goes
to infinity when x goes to zero.

Another case of interest is when one considers a uniform mixture
of unbiased Gaussian distributions with standard deviations varying
between c − d and c + d, that is,

fβ (y) =
{

1/2d c − d ≤ y ≤ c + d
0 0 ≤ y < c − d or y > c + d

. (6)

In that case, as can readily be inferred from the previous case, the
resulting distribution will take the form

fξ (x) = 1

2d
√

8π

(
�

(
0,

x2

2(c + d)2

)
− �

(
0,

x2

2(c − d)2

))
. (7)

Fig. 3 shows such distributions when considering c = 0.5, and d
progressively increasing between 0.1 and 0.4 (i.e. for uniform mix-
tures of unbiased Gaussian distributions with standard deviations
varying, respectively, between 0.4 and 0.6, 0.3 and 0.7, 0.2 and 0.8,
0.1 and 0.9). As can clearly be seen, as d increases, the distribu-
tion progressively changes from a near Gaussian distribution (as one
would expect when d is small enough) to a distribution getting much
closer to a Laplace distribution. This figure also makes it clear that
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On the non-Gaussian distribution of residuals 1039

Figure 3. Plots of the probability density functions fξ (x) = 1
2d

√
8π

(�(0, x2

2(c+d)2 ) − �(0, x2

2(c−d)2 )) when one considers uniform mixtures of unbiased Gaussian

distributions with standard deviations varying between c − d and c + d, c = 0.5 and d = 0.1, 0.2, 0.3 and 0.4 (resulting in a progressively sharpening mixed
distribution when d increases). Left: linear scale and right: semi-logarithmic scale.

Figure 4. Plots of the probability density function fξ (x) when one considers a triangular mixture as defined by eq. (8). Left: linear scale and right: decimal
semi-logarithmic scale.

the sharp peak seen in the previous case (Fig. 2) is the consequence
of including Gaussian distributions with vanishingly small standard
deviations in the mixed distribution (Note, indeed, that assuming
c = 0.5 and d = 0.5 in eq. (7), is equivalent to considering eq. (5)).

3.2 Other mixtures

Any other mixtures of interest can also easily be computed numeri-
cally by simply relying on a direct Monte Carlo approach. Consider,
for instance, the case of a triangular mixture defined by:

fβ (y) =
{

2(1 − |2y − 1|) 0 ≤ y ≤ 1
0 y > 1

. (8)

This triangular mixture provides a typical example of a single-
mode concave mixture, where Gaussian distributions involved in
the mixture have a central maximum probability of having a given
standard deviation σ = 0.5 (i.e. the same central standard deviation
as considered in all previous mixture examples), and a probability
of having larger or smaller standard deviations decreasing as one
moves away from this central value. As is illustrated in Fig. 4, this

is again enough to lead to a behaviour close to that of a Laplace
distribution.

4 I N T E R P R E TAT I O N O F T H E
N O N - G AU S S I A N B E H AV I O U R O F
R E S I D UA L S I N G E O M A G N E T I S M

We now turn to the interpretation of a number of non-Gaussian
behaviour of residuals identified by previous authors in the general
context of geomagnetism.

4.1 Historical magnetic observations

We start by considering the case of historical magnetic observa-
tions. As has first been pointed out some decades ago (Bloxham
et al. 1989), data used to compute spherical harmonic models of the
historical main field usually lead to normalized residuals with dis-
tributions distinctly sharper than that of a Gaussian distribution, and
somewhat closer to that of a Laplace distribution (see e.g. fig. 21 in
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1040 A. Khokhlov and G. Hulot

Figure 5. Histogram of errors in 18 940 historical observations of compass
declinations (in degrees) taken on board ship during the 17th and 18th cen-
turies. The solid line represents the observations, the dashed line represents
a best-fit Laplace distribution. The standard deviation for this distribution is
σ = 0.46◦ (after fig. 7a of Jackson et al. 2000).

Bloxham et al. 1989). This sharpening effect was later considered in
more details by Jackson et al. (2000), who pointed out that a similar
effect could also be seen in the distribution of errors in repeated
historical observations of declination made on board ships during
the 17th and 18th centuries (Fig. 5, reproduced from fig. 7a of Jack-
son et al. 2000). In that case, the errors plotted are not normalized
residuals, but angular differences between individual declination
measurements taken on a given day and the mean of these mea-
surements. It is not unreasonable to assume that if all observations
had been made by the same person under similar conditions, the
distribution would have been much more Gaussian. But only few
such measurements were usually made on a given day, and condi-
tions of observations varied significantly from one day to the next.
In addition, these observations were made on different ships by dif-
ferent observers using different instruments. Fig. 5 thus very likely
shows a distribution resulting from a mixture of presumably unbi-
ased Gaussian distributions, similar to those discussed in Section 3
above. Comparing Fig. 5 with Figs 2–4 would in fact suggest that
the mixture involves errors with standard deviations varying by at
least an order of magnitude, compatible with the fact, also reported
by Jackson et al. (2000) that errors ‘with a magnitude perceived to
be large enough to merit special mention in logs decreased through
time, from a couple of degrees in the 17th century to a few minutes
late in the 18th century’.

The effect discussed above is related, but not strictly identical
to the one originally highlighted by Bloxham et al. (1989) (see
also Walker & Jackson 2000) when considering normalized resid-
uals with respect to the spherical harmonic models they computed
for the historical main field. Such residuals not only result from
measurement errors of the type just discussed, but also from errors
linked to the fact that these data also contain signals produced by,
for example, the ionosphere, the magnetosphere and most promi-
nently, the crustal field. These non-modeled signals contribute to
the error budget, and their contribution will therefore also affect the

form of the distribution of the final normalized residuals. Although
such contributions can possibly be modeled as independent sources
of (approximately unbiased) Gaussian noise, as we will later see,
their magnitude depends on where and when (the latter in the case
of signals of ionospheric and magnetospheric origin) the data have
been acquired. This variability, and that of the measurement errors
discussed above, is usually very partially, if ever, taken into ac-
count, particularly when modeling the historical field. As a result,
if a common Gaussian error is assumed for each type of error and
data, both in the modeling process and in the computation of the
final normalized residuals (as was done by Bloxham et al. 1989),
this will again amount to mix data errors originating from Gaussian
distributions with varying standard deviations, and result in a sharp
near-Laplacian distribution as observed in fig. 21 of Bloxham et al.
(1989).

4.2 Marine magnetic anomalies

Another relevant example of non-Gaussian behaviour of magnetic
residuals was provided by Walker & Jackson (2000), who consid-
ered marine magnetic anomalies collected over 30 yr by cruises over
the world’s oceans (held in the Scripps Institute of Oceanography
database). As pointed out by these authors, this distribution is again
very sharp and looks quite similar to that of a Laplace distribu-
tion (their fig. 1a). In that case, we could access a similar database
(courtesy of J. Dyment and Y. Choi), which was recently used for the
purpose of building the second version of the World Digital Mag-
netic Anomaly Map (Lesur et al. 2016) and an associated global
equivalent magnetization map of the oceanic lithosphere (Dyment
et al. 2015). Fig. 6 shows the resulting histogram. This histogram
contains roughly 50 per cent more data than the one originally shown
by Walker & Jackson (2000) and looks very similar when plotted
in the same linear scale, as one would have expected (left in Fig. 6).
Indeed, statistics derived from both distributions are very similar
[Note, incidentally, that Walker & Jackson (2000) erroneously as-
signed a 3σ value to the standard deviation σ they report in their
fig. 1a (539.8 nT); correcting for this error leads to a σ value very
close to the σ = 140.2 nT we found for the updated distribution
shown in Fig. 6]. This distribution is very clearly non-Gaussian and
sharp. Plotting it in a semi-logarithmic scale reveals that it in fact
is even sharper than a Laplace distribution (which would lead to a
triangular shape when plotted in this way, recall Fig. 1). This, again,
is likely the result of some complex mixture of distributions with a
wide range of standard distributions.

Having access to the full data set and to additional useful ancil-
lary information allowed us to derive evidence that this is indeed
the case. Such marine magnetic anomalies are derived from field in-
tensity measurements collected by towing scalar magnetometers at
some distance behind ships to avoid non-natural magnetic signals.
These intensity measurements are next corrected for the intensity
predicted by global field models such as the International Geomag-
netic Reference Field (IGRF) model (for details about IGRF mod-
els, see e.g. Thébault et al. 2015). The resulting so-called magnetic
anomalies are then expected to mainly reflect the contribution of the
magnetic signal produced by the magnetization of the oceanic crust
lying below the ship. This magnetization is well known to be due
to the fact that the crust forms at oceanic ridges where it acquires a
(mainly) thermoremanent magnetization before moving away from
these ridges as a result of seafloor spreading, progressively reach-
ing greater depths and forming linear magnetized structures run-
ning parallel on both sides of the ridges (see e.g. Tivey 2007).
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On the non-Gaussian distribution of residuals 1041

Figure 6. Histogram of the 15 838 070 marine magnetic anomalies recently used to compute the second version of the World Digital Magnetic Anomaly Map
(Lesur et al. 2016). Left: linear scale and right: decimal semi-logarithmic scale. Anomalies are provided in nanotesla.

Figure 7. World Digital Magnetic Anomaly Map over the oceans (Lesur et al. 2016), adapted from fig. 1a of Dyment et al. (2015). The grey-shaded area
southwest of Australia is the one from which the anomalies used to build the histograms of Figs 8 and 9 come.

Magnetization having been acquired at the time of the very initial
cooling phase of the oceanic crust, these linear magnetized struc-
tures reflect both the seafloor expansion (and subsequent tectonics)
and the history of the main magnetic field, which often, but irregu-
larly, reversed in the geological past (see e.g. Hulot et al. 2010). Ma-
rine magnetic anomalies will therefore vary in magnitude depending
on many factors, most importantly the depth of the oceanic basement
(recall, indeed, that magnetic anomalies are computed at sea level,
and are therefore weaker if sources are further away), the latitude of
the region where these anomalies are observed (for similar depths
and ages, magnetic anomalies are stronger at high latitudes than near
the equator because of the dipolar structure of the main field), as

well as the orientation of the magnetized structures (for details about
these subtleties, see e.g. Lesur et al. 2016, and references therein).
These characteristics can clearly be seen in the WDMAM over the
oceans as shown in fig. 1a of Dyment et al. (2015), which we repro-
duce in Fig. 7. When focusing on specific regions with limited lati-
tude variations, similar orientation of the magnetized structures and
a limited range of basement depths, one may thus hope to capture the
fundamental distribution of the magnetization responsible for the
global distribution of the marine magnetic anomalies shown in
Fig. 6. Following this line of reasoning, we focused on the re-
gion southwest of Australia, delimited by latitudes varying be-
tween 40◦ and 55◦ south and longitudes varying between 95◦
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1042 A. Khokhlov and G. Hulot

Figure 8. Histograms of the marine magnetic anomalies used to compute the second version of the WDMAM when only considering data from the region
south of Australia delimited by latitudes between 40◦ and 55◦ south and longitudes between by 95◦ and 120◦ east, and depth to basement ranging between 3
and 3.5 km (top) and between 3.5 and 4 km (bottom). Left: true data and right: simulated unbiased Gaussian synthetic data with identical standard deviation;
all plots in decimal semi-logarithmic scales.

and 120◦ east (grey-shaded area in Fig. 7). In this region, base-
ment depths vary between a little less than 3 and 5 km for the
data available and anomalies are running along a common roughly
east to west orientation. Further separating this regional data set
into data sets corresponding to 500 m ranges of depth varia-

tions, and considering the most numerous of these subdata sets
leads to histograms that are no longer as sharp as the global
histogram shown in Fig. 6, and much closer to that of Gaus-
sian distributions. This can be seen in Figs 8 and 9, which show
the corresponding histograms together with synthetic histograms
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On the non-Gaussian distribution of residuals 1043

Figure 9. Same as Fig. 8, but for depth to basement ranging between 4 and 4.5 km (top) and between 4.5 and 5 km (bottom).

produced numerically from an identical number of data drawn from
a Gaussian distribution with the same standard deviation as that of
the real data (all plotted in semi-logarithmic scales). Similar plots
can be found when considering other regions of the world and care-
fully selecting subregions in the same way. It thus clearly appears
that the very sharp distribution seen in the global histogram of ma-
rine magnetic anomalies shown in Fig. 6 is indeed the result of some
complex mixture of near-Gaussian distributions with a wide range
of standard distributions.

4.3 Archeomagnetic and sediment data

We now switch to yet another set of examples of non-Gaussian
behaviour of residuals, this time found when considering sediment
and archeomagnetic data commonly used for main field modeling
over the past few millennia and during the Holocene.

We start by considering the spline analysis of Holocene sediment
magnetic records recently carried out by Panovska et al. (2012). In
this study, the authors used a robust spline analysis to find a best-
fit spline representation of individual sediment records and, among
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1044 A. Khokhlov and G. Hulot

Figure 10. Left: example of a Holocene declination sediment record, showing the raw data (green diamonds) and best-fit spline (solid blue line) and right:
histogram of the corresponding residuals (grey boxes) together with a best-fit Laplacian distribution (solid red line); units are in degrees (reproduced from
fig. 4 of Panovska et al. 2012).

other things, infer an estimate of the uncertainties affecting each
of these records. They found that these uncertainties varied quite
significantly from one record to the next, but also noted that for
each record, the distribution of residuals with respect to the best-fit
spline was usually much better accounted for by a Laplace distribu-
tion than by a Gaussian distribution (see figs 4 and 5 in Panovska
et al. 2012). However, simple inspection of the misfit of the corre-
sponding declination, inclination or relative palaeointensities series
to their respective best-fit splines also clearly points at these misfits
being much larger for some periods of time than for others. This can
be seen in Fig. 10 (reproduced from fig. 4 of Panovska et al. 2012),
where the fit of the spline to the declination data is much better
around 1000 AD than around 1000 BC. This is a strong indica-
tion that uncertainties not only vary from one record to the next,
as noted by Panovska et al. (2012), but also within a given record.
These variations inevitably lead to some mixture of distributions
when considering the entire set of residuals, and are the likely cause
of the close-to-Laplacian distribution shown in Fig. 10 (right).

Using such sediment data to build time-varying spherical har-
monic models of the main field also leads to normalized residuals
that follow close-to-Laplacian distributions. This can be seen in fig-
ures such as fig. 2 of Panovska et al. (2015), who used the sediment
data studied by Panovska et al. (2012) and the uncertainties these
authors had derived. These sediment data represent 85 per cent of
the data used to produce the models (the rest being archeomagnetic
data, see below) and therefore contribute most to the distribution
of normalized residuals plotted by these authors. Normalizing the
residuals by the uncertainty estimates can be expected to rescale
residuals with respect to each other. In the present case, however,
uncertainties have been assumed uniform throughout each sediment
record and renormalization cannot account for the variability of un-
certainties within each record. Even renormalized, residuals from
sediment data can thus again lead to a near-Laplacian distribution,
as is indeed found in fig. 2 of Panovska et al. (2015).

Distributions of residuals with respect to spherical harmonic
models are not always as strongly Laplacian as those just discussed.
They can sometimes be only slightly sharper than Gaussian distri-
butions. This is typically the case when archeomagnetic data are
considered. A nice example is provided in fig. 5 of Korte & Consta-
ble (2006), where histograms of residuals of the intensity data used
in computing the CALS7K.2 model have been plotted separately
for the archeomagnetic intensity data and for the sedimentary in-
tensity data (note that in this example, residuals are not normalized
to the assumed uncertainty). Whereas the sediment data again lead
to a fairly sharp distribution, the archeointensity data lead to a dis-
tribution only mildly sharper than that of a Gaussian. This would
suggest that much less mixture of distributions occurs in the case

of archeointensity data than in the case of sediment data, and that
the uncertainty with which the main field intensity can be recovered
from archeological samples only modestly varies from one sample
to the next, despite the complexity of the causes of these uncer-
tainties (see e.g. Genevey et al. 2008; Suttie et al. 2011). Indeed,
comparison of fig. 5 (left) of Korte & Constable (2006) with Fig. 3
would suggest that, for most of the data, relative uncertainties do not
vary by much more than a factor 2. Similarly, mildly non-Gaussian
behaviour of archeomagnetic declination and inclination residuals
would indicate a fairly homogeneous data set. Note, however, that
if uncertainties are erroneously assigned (such as when ignoring
that converting an MAD angle into an α95 angle requires a factor
close to 3, see e.g. Khokhlov & Hulot 2016), computing normalized
residuals rather than raw residuals, can again lead to significantly
more Laplacian mixtures of distributions.

4.4 Satellite data

We finally turn to the case of contemporary satellite data. To illus-
trate this case, we rely on data used to produce a model proposed
as a candidate model for IGRF 2015 and which is fairly typical of
models produced from satellite data (Vigneron et al. 2015). More
specifically, we focus on that fraction of the data set which con-
sists of absolute scalar data acquired by two of the Swarm satellites
(Satellites Alpha and Bravo) at quasi-dipole latitudes ranging be-
tween −55◦ and +55◦, and compute residuals with respect to the
so-called VFM model of Vigneron et al. (2015). These scalar data
cover a little less than a year (between 2013 November 29 and 2014
September 25) and were further selected following a number of
criteria, among which magnetically quiet and night time conditions,
to ensure that as little as possible non-modeled external signal is
included in the data. This resulted in 42 160 data for the Alpha satel-
lite and 42 175 for the Bravo satellite. These data can be expected
to reflect the signal of the field of internal origin the model aims
at modeling, any other source of signal being treated as a source
of noise acting on top the very low instrumental and satellite noise
(less than 0.3 nT, see Léger et al. 2015; Olsen et al. 2015; Frat-
ter et al. 2016). Residuals thus mainly reflect the noise produced
by whatever external field the model fails to capture. At the mid-
latitudes within which these data were acquired, these residuals are
typically due to signals related to the ring-current and mid-latitude
ionospheric currents, which only produce modest signals, given the
quiet night time data selected. Indeed, computing daily standard de-
viations for the corresponding residuals for each of the two Alpha
and Bravo satellites shows that these residuals are quite small, with
standard deviations typically ranging between less than 1 nT and
a few nanotesla, with a maximum value of a little less than 8 nT,
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Figure 11. Standard deviations (in nT) computed every day for the mid-latitude residuals of the Swarm scalar data used to compute the VFM model of
Vigneron et al. (2015). Blue large dots: data from the Swarm Alpha satellite and red dots: data from the Swarm Bravo satellite. Days are counted in Julian
days, with 2000 January 1 taken as the reference.

Figure 12. Left: histogram of the mid-latitude residuals of the Swarm Bravo scalar data used to compute the VFM model of Vigneron et al. (2015) and right:
histogram of an identical number of simulated data drawn from unbiased Gaussian distributions using the daily standard deviations shown in Fig. 11; all plots
in decimal semi-logarithmic scales.

as shown in Fig. 11. This figure, however, also makes it clear that
residuals do vary from one day to the next in a fairly consistent way
for both satellites, indicating that even though quiet magnetic con-
ditions have been selected, the noise produced by the external field
does vary on a daily basis by some factor of order 4. It thus is no sur-
prise that when combining residuals from all days for each of the two
satellites, the resulting histograms reveal a distribution very similar
to the type of mixed distribution predicted in Section 3. Fig. 12
(left) shows the corresponding distribution for satellite Bravo (a
very similar distribution is found for satellite Alpha). As expected,
and as had been observed by field modelers when inspecting simi-
lar satellite data residuals (see e.g. Olsen 2002), this distribution is
quite far from being Gaussian and is very close to Laplacian.

Having the data set at our disposal, we were also able to actually
confirm the fact that this close-to-Laplacian distribution indeed is

the result of a statistical mixture of otherwise essentially unbiased
normal distributions. This was tested in two ways. We first checked
that the distribution observed in Fig. 12 (left) could be reproduced
with the help of a mixture of unbiased normal distributions, using
exactly the same amount of synthetic data with standard deviations
changing every day in the same way as the real residuals (i.e. using
the standard deviations plotted in Fig. 11). This resulted in a syn-
thetic histogram remarkably similar to the one observed (Fig. 12,
compare right-hand plot to the left-hand plot). We next also com-
puted the histogram of the real residuals normalized to the daily
varying standard deviation as defined by Fig. 11 (see Fig. 13, left),
and compared it to the histogram of exactly the same amount of data
produced by a pure unbiased normal distribution (Fig. 13, right).
Again, the match is quite remarkable. Both tests were done inde-
pendently for the data from the Alpha and Bravo satellites, leading
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Figure 13. Left: histogram of the normalized mid-latitude residuals of the Swarm Bravo scalar data used to compute the VFM model of Vigneron et al. (2015)
and right: histogram of an identical number of simulated data drawn from an unbiased normal Gaussian distributions; all plots in decimal semi-logarithmic
scales.

to virtually undistinguishable histograms (Fig. 13 only shows the
result for the Bravo satellite). These results thus clearly confirm
that for satellite data also, the occurrence of strongly non-Gaussian
distributions of residuals can be the result of statistical mixture
of otherwise unbiased Gaussian distributions. Importantly, these re-
sults again highlight the fact that provided one has some geophysical
insight into what may be the cause of the variability of the standard
deviations of the residuals (in the present case, the day to day vari-
ability of the external field activity), the raw Gaussian nature of
these residuals can be recovered.

5 C O N C LU D I N G C O M M E N T S

Gaussian distributions naturally come to mind when it comes to
describe errors in the data. The usual justification for such a choice
is the well-known central limit theorem, which states that such
distributions should arise when errors affecting the data can be
expected to act in an additive manner (see e.g. Feller 1971). In
many practical instances, indeed, Gaussian distributions properly
describe data errors. This, however, is not always the case. In the
broad field of geomagnetism, residuals between data and models
aiming at providing the best description of these data often display
much sharper distributions, sometimes much better described by a
Laplace distribution. This has been found to be the case when con-
sidering historical magnetic data (e.g. Bloxham et al. 1989; Jackson
et al. 2000; Walker & Jackson 2000), marine magnetic anomalies
(e.g. Walker & Jackson 2000), magnetic sediment data (e.g. Korte
& Constable 2006; Panovska et al. 2012, 2015) and modern satellite
data (e.g. Olsen 2002; Olsen et al. 2015). In this study, we made the
case that such non-Gaussian behaviours are very likely the result of
what is known as mixture of distributions in the statistical literature
(e.g. Barndorff-Nielsen et al. 1982). Such mixtures arise as soon as

the data do not follow a common distribution, the resulting global
distribution being then a mixture of the various distributions fol-
lowed by subsets of the data or even individual datum. We provided
theoretical examples of the way such mixtures can lead to distribu-
tions that are much sharper than Gaussian distributions (Section 3).
We also provided explicit reasons to believe that such mixtures are
the underlying cause of the close-to-Laplacian distribution observed
when considering historical magnetic data (Section 4.1) and sed-
iment data (Section 4.3). We finally provided direct evidence that
statistical mixture is also the major underlying cause of the very
sharp distribution of marine magnetic anomalies (Section 4.2) and
of the almost as sharp distribution of mid-latitude satellite scalar
residuals (Section 4.4). In both these instances, we were further able
to explicitly show that when properly selecting subdata sets based on
geophysical criteria, much more Gaussian behaviours could be re-
covered, thereby proving that these distributions indeed result from
such statistical mixtures.

Several conclusions of this study are well worth being high-
lighted. First is the general conclusion that because of the wide
range of noise levels (both natural and instrumental) that can affect
the data, statistical mixtures are very likely to occur in the context
of geomagnetism. Second is the conclusion that relying on erro-
neous estimates of the a priori or a posteriori standard deviations
(such as when wrongly assuming a common standard deviation
for data of uneven quality) can also lead to some statistical mix-
ture of the distribution of the (then wrongly) normalized residuals,
even when errors affecting individual data can demonstrably be as-
sumed Gaussian. Finally, and most importantly, is the conclusion
that mixtures do not always lead to exact Laplacian distributions.
Sometimes, when the underlying distributions involved in the mix-
ture have standard deviations varying by only a small factor (say
within a factor 3), as seems to be the case for the archeointensity
data discussed in Section 4.3, the distribution will only be slightly
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On the non-Gaussian distribution of residuals 1047

sharper than a Gaussian. In other instances, when the underlying
distributions display much stronger variations, as is the case for
the marine magnetic anomalies discussed in Section 4.2 and for
the high-precision satellite scalar data discussed in Section 4.4, the
resulting distribution can be even sharper than a Laplacian. This,
together with the fact that other effects may well also contribute to
make the distribution non-Gaussian, should serve as a warning that
a priori assuming a Laplace distribution for data errors may not al-
ways be a better alternative to a priori assuming a Gaussian distribu-
tion. Rather, and whenever possible, one should try to avoid having
to deal with statistical mixtures by identifying the geophysical (or
other) causes of the occurrence of such mixtures and by recovering
adequate measures of the uncertainties affecting each subset of data,
in the way we did when considering marine magnetic anomalies and
satellite scalar data. Alternatively, and whenever such an approach
appears to be intractable (as seems to be the case when consid-
ering the sediment data, recall Section 4.3), adaptive approaches,
such as the one proposed by Constable (1988) or the IRLS method
combined with Huber weights (see e.g. Olsen 2002), are those
to be preferred.
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