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S U M M A R Y
Earthquake ruptures often develop along faults separating materials with dissimilar elastic
properties. Due to the broken symmetry, the propagation of the rupture along the bimaterial
interface is driven by the coupling between interfacial sliding and normal traction pertur-
bations. We numerically investigate in-plane rupture growth along a planar interface, under
slip weakening friction, separating two dissimilar isotropic linearly elastic half-spaces, and
we perform a parametric study of the classical Prakash–Clifton regularization, for different
material contrasts. In particular the mesh-dependence and the regularization-dependence of
the numerical solutions are analysed in this parameter space. When the regularization involves
a slip-rate dependent relaxation time, a characteristic sliding distance is identified below which
numerical solutions no longer depend on the regularization parameter, that is, they are phys-
ically well-posed solutions. Such regularization provides an adaptive high-frequency filter of
the slip-induced normal traction perturbations, following the dynamic shrinking of the dissi-
pation zone during the acceleration phase. In contrast, a regularization involving a constant
relaxation time leads to numerical solutions that always depend on the regularization parameter
since it fails in adapting to the shrinking of the process zone. Dynamic regularization is further
investigated using a non-local regularization based on a relaxation time that depends on the
dynamic length of the dissipation zone. Such reformulation is shown to provide similar results
as the dynamic timescale regularization proposed by Prakash–Clifton when the slip rate is
replaced by the maximum slip rate along the sliding interface. This leads to the identification
of a dissipative length scale associated with the coupling between interfacial sliding and nor-
mal traction perturbations, together with a scaling law between the maximum slip rate and
the dynamic size of the process zone during the rupture propagation. Dynamic timescale reg-
ularization provides mesh-independent and physically well-posed numerical solutions during
the acceleration phase towards an asymptotic speed. When generalized Rayleigh wave does
not exist, numerical solutions are shown to tend towards an asymptotic velocity higher than
the slowest shear wave speed. When the generalized Rayleigh wave speed exists, numerical
solutions tend towards this velocity becoming noisier and noisier as the rupture progresses. In
this regime regularization dependent, unstable finite-size pulses may be generated.

Key words: Numerical solutions; Earthquake dynamics; Earthquake source observations;
Computational seismology.

1 I N T RO D U C T I O N

Seismic ruptures often propagate along interfaces between dissimi-
lar materials. Yet a complete theoretical and numerical understand-
ing of the dynamics and stability of rapidly propagating rupture
along frictional bimaterial interfaces is lacking.

∗ Now at: Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy.

Field observations, laboratory experiments, analytical studies,
and numerical simulations evidenced a number of specific features
of rupture propagation along interfaces separating dissimilar mate-
rials, as compared to interfaces separating similar materials. Fric-
tional rupture propagating along a planar bimaterial interface leads
to slip-induced normal traction perturbations, as a result of symme-
try breaking, which depends on the material property contrast and
on the frictional behaviour of the interface.

Geological observations at the San Andreas Fault highlighted
favoured direction of propagation during large rupture events, that

48 C© The Authors 2017. Published by Oxford University Press on behalf of The Royal Astronomical Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/209/1/48/2918650 by C

N
R

S - ISTO
 user on 10 August 2022

mailto:antonio.scala@ingv.it


Rupture dynamics along bimaterial interfaces 49

is, the direction of slip in the more compliant medium (Harris &
Day 2005). Asymmetric distribution of near surface damage, as
observed both at the San Andreas Fault (Dor et al. 2006) and at
the Anatolian fault (Dor et al. 2008), were shown to result from
the different propagation along the two sides of bimaterial rupture.
Asymmetric distribution of the aftershocks after a main event in the
vicinity of a segment of the San Andreas Fault were also evidenced
and interpreted as the signature of bimaterial rupture (Rubin 2002;
Rubin & Gillard 2000; Rubin & Ampuero 2007).

Laboratory experiments also evidenced an asymmetry in the rup-
ture propagation along bimaterial interfaces. The rupture propa-
gation along the favoured direction was shown to tend towards
an asymptotic speed intermediate between the two Rayleigh wave
speeds characterizing the materials on both sides of the interface,
when the contrast in shear wave velocity is not too large (Xia
et al. 2005). This asymptotic speed is the generalized Rayleigh (GR)
wave speed Cgr characteristic of an interfacial wave that propagates
along a frictionless bimaterial interface constrained to not open. For
some pre-stress conditions, supershear acceleration may addition-
ally occur along the non-favoured direction (Xia et al. 2005). This
behaviour was ascribed to the slip-induced normal traction pertur-
bations occurring during the rupture propagation along bimaterial
interfaces. Sliding under variable normal pressure reveals a delayed
shear traction response to sudden normal traction variations that can
be described as a function of slip (Prakash & Clifton 1993; Prakash
1998).

When considering sliding along interfaces separating dissimilar
linearly elastic materials, there is a coupling between interfacial slip
and normal traction variations due to broken symmetry. The crack
tip asymptotic fields for frictionless bimaterial interfaces were an-
alytically studied using the classical formalism of Mushkelishvili
(Muskhelishvili 1953), by for example, Williams (1959), Erdogan
(1965) and Rice (1988), and of Stroh (Stroh 1962), by, for example,
Suo (1990) and Yang et al. (1991). The traction ahead the crack
tip, the displacement behind the crack tip and the displacement
discontinuity were explicitly established, showing near-crack tip
oscillatory behaviour (Williams 1959) associated with a complex
stress intensity factor. An arbitrary length scale needs therefore to
be introduced to define classical, real stress intensity factors (Rice
1988). For frictional bimaterial crack, using classical Coulomb fric-
tion, the oscillatory part disappears but material contrast on both
sides of the interface modifies the decay of the traction in the vicin-
ity of the crack tip (Deng 1994). A singularity weaker or stronger
than the classical square-root behaviour was argued depending on
the slip at crack tip (Deng 1994). A singularity stronger than the
square-root singularity was discarded as it would imply a backward
propagation of the rupture (Audoly 2000).

Steady propagation of slip pulse rupture mode along bimaterial
frictional interfaces was also analytically investigated. For constant
friction coefficient, finite-size pulses can propagate only along the
favoured direction due to the slip-induced normal traction pertur-
bations, even when the remotely imposed shear traction is smaller
than the shear frictional strength of the interface (Weertman 1980).
The speed of the propagating pulse was shown to be Cgr, as long as
the generalized Rayleigh wave exists (Weertman 1980).

When the velocity contrast is such that the generalized Rayleigh
wave exists, sliding along bimaterial interface under classical
Coulomb friction law is not only unstable against perturbations
at all wavelengths, irrespective of the value of the friction (Martins
& Simões 1995; Martins et al. 1995; Simões & Martins 1998) but
it is also mathematically ill-posed due to the lack of a length (or
time) scale associated with the coupling between sliding and nor-
mal traction perturbations. Steady-state slip waves are dynamically

destabilized along the bimaterial interface, due to self-excited mo-
tion for a wide range of elastic contrasts and frictional conditions
(Adams 1995, 1998). The stability and the ill-posed nature of the
physical problem were also investigated analysing the slip-rate re-
sponse to a single-mode perturbation of the shear traction (Ranjith
& Rice 2001). Unstable growth of the interfacial modes was shown
to affect all wavelengths, with a growing rate inversely proportional
to the wavelength, which depends on the material contrast and on
the friction coefficient.

Linear stability analyses of propagating slip modes (Ranjith &
Rice 2001; Rice et al. 2001; Adda-Bedia & Ben Amar 2003; Ranjith
2009, 2014; Brener et al. 2015) were also performed considering
classical Coulomb and rate-and-state-dependent friction laws, after
a regularization based on the laboratory experiments of Prakash &
Clifton (1993, 1998), which introduces a monotonic memory depen-
dence (delayed response) of the shear strength on sliding-induced
normal traction perturbations. The main results of these analyses are
the destabilization of different interfacial slip modes (Love, Stone-
ley and slip waves) and their stability criteria as a function of the
frictional parameters, materials dissimilarity, wavelength and ve-
locity of propagating modes. It was shown that for low shear wave
speed ratios an admissible mode might propagate at Cgr albeit it is
always unstable. For larger contrasts, admissible modes may steadily
propagate at a speed slightly higher than the slowest S-wave speed
and stable solutions exist for a limited range of small friction co-
efficients (Ranjith & Rice 2001). Moreover, a finite-time response
to normal traction perturbations tends to promote stabilization of
larger wavenumber modes (Ranjith & Rice 2001; Adda-Bedia &
Ben Amar 2003; Brener et al. 2015).

As a result, numerical simulations of bimaterial rupture propa-
gation were shown to be mesh dependent (Cochard & Rice 2000),
even in the case of slip-weakening friction (Harris & Day 1997), due
to the lack of a physical length (or time) scale associated with the
coupling between sliding and normal traction perturbations. More-
over unphysical numerical solutions, such as the generation of a
split pulse (Andrews & Ben-Zion 1997), were observed in relation
to the ill-posed nature and the instability of the physical problem.

Mesh dependence can be removed (Cochard & Rice 2000) when
the friction is modified with the Prakash–Clifton regularization
(Prakash & Clifton 1993; Prakash 1998).

This regularization smoothens the response of the shear strength
to sudden sliding-induced variations of the normal traction, intro-
ducing a monotonic fading-memory dependence on the normal trac-
tion history. This can be viewed as a relaxation mechanism where
the relaxation time varies inversely with the actual slip rate, normal-
ized by a characteristic sliding distance. Since this regularization
may limit the spontaneous development of slow nucleation such as
a pulse growing from a pore pressure increase with time (Andrews
& Ben-Zion 1997), a constant relaxation time mechanism was also
added (Cochard & Rice 2000).

This regularization can be interpreted as low pass filter acting on
the normal traction variations (Kammer et al. 2014), which should
ideally damp the high frequencies responsible for the fast instability
growth without attenuating the low frequency content of the normal
traction perturbations.

In the case of a linear slip-weakening friction, the characteris-
tic sliding distance associated with the relaxation is expected to be
smaller than the sliding distance Dc related to the frictional weaken-
ing. A constant timescale relaxation was shown to reduce the emer-
gence of numerical noise during rupture propagation more than the
slip-rate dependent relaxation (Rubin & Ampuero 2007). More re-
cently Kammer et al. (2014) identified a critical relaxation sliding
distance below which the numerical solutions become independent
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of the regularization parameters, using a mixed regularization in-
volving both relaxation mechanisms.

Numerical simulations confirmed the possible occurrence of slid-
ing pulse mode in the favoured direction (Cochard & Rice 2000;
Ben-Zion & Huang 2002) as well as the asymmetry in bilateral
rupture—in terms of rupture acceleration, slip rate in the vicinity
of the crack front, and cumulative slip in the favoured direction—in
particular in the case of slip weakening (Harris & Day 1997; Shi &
Ben-Zion 2006; Rubin & Ampuero 2007) and velocity weakening
frictions (Ampuero & Ben-Zion 2008). In the former case, a station-
ary slip pulse propagating at Cgr (when this asymptotic speed exists)
may separate from a growing rupture, due to the inversion of the
slip gradient associated with normal traction perturbations (Rubin
& Ampuero 2007). In the latter case, the emergence of wrinkle-like
pulses and supershear transitions were retrieved, although regular-
ization may affect the time and mode of their occurrence (Ampuero
& Ben-Zion 2008; Langer et al. 2012). Finally the supershear tran-
sition along the not favoured direction, originally found by Shi &
Ben-Zion (2006), was ascribed to shear waves ahead of the rupture
front (Langer et al. 2012). These waves decrease the frictional shear
strength along the non-favoured direction allowing the rupture to
accelerate faster than the lowest shear wave speed.

Numerical simulations also showed that the asymptotic propaga-
tion speed of expanding bimaterial rupture tends towards the gen-
eralized Rayleigh wave speed Cgr, when it exists, according to the
Weertman solution (Rubin & Ampuero 2007). When generalized
Rayleigh wave does not exist, the asymptotic rupture speed was nu-
merically found to be either the slower S-wave speed (Rubin & Am-
puero 2007), or slightly higher than this value (Harris & Day 1997).

Slip pulses propagating at Cgr, originally found in numerical so-
lutions of bimaterial rupture under classical Coulomb friction law
(Andrews & Ben-Zion 1997; Ben-Zion & Andrews 1998), were also
observed after regularization of the physical problem (Cochard &
Rice 2000) even though they exhibit self-sharpening and divergent
features (Ben-Zion & Huang 2002). This in turns indicates that a
Prakash–Clifton type of regularization does not suppress the de-
generacy of the solutions nor allow the selection of a physical pulse
size (Adda-Bedia & Ben Amar 2003). Numerical simulations of the
regularized problem were shown to become unstable when rupture
propagates long enough at the near asymptotic speed (Ben-Zion &
Huang 2002).

In this study a parametric study of the Prakash–Clifton type of
regularization is performed, for both a constant and a slip-rate de-
pendent relaxation time, for the acceleration phase of the in-plane
rupture propagation along bimaterial interfaces under slip weaken-
ing friction law. For both relaxation mechanisms, the regularized nu-
merical solutions are analysed in term of their mesh-dependence and
regularization-dependence properties. The near-asymptotic phase
of the propagating rupture is also specifically analysed from a nu-
merical point of view. A modified dynamic regularization is finally
discussed, where the relaxation time scales as the size of the dy-
namic dissipation zone normalized by a constant rupture speed,
leading to new insights into the coupling between the relaxation
and the frictional dissipation.

2 S E I S M I C RU P T U R E S A L O N G
B I M AT E R I A L I N T E R FA C E S

Seismic waves travelling in elastic media are governed by the fol-
lowing equations:{
ρv̇ = �∇ · σ

σ̇ = c : �∇v
, (1)

where ρ is the material density, v the particle velocity, σ the Cauchy
stress tensor, and c is the linearized fourth-order symmetric elastic
tensor. To solve the problem (1) appropriate initial and boundary
conditions need to be specified. Free surface boundary conditions
(zero traction) at the surface are assumed, while absorbing boundary
layers, such as PML (Festa & Vilotte 2005), are introduced for
unbounded physical domains. Modelling dynamic rupture requires
also specific contact and friction conditions that couple kinematic
and dynamic fields on the fault interface.

The fault is modelled as a zero-thickness frictional interface
across which kinematic discontinuity (slip and slip rate) may occur.
The interface separates two media (referred to as medium 1 and
medium 2) that may have similar or dissimilar elastic properties.
The interface is assumed smooth enough to define a normal vector
n, here assumed as the outward normal with respect to medium
1. The traction on the fault interface is defined as,T = σ · n, where
negative tractions are compressive. The traction is continuous across
the fault, while the displacement u and the velocity v may have a
discontinuity, denoted as the slip δu = u2 − u1 and the slip rate
δv = v2 − v1, across the sliding portion of the interface.

The traction, the slip and the slip rate are classically decomposed
along the normal and tangential directions. If ξ is one of these
quantities, ξ = ξ nn + ξ t where the superscripts n and t refer to
the normal and tangential contributions, with ξ n = ξ · n and ξ t =
ξ−(ξ · n)n.

Frictional sliding along the fault is governed by non-smooth con-
tact and friction conditions. In the normal direction, the Signorini
contact condition is written as⎧⎪⎨
⎪⎩

δun ≥ 0

T n ≤ 0

δun T n = 0.

(2)

This condition ensures the impenetrability of the two bodies
when being in contact along the interface under compressive regime
(T n < 0, δun = 0). When the two bodies are no longer in contact,
opening occurs (δun ≥ 0), and the interface behaves as a free surface
(T = 0). In this case, a mode I rupture is allowed.

When in contact, a frictional resistance is assumed when sliding
that is governed by

⎧⎪⎨
⎪⎩

(∣∣Tt
∣∣ + μT n

) ∣∣δvt
∣∣ = 0∣∣Tt

∣∣ + μT n ≤ 0

Tt · δvt = ∣∣Tt
∣∣ ∣∣δvt

∣∣ (3)

where μ is the actual friction coefficient and μT n the frictional
strength. First condition in eq. (3) indicates that the non-sliding
to sliding transition occurs when the modulus of the tangential
traction Tt lies on the surface of the actual frictional cone defined
by the second condition in eq. (3). During sliding, Tt remains on the
surface of the friction cone and the third condition in eq. (3) implies
that the tangential traction is collinear to the tangential slip rate. In
2-D, the last condition is simply a scalar condition. While tangential
traction Tt remains inside the frictional cone, no sliding occurs, that
is, δv = 0.

In this study, a slip-weakening friction (Ida 1972) is assumed.
During sliding, the friction drops linearly from a static value μs

to a dynamic value μd over a characteristic sliding distance Dc

according to

μ = max

{(
μs − μs − μd

Dc

∣∣δut
∣∣) ; μd

}
. (4)
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Bimaterial interface separates elastic domains with dissimilar
properties. The stiffer material is the domain having the largest
impedance, defined as the product of the material density by the
S-wave velocity. Without loss of generality the stiffer material is
assumed here to be medium 1, and the more compliant material is
medium 2.

It has been established that sliding along a bimaterial interface,
under classical or slip-weakening friction, is mathematically ill-
posed and unstable against perturbations at all wavelengths and
irrespective to the value of the friction coefficient, when the bi-
material contrast is such that a generalized Rayleigh wave exists.
When a generalized Rayleigh wave does not exist, the problem is
well-posed and stable only for a very limited range of low friction
values with an upper bound that can be analytically characterized.
The problem can be regularized introducing a delay between the
slip-induced normal traction perturbation and the frictional shear
response (Cochard & Rice 2000; Ranjith & Rice 2001).

Once regularized, the physical problem is no longer exactly the
same, and becomes mathematically and numerically well posed,
that is, numerical solutions do not exhibit mesh dependency. The
delay of the frictional strength response to slip-induced normal trac-
tion perturbations can be accounted for by introducing an effective
normal traction T n

eff that is related to the normal traction by an
exponential relaxation law{

∂T n
eff

∂t = 1
t∗

(
T n − T n

eff

)
if |δv| �= 0

T n
eff = T n if |δv| = 0

(5)

This equation means that the relaxation is effective only where
the fault is actually sliding. The effective normal traction replaces
the normal traction in eq. (3) for the definition of the frictional
strength:(∣∣Tt

∣∣ + μT n
eff

) ∣∣δvt
∣∣ = 0;

∣∣Tt
∣∣ + μTeff ≤ 0. (6)

In the eq. (5) t∗ is a characteristic relaxation time that may vary
along the interface and depend on the rupture dynamics. Cochard &
Rice (2000) suggested a slip-rate dependent relaxation time function
t∗ = t∗(|δvt |) defined as

1

t∗ =
∣∣δvt

∣∣
δl

+ 1

tc
if |δv| �= 0. (7)

where δl is a characteristic sliding distance and tc is a constant
timescale and the equation is valid only along the sliding portion
of the fault. We also refer to δl as the relaxation slip parameter
that can be scaled by the frictional slip-weakening distance Dc.
The relaxation time function (7) is the sum of two contributions.
The first term in the right hand-side is the inverse of a slip-rate
dependent relaxation time that can be interpreted as characterizing
a loss of frictional memory of prior strength (Adda-Bedia & Ben
Amar 2003; Rubin & Ampuero 2007). The second term is the
inverse of a constant relaxation time that was originally introduced
to avoid a singular behaviour at low slip rates, in particular during
slow nucleation phase such as the one analysed by Andrews &
Ben-Zion (1997), when rupture is originated by an external normal
load. Nevertheless in many numerical simulations (e.g. Rubin &
Ampuero 2007; Ampuero & Ben-Zion 2008; Langer et al. 2012)
only the constant relaxation timescale is actually used to study
bimaterial ruptures.

In this work, we numerically analyse these two mechanisms sepa-
rately. We define td = δl/|δvt | as the dynamic relaxation timescale,
and tc as the constant relaxation timescale. A parametric study is
performed to define numerically well-posed, as the solutions show-

ing convergence for mesh refinement (Cochard & Rice 2000) and
physically well-posed solutions, defined as numerical solutions that
are independent of a particular choice of the regularization param-
eters. It is worth noting that the normal traction perturbations on
the interface are due to sliding-induced perturbations and elasto-
dynamic flux perturbations associated with bulk wave propagation.
The latter variations are not expected to make the problem ill posed
ahead of the rupture front, and wave transmission across non-sliding
portion of the interface has to remain unchanged. Therefore the reg-
ularization has to be considered as a regularization of the sliding
interfacial effects only, that is, of the sliding-induced normal trac-
tion perturbations, and it is defined only along the sliding portion
of the interface, that is for |δvt | not equal to zero.

Finally, we limit the investigation to 2-D in-plane ruptures, where
the tangential interface quantities are scalar. For sake of simplicity
we indicate the normal traction as σ n , the effective normal traction
as σeff , the tangential traction (also referred to as shear traction)
as τ , the tangential slip and slip rate as δu and δv respectively.
The numerical simulations presented in this work are performed
with the extension of the spectral element method (Komatitsch &
Vilotte 1998) taking into account non-smooth contact and friction
conditions (Festa & Vilotte 2006) whose main features are described
in Appendix A.

3 S I M U L AT I O N S E T U P

Rubin & Ampuero (2007) widely analysed the problem of a bimate-
rial growing interfacial rupture under linear slip weakening friction
law, and a similar setup was chosen in this study.

The 2-D model is described in Fig. 1: a straight interface, for
example, a fault, separates two blocks of dissimilar properties. The
densities ρi and the S and P-wave velocities Csi and Cpi , i = 1,
2, are assigned for each block. In this configuration the expected
favoured direction is towards the right, being the direction of the
slip in the more compliant medium. The dynamics of the rupture
is driven by the four dimensionless parameters Cs1/Cs2 , ρ1/ρ2,
ν1 and ν2, with νi the Poisson’s coefficients. For all simulations
ν1 = ν2 = 0.25 is assumed. In agreement with the analytical results
of Weertman (1980), dynamic features (asymmetry of slip rate,
traction evolution, etc.) are shown numerically to be mainly sensitive
to the ratio γ = Cs1/Cs2 , and less influenced by the density ratio
(Ben-Zion & Andrews 1998; Rubin & Ampuero 2007).

Weertman (1980) showed that a steady state slip pulse can propa-
gate along the favoured direction of a bimaterial interface inducing
shear and normal perturbations according to{


τ (x) = ζ̄

2π

∫ ∞
−∞

dδu/dx
x−s ds


σ n (x) = ζ ∗ dδu
dx

(8)

where the moduli ζ̄ and ζ ∗ having the dimension of a traction,
depend on both elastic properties and rupture velocity and x is the
direction of propagation of the pulse. In particular ζ̄ decreases with
the increasing rupture speed and for small contrasts of impedance
a real rupture speed exists for which 
τ (x) = 0. This speed is the
generalized Rayleigh speed (Cgr) and it is the expected asymptotic
speed for the growing rupture. The explicit expression for ζ̄ can be
found in the Appendix A (eq. A2) of Rubin & Ampuero (2007).
Keeping the density uniform across the two layers and assuming
ν1 = ν2 = 0.25, Cgr is shown to be real for γ < 1.359 (Harris & Day
1997). In any case, the eq. (A2) of Rubin & Ampuero (2007) allows
to compute the generalized Rayleigh speed for different contrasts
of density.
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Figure 1. The simulation setup for the numerical models: the fault line 
 is the thick black line in the middle whereas its prolongations on both sides form the
fictitious boundary 
 f (see Appendix A). We also represent the position of receivers along favoured direction (to the right of nucleation) where kinematic and
dynamic quantities are collected as a function of time. Within the insets the expected linear slip weakening for the strength in homogeneous case (dotted lines)
is compared to the typical shapes of the strength weakening for a bimaterial simulation.

Sliding along an interface, under linear slip weakening friction
and a uniform remote loading, that separates two semi-infinite dis-
similar homogeneous elastic media, leads to new complexities as
compared to an interface separating similar media. In the latter
case, due to symmetry, there is no normal-shear traction coupling
and the rupture occurs under constant normal traction, for example,
the pre-stress value σ0

n . The shear strength exhibits therefore at
all points of the interface the same linear weakening as the fric-
tion. As a consequence, the fracture energy Gc, defined as the area
under the strength-weakening curve in a slip-traction plot, can be
simply evaluated as Gc = 0.5Dc(μs − μd )σ n

0, and it is a property
of the interface. In the case of a bimaterial interface, the effec-
tive normal traction σeff dynamically changes as a response to the
sliding-induced normal traction perturbations. During the accelera-
tion phase, at receivers along the favoured direction, the increasing
compressive perturbation of the normal traction ahead of the crack
tip increases the strength, whereas the extensive perturbations in-
duced by the crack front arrival make the weakening sharper and
the dynamic level of shear strength will be lower than in the case
of a homogeneous medium. The fracture energy Gc dynamically
changes according to the perturbations of the normal traction and to
the relaxation parameters of the formulation, as shown in the insets
of Fig. 1.

In most of the simulations and unless otherwise stated, we fixed
a uniform density at a representative crustal value (ρ1 = ρ2 =
2700 kg m−3), while we investigated several values of γ , corre-
sponding to the existence or not of a generalized Rayleigh wave
speed Cgr.

On the fault, the initial normal traction is set to the uni-
form value σ0

n = −100 MPa, whereas the initial shear stress is
τ 0 = 62.5 MPa. The linear slip weakening parameters are μs = 0.7,
μd = 0.6 and Dc = 6 mm. Accordingly the strength parameter
s = μsσ0

n−τ

τ−μd σ n o
= 3. The rupture is initiated increasing the initial tan-

gential traction slightly above the initial static frictional strength
(0.5 per cent) over a fixed length scale. The size of this patch
is selected to be slightly larger than the nucleation length Lc for
a linear slip-weakening rupture (Uenishi & Rice 2003; Rubin &
Ampuero 2007):

Lc = 1.118
ζ ′

W
(9)

where the effective elastic modulus for quasi-static plane strain
deformation ζ ′ depends on the shear moduli ρi C2

si and the Poisson
coefficients νi of the two media and it is defined as ζ̄ of eq. (8)
when the rupture speed is equal to zero (Rubin & Ampuero 2007).

W is the initial slope of the slip weakening frictional strength at the
nucleation:

W = σ0
n (μs − μd )

Dc
(10)

where sliding-induced perturbations on the normal tractions are ne-
glected. With this condition, the rupture dynamically grows, mim-
icking the propagation of a seismic rupture without considering the
initial quasi-static nucleation phase.

For numerical simulations, a regular spectral element method
mesh is considered, with square elements with interpolation poly-
nomials of degree 8 defined by 9 × 9 GLL collocation points. The
maximum element size h = 12 m for all the simulations guarantees
at least five points per wavelength during the rupture propagation.
The Courant number for all simulations is always smaller than
0.35, ensuring stability of the second-order explicit time stepping
(Komatitsch & Vilotte 1998). The fault is embedded in an infinite
medium numerically modelled using the Perfectly Matching Layers
(Festa & Nielsen 2003; Festa & Vilotte 2005) along the edges of the
numerical domain.

4 R E G U L A R I Z AT I O N : A PA R A M E T R I C
S T U DY

4.1 Regularization with slip-rate dependent relaxation
time

We refer to a dynamic relaxation timescale when t∗ = td = δl/|δv|
in eq. (7), where the relaxation sliding distance δl is the only pa-
rameter that controls the regularization. It is chosen in the range
(2%Dc−100%Dc) to ensure that the regularization of normal per-
turbations induced by the propagating rupture mainly occurs in the
vicinity of the crack front.

The regularization depends on the tangential slip rate δv, and
therefore the relaxation time is local and point-wise varying
along the interface. Variations of the relaxation time are relevant
around the crack tip and within the dissipation zone, that is, where
the energy is dissipated according to the shear strength weakening
and where the slip rate sharply increases to its maximum. Beyond
this maximum, the slip rate decreases towards an almost constant
value outside the cohesive zone almost leading to a constant time
regularization with a larger relaxation time.

Convergence of the numerical solutions is first considered. Once
regularized, the physical problem is no longer exactly the same as
it originally was. Therefore, convergence needs to be studied as a
function of the mesh size h and of the relaxation sliding distance
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Rupture dynamics along bimaterial interfaces 53

δl respectively. Convergence for mesh refinement is a condition for
numerically well-posed solutions in the sense of Cochard & Rice
(2000). This is analysed by numerically investigating the maximum
value of the mesh size h, at a fixed δl, below which the solutions
do not depend anymore on the discretization length within the dis-
persion error. Then the numerically stable solutions, that is, mesh
size independent solutions, are investigated as a function of the re-
laxation sliding distance δl. An upper limit for the sliding distance
parameter δlmax is expected below which numerical solutions do
not depend on δl, within the dispersion error (Kammer et al. 2014).
This convergence is here referred to as physical convergence of
the solutions. Both convergences are measured using the L2-norm
of the difference between the numerical solution and a reference
one obtained using the finest mesh and the smallest regularization
parameter. Since the regularization introduces a time delay in the
kinematic and dynamic fields, the traces are first aligned by cross-
correlation before computing the L2-norm difference. The relative
error is finally obtained by normalizing this result by the L2-norm
of the reference solution.

The comparison between the different models is presented both
in space and time domains. In the space domain the comparison is
based on the slip rate that allows to identify the position of crack
tip, to characterize the rupture speed, and to analyse the asymmetry
between the two directions of propagation of the crack. In the time

domain, the comparison is based on the effective normal traction
σ eff recorded at receivers located along the interface, at increasing
distances from the initiation zone, as indicated in Fig. 1. Both quan-
tities are representative of the rupture dynamics during the whole
acceleration phase.

First a model for which the generalized Rayleigh wave speed
exists (γ = 1.18, Cs2 = 2.620 km s−1 and Cs1 = 3.092 km s−1) is
investigated.

Fig. 2(a) shows the slip-rate profile at time step t0 = 0.12 s for
δl = 2%Dc which is the smallest value used in this study. Fig. 2(b)
is a zoom of Fig. 2(a) around the rupture front. We analysed the
convergence for different mesh sizes, h = 2, 3, 4, 6, 12 m.

For coarser meshes (h > 4 m) the rupture is faster in both direc-
tions as compared to finer grids (Figs 2a and d). Additionally for
δl = 2%Dc and h > 4 m strong oscillations occur, also producing
pathological effects in the not favoured direction, such as multi-
ple pulses due to continuous arresting and restarting of the rupture
(Fig. 2a). These results hold for all the acceleration phase of the
rupture.

Figs 2(c) and (d) are the same representation of Figs 2(a) and (b)
at the same time step, for δl = 10%Dc. In this case, slip-rate oscil-
lations for the coarser meshes are considerably damped (Fig. 2c).
Nevertheless when zooming around the rupture front (Fig. 2d), the
rupture in the coarser meshes is still in advance as compared to the

Figure 2. Analysis of the slip rate for grid refinement. At the same time step for δl = 2%Dc: (a) when solutions are not convergent strong oscillations of slip
rate emerge up to pathological effects (e.g. stop and go of rupture). Those effects can boost the rupture producing spurious acceleration of the rupture front.
The black square indicates the zoom around the crack front (b). (c) Even for highest δl, for which the oscillatory effects are damped, the solutions for coarsest
meshes do not converge to those obtained from finest ones. When solutions converge, position of crack front and amplitude of the maximum coincide. The
black square indicates the zoom around the crack front (d).
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54 A. Scala, G. Festa and J.-P. Vilotte

Figure 3. σeff as a function of time for all used grid sizes and for two different relaxation slip values. (a) δl is equal to 2%Dc: the coarser meshes show strong
oscillations and they are not convergent with the results coming from the finer grids. The zoom shows the same quantities around the crack front (b). (c) δl
is equal to 10%Dc: the coarser meshes show less strong oscillations but they are still not convergent to the results coming from the finest meshes. The zoom
again shows the same quantities around the crack front (d).

slip-rate evolution observed in finer grids. For the two values of δl
showed in Fig. 2, mesh convergence is achieved when h ≤ 4 m.

The same convergence condition is obtained when analysing σeff

as a function of time. In Fig. 3, the effective normal traction is
represented as a function of time at receiver 5. For δl = 2%Dc

(Fig. 3a), the coarser meshes (h = 6 m and h = 12 m) clearly
show oscillations, whose features are similar to those retrieved by
Kammer et al. (2014) for the slip rate, while the maximum value
of the effective traction occurs earlier in time (Fig. 3b). For finer
meshes (h ≤ 4 m) the curves overlap (Figs 3a and b) as a result of
the mesh convergence.

These features are preserved also for larger δl, for which the
oscillations of σeff are more and more damped (Figs 3c and d).

The maximum value of the element size, below which stable
solutions are observed, is finally found to be almost independent
of the specific value of δl, in the explored range of variation of
this parameter. In this analysis numerically well-posed solutions
are found for h ≤ 4 m. This is slightly different from the results
of Kammer et al. (2014), who consider an arresting slip pulse, for
which smaller δl values require finer meshes.

Having characterized for different δl the maximum element size,
below which solutions are mesh independent, the dependence of
the solution on the sliding distance parameter δl of the dynamic
regularization is investigated.

Supporting Information Fig. S1 shows the slip-rate profile at time
step t0 = 0.12 s, while the inset shows a zoom of the same profile

around the rupture front in the favoured direction. The figure high-
lights the expected asymmetry of the bimaterial rupture propagation
with larger differences around the rupture front in the favoured di-
rection. Here, convergence of the maximum amplitude of slip rate
is achieved for δl ≤ 20%Dc. Above this bound, the maximum am-
plitude decreases as δl increases. The position of the rupture front is
more sensitive to the regularization and becomes independent of δl
when δl ≤ 10%Dc. Above this bound, the rupture speed decreases
as δl increases. In the favoured direction, the normal traction per-
turbation changes sign moving from a compressive regime ahead
of the rupture front to an extensive regime behind the rupture front.
Increasing δl corresponds to increasing the dynamic relaxation time
which is no more able to properly resolve the sharp variation of the
normal traction at the rupture front. The regularization damps the
high frequency energy of the propagating rupture within the dissi-
pation zone, decreasing the maximum amplitude of the slip rate and
preventing fast acceleration of the rupture. In the not favoured direc-
tion, an opposite behaviour is observed as a function of δl, although
the effect is less pronounced as compared to the favoured direction.
The normal traction perturbation is now extensional ahead of the
rupture front and compressive behind the rupture front.

The so-called physical convergence of the solutions can be also
shown in time domain looking at the variations of σeff . Fig. 4(a)
shows the evolution of σeff at receiver 5. The curves superimpose
before the arrival of the rupture, as expected since ahead of the
rupture front the normal perturbation is not regularized along the
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Figure 4. Physical convergence for decreasing relaxation slip in time domain. σeff is shown at receiver 5 (a). The induced perturbations are huger and sharper
moving away from the nucleation and they are smoothed for increasing δl. The black square in (a) indicates the zoom around the crack front (b) the convergence
of maximum amplitude for σeff is evident for δl ≤ 10%Dc . (c) Rupture speed along the favoured direction as a function of distance from nucleation, the
overlapping of convergent curves is evident as the capability of the rupture to accelerate almost up to Cgr. The non-convergent solutions are clearly slower than
the convergent ones.

non-sliding interface. Behind the rupture front, the curves are dif-
ferent and depend on δl. These differences are enhanced in the
zoom around the maximum value of the effective normal traction
(Fig. 4b) where physical convergence of the solutions can be in-
ferred from the superposition of the curves. Supporting Information
Fig. S2(a) shows the decrease of the relative error as δl decreases.
The relative error becomes smaller than a 5 per cent threshold value
when δl ≤ 10%Dc. Supporting Information Fig. S2(b) shows how
the normalized time-shift decreases when decreasing δl. Curves
for δl ≤ 10%Dc, are mesh independent and therefore numerically
well-posed solutions, but they depend on the regularization param-
eter and therefore each of them are numerical solutions of different
physical problems. Fig. 4(c) represents the rupture speed, normal-
ized by Cgr, during the acceleration phase along the favoured direc-
tion as a function of the distance from the centre of the initiation
patch. The physical convergence is achieved again for δl ≤ 10%Dc.
The figure also indicates that the rupture is accelerating towards
the expected asymptotic speed Cgr. The same results hold during
the whole acceleration phase and Supporting Information Figs S3(a)
and (b) show the evolution with time of the effective normal trac-
tion at receivers 2 and 8. Gathering the results for the whole rupture
propagation, solutions can be shown to be physically convergent for
δl ≤ 10%Dc.

In the case of the dynamic timescale relaxation, numerical so-
lutions are shown to become independent of the regularization pa-

rameter during the whole acceleration phase, that is, of the slid-
ing distance δl, for all δl below an upper bound that can ex-
pressed as a fraction of Dc. This results from the fact that the
relaxation mechanism is an adaptive low-pass filter of the nor-
mal traction, with a cut-off varying as a function of the slip rate
(Kammer et al. 2014). The dynamic relaxation timescale hence
provides adaptive cut-off frequencies along the rupture. As the rup-
ture accelerates towards the asymptotic speed, the slip rate at the
rupture front sharply increases, also increasing the cut-off frequency
of the filter. To clarify this interpretation the amplitude spectrum of
σeff is shown in Fig. 5 at the same receiver analysed in Fig. 4(a). In
Supporting Information Figs S3(c) and (d), the amplitude spectra of
σeff at receivers 2 and 8 are plotted. Different physical and numerical
frequencies associated to the propagating rupture can be identified
in the spectra, and are marked with dotted lines in Fig. 5. The low-
est frequency is related to the largest physical timescale associated
with the normal traction perturbations and it usually corresponds to
a first slope break in the spectrum (black dotted line). At the end
of the nucleation phase, this timescale is associated to the waves
generated during the initiation phase. As the rupture accelerates,
this timescale becomes shorter and shorter. Since the energy bal-
ance is mostly controlled by the size of the weakening region of
the frictional strength, the first corner frequency in the spectra is
associated with the duration of the weakening process at a given
point of the interface.
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Figure 5. Physical convergence for decreasing relaxation slip in frequency
domain: amplitude spectra for the perturbations described in Fig. 4. The
characteristic frequencies of the physical and numerical problem are ex-
plicitly reported as an example (dashed lines). The magenta dotted line is
the characteristic cut-off frequency deriving from the relaxation mechanism
(for δl = 10%Dc). The numerical limit (green dashed line) is related to the
mesh with h = 4 m.

Figure 6. Normal traction perturbations accordingly to slip rate variations at
the same receiver of Figs 4 and 5. The physical content of the two variations
is the same for the two quantities and it increases moving away from the
nucleation. The plot refers to the same simulation performed with a mesh
size h = 4 m and δl = 10%Dc . The coupling time and the physical time
interval from which the respective frequencies are inferred are explicitly
shown (cf. Fig. 5).

At shorter timescale within the dissipation zone, the frequency
linked to the coupling between tangential and normal traction pertur-
bations can be identified (red dotted line). This coupling timescale
is estimated as the delay between the maximum of slip rate and the
rupture front. The timescales associated with the weakening process
and the normal/shear traction coupling are shown in Fig. 6. Since
instability of bimaterial rupture comes from the high-frequency
coupling between normal and shear tractions, the cut-off frequency
associated with the dynamic regularization has to lie between the
characteristic frequency of the normal traction variation and the
coupling frequency to preserve the specific timescales of the prop-
agating rupture, while damping the unstable frequencies generated

by the coupling. In Fig. 5 this cut-off frequency, for δl ≤ 10%Dc is
marked by the magenta dotted line. Finally, the frequency associ-
ated with the numerical resolution can be identified as the maximum
one well resolved by the discretization size, which for spectral el-
ement method depends on the smallest velocity and the minimum
number of collocation points (∼5) per wavelength required to ac-
curately resolve the dominant wavelength of propagating seismic
waves (Komatitsch & Vilotte 1998). It is marked by a green dotted
line.

During the acceleration phase, the cut-off frequencies associated
with the weakening and the coupling processes increase while the
dissipation zone shrinks. As a result the amplitude of the slip rate
increases and the normal traction perturbation follows the same
evolution as the slip rate (Fig. 6). Indeed we argue that a dynamic
relaxation filter, which adapts the cut-off frequency to slip rate vari-
ations, is able to properly filter the normal traction close to the
crack front all along the acceleration phase. To better understand
what drives the physical convergence of the numerical solutions in
the case of a dynamic regularization of the slip-weakening friction
law, the evolution of the effective normal traction σeff versus that of
the actual normal traction σ n is analysed along the sliding portion
of the interface. In Fig. 7 the difference σ n − σeff is plotted as a
function of slip, for all the receivers indicated in Fig. 1. For a fixed
sliding distance parameter δl, the slip value δu∗ at which σ n − σeff

is zero, behind the crack front, does not seem to depend on the
position of receiver and thus appears to be independent of the slip
rate and the rupture speed during the acceleration phase, although
the maximum of the difference between σ n and σeff increases as
the crack grows up. When δl ≤ 10%Dc, it is found that δu∗ < Dc,
as shown in Fig. 7(a) where δu∗ ∼ 95%Dc for δl = 10%Dc. When
δl = 15%Dc, δu∗ ∼ Dc, whereas for larger values of δl, δu∗ > Dc,
for example, see Fig. 7(b) where δu∗ ∼ 110%Dc for δl = 50%Dc.
The regularization provides physically convergent numerical solu-
tions when the sliding distance over which it is effective, remains
smaller than the sliding distance over which the dissipation takes
place. For δl > 10%Dc, the filter operates over a sliding distance
scale larger than the dissipation and as a result it filters the physical
scale that we need to be resolved during the rupture propagation.
For a linear slip weakening friction law, these results are naturally
scaled by Dc, which is the characteristic finite sliding distance over
which the weakening of the friction takes place.

The same convergence analysis was also performed for a higher
impedance contrast (γ = 1.80) at which the generalized Rayleigh
wave speed does not exist. This is done varying the shear wave
speeds while keeping constant the density and the effective shear
modulus ζ ′. This allows to start the rupture using the same initiation
length as before.

For a larger γ the rupture is faster along the favoured direction and
slower along the opposite direction enhancing the rupture asymme-
try. The mesh dependence and the δl analysis show similar results.
Supporting Information Fig. S4 shows the evolution of σeff in time
(Supporting Information Fig. S4a) and frequency (Supporting In-
formation Fig. S4b). Physical convergence is again achieved when
δl ≤ 10%Dc. Since for γ = 1.80 the asymptotic propagation phase
is approached more rapidly, the results are plotted for sake of clarity
at a closer receiver (receiver 3) where the rupture is still far from
the asymptotic phase. The characteristic slip δu∗ associated with
the regularization appears now to depend on the receiver position
during the acceleration phase (Supporting Information Fig. S4c).
However it is worth noting that the normal traction perturbations
are getting stronger than in the previous case (σ n − σeff is about
8 times larger at receiver 5). Resolving the slip at which σ n − σeff
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Rupture dynamics along bimaterial interfaces 57

Figure 7. σ n − σeff as a function of slip. Warm colour full lines in panel (a) represent simulations with δl = 10%Dc (convergent solutions) at two receivers,
whereas cold colour full lines in panel (b) are relative to δl = 50%Dc (non-convergent solutions) at the same receivers. The zero crossing recorded at other
receivers is plotted with dashed lines and respectively with warm and cold colours in panels (a) and (b).

is zero becomes harder due to the strong normal traction perturba-
tion at crack front. Nevertheless it is still observed that as long as
δu∗ < Dc the physical convergence is achieved both in time and
frequency. This condition holds until the rupture approaches the
asymptotic speed (see Section 5).

4.2 Regularization with constant relaxation time

When a constant relaxation timescale tc is used, the regularization
of sliding-induced normal tractions perturbations do not depend
anymore on the slip rate and is therefore independent of the rupture
dynamics.

The parametric study is performed varying tc in the range 1.2 ×
10−4 ≤ tc ≤ 6.0 × 10−3. Defining tc = δl

δv∗ , as proposed by Cochard
& Rice (2000), corresponds to a range of variation of δl between
2%Dc and 100%Dc for δv = 1 ms−1, allowing to directly compare
the constant timescale regularization to the dynamic one, as analysed
in the previous subsection.

As for the dynamic timescale regularization, two parametric
analyses are performed to study the mesh dependence and the
physical convergence. All the results presented here refer to
the case γ = 1.18 with the same elastic properties as used in the
Section 4.1.

The mesh dependence analysis provides very similar results as
compared to the dynamic timescale analysis. The analysis can be
summarized looking at the slip rate profiles at time step t0 = 0.12 s
in the space domain for the smallest value of tc (tc = 1.2 × 10−4 s,
Supporting Information Figs S5a and b) and for tc = 6.0 × 10−4 s
(Supporting Information Figs S5c and d). As for the dynamic
timescale regularization, the coarser meshes (h = 6 m and h =
12 m) provide mesh-dependent solutions. In the first case, spu-
rious oscillations are observed (zoom in Supporting Information
Fig. S5b) while in the second case these oscillations are damped
within the rupture (Supporting Information Fig. S5d). Although
the simulations qualitatively yield the same numerical results as
for the dynamic timescale regularization, the oscillations are more
pronounced in the case of a constant timescale regularization. So-
lutions still become mesh independent for h ≤ 4 m during all the
acceleration phase, and therefore numerically well-posed.

The influence of the constant relaxation timescale is investigated
by varying tc. In contrast with the dynamic relaxation timescale, nu-
merical solutions never become independent of the regularization

parameter and therefore they correspond all to different physical
problems. In this respect a constant relaxation timescale regulariza-
tion never achieves a physical convergence. This can be observed
both for the kinematic and dynamic fields, in space and time do-
mains.

In Fig. 8 σeff is plotted as a function of time at two receivers.
Although solutions appear to be physically convergent below some
value of tc at the beginning of the acceleration phase (receiver 2,
Fig. 8a), this no more the case farther away from the initiation phase
(receiver 8, Fig. 8c).

This lack of physical convergence can be explained in compar-
ison with the results obtained for the dynamic regularization. An
equivalent δlmax

eq can be estimated, all along the rupture propagation,
in the case of a constant relaxation time as δlmax

eq = δvmax · tc, where
δvmax is the maximum slip rate observed at each point of the fault,
this value being reached soon after the rupture front passes through
the point. For the receivers of Fig. 8, considering tc = 6 × 10−4 s the
equivalent sliding distance at receiver 2 is δlmax

eq#2 ∼ 6 × 10−4 m =
10%Dc while for receiver 8 it is δlmax

eq#2 ∼ 2.4 × 10−3 m = 40%Dc.
The equivalent sliding distance increases as the rupture moves away
from the initiation zone, owing to the sharpening of the slip rate. For
this specific tc, δlmax

eq#8 is well outside the range of sliding distances
that were shown to guarantee a physical convergence.

Analysing the solutions in the frequency domain (Figs 8b and
d), a fixed relaxation timescale implies a fixed cut-off frequency for
the regularization all along the acceleration phase (yellow dotted
lines in Figs 8b and d). Conversely the physical and the coupling
frequencies increase with the rupture growth (respectively black
and red dotted lines in Figs 8b and d). Since the size of the dissipa-
tion zone goes to zero as the rupture tends towards the asymptotic
speed, there will be always a position on the fault beyond which the
timescale associated to the shear strength weakening process will
become shorter than tc. In this case, the regularization will over-
filter the energy balance during the weakening process, providing
no longer physical convergent solutions.

An effect deriving from the lack of physical convergence is the
slower acceleration of the rupture towards the asymptotic speed
as compared to dynamically regularized solutions. In Fig. 9 the
instantaneous rupture speed (normalized to Cgr) is shown as the
rupture propagates along the fault for the constant (blue line) and
dynamic (red line) relaxation time mechanisms. For fixed tc, the
solutions are initially superimposed. During the crack growth, when
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Figure 8. Physical non-convergence for decreasing relaxation slip in time domain. σeff is shown at the receiver 2 (a) and 8 (c) and the lack of convergence
is evidenced for constant timescale even for small tc . Even when solutions are similar at the beginning of acceleration phase (inset of panel a) the differences
increase with the crack growth as shown in the inset of panel (c). The physical non-convergence is shown in the frequency domain at the same receivers
(panels b and d). The non-convergence of solutions can be argued by the increasing difference among the low-frequency part of amplitude spectra. The cut-off
frequency (related to tc = 6.0 × 10−4s) is fixed (yellow dotted lines). The physical (black dotted lines) and the coupling frequencies (red dotted lines) increase
as expected with the crack growth.

physical convergence no longer holds, the rupture speeds differ more
and more due to the excess of filtering in the case of a constant
relaxation time.

In light of this parametric study, the classical Prakash–Clifton
regularization (eq. (5)) where t∗ is given by eq. (7) can be rewritten
as

∂σeff

∂t
= ( fd + fc) (σn − σeff ) , (11)

where fd = |δv|/δl is a dynamic frequency and fc is a constant cut-
off frequency. The former provides a self-adaptive regularization,
which leads to mesh independent and physically convergent solu-
tions when the element sizes and the sliding distance parameters
are within a finite range. The latter still provides numerically well-
posed solutions, that is, mesh independent solutions, but does not
lead to physically convergent solutions. When fc is small enough
and the absolute value of the slip rate is large enough to guaran-
tee fd � fc, the numerical solutions are similar to those provided
by the dynamic timescale regularization. This occurs in most of
the simulations using the complete Prakash–Clifton regularization.
Nevertheless, when fc ≥ fd the numerical solutions, although nu-
merically well-posed, depend now on the parameters chosen for the
regularization and therefore they no longer correspond to the same
physical problem. As proposed by Cochard & Rice (2000) adding
a constant timescale relaxation help in modelling very slow nucle-

ation processes, even though the choice of fc becomes nucleation
dependent.

5 RU P T U R E B E H AV I O U R T OWA R D S
A S Y M P T O T I C S P E E D

The numerical analysis of bimaterial rupture propagation under
linear slip-weakening friction law was so far focused on the ac-
celeration phase. Results of Section 4 show that dynamic regular-
ization, with a slip-rate dependent relaxation time, leads to mesh-
independent solutions that are also independent of the regularization
parameter under certain conditions.

In this section, the asymptotic regime of the rupture propagation
is numerically investigated using the previous results.

For in-plane rupture propagation along a planar interface, under
linear-weakening friction, separating isotropic linear elastic bodies
made of identical materials, the asymptotic rupture speed is either
the Rayleigh wave speed in the sub-shear regime or the P-wave
speed in the supershear regime (Burridge 1973; Andrews 1976).

For an interface separating different materials, the predicted
asymptotic rupture speed depends on the velocity contrast be-
tween the two materials. When the generalized Rayleigh wave exists
along the interface, that is, S-wave velocity ratio Cs1/Cs2 < 1.359
when the materials have the same density, the predicted asymptotic
rupture speed is the generalized Rayleigh wave speed Cgr. When
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Figure 9. Acceleration of the rupture towards the asymptotic speed (Cgr)
for dynamic and constant timescales: while a convergence among different
timescales is still detectable, the acceleration is equivalent to that deriving
from dynamic timescale models. Conversely when the timescale is too large
to properly regularize the problem the rupture speeds differ more and more
and the acceleration is slower for the constant timescale.

this latter wave does not exist, Ranjith & Rice (2001) found that
an unstable steady-state mode might propagate at a speed slightly
higher than the shear wave speed Cs2 of the more compliant ma-
terial. Numerical solutions produced contrasting results either in
agreement with these results (Harris & Day 1997) or suggesting an
asymptotic rupture speed close to Cs2 (Rubin & Ampuero 2007).

5.1 Interface with no existing generalized Rayleigh wave

Numerical solutions of the dynamically regularized physical prob-
lem are investigated here for large γ values, with similar (ρ1 = ρ2)
or dissimilar (ρ1 �= ρ2) densities. For all the considered γ parame-
ters, generalized Rayleigh wave does not exist, that is, eq. (A2) in
Rubin & Ampuero (2007) does not have real roots.

The mesh discretization and the regularization parameters are
chosen to be such that mesh independency and physical convergence
are satisfied following results of Section 4.1.

Seven different contrasts of impedance γ , between 1.5 and 2.1,
have been explored first varying the shear wave speed of the

more compliant material for ρ1 = ρ2 = 2700 kg m−3 and Cs1 =
4058 ms−1. Finally, the P-wave velocity of the two materials was
selected such that ν1 = ν2 = 0.25.

In Fig. 10(a) the numerical rupture speed, normalized to Cs2 ,
along the favoured direction of propagation is shown for different
values of γ as a function of the propagation distance. Asymptotic
rupture speed is shown to be a function of γ and in all cases it
is shown to tend towards values larger than Cs2 . As such Cs2 is
not the asymptotic speed for these simulations, and the rupture
can accelerate to larger values as suggested by Ranjith & Rice
(2001). The asymptotic speed increases as γ increases, as shown in
Fig. 10(b) where error bars represent the standard deviation for the
average rupture speed determination.

The capability of the rupture to accelerate towards a speed larger
than the shear wave velocity of the more compliant medium gener-
ates peculiar effects. As the rupture proceeds at a sub-shear speed,
the emitted radiation, although asymmetric, exhibits the classical
pattern with P and S waves ahead of the rupture. In Fig. 11(a) the
kinetic energy field around the fault is shown at a fixed time step
when the rupture speed is lower than Cs2 , and most of the energy
is confined in the more compliant material. When the rupture ac-
celerates towards a speed larger than Cs2 , classical Mach cone can
be recognized in the half space occupied by the more compliant
material (Fig. 11b). This acceleration also generates a change in the
normal traction perturbation pattern along the favoured direction.
Compressive normal traction perturbation ahead of the rupture front
and extensional normal traction perturbation at the rupture front
still hold, but S-waves emitted behind the rupture generate now a
small extensional normal traction perturbation behind the dissipa-
tion zone, see Fig. 11(c), where the perturbation is evidenced by a
black circle. Henceforth slip rate and normal traction perturbations
at the crack front remain almost constant during all this phase and
the dissipation zone can be resolved with enough grid points, that
is, at least three points.

For each of the investigated values of γ , variations of the
density contrast have been explored such that Cgr does not ex-
ist. Some of the results are summarized in Supporting Infor-
mation Figs S6(a) and (b). Supporting Information Fig. S6(a)
shows the evolution of the rupture speed for three different ra-
tios γ = Cs1/Cs2 (γ = 1.7, 1.9, 2.1) with a fixed density con-
trast of 1.2 (ρ1 = 3240 kg m−3, ρ2 = 2700 kg m−3). As discussed
before, the asymptotic speed increases as γ increases and is

Figure 10. Acceleration of rupture, along favoured direction, for high contrasts of impedance obtained varying Cs2 . (a) Under these conditions the rupture can
accelerate towards speeds higher than Cs2 . (b) Average speed (normalized to Cs2 ) during stationary phase as a function of increasing contrast of impedance γ .

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/209/1/48/2918650 by C

N
R

S - ISTO
 user on 10 August 2022



60 A. Scala, G. Festa and J.-P. Vilotte

Figure 11. Kinetic energy field before (a) and after (b) the acceleration of the rupture beyond Cs2 . The emission of S-waves behind the rupture front in more
compliant medium (Mach-cone) is evident in panel (b). Perturbation of normal traction (c) at the same time step of panel (b): the extensive effect due to the S
wave is evidenced (black circle).

always larger than the shear wave speed Cs2 . Supporting Infor-
mation Fig. S6(b) shows now the evolution of the rupture speed
for four different contrasts of density, ρ1/ρ2 = 1.0, 1.2, 1.4, 1.6,

with ρ2 = 2700 kg m−3 in all cases, at a fixed value of γ = 1.9.
The asymptotic speed is a function of the density contrast, that is,
it increases as the density contrast increases, and in all cases the
rupture accelerates again towards an asymptotic speed larger than
the S-wave speed of the more compliant material.

It is worth to note here that dynamic timescale regularization of
the physical problem lead to mesh-independent numerical solutions
that are physically convergent during the whole rupture propaga-
tion including the asymptotic phase. The asymptotic rupture speed
is found to be always larger than the shear wave speed Cs2 , inde-
pendently of the regularization parameter in the parameter domain
of physical convergence estimated in Section 4.1.

5.2 Interface with an existing generalized Rayleigh wave

The asymptotic phase of in-plane bimaterial rupture is now inves-
tigated for values of γ small enough to ensure the existence of
generalized Rayleigh wave with wave speed Cgr. In particular the
acceleration phase for γ = 1.18 and Cgr = 2570 ms−1 was anal-
ysed in Section 4.1. The rupture speed is shown to tend towards
the asymptotic Cgr wave speed independently of the contrasts of
velocity and density when the physical problem is dynamically reg-
ularized, using slip rate dependent relaxation time.

However when the rupture speed approaches the generalized
Rayleigh wave speed, the rupture propagation becomes numerically

unstable and numerical solutions are rapidly polluted by spurious
oscillations. Despite the dynamical regularization, this instability
occurs for all the regularization parameters that lead to physical
convergent solutions.

The instability is generated by the continuous shrinking of the
dissipation zone, driven by the increasing singular behaviour of the
normal traction perturbations at the rupture front.

As the rupture speed tends towards Cgr, the absolute amplitude
of the compressive normal traction perturbation just ahead of the
rupture front increases, and as such the shear strength of the inter-
face is increasing. Immediately behind the rupture front, the normal
traction, within the dissipation zone, perturbation changes sign be-
coming more and more extensional. This variation of the normal
traction perturbation occurs over a shrinking dissipation zone lead-
ing to higher and higher frequency variations as the rupture prop-
agates close to the Cgr wave speed. As a result the energy release
rate increases with a continuous transfer of energy to shorter wave-
lengths. This leads to a singular behaviour of the slip rate, and the
problem cannot be regularized using slip-rate dependent relaxation
time.

As the dissipation zone shrinks, the numerical mesh can no more
properly resolve it. The numerical solution is no longer able to
propagate the high frequencies generated at the rupture front and
increasing spurious oscillations rapidly pollute the whole simula-
tion. This is shown in Fig. 12, where the number of grid points
actually resolving the dissipation zone is shown as a function of
position of the rupture front.

During the initial phase of the instability, a slip pulse emerges
(red curve in Fig. 12), which might be triggered by the occurrence
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Rupture dynamics along bimaterial interfaces 61

Figure 12. Slip rate profile at time t0 = 0.19 s just before the blowing up
of numerical simulation (red curve) is plotted together with the number of
points in dissipation zone as function of the position of crack front. When
the dissipation zone shrinks at less of 3 points a slip pulse is generated and
after few iterations the models blow up (grey curve).

of a slip gradient minimum, behind the dissipation zone, associated
with the change of sign of the normal traction perturbation (Rubin
& Ampuero 2007) but more probably by the spurious oscillations
that can unload the interface below the frictional strength level.

Results of Section 4 show that dynamical regularization, with
a slip-rate dependent relaxation time, leads to physical convergent
solutions as long as it adaptively filters slip-induced normal trac-
tion perturbations without modifying the energy balance and the
energy scale transfer driving the rupture propagation. The latter is
associated with the size of the dissipation zone. However, when
the adaptive cut-off frequency of the filter moves beyond the mesh
cut-off frequency, aliasing effects occur together with spurious nu-
merical oscillations (Festa & Vilotte 2005).

As expected, a larger sliding distance parameter δl allows the
rupture to propagate over a longer distance as a result of increased
smoothening of the slip-induced normal traction perturbations and
stronger attenuation of the spurious oscillations. Nevertheless as the
rupture speed gets close to Cgr, emergence of spurious oscillations
cannot be avoided leading to unstable solutions independently of
the value of the regularization parameter δl.

It is worth to note here that shrinking of the dissipation zone is also
observed in the case of an interface separating identical materials or
of a bimaterial interface with no generalized Rayleigh wave, when
the rupture approaches the predicted asymptotic speed. However in
both cases numerical solutions lead to an asymptotic rupture speed
that tends from below to the predicted one, as the mesh is refined,
and always end up with a dissipation zone that remains resolved
by at least three grid points. In contrast when generalized Rayleigh
wave exists, numerical solutions behave quite differently as a result
of the singular behaviour of the normal traction perturbation, which
changes sign at the rupture front.

In the case of isotropic linear elastic similar bodies sliding along
interfaces separating them there is no coupling between interfacial
slip and normal traction variations, and the slip gradient decreases
monotonically away behind the rupture tip when initial conditions
along the interface are uniform. In contrast in the case of a bima-
terial interfaces due to broken symmetry such coupling exists but
there is a qualitative difference depending on the existence of gen-
eralized wave along the interface. In the case where generalized

Rayleigh wave does not exist, the rupture speed becomes larger
than the S-wave speed of the more compliant medium and therefore
elastodynamic coupling between interfacial slip and normal traction
perturbations mainly affect the region behind the rupture front, as
previously discussed, and this coupling does not lead to a singular
behaviour at the rupture front nor produces a local minimum of the
slip gradient behind the dissipation zone.

In an attempt to mitigate the singular behaviour observed for bi-
material interface when generalized Rayleigh wave exists, slip-rate
dependent time regularization might be switched to a constant time
regularization as the rupture approaches the asymptotic speed. This
switch can be numerically triggered based on the actual resolution
of the dissipation zone, that is, when the number of grid points in
the dissipation zone becomes less than 5 corresponding to half of
the element size for these simulations, or by introducing an upper
cut-off limit for the slip rate dependence.

Different values of the constant relaxation time tc have been ex-
plored spanning two orders of magnitude. While instability can be
delayed when increasing tc, that is, the larger is tc the longer the rup-
ture can propagate, it can never be suppressed. In those simulations
a metastable slip pulse is also generated, which propagates at al-
most the Cgr wave speed during a certain time before the simulation
finally blows up.

The behaviour of the rupture when approaching the asymptotic
speed has been further investigated regularizing the physical prob-
lem with a constant relaxation time. Results of Section 4 show
that constant relaxation time leads to a fixed cut-off frequency and
that there is no physical convergence of the numerical solutions
during the acceleration phase, that is, solutions always depend on
the regularization parameter. Nevertheless, rupture speed still tends
towards the asymptotic generalized Rayleigh wave speed. When
approaching the asymptotic speed, a propagating finite-size pulse
emerges and it propagates during a certain time along the interface
before simulation finally blows up. The onset of the pulse is mesh-
independent but depends on the constant relaxation time tc and it
occurs earlier for smaller tc (Fig. 13a).

Once the pulse is generated, the size of the pulse remains constant
during propagation. The size selection depends on the filter cut-off
frequency introduced by the constant relaxation time regularization.
A smaller tc leads to a smaller pulse size as shown in Fig. 13(b). In
particular defining the non-dimensional parameter L̃ p as the pulse
size normalized by the element size h, we found L̃ p ≈ 0.75 for
tc = 3.0 × 10−4 s, L̃ p = 1.50 for tc = 6.0 × 10−4 s, and L̃ p = 2.50
for tc = 1.2 × 10−3s. It is worth to recall that we have 9 grid points
for each element: this ensures that the pulse size is always well
resolved. The pulse size appears also to be mesh dependent and
slightly decreases, as the mesh is refined.

The pulse size selection seems to be associated to competing
effects between constant relaxation time regularization and mesh
discretization as the size of the dissipation zone continuously de-
creases. The same behaviour occurs for a dynamical scale regular-
ization, but in this case as adaptive cut-off frequency of the regu-
larization filter moves beyond the mesh frequency cut-off, spurious
oscillations blur the numerical solutions.

The instability of the pulse, which emerges for all the adopted
relaxations, owes to the singular behaviour of the slip-induced nor-
mal traction perturbations and of the slip rate that a Prakash–Clifton
law type cannot regularize.

It has long been recognized that sliding along a bimaterial in-
terface under classical Coulomb friction law is unstable against
perturbations at all wavelengths and irrespective of the value of
the friction coefficient, when the bimaterial contrast is such that
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Figure 13. Pulse onset for different constant timescale: the smallest tc leads to a faster generation of the pulse (a) after a shorter propagation distance. (b)
Pulse size for different models obtained for constant timescale regularizations. The sizes, at different time steps, are compared for different tc . In all cases the
pulse size is pretty constant during its propagation and when a larger tc is used the average size of the pulse is quite larger.

generalized Rayleigh wave exists, and mathematically ill-posed
(Adams 1995; Martins et al. 1995; Simões & Martins 1998; Ranjith
& Rice 2001).

When the physical problem is well-posed with a Prakash–Clifton
type of law, numerical solutions (Ben-Zion & Huang 2002) still ex-
hibit self-sharpening and divergent behaviour of wrinkle-like pulse
propagating along bimaterial interface after long enough propaga-
tion distance, in agreement with analytical stability analysis (Ranjith
& Rice 2001; Adda-Bedia & Ben Amar 2003). According to the
results of this study, this feature also emerges when slip pulse de-
taches at the end of the acceleration phase of a growing rupture
propagating along a bimaterial under linear slip-weakening law.

6 M O D I F I E D R E G U L A R I Z AT I O N W I T H
D I S S I PAT I O N L E N G T H D E P E N D E N T
R E L A X AT I O N T I M E

The dynamic timescale was shown to provide physical convergent
solutions as long as the relaxation of the normal traction pertur-
bations occurs over a sliding distance slip length smaller than the
frictional slip weakening distance Dc. This aspect suggests that the
instability of the solutions for a bimaterial interface under slip-
weakening friction law arises from sliding-induced normal traction
perturbations at the scale of the frictional weakening zone, where
most of the dissipation and wave emission take place.

For this reason an alternative regularization is proposed in order
to link the relaxation timescale to the size of the dissipation length.
We can describe this new regularization by the following equation:

∂σeff

∂t
= 1

tLd

(σ n − σeff ) tLd = βLd

V a
(12)

where now Ld is the size of dissipation zone, V a is a reference rup-
ture speed, which is selected to be the expected asymptotic rupture
velocity, and β is a non-dimensional parameter used to perform a
parametric analysis, by analogy with the dynamic timescale.

The eq. (12) still provides a dynamic, adaptive relaxation
timescale, since the size of the dissipation zone is shrinking dur-
ing the acceleration of the rupture leading to smaller and smaller
relaxation times. In contrast to the slip-rate dependent relaxation
timescale, this relaxation timescale is non-local and is related to
a characteristic length scale of the rupture. Even though such a
formulation is not numerically convenient since it requires the de-
termination of the size of the dissipation zone at each time step, it

is worth to explore it here for a better understanding of the connec-
tion between the normal traction regularization and the frictional
dissipation.

This regularization provides mesh independent numerically well-
posed solutions as mesh is refined (h ≤ 4m, where h is the element
size); conversely the coarsest meshes show spurious oscillations.
This is shown here looking at the slip rate profile at time step
t0 = 0.12s, both for the smallest used value of β(β = 0.01, see
Supporting Information Figs S7a and b) and for β = 0.10 (Sup-
porting Information Figs S7c and d).

Then, we investigated the physical convergence, that is, numerical
solutions independent of the regularization parameter. The numeri-
cal solutions were again compared in time and frequency domains
to check the influence of the parameter β parameterization on the
rupture dynamics during the acceleration phase. Similarly to the dy-
namic timescale, the convergence is achieved for small β values, for
which σeff becomes independent of the parameter β at all receivers.
In Fig. 14(a) the time evolution of the effective normal traction is
plotted for different β values at receiver 5. The inset in this figure
shows that the convergence is achieved for β < 0.10. As for slip-
rate dependent relaxation timescale, within β < 0.10 the cut-off
frequency of the filter associated with the regularization is located
between the characteristic scale of the dissipation process and the
coupling scale, during all the rupture acceleration. Fig. 14(b) shows
the amplitude spectra for σeff at receiver 5. For β < 0.10 the spectra
superimpose in the low frequency range. Figs 14(c) and (d) show
that this regularization mechanism also leads to a characteristic slip
δu∗, with δu∗ < Dc for β ≤ 0.10 (Fig. 14c), while δu∗ > Dc for
β > 0.10 (Fig. 14d). The similarity between the results obtained
when regularizing the solutions with the dissipation length and the
slip rate, suggests performing a direct comparison between the two
kinds of regularization.

The slip-rate dependent relaxation time formulation is modified
such that the relaxation time is now dependent on the maximum slip
rate along the interface at a given time δvmax. This value always oc-
curs in the vicinity of the rupture front and it defines a characteristic
velocity scale:

∂σeff

∂t
= 1

td
(σ n − σeff ) td = δl

δvmax
. (13)

The numerical solutions for the two regularizations superimpose
as it can be observed in the slip rate profile at time step t0 = 0.13s
(Fig. 15). Since the relaxation slip can be also expressed as δl = β Dc
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Figure 14. Convergence analysis for decreasing β in time domain. (a) Variations of σeff as a function of time are plotted for receiver 5. The inset of panel
(a) shows the overlapping of the curves and the physical convergence for β ≤ 0.10. (b) Convergence analysis for decreasing β in frequency domain for the
same receiver in (a): the physical convergence of solutions for β ≤ 0.10 is still due to the overlapping of amplitude spectra in low frequency band as for the
dynamic timescale. (c,d) σ n − σeff as a function of slip: warm colour full lines in panel (c) represent simulations with β = 0.10 (convergent solutions) at two
receivers, whereas cold colour full lines in panel (d) are relative to β = 0.50 (non-convergent solutions) at the same receivers. The zero crossing recorded at
other receivers is plotted with dashed lines and respectively with warm and cold colours in panels (c) and (d).

the equivalence between the two regularizations also implies that
the dissipation length scales as the inverse of the maximum slip
rate:

Ld ∝ 1

δvmax
. (14)

This scaling law characterizes the rupture dynamics and it sug-
gests that the dynamics of a growing in-plane rupture along a planar
bimaterial interface under slip-weakening friction is mainly driven
by the bimaterial coupling between interfacial slip and normal trac-
tion perturbations at the scale of the actual size of the dissipation
zone. Thus provides further evidence that regularization based on
slip-rate dependent relaxation time only leads to physically well-
posed solutions irrespective of the value of δl when the sliding
distance over which relaxation occurs is such that the relaxation
occurs over a finite dissipation length scale Ld smaller than the size
of the dissipation zone.

7 C O N C LU S I O N S

In this study, a systematic numerical parametric study of in-plane
growing rupture propagating along a bimaterial planar interface
under linear-weakening friction was performed when the physical
problem is regularized with a Prakash–Clifton type of law.

The existence of mesh-independent and physically well-posed
numerical solutions, the latter defined here as numerical solutions
not depending on the regularization parameters, was investigated as
a function of the regularization parameters themselves.

When regularization involves a dynamic time inversely propor-
tional to the slip rate, numerical solutions are shown to become
mesh independent as the mesh is refined, and physically well-posed,
irrespective of the value of the impedance contrast, when relaxation
sliding distance is smaller than the frictional weakening sliding dis-
tance, that is, δl ≤ 10%Dc. The regularization can be interpreted
as an adaptive low-pass filter that smoothens high frequency nor-
mal traction perturbations without significantly affecting the energy
scale transfer that drives the rupture propagation. Slip-rate depen-
dence of the relaxation time allows for an adaptive regularization all
along the acceleration phase following the elastodynamic Lorentz
contraction of the dissipation zone.

A relaxation time proportional to the evolving size of dissipation
zone, normalized by a reference rupture speed, leads to an adaptive
filter that smoothens the slip induced normal traction perturbations
at the scale of the dissipation zone. Numerical solutions for this reg-
ularization are mesh-independent and physically well posed when
the relaxation occurs over a length scale smaller that the dissipa-
tion zone. They are shown to superimpose to those obtained using
a slip-rate dependent relaxation time when the local slip-rate is
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Figure 15. Slip rate profiles at a fixed time step for dissipation length scale
(Ld in the legend) and maximum slip rate scale (δvmax in the legend). The
inset shows that the two regularizations are convergent in the sense of crack
front position and maximum of slip rate amplitude.

now replaced by the maximum slip-rate δvmax along the sliding in-
terface, which always occurs in the vicinity of the rupture front.
Therefore the size of the dissipation zone is shown to be inversely
proportional to the maximum amplitude of slip rate all along the
acceleration phase of the rupture.

When regularization involves a constant relaxation timescale, nu-
merical solutions are shown to become mesh-independent as mesh
is refined but not physically well-posed. In this case, the cut-off fre-
quency of the filter associated to the regularization is fixed during the
whole acceleration phase, whereas both amplitude and frequency
of the normal traction perturbations increase with the propagation
distance together with a continuous transfer of energy to shorter
wavelengths as a result of the shrinking of the dissipation zone. As
a result, numerical solutions might be physically well posed at the
beginning of acceleration phase, but sooner or later the regulariza-
tion will over-filter the physical short wavelengths that drive the
rupture propagation.

For interfaces, across which bimaterial contrasts are such that no
generalized Rayleigh wave exists, the rupture is shown to tend to-
wards an asymptotic speed higher than the shear wave speed in the
more compliant material. Peculiar effects are numerically observed
such as emission of a half Mach cone in the more compliant medium,
variations in the normal traction perturbations pattern along the
favoured direction, together with a small amplitude extensive nor-
mal traction perturbation behind the rupture tip that modifies the
slip gradient behind the dissipation zone. Elastodynamic coupling
between interfacial sliding and normal traction perturbations mostly
occurs behind the crack front and does not significantly perturb the
normal traction variations ahead of the rupture. Therefore the rup-
ture may propagate at an almost constant speed during a long time.
This feature only depends on the shear velocity contrast between
the two materials while the asymptotic speed slightly increases as
the density contrast increases, as previously pointed by Rubin &
Ampuero (2007). The asymptotic rupture speeds are in agreement
with the analytical results of Ranjith & Rice (2001).

When bimaterial contrasts are such that generalized Rayleigh
wave exists, the rupture asymptotically tends to Cgr. However nu-
merical solutions exhibit increasing spurious oscillations and be-
come unstable irrespective of the value of the regularization pa-

rameter. This instability is associated with the singular behaviour
of the slip-induced normal traction perturbations, and of the slip
rate at the rupture front, in relation with the complete shrinking
of the dissipation zone. This singular behaviour cannot be regu-
larized by a slip-rate dependent relaxation since the upper cut-off
frequency of the associated adaptive filter moves beyond the mesh
cut-off frequency. When a constant relaxation time is used before
the emergence of the instability a metastable finite-size slip pulse
can be observed. The onset of this slip pulse is mesh-independent
but depends as well as the pulse size on the regularization param-
eter. As such this slip pulse cannot be considered as a physically
well-posed solution.

Results of this study confirm that a Prakash–Clifton type of law
under linear slip-weakening friction law does not regularize the nu-
merical problem as the rupture speed tends towards the asymptotic
generalized Rayleigh wave speed Cgr, and this remains a critical
issue.

Other studies have argued that rate-and-state or more complex
slip velocity dependent friction laws may regularize the physical
and numerical problem. In a quasi-static regime analysis, it was
shown (Rice et al. 2001) that instantaneous strengthening response,
can overcome, at small slip velocities, the bimaterial destabilizing
effect associated with the coupling between interfacial slip and
normal traction perturbation, This may occur even if the interface
is steadily rupturing under a slip weakening law.

Despite recent progress (Lapusta et al. 2000; Kozdon & Dunham
2013), further analytical and numerical investigations of the full
elastodynamic stability analysis in the framework of rate-and-state
friction models remain to be done especially in the high slip ve-
locity regime. It has also been shown that dry frictional interfaces
generally become velocity strengthening over some range of slip
velocities (e.g. Marone et al. 1991; Weeks 1993; Bar-Sinai et al.
2014, 2015). Such a velocity-strengthening effect is expected to
play a stabilization role for bimaterial sliding as recently argued by
Brener et al. (2015) in the framework of generalized rate-and-state
friction models together with finite-time response to normal traction
perturbations. However this remains to be further numerically in-
vestigated for accelerating rupture along a bimaterial interface and
extended propagation distance.

Other approaches have been proposed (Harris & Day 2005) in-
troducing an additional interfacial viscous dissipation term to regu-
larize the bimaterial problem, extending previous works on homo-
geneous rupture problem (Dalguer & Day 2007; Rojas et al. 2009).
Although the introduction of an artificial interfacial viscous damp-
ing limits the emergence of spurious oscillations at high frequency,
how the energy transfer to smaller resolved wavelengths modifies
the rupture dynamics still needs further investigation.

Another direction is to introduce a new length scale in the physi-
cal problem. It is well known that the region near a fault experiences
a local environment different from the bulk. A more accurate ap-
proach would incorporate a description of the separate mechanics
of the material interface. One possibility is to refine the problem
using version of the surface model proposed by Gurtin & Murdoch
(1975) as argued by Ru (2010) and Kim et al. (2011). When the
existence of a thin intermediate zone more compliant than the two
dissimilar materials is taken into account (e.g. Ben-Zion & Huang
2002) another possibility would be to consider the effect of the me-
chanical properties of such soft imperfect, or non-ideal, interfaces,
(e.g. Atkinson 1977; Benveniste & Miloh 2001).

In the latter case when the thickness of the soft linearly elastic
intermediate zone is essentially much smaller than the rupture prop-
agation distance, asymptotic analysis (e.g. Mishuris 2004) shows
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that displacement field is no more continuous across the interface
ahead of the rupture tip and that tractions become proportional to the
displacement discontinuity. Soft imperfect interfaces can be then re-
placed by imperfect transmission conditions, removing square-root
singularity at the crack tip. Viscoelastic or dissipative intermediate
zone would lead to fractional energy loss across the imperfect inter-
face (e.g. Carcione 1996, 2001), which together with the additional
length scale may play a stabilization role for bimaterial sliding in the
framework of a material interface law (e.g. Del Piero & Raous 2010).
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJIRAS online.

Figure S1. Slip rate profiles at a fixed time step for decreasing δl:
the figure shows the expected typical bimaterial asymmetry. The
inset shows the convergence for small δl in terms of maximum
amplitude and position of the crack front.
Figure S2. Physical convergence criterion in time domain based
on the L2-norm using cross-correlation is shown. We defined
the distance between a signal s(t − τ ) and a reference signal
r (t) as: D = ∫ t2

t1
|s(t − τ ) − r (t)|2dt , where τ is the time de-

lay obtained maximizing the cross-correlation function: c(t) =∫ t2
t1

s(t + ξ )r (ξ ) dξ . Normalizing D by the L2-norm of the refer-

ence signal yields the relative error e such that e2 = D∫ t2
t1

r2(t)dt
. For

δl ≤ 10%Dc this error is lower than 0.05 as shown in panel (a). Panel
(b) shows how the normalized time-shift decreases to zero when
decreasing δl.
Figure S3. Physical convergence for decreasing relaxation slip in
time domain. σeff is shown at receivers 2 (a) and 8 (b). The in-
duced perturbations are huger and sharper moving away from the
nucleation and they are smoothed for increasing δl. Panels (c)
and (d) show the amplitude spectra of the quantity in panels (a)
and (b).
Figure S4. (a) σeff as a function of time at receiver 3 when Cgr

does not exist: the inset shows that convergence is still achieved
when δl ≤ 10%Dc. The convergence is still driven by the introduced
filtering and the panel (b) shows the amplitude spectra for decreasing
δl. (c) Even for higher γ , δu∗ is fixed by dynamic timescale and it
is lower than Dc when δl ≤ 10%Dc.
Figure S5. Grid refinement in space domain for constant timescale,
slip rate at the same time step for tc = 1.2 × 10−4s (a) and (b)
and tc = 6.0 × 10−4s (c) and (d). (a) For smaller tc, when solu-
tions are not convergent, strong oscillations of slip rate can emerge
up to pathological effects (e.g. stop and go of rupture). Those ef-
fects can boost the rupture producing a spurious acceleration of
the rupture front. The black square indicates the zoom around the
crack front (b). (c) Even for higher tc, for which the oscillatory ef-
fects are damped, the solutions for coarser meshes do not converge
with those obtained from finer grids. When solutions converge
position of crack front and amplitude of the maximum coincide.
The range of mesh convergence is the same found for dynamic
timescale. The black square indicates the zoom around the crack
front (d).
Figure S6. Acceleration of rupture when Cgr does not exist. In panel
(a) three different ratios γ are used, whereas the ratio ρ1/ρ2 is fixed
at 1.2. In panel (b) four different ratios ρ2/ρ1 are used, whereas the
ratio γ is fixed at 1.9.
Figure S7. Grid refinement in space domain for dissipation length
scale, slip rate for two different parameters β when a dissipation
length scale is used: the features for all models are pretty the same
obtained for dynamic and constant timescales (panels a and c). The
black square indicates the zoom around the crack front (panels b
and d).
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A P P E N D I X A : S P E C T R A L E L E M E N T
M E T H O D F O R RU P T U R E DY NA M I C S

The spectral element method solves the general problem of the
elastodynamics (eq. 1) using a weak formulation. This is obtained
by multiplication of the eq. (1) by an admissible displacement w
which is zero at the boundary of the physical domain � and by
integration over �:∫

�

ρwv̇ d� = −
∫

�

∇w : σ +
∫


N

wT d
. (A1)

The latter term comes from integration by parts of the divergence
of the stress tensor and 
N is the portion of the boundary over which
Neumann conditions are applied. In this work we assume 
N =

e ∪ 
, where 
e is the Earth surface and 
 represents the fault.
The free surface condition is naturally accounted for, considering
zero the contribution of the last integral in eq. (A1) coming from

e. To account for the faulting process, we decompose the physical
domain � into two regions �1 and �2, such that �1 ∪ �2 = �,
�1 ∩ �2 = 
 ∪ 
 f , the measure of �1 ∩ �2 is zero, and 
 f is an
arbitrary prolongation of 
, needed to reach the external boundary
of the physical domain � (Fig. 1). Across 
 f continuity of kinematic
and dynamic quantities is ensured.

We separately solve eq. (A1) in the two domains, where the
interface 
N = 
 ∪ 
 f is common to �1 and �2. The domains
are discretized in quadrangular or hexahedral elements for 2-D or
3-D regions, the displacement and velocity are then approximated
within each element by Lagrange polynomials defined on Gauss–
Lobatto–Legendre (GLL) collocation points and numerical integra-
tion is based on the GLL quadrature formula. Finally the problem
is reduced to the following algebraic system (Komatitsch & Vilotte
1998):

Mi v̇i = Fint
i + BT

i Ti . (A2)

Here M is the mass matrix, which inherits diagonality from nu-
merical orthogonality of the Lagrange polynomials, Fint is the vec-
tor of internal forces, which depends on the local displacement, and
BT is interface matrix related to boundary 
 ∪ 
 f . The details of
the approximations introduced by the spectral element method and
yielding eq. (A2) can be found in Komatitsch & Vilotte (1998) and
Chaljub et al. (2007). We also assemble the contributions of the
mass matrix and the internal forces on the fictitious boundary 
 f ,
reducing the contribution of the interface matrix to the fault 
.

The eq. (A2) can be discretized in time using a displacement-
velocity Newmark scheme. We adopt the formulation suggested
in Festa & Vilotte (2005), where a dissipative scheme is used to
damp the high frequency spurious oscillations generated by the
propagating rupture. Time discretization at time (p + 1)
t , where

t is the time step, yields:

Mi v
(p+1)
i = Mi v

(p)
i + 
t

(
Fint (p+1)

i + BT
i T(p+1)

i

)
. (A3)

After inversion of the mass matrix, subtracting eq. (A3) for the
medium 2 by the respective equation for the medium 1 leads to

δv(p+1) = δV (p+1) − C
T(p+1), (A4)

where we used the position T = T1 = −T2, δv(p) is the slip
rate at any GLL point on the fault at time p
t and δV (p+1) =
δv(p) + 
t (M̃−1

2 F̃int (p+1)
2 − M̃−1

1 F̃int (p+1)
1 ), where the tilde operator

represents the restriction of mass matrices and internal forces to the
fault. The operator C
 is defined as

C
 = 
t
(
M̃−1

2 + M̃−1
1

)
BT . (A5)

An analogous relationship can be obtained for the displacement
discontinuity (Festa 2004)

δu(p+1) = δU (p+1) − Q
T(p+1), (A6)

where δU (p+1) = δu(p) + 
tδv(p) + 1
2 
t2(M̃−1

2 F̃int (p+1)
2 − M̃−1

1

F̃int (p+1)
1 ) and Q
 = 1

2 
tC
 . The diagonality of the matrices
Q
 and C
 implies that the eqs (A4) and (A6) are local
to the collocation points on the fault and they can be di-
rectly combined with the Coulomb and Signorini conditions
respectively.

Detailing the formulation for a 2-D inplane rupture, the to-
tal tractions as projected onto the normal and tangential compo-
nents are σ

n (p)
T = σ n

0 + T n (p) and τ
(p)

T = τ0 + T t (p), where σ n
0

and τ0 represent the pre-stress field components, and T n and
T t are the normal and tangential components of the dynamic
traction T.

To solve the Signorini condition at the point K on the fault we
consider the total normal traction at zero normal slip:

σ̄
n,K (p+1)
T = (

QK K



)−1
δUn,K (p+1) + σ

n,K
0 . (A7)

If σ̄
n,K (p+1)
T ≤ 0, the Signorini condition is automatically

satisfied and (0, σ̄
n,K (p+1)
T ) is the solution for the couple

(δun,K (p+1), σ
n,K (p+1)
T ). In the case for which eq. (A7) yields

σ̄
n,K (p+1)
T > 0, the normal traction is forced to be zero (σ n,K (p+1)

T =
0) and δun,K (p+1) = QK K


 σ̄
n,K (p+1)
T .

From the Signorini condition, when opening occurs (σ n,K (p+1)
T =

0) the two sides of the fault behave as a free surface. When the
interface is still in contact, the Coulomb condition should be verified
to find the tangential slip rate.

Nevertheless, for a bimaterial interface, the Coulomb law is cou-
pled with the effective normal traction, which is related to the normal
traction through the discrete version of eq. (5):

σ
(p+1)
eff =

(
1 + 
t

t∗

)−1 [
σ

(p)
eff + 
t

t∗ σ n (p+1)

]
. (A8)

Since the static contributions of σ n and σeff coincide, eq. (A8) can
be solved for the dynamic part of the effective normal traction. The
tangential projection of eq. (A4) is finally coupled with the Coulomb
condition that can be solved by analogy with the procedure adopted
for the Signorini condition. We start assuming that the tangential slip
velocity δvt (p+1) = 0. Accordingly, the corresponding tangential
traction from (A4) is

τ̄
K (p+1)
T = τ K

0 + (
C K K




)−1
δVt,K (p+1). (A9)

If this quantity is below the threshold |τ̄ K (p+1)
T | ≤

−μ(δut,K (p+1)) σ
K (p+1)

e f f,T , the couple (0, τ̄
K (p+1)
T ) is the solution

for (δvt,K (p+1), τ
K (p+1)
T ) and the point K is at rest. Otherwise, the

traction is at the threshold (|τ̄ K (p+1)
T | = −μ(δut,K (p+1))σ K (p+1)

eff ,T )
and the corresponding solution for tangential slip rate is:

δvt,K (p+1) = δVt,K (p+1) + C K K

 μ

(
δut,K (p+1)

)
σ

K (p+1)
eff ,T . (A10)

Eqs (A8) and (A10) have to be simultaneously solved. When us-
ing a regularization based on the constant timescale, eq. (A8)
can be solved separately from the Coulomb problem. In this
case, we sequentially solve the normal traction, the relaxation
scheme and the Coulomb projection. When t∗ depends on the
actual value of the tangential slip rate, as for the dynamic regu-
larization, the two equations are coupled and they are iteratively
solved.
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