

The potential of the LAb-CosmOrbitrap for future space studies in astrobiology

Laura Selliez, Christelle Briois, Nathalie Carrasco, Laurent Thirkell, Bertrand Gaubicher, Jean- Pierre Lebreton, Fabrice Colin

▶ To cite this version:

Laura Selliez, Christelle Briois, Nathalie Carrasco, Laurent Thirkell, Bertrand Gaubicher, et al.. The potential of the LAb-CosmOrbitrap for future space studies in astrobiology. Europlanet Science Congress 2022, Sep 2022, Granada, Spain. pp.EPSC2022-1259, 10.5194/epsc2022-1259. insu-03751152

HAL Id: insu-03751152 https://insu.hal.science/insu-03751152

Submitted on 13 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EPSC Abstracts

Vol. 16, EPSC2022-1259, 2022, updated on 13 Aug 2022 Europlanet Science Congress 2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

The potential of the LAb-CosmOrbitrap for future space studies in astrobiology

Laura Selliez¹, Christelle Briois¹, Nathalie Carrasco², Laurent Thirkell¹, Bertrand Gaubicher¹, Jean-Pierre Lebreton¹, and Fabrice Colin¹

¹LPC2E, UMR CNRS 7328, Université d'Orléans, Cedex 2, France

How Life has emerged on Earth? Can we find signs of Life on other celestial bodies in the Solar System? Are they harboring liquid water and complex-enough organic matter to initiate Life? What actually complex-enough organic matter means? Among other scientific questions, those related to astrobiology drive the future space missions for decades to come. The search for organic compounds in the Solar System, such as bio- and prebiotic molecules, has been defined as one of the highest priority by the Space Agencies [1, 2].

Significant improvements of the analytical performances of the future instruments will increase our knowledge of targets of interest for the search of Life, present or past, such as comets, asteroids, icy moons or ocean worlds. New generation of High Resolution Mass Spectrometers (HRMS) is currently being developed in order to provide univocal identifications, study of isotopic abundances and determination of mixing ratios with high analytical performances [3-6], including very HRMS-CosmOrbitrap based under collaborative development with University of Maryland/NASA Goddard Space Flight Center. The CosmOrbitrap mass analyzer is mainly funded by CNES, the French space agency, and developed by a consortium of 6 laboratories (LPC2E, LATMOS, LISA, IPAG, IJC lab, J. Heyrovsky Institute of Physical Chemistry) [7].

Here we address the results of a repeatability study based on three organic compounds and obtained with the LAb-CosmOrbitrap (Laser Ablation CosmOrbitrap) equipped with a commercial laser ionization system at 266 nm and no C-trap system. Organics studied are nitrogenous and sulfurous compounds, HOBt ($C_6H_5N_3O+H$) at m/z 136 and BBOT ($C_2GH_2GN_2O_2S+H$) at m/z 431; and a prebiotic compound, the well-known adenine ($C_5H_5N_5+H$) at m/z 136.

Hundreds of mass spectra have been recorded to demonstrate the reproducible analytical performances of the laser-CosmOrbitrap set-up. Mass resolving power has been studied as a function of the acquisition time and the FFT length. Different kind of mass calibrations have been tried to show the effect on the mass accuracy (internal mass calibration on the species of interest and external mass calibration on the metallic sample-holder). Finally, preliminary results on isotopic abundances ($^{13}\text{C}/^{12}\text{C}$, $^{15}\text{N}/^{14}\text{N}$ and $^{34}\text{S}/^{32}\text{S}$ replacements) have been obtained.

This work provides key information for specifying the required performances of future HRMS space instruments.

²Université Paris-Saclay, UVSQ, CNRS, LATMOS, 78280, Guyancourt, France

Acknowledgement: We thank the Centre National des Etudes Spatiales (CNES), the French space agency, for their financial support.

References:

- [1] National Academies (2022) Origins, Worlds and Life.
- [2] ESA (2021) Voyage 2050
- [3] Waite et al. (2019) Abstract Vol.13, EPSC-DPS2019-559-1
- [4] Shimma et al. (2010) Anal. Chem. 82, 20, 8456-8463
- [5] Willhite et al. (2021) IEEE Aerospace, 1 13
- [6] Willhite et al. (2021) Annual Meeting of the Lunar Exploration Analysis Group, LPI Contribution No. 2635, id.5034
- [7] Briois et al. (2016) PSS 131, 33 45