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Abstract. The development of highly efficient, robust and
scalable numerical algorithms lags behind the rapid increase
in massive parallelism of modern hardware. We address
this challenge with the accelerated pseudo-transient (PT) it-
erative method and present a physically motivated deriva-
tion. We analytically determine optimal iteration parame-
ters for a variety of basic physical processes and confirm
the validity of theoretical predictions with numerical exper-
iments. We provide an efficient numerical implementation
of PT solvers on graphical processing units (GPUs) using
the Julia language. We achieve a parallel efficiency of more
than 96 % on 2197 GPUs in distributed-memory paralleli-
sation weak-scaling benchmarks. The 2197 GPUs allow for
unprecedented tera-scale solutions of 3D variable viscosity
Stokes flow on 49953 grid cells involving over 1.2 trillion
degrees of freedom (DoFs). We verify the robustness of the
method by handling contrasts up to 9 orders of magnitude
in material parameters such as viscosity and arbitrary dis-
tribution of viscous inclusions for different flow configura-
tions. Moreover, we show that this method is well suited to
tackle strongly nonlinear problems such as shear-banding in
a visco-elasto-plastic medium. A GPU-based implementa-
tion can outperform direct-iterative solvers based on central
processing units (CPUs) in terms of wall time, even at rela-
tively low spatial resolution. We additionally motivate the ac-

cessibility of the method by its conciseness, flexibility, phys-
ically motivated derivation and ease of implementation. This
solution strategy thus has a great potential for future high-
performance computing (HPC) applications, and for paving
the road to exascale in the geosciences and beyond.

1 Introduction

The recent development of multi-core devices has lead to the
democratisation of parallel computing. Since the “memory
wall” in the early 2000s (Wulf and McKee, 1995), the con-
tinuous increase in the ratio between computation speed and
memory access speed results in a shift from compute-bound
to memory-bound algorithms. Currently, multi-core devices
such as graphical processing units (GPUs) feature floating-
point arithmetic processing rates that outperform memory
access rates by more than 1 order of magnitude. As a result,
memory accesses constitute the main performance limiter in
a majority of scientific computing applications, with arith-
metic efficiency becoming much less performance relevant.

The current computing landscape challenges scientific
computing applications looking at solutions to partial dif-
ferential equations (PDEs) and their legacy implementations
that rely on non-local methods, one example being matrix
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factorisation-based solvers. The main reasons for these ap-
plications not performing optimally on modern hardware
are that their prohibitive and nonlinear memory utilisation
increase as a function of numbers of degrees of freedom
(DoFs), proportional to the global problem size or the spa-
tial numerical resolution. As a result, the usage of sparse di-
rect solvers in high-performance computing (HPC) is only
possible for relatively small-scale problems due to exces-
sive memory and computational resource requirements, in-
herently responsible for limitations in parallel scalability.
Even storing the sparse matrix structure and nonzero ele-
ments in a compressed form is often not possible due to the
limited amount of available memory. This situation naturally
increases the attraction of iterative matrix-free algorithms for
solving large-scale problems.

Pseudo-transient (PT) or dynamic relaxation (DR) meth-
ods have seen a regain in development over the last decades.
The PT methods are matrix-free and build on a transient
physics analogy to establish a stationary solution. Unlike
Krylov-type methods such as the conjugate gradient or gradi-
ent or generalised minimal residual (GMRES) methods, PT
methods build on a fixed-point iteration, in which the up-
date of each grid point is entirely local and does not require
global reductions (and thus global communication) at each
step of the algorithm. Given the locality of the algorithm,
software implementations can achieve very high per-node
performance and near-ideal scaling on distributed-memory
systems with accelerators such as GPUs. For Krylov-type
methods, some work has been done to limit global commu-
nication (Hoemmen, 2010) and reduce the number of global
reductions for Gram–Schmidt and GMRES solvers (Swiry-
dowicz et al., 2020). Together with optimal precondition-
ing and educated guesses for the initial Krylov vector, these
approaches could reduce the number of iterations required.
Nevertheless, even a few global reductions may still limit
scalability of the approach at extreme scales, and limiting
communication in the Krylov part may not circumvent the
requirement of ideal preconditioners.

The PT methods build on a physical description of a pro-
cess. It therefore becomes possible to model strongly nonlin-
ear processes and achieve convergence starting from nearly
arbitrary initial conditions. Conventional linearisation meth-
ods such as the Newton–Raphson method may fail to con-
verge if the initial approximation is not close enough to the
solution. Examples include problems of resolving strain lo-
calisation owing to plastic yielding (Duretz et al., 2019a) or
non-Newtonian power-law rheology, as well as nonlineari-
ties arising from multi-physics coupling such as shear heat-
ing (Duretz et al., 2019b; Räss et al., 2020) and two-phase
flow localisation (Räss et al., 2018, 2019a).

The implementation conciseness constitutes another ad-
vantage of PT methods compared to matrix-based solvers. PT
algorithms are concise and short as the explicit pseudo-time
integration preserves similarity to the mathematical descrip-
tion of the system of PDEs. Conciseness supports efficient

and thus faster development and significantly simplifies the
addition of new physics, a crucial step when investigating
multi-physics couplings. Also, the similarity between math-
ematical and discretised code notation makes PT methods an
attractive tool for research and education.

The PT method originated as a dynamic-relaxation method
in the 1960s, i.e. when it was applied for calculating the
stresses and displacements in concrete pressure vessels (Ot-
ter, 1965). It builds on pioneering work by Richardson
(1911) proposing an iterative solution approach to PDEs re-
lated to dam-engineering calculations. In geosciences, the
PT method was introduced by Cundall (1976) as the Fast
Lagrangian Analysis of Continua (FLAC) algorithm. Subse-
quently, the FLAC method was successfully applied to simu-
late the Rayleigh–Taylor instability in visco-elastic flow (Po-
liakov et al., 1993), as well as the formation of shear bands
in rocks (Poliakov et al., 1994). Other applications of the
PT method are structural analysis problems including fail-
ure (Kilic and Madenci, 2009), buckling (Ramesh and Krish-
namoorthy, 1993) and form-finding (Barnes, 1999). The DR
terminology is still referenced in the finite-element method
(FEM) community (Rezaiee-Pajand et al., 2011).

Interestingly, Richardson developed his iterative approach
without being aware of the work by Gauss and Seidel, their
method being named the Liebmann method when applied
to solving PDEs. Early development of iterative algorithms
such as 1D projection methods and Richardson iterations
depend on the current iterate only. They were well-suited
for early low-memory computers, however lacking in effi-
cient convergence rates. The situation changed in 1950, when
Frankel introduced second-order iterations as an extension
of the Richardson and Liebmann methods, adding depen-
dency on the previous iterate (Frankel, 1950), resulting in the
second-order Richardson and extrapolated Liebmann meth-
ods, respectively. These methods feature enhanced conver-
gence rates (Young, 1972), and perform on par, the first be-
ing slightly more interesting as fully local (Riley, 1954). By
analogy with the explicit solution to time-dependent PDEs,
Frankel introduced additional “physically motivated” terms
in his iterative scheme. Since the Chebyshev iteration can be
recovered for constant parameters, second-order or extrapo-
lated methods are also termed semi-iterative. Note that one
challenge related to Chebyshev’s semi-iterative methods re-
lies on the need for an accurate estimate of extremal eigenval-
ues relating to the interval in which the residual is minimised.
The review by Saad (2020) provides further interesting de-
velopmental insights.

The accelerated PT method for elliptic equations is math-
ematically equivalent to the second-order Richardson rule
(Frankel, 1950; Riley, 1954; Otter et al., 1966). The conver-
gence rate of PT methods is very sensitive to the iteration
parameters’ choice. For the simplest problems, e.g. the sta-
tionary heat conduction in a rectangular domain described
by the Laplace’s equation, these parameters can be derived
analytically based on the analysis of the damped wave equa-
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tion (Cox and Zuazua, 1994). In the general case, the values
of these parameters are associated with the maximum eigen-
value of the stiffness matrix. The eigenvalue problem is com-
putationally intensive, and for practical purposes the eigen-
values are often approximated based on the Rayleigh’s quo-
tient or Gershgorin’s theorem (Papadrakakis, 1981). Thus,
the effective application of PT methods relies on an effi-
cient method to determine the iteration parameters. In the
last decades, several improvements were made to the stabil-
ity and convergence rate of DR methods (Cassell and Hobbs,
1976; Rezaiee-Pajand et al., 2011; Alamatian, 2012). Deter-
mining the general and efficient procedure for estimating the
iteration parameters still remains an active area of research.

We identify three important challenges for iterative meth-
ods among current ones, namely (1) ensure the iteration
count to scale linearly with numerical resolution increase,
possibly independent of material parameters’ contrasts and
nonlinearities, (2) achieve minimal per-device main memory
access redundancy at maximal access speed, and (3) achieve
a parallel efficiency close to 100 % on multi-device –
distributed-memory – systems. In this study, we address
(1) by presenting the accelerated PT method and resolv-
ing several types of basic physical processes. We consider
(2) and (3) as challenges partly related to scientific software
design and engineering; we address them using the emerg-
ing Julia language (Bezanson et al., 2017), which solves
the “two-language problem” and provides the missing tool
for making prototype and production code become one and
breaking up the technically imposed hard division of the
software stack into domain science tasks (higher levels of
the stack) and computer science tasks (lower levels of the
stack). The Julia applications featured in this study rely on
recent Julia package developments undertaken by the authors
to empower domain scientists to write architecture-agnostic
high-level code for parallel high-performance stencil compu-
tations on massively parallel hardware such as latest GPU-
accelerated supercomputers.

In this work, we present the results of analytical analysis of
the PT equations for (non-)linear diffusion and incompress-
ible visco-elastic Stokes flow problems. We motivate our se-
lection of particular physical processes as a broad range of
natural processes categorise mathematically either as diffu-
sive, wave-like or mechanical processes, and thus constitute
the main building blocks of multi-physics applications. We
derive iteration parameters’ approximations from continu-
ous, non-discretised formulations with emphasis on an anal-
ogy between these parameters and non-dimensional num-
bers arising from mathematical modelling of physical pro-
cesses. Such a physics-inspired numerical optimisation ap-
proach has the advantage of providing a framework build-
ing on solid classical knowledge and for which various ana-
lytical approaches exist to derive or optimise parameters of
interest. We assess the algorithmic and implementation per-
formance and scalability of the 2D and 3D numerical Julia
(multi-)GPU (non-)linear diffusion and visco-elastic Stokes

flow implementations. We report scalability beyond tera-
scale number of DoFs on up to 2197 Nvidia Tesla P100 GPUs
on the Piz Daint supercomputer at the Swiss National Su-
percomputing Centre (CSCS). We demonstrate the versatil-
ity and the robustness of our approach in handling nonlinear
problems by applying the accelerated PT method to resolve
spontaneous strain localisation in elasto-viscoplastic (E-VP)
media in 2D and 3D, and comparing time to solution with
direct-sparse solvers in 2D. We further demonstrate the con-
vergence of the method to be mostly insensitive to arbitrary
distributions of viscous inclusions with viscosity contrasts of
up to 9 orders of magnitude in the incompressible viscous
Stokes flow limit.

The latest versions of the open-source Julia codes
used in this study are available from GitHub within
the PTsolvers organisation at https://github.com/PTsolvers/
PseudoTransientDiffusion.jl (last access: 16 May 2022) and
https://github.com/PTsolvers/PseudoTransientStokes.jl (last
access: 16 May 2022). Past and future versions of the soft-
ware are available from a permanent DOI repository (Zen-
odo) at: https://doi.org/10.5281/zenodo.6553699 (Räss and
Utkin, 2022a) and https://doi.org/10.5281/zenodo.6553714
(Räss and Utkin, 2022b). The README files provide the in-
structions to start reproducing majority of the presented re-
sults.

2 The pseudo-transient (PT) method

At the core of the PT method lies the idea of considering
stationary processes, often described by elliptic PDEs, as the
limit of some transient processes described by parabolic or
hyperbolic PDEs.

The PT methods were present in literature since the 1950s
(Frankel, 1950) and have a long history. However, the equa-
tions describing processes under consideration are usually
analysed in discretised form with little physical motivation.
We here provide examples of PT iterative strategies relying
on physical processes as a starting point, both for diffusion
and incompressible visco-elastic Stokes problems. We fur-
ther discuss how the choice of transient physical processes
influences the performance of iterative methods and how to
select optimal iteration parameters upon analysing the equa-
tions in their continuous form.

In the following, we make two assumptions:

1. The computational domain is a cube xk ∈ [0,L],k =
1. . .nd, where nd is the number of spatial dimensions.

2. This domain is discretised with a uniform grid of cells.
The number of grid cells is the same in each spatial di-
mension and is equal to nx .

However, in practice, this solution strategy is not restricted
to cubic meshes with similar resolution in each dimension.
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2.1 Diffusion

Let us first consider the diffusion process:

ρ
∂H

∂t
=−∇kqk, (1)

qi =−D∇iH, i = 1. . .nd, (2)

whereH is some quantity,D is the diffusion coefficient, ρ is
a proportionality coefficient and t is the physical time.

By substituting Eq. (2) into Eq. (1) we obtain an equation
for H :

ρ
∂H

∂t
=∇k(D∇kH), (3)

where the case of D = const is the standard parabolic heat
equation. Equation (3) must be supplemented with initial
conditions at t = 0 and two boundary conditions for each
spatial dimension at xk = 0 and xk = L. Here we assume that
Dirichlet boundary conditions are specified. The choice of
the type of boundary condition affects only the values of the
optimal iteration parameters and does not limit the generality
of the method.

Firstly, we consider a stationary diffusion process, which
is described by Eq. (3) with ∂H/∂t→ 0:

∇k(D∇kH)= 0. (4)

Solving Eq. (4) numerically using conventional numerical
methods would require assembling a coefficient matrix and
relying on a direct or iterative sparse solver. Such an ap-
proach may be preferred for 1D and some 2D problems, but
since our aim is large-scale 3D modelling, we are interested
in matrix-free iterative methods. In the following section, we
describe two such methods, both of which are based on tran-
sient physics.

2.1.1 The first-order PT method

The solution to Eq. (4) is achieved as a limit of the solution
to the transient Eq. (3) at t→∞. Therefore, the natural iter-
ation strategy is to integrate the system numerically in time
until convergence, i.e. until changes in H , defined in some
metric, are smaller than a predefined tolerance.

The simplest PT method is to replace physical time t in
Eq. (3) with numerical pseudo-time τ , and the physical pa-
rameter ρ with a numerical parameter ρ̃:

ρ̃
∂H

∂τ
=∇k(D∇kH). (5)

We refer to τ as the “pseudo-time” because we are not in-
terested in the distributions of H at particular values of τ ;
therefore, τ is relevant only for numerical purposes. The nu-
merical parameter ρ̃ can be chosen arbitrarily.

The number of iterations, i.e. the number of steps in
pseudo-time required to reach convergence of the simplest

method described by Eq. (5), is proportional to n2
x (see

Sect. A1 in the Appendix). Quadratic scaling makes the use
of the simplest PT method impractical for large problems.

One possible solution to circumvent the poor scaling prop-
erties of this first-order method would be to employ an un-
conditionally stable pseudo-time integration scheme. How-
ever, that would require solving systems of linear equations,
making the solution cost of one iteration equal to the cost of
solving the original steady-state problem. We are thus inter-
ested in a method that is not significantly more computation-
ally expensive than the first-order scheme, but that offers an
improved scalability.

2.1.2 The accelerated PT method

One of the known extensions to the classical model of
diffusion incorporates inertial terms in the flux definition
(Chester, 1963). This addition makes it possible to describe
wave propagation in otherwise diffusive processes. Those in-
ertial terms are usually neglected because the time of wave
propagation and relaxation is small compared to the char-
acteristic time of the process (Maxwell, 1867). The modified
definition of the diffusive flux, originally derived by Maxwell
from the kinetic theory of ideal gas, takes the following form:

θr
∂qi

∂τ
+ qi =−D∇iH, (6)

where θr is the relaxation time.
A notable difference between the flux definition from

Eqs. (6) and (2) is that the resulting system type switches
from parabolic to hyperbolic and describes not only diffu-
sion, but wave propagation phenomena as well. Combining
Eq. (1), replacing t with τ , and Eq. (6) to eliminate q yields

ρ̃θr
∂2H

∂τ 2 + ρ̃
∂H

∂τ
=∇k(D∇kH), (7)

which is a damped wave equation for D = const that fre-
quently occurs in various branches of physics (Pascal, 1986;
Jordan and Puri, 1999). Contrary to the parabolic Eq. (5), the
information signal in the damped wave equation propagates
at finite speed Vp =

√
D/ρ̃/θr.

Equation (7) includes two numerical parameters, ρ̃ and
θr. The choice of these parameters significantly influences
the performance and the stability of the PT method. Con-
verting Eq. (7) to a non-dimensional form allows the re-
duction of the number of free parameters to only one non-
dimensional quantity (Re = ρ̃VpL/D), which can be inter-
preted as a Reynolds number.

Another restriction on the values of iteration parameters
arises from the conditions for the numerical stability of the
explicit time integration. The numerical pseudo-time step1τ
is related to the wave speed Vp via the following stability
condition:

1τ ≤
C

Vp
1x, (8)
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where 1x = L/nx is the spatial grid step and C is a non-
dimensional number determined for the linearised problem
using a von Neumann stability analysis procedure. For the
damped wave equation, Eq. (7) here considered C ≈ 1/

√
nd,

where nd is the number of spatial dimensions (Alkhimenkov
et al., 2021a).

We choose parameters ρ̃ and θr so that the stability condi-
tion (Eq. 8) is satisfied for an arbitrary 1τ . We introduce the
numerical velocity Ṽ = C̃1x/1τ , where C̃ ≤ C is an em-
pirically determined parameter. We conclude from numeri-
cal experiments that using C̃ ≈ 0.95C is usually sufficient
for stable convergence, however, for significantly nonlinear
problems, lower values of C̃ may be specified. Expressions
for ρ̃ and θr are obtained by taking into account the definition
of Re and solving for Vp = Ṽ :

ρ̃ = Re
D

Ṽ L
, (9)

θr =
D

ρ̃Ṽ 2
=

L

ReṼ
. (10)

Depending on the value of the parameter Re, the PT pro-
cess described by the damped wave equation (Eq. 7) will be
more or less diffusive. In case of Re→∞, diffusion domi-
nates, resulting in the accelerated PT method to be equivalent
to the first-order method described in the Sect. 2.1.1, regain-
ing the non-desired quadratic scaling of the convergence rate.
If, instead,Re→ 0, the system is equivalent to the undamped
wave equation, resulting in a never converging method, be-
cause waves do not attenuate. An optimal value of Re exists
between these two limits, which leads to the fastest conver-
gence.

To estimate the optimal value of Re, we analyse the spec-
tral properties of Eq. (7). The solution to the damped wave
equation is decomposed into a superposition of plane waves
with particular amplitude, frequency and decay rate. Sub-
stituting a plane wave solution into the equation yields the
dispersion relation connecting the decay rate of the wave to
its frequency and values of Re. Considering the solutions to
this dispersion relation, it is possible to determine the optimal
value of Re, denoted here as Reopt. For near-optimal values
of Re, the number of iterations required for the method to
converge exhibits linear instead of quadratic dependence on
the numerical grid resolution nx , which is a substantial im-
provement compared to the first-order PT method.

We present detailed explanations and derivations of the
dispersion analysis of different problems in the Appendix A,
leading to the optimal value of Re:

Reopt = 2π. (11)

We quantify the convergence rate by the number of itera-
tions niter required to reduce the maximal deviation of the so-
lution to the PT equation from the true solution to the corre-
sponding stationary problem by a factor of e (base of natural
logarithm), divided by the number of grid cells nx . Results of

the dispersion analysis for the 1D stationary diffusion prob-
lem show niter ≈ 0.3nx given optimal values of Re (Fig. 1a).
We estimate that the residual reduction by 14 orders of mag-
nitude requires only ∼ 10nx iterations.

For simplicity we only consider the case D = const in the
dispersion analysis. In this case, both ρ̃ and θr are constant. If
the physical properties vary in space, i.e. D =D(xk), the it-
eration parameters ρ̃ and θr are no longer constant and must
be locally defined by the value corresponding to each grid
point. If the distribution of D is smooth, this approxima-
tion works well in practice, and the number of iterations is
close to the theoretically predicted value. However, particu-
lar care is needed when the distribution ofD is discontinuous
in space to avoid significantly reduced values of C̃ to be re-
quired for convergence, ultimately leading to a much higher
number of PT iterations. We found that taking a local maxi-
mum ofD between neighbouring grid cells in the definitions
of iteration parameters, Eqs. (9) and (10), is sufficient to en-
sure optimal convergence. The per-grid point local maximum
selection thus effectively acts as a preconditioning technique.

For nonlinear and/or complex flow problems, the corre-
sponding optimal values of iteration parameters such as nu-
merical Reynolds number Re may be determined by system-
atic numerical experiments. In practice, optimal values for
iteration parameters do not differ significantly from theoret-
ical predictions derived for the linear case (see Sect. 2.1.3).
Most importantly, the linear scaling of the method is still pre-
served. Also, the accelerated PT method admits explicit nu-
merical integration, and can be implemented with minimal
modifications of the simplest PT method.

2.1.3 Diffusion–reaction

The next example addresses stationary diffusion processes
coupled with reaction. Here, we assume that reaction is de-
scribed by the first-order kinetics law:

ρ̃
∂H

∂τ
=−∇kqk − ρ

H −Heq

θk
, (12)

where Heq is the value of H at equilibrium, and θk is a char-
acteristic time of reaction. The flux q in Eq. (12) is governed
by either Eq. (2) or (6). The addition of a source term does
not change the type of PDE involved in the method formula-
tion, and the iteration strategy based on the discretisation of
Eq. (2) still exhibits a quadratic scaling. We therefore focus
only on the analysis of the accelerated PT method.

Equations (12) and (6) reduce to the following equation
governing the evolution of H :

ρ̃θr
∂2H

∂τ 2 +

(
ρ
θr

θk
+ ρ̃

)
∂H

∂τ
=∇k(D∇kH)− ρ

H −Heq

θk
.

(13)

The Eq. (13) differs from the damped wave equation
(Eq. 7) in that it includes the source term and additional phys-
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Figure 1. Number of iterations per grid point required for e-fold residual reduction. Panels (a), (b) and (c) correspond to stationary diffusion,
stationary diffusion–reaction and incompressible 2D Stokes problems, respectively.

ical parameters θk and ρ. In the non-dimensional form, all pa-
rameters of Eq. (13) can be reduced to two non-dimensional
numbers: Re, defined equivalently to the stationary diffusion
case, and Da = ρL2/D/θk, a new parameter, which can be
interpreted as a Damköhler number characterising the ratio
of characteristic diffusion time to reaction timescale. Con-
trary to the numerical parameter Re, Da depends only on
the physical parameters and cannot be arbitrarily specified.

We present the detailed dispersion analysis for the sta-
tionary diffusion–reaction problem in Sect. A3 of the Ap-
pendix. Parameters ρ̃ and θr are defined according to Eqs. (9)
and (10), respectively, and by analogy to the stationary diffu-
sion case. Optimal values of Re now depend on the parame-
ter Da:

Reopt = π +
√
π2+Da = π +

√
π2+

ρL2

Dθk
. (14)

We report the result of the dispersion analysis for the
diffusion–reaction case as the number of iterations required
for an e-fold residual reduction niter per grid point nx as a
function of Re and Da, highlighting Reopt as a function of
Da by a dashed line (Fig. 1b). In the limitDa→ 0, i.e. when
the characteristic time of reaction is infinitely large compared
to the characteristic time of diffusion, Reopt→ 2π , which is
the optimal value for the stationary diffusion problem dis-
cussed in Sect. 2.1.2. In that limit, the number of iterations
required for an e-fold residual reduction niter is also equiv-
alent to the stationary diffusion problem. However, as Da
increases, the process becomes progressively more reaction-
dominated and the PT iterations converge accordingly faster.

2.1.4 Transient diffusion

It is possible to apply the PT method not only to the solution
of stationary problems, but also to problems including physi-
cal transient terms. This method is known in the literature as
the “dual-time”, or “dual time stepping” method (Gaitonde,
1998; Mandal et al., 2011).

According to the dual-time method, both physical and
pseudo-time derivatives are present in the equation:

ρ̃
∂H

∂τ
=−∇kqk − ρ

∂H

∂t
. (15)

The discretisation of the physical time derivative ∂H/∂t
in Eq. (15) using a first-order backward Euler scheme, leads
to

ρ̃
∂H

∂τ
=−

∂q

∂x
− ρ

H − Ĥ

1t
, (16)

where Ĥ is the distribution ofH at the explicit layer of the in-
tegration scheme, and 1t is the physical time step. Compar-
ing Eqs. (16) and (12) shows the two equations to be math-
ematically identical. Therefore, the optimal iteration param-
eters given by Eq. (A15) apply to the transient diffusion as
well. The Da parameter thus equals ρL2/D/1t and char-
acterises the fraction of the domain traversed by a particle
transported by a diffusive flux during time 1t . The optimal
value of Re is then defined as

Reopt = π +

√
π2+

ρL2

D1t
. (17)

Frequently, modelling of certain processes requires rela-
tively small time steps in order to capture important phys-
ical features, e.g. shear-heating induced strain localisation
(Duretz et al., 2019a) or spontaneous flow localisation in
porous media (Räss et al., 2019a). In such cases, values of
Da can be very large. Also, every step of numerical simula-
tion serves as a good initial approximation to the next simula-
tion step, thereby reducing error amplitude E1 in Eq. (A16).

2.2 Incompressible viscous shear-driven Couette flow

Before considering incompressible Stokes equations, we
present an illustrative example of shear-driven flow to
demonstrate a similarity between already discussed cases ad-
dressing generalised diffusion and viscous fluid flow.
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Here we consider stationary fluid flow between two paral-
lel plates separated by a distance L. We assume the absence
of pressure gradients in directions parallel to the plates. In
that case, Stokes equations are reduced to the following sys-
tem:

0=∇kτxk, (18)
τxi

µs
=∇ivx, i, k ∈ {y, z}, (19)

where τxi is the deviatoric shear stress, vx is the velocity par-
allel to the plates, and µs is the shear viscosity.

The steady-state process described by Eqs. (18) and (19)
can be converted to a PT process similar to the one presented
in Sect. 2.1.2, by considering the inertial term in the momen-
tum equation (Eq. 18) and Maxwell visco-elastic rheology as
a constitutive relation for the viscous fluid Eq. (19):

ρ̃
∂vx

∂τ
=∇kτxk, (20)

1
G̃

∂τxi

∂τ
+
τxi

µs
=∇ivx . (21)

Here, ρ̃ and G̃ are numerical parameters, interpreted as den-
sity and elastic shear modulus, respectively. The system of
equations (Eqs. 20 and 21) is mathematically equivalent to
the system of equations (Eqs. 1 and 6), describing PT diffu-
sion of the velocity field vx . The relaxation time θr in that
case represents the Maxwell relaxation time, and is equal to
µs/G̃.

2.3 Incompressible viscous Stokes equation

The next example addresses the incompressible creeping
flow of a viscous fluid, described by Stokes equations:

0=∇j
(
τij −pδij

)
+ fi, (22)

0=∇kvk, (23)
τij

2µs
=

1
2

(
∇ivj +∇jvi

)
= ε̇ij , (24)

where τij is the deviatoric stress, p is the pressure, δij is the
Kronecker delta, fi is the body forces, v is the velocity, and
ε̇ij is the deviatoric strain rate.

Similar to the shear-driven flow described in Sect. 2.2, a
solution to the system (Eqs. 22–24) can be achieved by PT
time integration described by

ρ̃
∂vi

∂τ
=∇j

(
τij −pδij

)
+ fi, (25)

1
K̃

∂p

∂τ
=−∇kvk, (26)

1
2G̃

∂τij

∂τ
+
τij

2µs
=

1
2

(
∇ivj +∇jvi

)
. (27)

Equations (25) and (26) now both include pseudo-time
derivatives of velocity and pressure, and become an iner-
tial and acoustic approximation to the momentum and mass

balance equations, respectively. The additional parameter K̃
arising in Eq. (26) can be interpreted as a numerical or
pseudo-bulk modulus.

We use the primary, or P-wave velocity, as a characteristic
velocity scale for the Stokes problem:

Vp =

√
K̃ + 2G̃
ρ̃

.

In addition to the non-dimensional numerical Reynolds
number, here defined as Re = ρ̃VpL/µs, we introduce the
ratio between the bulk and shear elastic modulus r = K̃/G̃.

By analogy to previous cases, substituting Vp = Ṽ and
solving the numerical parameters ρ̃, G̃ and K̃ yields

ρ̃ = Re
µs

Ṽ L
, (28)

G̃=
ρ̃ Ṽ 2

r + 2
, (29)

K̃ = r G̃. (30)

Similar to the diffusion–reaction problem studied in
Sect. 2.1.3, there are two numerical parameters controlling
the process. However, in Stokes equations, both parameters
are purely numerical and could be tuned to achieve the opti-
mal convergence rate.

The dispersion analysis for 1D linear Stokes equations is
detailed in Sect. A4 of the Appendix. We provide the result-
ing optimal values to converge the 2D Stokes problem:

Reopt =
3
√

10
2

π, (31)

ropt =
1
2
, (32)

because they differ from the 1D case values, and because we
consider 2D and 3D Stokes formulation in the remaining of
this study.

In the numerical experiments, we consistently observe
faster convergence with slightly higher values of r ≈ 1, likely
caused by the fact that some of the assumptions made for
1D dispersion analysis do not transfer to the 2D formulation
(Fig. 1c). Thus, the values presented in Eqs. (31)–(32) should
only be regarded as an estimate of optimal iteration parame-
ters.

2.4 Incompressible visco-elastic Stokes equation

The last example addresses the incompressible Stokes equa-
tions accounting for a physical visco-elastic Maxwell rheol-
ogy:

1
2G

∂τij

∂t
+
τij

2µs
=

1
2

(
∇ivj +∇jvi

)
, (33)

where G is the physical shear modulus.
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As in the transient diffusion case presented in Sect. 2.1.4,
the problem can be augmented by PT time integration using
a dual time stepping approach:

1
2G̃

∂τij

∂τ
+

1
2G

τij − τ̂ij

1t
+
τij

2µs
=

1
2

(
∇ivj +∇jvi

)
. (34)

Collecting terms in front of τij and ignoring τ̂ij because it
does not change between successive PT iterations, one can
reduce the visco-elastic Stokes problem to the previously dis-
cussed viscous Stokes problem by replacing the viscosity in
the Eq. (28) with the effective “visco-elastic” viscosity:

µve
=

(
1

G1t
+

1
µs

)−1

. (35)

The conclusions and optimal parameters’ values presented in
Sect. 2.3 thus remain valid for the visco-elastic rheology as
well.

3 Performance and scaling

Assessing the performance of iterative stencil-based applica-
tions is 2-fold and reported here in terms of algorithmic and
implementation efficiency.

The accelerated PT method provides an iterative approach
that ensures linear scaling of the iteration count with an in-
crease in numerical grid resolution nx (Sect. 2) – the algo-
rithmic scalability or performance. The major advantage in
the design of such an iterative approach is its concise im-
plementation, extremely similar to explicit time integration
schemes. Explicit stencil-based applications, such as elas-
tic wave propagation, can show optimal performance and
scaling on multi-GPU configurations because they can keep
memory access to the strict minimum, leverage data lo-
cality and only require point-to-point communication (Pod-
ladtchikov and Podladchikov, 2013). Here we follow a simi-
lar strategy.

We introduce two metrics: the effective memory through-
put (Teff) and the parallel efficiency (E) (Kumar et al., 1994;
Gustafson, 1988; Eager et al., 1989). Early formulations
of effective memory throughput analysis are found in Om-
lin et al. (2015a, b); Omlin (2017). The effective memory
throughput permits the assessment of the single-processor
(GPU or CPU) performance and allows us to deduce poten-
tial room for improvement. The parallel efficiency permits
the assessment of distributed-memory scalability which may
be hindered by interprocess communication, congestion of
shared file systems and other practical considerations from
scaling on large supercomputers. We perform single-GPU
problem size scaling benchmarks to assess the optimal lo-
cal problem size based on the Teff metric. We further use the
optimal local problem size in weak-scaling benchmarks to
assess the parallel efficiency E(N,P ).

3.1 The effective memory throughput

Many-core processors such as GPUs are throughput-oriented
systems that use their massive parallelism to hide latency. On
the scientific application side, most algorithms require fewer
floating-point operations per second (FLOPS), compared to
the amount of numbers or bytes accessed from main memory,
and thus are significantly memory bound. The FLOPS met-
ric, no longer being the most adequate for reporting the appli-
cation performance (e.g. Fuhrer et al., 2018) in a majority of
cases, motivated us to develop a memory throughput-based
performance evaluation metric, Teff, to evaluate the perfor-
mance of iterative stencil-based PDE solvers.

The effective memory access, Aeff [GB], is the sum of
twice the memory footprint of the unknown fields,Du, (fields
that depend on their own history and that need to be read
from and written to every iteration) and the known fields,
Dk, that do not change every iteration. The effective mem-
ory access divided by the execution time per iteration, tit [s],
defines the effective memory throughput, Teff [GB s−1]:

Aeff = 2 Du+Dk, (36)

Teff =
Aeff

tit
. (37)

The upper bound of Teff is Tpeak as measured e.g. by Mc-
Calpin (1995) for CPUs or a GPU analogue. Defining the Teff
metric, we assume that (i) we evaluate an iterative stencil-
based solver, (ii) the problem size is much larger than the
cache sizes and (iii) the usage of time blocking is not feasi-
ble or advantageous (which is a reasonable assumption for
real-world applications). An important concept is to not in-
clude fields within the effective memory access that do not
depend on their own history (e.g. fluxes); such fields can be
recomputed on the fly or stored on-chip. Defining a theoreti-
cal upper bound for Teff that is closer to the real upper bound
is a work in progress (Omlin and Räss, 2021b).

3.2 The parallel efficiency

We employ the parallel efficiency metric to assess the scal-
ability of the iterative solvers when targeting distributed-
memory configurations, such as multi-GPU settings. In a
weak-scaling configuration, i.e. where the global problem
size and computing resources increase proportionally, the
parallel efficiency E(N,P ) defines the ratio between the ex-
ecution time of a single process, T (N,1), and the execution
time of P processes performing the same number of itera-
tions on a P -fold larger problem, T (N ·P,P ), where N is
the local problem size and P is the number of parallel pro-
cesses:

E(N,P )=
T (N,1)

T (N ·P,P )
. (38)

Distributed parallelisation permits overcoming limitations
imposed by the available main memory of a GPU or CPU.
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It is particularly relevant for GPUs, which have significantly
less main memory available than CPUs. Distributing work
amongst multiple GPUs, using e.g. the message passing in-
terface (MPI), permits overcoming these limitations and re-
quires parallel computing and supercomputing techniques.
Parallel efficiency is a key metric in light of assessing the
overall application performance as it ultimately ensures scal-
ability of the PT method.

4 The numerical experiments

We design a suite of numerical experiments to verify the
scalability of the accelerated PT method, targeting diffusive
processes and mechanics. We consider three distinct diffu-
sion problems in one, two and three dimensions, that ex-
hibit a diffusion coefficient being (i) linear, (ii) a step func-
tion with 4 orders of magnitude contrasts and (iii) a cu-
bic power-law relation. We then consider mechanical pro-
cesses using a velocity–pressure formulation to explore var-
ious limits, including variable-viscosity incompressible vis-
cous flow limit, accounting for a Maxwell visco-elastic shear
rheology. To demonstrate the versatility of the approach, we
tackle the nonlinear mechanical problem of strain localisa-
tion in two and three dimensions considering an E-VP rhe-
ology (Sect. 8). We verify the robustness of the accelerated
PT method by considering two parametric studies featuring
different viscous Stokes flow patterns, and demonstrate the
convergence of the method for viscosity contrasts up to 9 or-
ders of magnitude. We finally investigate the convergence of
visco-elastic Stokes flow for non-similar domain aspect ratio.

4.1 Diffusive processes

We first consider time-dependent (transient) diffusion pro-
cesses defined by Eqs. (1) and (2), with the proportionality
coefficient ρ = 1. Practical applications often exhibit at least
one diffusive component which can be either linear or non-
linear. Here, we consider linear and nonlinear cases repre-
sentative of challenging configurations common to a broad
variety of forward numerical diffusion-type models:

1. The first case exhibits a linear constant (scalar) diffusion
coefficient:

D = 1. (39)

2. The second case exhibits a spatially variable diffusion
coefficient with a contrast of 4 orders of magnitude:

D =

{
1 if L < LD,

10−4 if L>=LD,
(40)

where L is the domain extent in a specific dimension
and LD the coordinate at which the transition occurs.
Large contrasts in material parameters (e.g. permeabil-
ity or heat conductivity) are common challenges that

solvers needs to handle when targeting real-world ap-
plications.

3. The third case exhibits a nonlinear power-law diffusion
coefficient:

D =H n, (41)

where n= 3, is a characteristic value in, e.g. soil
and poro-mechanical applications to account for the
porosity–permeability Carman–Kozeny (Costa, 2006)
relation leading to the formation of solitary waves of
porosity. Shallow ice approximation or nonlinear vis-
cosity in power-law creep Stokes flow are other appli-
cations that exhibit effective diffusion coefficients to be
defined as power-law relations.

Practically, we implement the transient diffusion using the
accelerated PT method, solving Eqs. (6) and (15) using a
dual-time method (Sect. 2.1.4).

4.2 Mechanics

We secondly consider steady-state mechanical problems,
defined by Eqs. (22) and (23). In practice, we employ a
velocity–pressure formulation, which allows us to also han-
dle the incompressible flow limit. The rheological model
builds on an additive decomposition of the deviatoric strain
rate tensor (Maxwell’s model), given by Eq. (33).

In Sect. 5.2, the mechanical problem is solved in the in-
compressible limit and assuming a linear visco-elastic devi-
atoric rheology.

In the subsequent application (Sect. 8), the mechanical
problem is solved in the compressible E-VP limit. Hence,
the deviatoric rheological model neglects viscous flow and
includes viscoplastic flow:

ε̇ij = ε̇
e
ij + ε̇

vp
ij =

1
2G

∂τij

∂t
+ λ̇

∂Q

∂τij
, (42)

where λ̇ andQ stand for the rate of the plastic multiplier and
the plastic flow potential, respectively. A similar decompo-
sition is assumed for the divergence of velocity in Eq. (23),
which is no longer equal to zero in order to account for elastic
and plastic bulk deformation:

∇kvk =∇kv
e
k +∇kv

vp
k =−

1
K

∂p

∂t
− λ̇

∂Q

∂p
, (43)

where K stands for the physical bulk modulus.
In the inclusion parametric study described in Sect. 5.2,

we consider the incompressible viscous Stokes flow limit, i.e.
K→∞ and G→∞.
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Figure 2. Initial distribution of H for the (a) 1D, (b) 2D and (c) 3D time-dependent diffusion configurations.

5 The model configurations

5.1 The diffusion model

We perform the three different diffusion experiments (see
Sect. 4.1) on 1D, 2D and 3D computational domains (Fig. 2a,
b and c, respectively). The only difference between the nu-
merical experiments lies in the definition of the diffusion co-
efficientD. The non-dimensional computational domains are
�1D = [0,Lx],�2D = [0,Lx]×[0,Ly] and�3D = [0,Lx]×
[0,Ly]× [0,Lz], for 1D, 2D and 3D domains, respectively.
The domain extent is Lx = Ly = Lz = 10. The initial con-
dition, H0, consists of a Gaussian distribution of amplitude
and standard deviation equal to one located in the domain’s
centre; in the 1D case:

H0 = exp
(
−(xc− 0.5 Lx)2

)
, (44)

where xc is the vector containing the discrete 1D coordinates
of the cell centres. The 2D and 3D cases are done by analogy
and contain the respective terms for the y and z directions.
We impose Dirichlet boundary conditions such thatH = 0 on
all boundaries. We simulate a total non-dimensional physical
time of 1 performing five implicit time steps of 1t = 0.2.

5.2 The Stokes flow model

We perform the visco-elastic Stokes flow experiments (see
Sect. 4.2) on 2D and 3D computational domains (Fig. 3a
and b, respectively). The non-dimensional computational
domains are �2D = [0,Lx]× [0,Ly] and �3D = [0,Lx]×
[0,Ly]× [0,Lz] for 2D and 3D domains, respectively. The
domain extend is Lx = Ly = Lz = 10. As an initial con-
dition, we define a circular (2D) or spherical (3D) in-
clusion of radius r = 1 centred at Lx/2, Ly/2 (2D) and
Lx/2, Ly/2, Lz/2 (3D), featuring 3 orders of magnitude
with lower shear viscosity µinc

s = 10−3 compared to the
background value µ0

s = 1 (Fig. 3). We then perform 10 ex-
plicit diffusion steps of the viscosity field µs to account
for smoothing introduced by commonly employed advection
schemes (e.g. markers-in-cell, semi-Lagrangian or weighted

ENO). We define a uniform and constant elastic shear modu-
lus G= 1 and chose the physical time step 1t = µ0

s/G/ξ to
satisfy a visco-elastic Maxwell relaxation time of ξ = 1. We
impose pure shear boundary conditions; we apply compres-
sion in the x direction and extension in the vertical (y in 2D,
z in 3D) direction with a background strain rate εBG = 1. For
the 3D case, we apply no inflow/outflow in the y direction
(Fig. 3b). All model boundaries are free to slip. We perform
a total of five implicit time steps to resolve visco-elastic stress
build-up.

We further perform a series of viscous Stokes numerical
experiments in 2D (see Sect. 4.2) to analyse the dependence
of the optimal iteration parameters on the material viscos-
ity contrast and the volume fraction of the material with
lower viscosity. The non-dimensional computational domain
is�2D = [0,Lx]×[0,Ly]. As an initial condition, we define
a number ninc of circular inclusions that are semi-uniformly
distributed in the domain. The viscosity in the inclusions is
µinc

s and the background viscosity is µ0
s = 1.

In the parametric study, we vary the number of inclusions
ninc, the inclusion viscosity µinc

s , and the iteration parameter
Re. We consider a uniform 3D grid of parameter values, nu-
merically calculating the steady-state distribution of stresses
and velocities for each of these combinations.

We consider two different problem setups that correspond
to important edge cases. The first setup addresses the shear-
driven flow where the strain rates are assumed to be applied
externally via boundary conditions. This benchmark might
serve as a basis for the calculation of effective-media proper-
ties. The second setup addresses the gravity-driven flow with
buoyant inclusions. This benchmark is relevant for geophys-
ical applications, e.g. modelling magmatic diapirism or melt
segregation, where the volumetric effect of melting leads to
the development of either the Rayleigh–Taylor instability or
compaction instability, respectively.

In the first setup, we specify pure-shear boundary con-
ditions similar to the singular inclusion case described in
Sect. 5.2. The body forces fi are set to zero in Eq. (22).

In the second setup, we specify the free-slip boundary con-
ditions, which correspond to setting the background strain
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Figure 3. Initial shear viscosity (µshear) distribution for the (a) 2D and (b) 3D visco-elastic Stokes flow configuration, respectively.

rate εBG to 0. We model buoyancy using the Boussinesq ap-
proximation: the density differences are accounted for only
in the body forces. We set fx = 0, fy =−ρg. We set ρg0

=

1, ρginc
= 0.5.

6 Discretisation

We discretise the systems of partial differential equations
(Sect. 4) using the finite-difference method on a regular
Cartesian staggered grid. For the diffusion process, the quan-
tity being diffused and the fluxes are located at cell centres
and cell interfaces, respectively. For the Stokes flow, pres-
sure, normal stresses and material properties (e.g. viscosity)
are located at cell centres, while velocities are located at cell
interfaces. Shear stress components are located at cell ver-
tices. The staggering relies on second-order conservative fi-
nite differences (Patankar, 1980; Virieux, 1986; McKee et al.,
2008), also ensuring that the Stokes flow is inherently devoid
of oscillatory pressure modes (Shin and Strikwerda, 1997).

The diffusion process and the visco-elastic Stokes flow
include physical time evolution. We implement a backward
Euler time integration within the PT solving procedure (see
Sect. 2) and do not assess higher-order schemes as such con-
siderations go beyond the scope of this study.

In all simulations we converge the scaled and normalised
L2-norm of the residuals, ||R||L2/

√
nR , where nR stands for

the number of entries of R, for each physical time step to
a nonlinear absolute tolerance of tolnl = 10−8 within the it-
erative PT procedure (absolute and relative tolerances being
comparable, given the non-dimensional form of the example
we consider here).

The 46-line code fragment (Fig. 4) provides information
about the concise implementation of the accelerated PT al-
gorithm, here for the 1D nonlinear power-law diffusion case
(D =H 3). Besides the initialisation part (lines 3–22), the
core of the algorithm is contained in no more than 20 lines
(lines 23–43). The algorithm is implemented as two nested
(pseudo-)time loops, referred to as “dual-time”; the outer

loop advancing in physical time, the inner loop converging
the implicit solution in pseudo-time. The nonlinear term, here
the diffusion coefficient D, is explicitly evaluated within the
single inner-loop iterative procedure, removing the need for
performing nonlinear iterations on top of a linear solver (e.g.
Brandt, 1977; Trottenberg et al., 2001; Hackbusch, 1985).
This single inner-loop local linearisation shows, in practice,
a lower iteration count when compared to global linearisa-
tion (nested loops). Note that a relaxation of nonlinearities
can be implemented in a straightforward fashion if the non-
linear term hinders convergence (see implementation details
in e.g. Räss et al., 2020, 2019a; Duretz et al., 2019b). The it-
eration parameters are evaluated locally which ensures scal-
ability of the approach and removes the need for perform-
ing global reductions, costly in parallel implementation. Note
that the numerical iteration parameters ρ̃ and θr, arising from
the finite-difference discretisation of pseudo-time derivatives
in Eqs. (16) and (6),

ρ̃
∂H

∂τ
≈ ρ̃

H k
−H k−1

1τ
, θr

∂qi

∂τ
≈ θr

qki − q
k−1
i

1τ
, (45)

where k is the current pseudo-time iteration index, always
occur in combination with 1τ . Since we are not interested
in the evolution of pseudo-time or the particular values of it-
eration parameters, it is possible to combine them in the im-
plementation. We therefore introduce the variables dτ_ρ =
1τ/ρ and θ r_dτ = θ r/1τ . Using the new variables helps to
avoid specifying the value of 1τ , which could otherwise be
specified arbitrarily. The two lines of physics, namely the PT
updates, are here evaluated in an explicit fashion. Alterna-
tively, one could solve qHx and H assuming that their val-
ues in the residual – the terms contained in the right-most
parenthesis – are new instead of current, resulting in an im-
plicit update. Advantages rely on enhanced stability (CFL on
line 10 could be set to 1) and remove the need for defining
a small number (ε in the iteration parameters definition) to
prevent division by 0. The implicit approach is implemented
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Figure 4. Numerical Julia implementation of the 1D nonlinear diffusion case D =H 3. Lines marked with # [...] refer to skipped lines.
See diff_1D_nonlin_simple.jl script located in the scripts folder in PseudoTransientDiffusion.jl on GitHub for full code.

as an alternative in the full code available online in the Pseu-
doTransientDiffusion.jl GitHub repository.

6.1 The Julia multi-xPU implementation

We use the Julia language (Bezanson et al., 2017) to imple-
ment the suite of numerical experiments. Julia’s high-level
abstractions, multiple dispatch and meta-programming capa-
bilities make it amenable to portability between back-ends
(e.g. multi-core CPUs and Nvidia or AMD GPUs). Also, Ju-
lia solves the two-language problem, making it possible to
fuse prototype and production applications into a single one
that is both high-level and performance oriented – ultimately
increasing productivity.

We use the ParallelStencil.jl (Omlin and Räss, 2021b) and
ImplicitGlobalGrid.jl (Omlin and Räss, 2021a) Julia pack-
ages that we developed as building blocks to implement the
diffusion and Stokes numerical experiments. ParallelSten-
cil.jl permits to write architecture–agnostic high-level code
for parallel high-performance stencil computations on GPUs

and CPUs – here referred to as xPUs. Performance similar to
native CUDA C/C++ (Nvidia GPUs) or HIP (AMD GPUs)
can be achieved. ParallelStencil.jl seamlessly combines with
ImplicitGlobalGrid.jl, which allows for distributed paralleli-
sation of stencil-based xPU applications on a regular stag-
gered grid. In addition, ParallelStencil.jl enables hiding com-
munication behind computation, where the communication
package used can, a priori, be any package that allows the
user to control when communication is triggered. The over-
lap approach of communication and computation splits lo-
cal domain calculations into two regions, i.e. boundary re-
gions and inner region, the latter containing majority of the
local domain’s grid cells. After successful completion of the
boundary region computations, halo update (using e.g. point-
to-point MPI) overlaps with inner-point computations. Se-
lecting the appropriate width of the boundary region permits
fine-tuning the optimal hiding of MPI communication (Räss
et al., 2019c; Alkhimenkov et al., 2021b).

In the present study, we focus on using ParallelStencil.jl
with the CUDA.jl back-end to target Nvidia GPUs (Besard
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Figure 5. Iteration count scaled by the number of time steps (nt ) and by the number of grid cells in the x direction (nx ) as function of
nx , comparing 1D, 2D and 3D models for the three different diffusion configurations: (a) linear diffusion, (b) linear step diffusion and
(c) nonlinear diffusion, respectively.

et al., 2018, 2019), and ImplicitGlobalGrid.jl which relies on
MPI.jl (Byrne et al., 2021) and Julia’s MPI wrappers to en-
able distributed-memory parallelisation.

7 Results

We here report the performance of the accelerated PT
Julia implementation of the diffusion and the Stokes
flow solvers targeting Nvidia GPUs using ParallelStencil.jl’s
CUDA back-end. For both physical processes, we analyse the
iteration count as a function of the number of grid cells (i.e.
the algorithmic performance), the effective memory through-
put Teff [GB s−1] (performing a single-GPU device problem
size scaling), and the parallel efficiency E (multi-GPU weak
scaling).

We report the algorithmic performance as the iteration
count per number of physical time steps normalised by the
number of grid cells in the x direction. We do not normalise
by the total number of grid cells in order to report the 1D
scaling, even for 2D or 3D implementation. We motivate our
choice as it permits a more accurate comparison to analyti-
cally derived results and leaves it to the reader to appreciate
the actual quadratic and cubic dependence of the normalised
iteration count if using the total number of grid cells in 2D
and 3D configurations, respectively.

7.1 Solving the diffusion equation

We report a normalised iteration count per total number of
physical time steps nt per number of grid cells in the x direc-
tion nx ( itertot/nt/nx), for the 1D, 2D and 3D implementa-
tions of the diffusion solver for the linear, step-function and
nonlinear case (Fig. 5a, b and c, respectively) relating to the
spatial distribution of H after 5 implicit time steps (Fig. 6a–
c, d–f and g–i, respectively). All three different configura-

tions exhibit a normalised number of iterations per time step
per number of grid cells close to 1 for the lowest resolution
of nx = 64 grid cells. The normalised iteration count drops
with an increase in numerical resolution (increase in number
of grid cells) suggesting a super-linear scaling.

We observe similar behaviour when increasing the num-
ber of spatial dimensions while solving the identical prob-
lem. For example, in the 3D calculations we actually re-
solve nx × ny × nz (here n3

x) grid cells, while the reported
nx-normalised iteration count only slightly increases com-
pared to the corresponding 1D case.

It is interesting to note that the diffusion solver with non-
linear (power-law) diffusion coefficient reports the lowest
normalised iteration count for all three spatial dimension im-
plementations, reaching the lowest number (> 0.4) of nor-
malised iteration count in the 3D configuration (Fig. 5c). The
possible explanation of lower iteration counts for the nonlin-
ear problem is that by the nature of the solution, the distri-
bution of the diffused quantity H at t = 1 is much closer to
the initial profile than in the linear case. Therefore, at each
time step, the values ofH are closer to the values ofH at the
next time step and thus serve as a better initial approximation.
Both the diffusion with linear (Fig. 5a) and step function as
diffusion coefficient (Fig. 5b) show similar trends in their
normalised iteration counts, with values decreasing while in-
creasing the number of spatial dimensions.

7.2 Solving visco-elastic Stokes flow

We further report the normalised iteration count per total
number of physical time steps nt per number of grid cells
in the x direction nx (itertot/nt/nx) for the 2D and 3D im-
plementations of the visco-elastic Stokes solver (Fig. 7) re-
lating to the spatial distribution of vertical velocity (devia-
tion from background)1Vvertical, pressure P and shear stress
τshear after 5 implicit time steps (Fig. 8a–b, c–d and e–f, re-
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Figure 6. Model output for the 1D (a, d, g), 2D (b, e, h) and 3D (c, f, i) time-dependent diffusion of quantityH . The upper (a–c), centre (d–f)
and lower (g–i) panels refer to the diffusion with linear, linear step and nonlinear (power-law) diffusion coefficient, respectively. For the 1D
case, the blue and red lines represent the initial and final distribution, respectively. The colour map (2D and 3D) relates to the y axis (1D).

spectively). Both 2D and 3D visco-elastic Stokes flow exhibit
a normalised number of iterations per time step per number
of grid cells close to 10 for the lowest resolution of nx = 63
grid cells. The normalised iteration count drops with an in-
crease in numerical resolution (increase in number of grid
cells) suggesting a super-linear scaling. We observe similar
behaviour when increasing the number of spatial dimensions
from 2D to 3D, while solving the identical problem; 3D cal-
culations are more efficient on a given number of grid cells
nx compared to the corresponding 2D calculations, which is
in accordance with results for the various diffusion solver
configurations.

The visco-elastic Stokes flow scaling results confirm the
trend reporting a decrease of the normalised iteration count
with an increase in the numerical resolution (number of grid
cells). It is interesting to note that the accelerated PT im-
plementation of the 3D visco-elastic Stokes flow featuring 3
orders of magnitude viscosity contrast (µ0

s/µ
inc
s = 103) only

requires less than 17 normalised iterations when targeting
resolutions of 10233 (Fig. 7).

Figure 7. Iteration count scaled by the number of time steps (nt )
and by the number of grid cells in the x direction (nx ) as function
of nx , comparing 2D and 3D visco-elastic Stokes flow containing
an inclusion featuring a viscosity contrast (µ0/µi = 103).
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Figure 8. Model output for the 2D (a, c, e) and 3D (b, d, f) visco-elastic Stokes flow containing an inclusion featuring a viscosity contrast
(µ0/µi = 103). The upper (a–b), centre (c–d), and lower (e–f) panels depict the deviation from background vertical velocity 1Vvertical, the
dynamic pressure P and deviatoric shear stress τshear(τxy in 2D, τxz in 3D) distribution, respectively.

7.3 Performance

We use the effective memory throughput Teff [GB s−1] and
the parallel efficiency E(N,P ) to assess the implementa-
tion performance of the accelerated PT solvers, as moti-
vated in Sect. 3. We perform the single-GPU problem size
scaling and the multi-GPU weak-scaling tests on different
Nvidia GPU architectures, namely the “data-centre” GPUs,
Tesla P100 (Pascal – PCIe), Tesla V100 (Volta – SXM2)
and Tesla A100 (Ampere – SXM4). We run the weak-scaling
multi-GPU benchmarks on the Piz Daint supercomputer, fea-
turing up to 5704 Nvidia Tesla P100 GPUs, at CSCS, on the
Volta node of the Octopus supercomputer, featuring 8 Nvidia
Tesla V100 GPUs with high-throughput (300 GB s−1) SXM2
interconnect, at the Swiss Geocomputing Centre, University
of Lausanne, and on the Superzack node, featuring 8 Nvidia
Tesla A100 GPUs with high-throughput (600 GB s−1) SXM4
interconnect, at the Laboratory of Hydraulics, Hydrology,
Glaciology (VAW), ETH Zurich.

We assess the performance of the 2D and 3D implemen-
tations of the nonlinear diffusion solver (power-law diffu-

sion coefficient) and the visco-elastic Stokes flow solver, re-
spectively. We perform single-GPU scaling tests for both the
2D and 3D solvers’ implementation, and multi-GPU weak-
scaling tests for the 3D solvers’ implementation only. We re-
port the mean performance out of 5 executions, if applicable.

In order to compute the effective memory throughput Teff
in the scaling test, we need to determine the number of un-
known and known fields the solvers access during the itera-
tive procedures (see Sect. 3.1). We report the values we use
for the nonlinear diffusion solver and the visco-elastic Stokes
flow solver in both 2D and 3D, as well as the per grid cell
number of DoFs in Table 1.

7.3.1 Single-GPU scaling and effective memory
throughput

The 2D and 3D nonlinear diffusion solver single-GPU scal-
ing benchmarks achieve similar effective memory through-
put on the targeted GPU architectures relative to their respec-
tive peak values Tpeak; values of Teff for the 2D implementa-
tion being slightly higher than the 3D ones for the Volta and
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Table 1. Number of unknown (Du) and known (Dk) fields, as well
as per grid cell DoFs used to assess, e.g. the Teff metric in the per-
formance scaling tests.

Application Du Dk DoFs

Nonlinear diffusion 2D 3 2 1
3D 4 2 1

Visco-elastic Stokes flow 2D 6 6 6
3D 10 9 10

Pascal architectures, but similar for the Ampere one. This
discrepancy is expected and may be partly explained by an
increase in cache-misses when accessing z-direction neigh-
bours which are nx · ny grid cells away in main memory. In
2D, we achieve Teff ≈ 920, 590 and 400 GB s−1 on the Tesla
A100, Tesla V100 and the Tesla P100, respectively (Fig. 9a).
In 3D, we achieve Teff ≈ 920, 520 and 315 GB s−1 on the
Tesla A100, Tesla V100 and the Tesla P100, respectively
(Fig. 9b).

For the analogous visco-elastic Stokes flow single-GPU
scaling tests, we also report higher Teff values for the
2D compared to the 3D implementation for all three tar-
geted architectures. In 2D, we achieve Teff ≈ 930, 500 and
320 GB s−1 on the Tesla A100, Tesla V100 and the Tesla
P100, respectively (Fig. 10a). In 3D, we achieve Teff ≈ 730,
350 and 230 GB s−1 on the Tesla A100, Tesla V100 and the
Tesla P100, respectively (Fig. 10b). Increased neighbouring
access and overall more derivative evaluations may explain
the slightly lower effective memory throughput of the visco-
elastic Stokes flow solver when compared to the nonlinear
diffusion solver.

7.3.2 Weak scaling and parallel efficiency

We assess the parallel efficiency of the 3D nonlinear dif-
fusion and visco-elastic Stokes flow solver multi-GPU im-
plementation performing a weak-scaling benchmark. We use
(per GPU) a local problem size of 5123 for the nonlinear dif-
fusion, and 3833 and 5113 for the visco-elastic Stokes flow
on the Pascal and Tesla architectures, respectively. Device
RAM limitations prevent solving a larger local problem in
the latter case. The 3D nonlinear diffusion solver achieves
a parallel efficiency E of 97 % on 8 Tesla A100 SXM4 and
V100 SXM2, and 98 % on 2197 Tesla P100 GPUs (Fig. 11a).
The visco-elastic Stokes flow solver achieves a parallel effi-
ciency E of 99 % on 8 Tesla A100 SXM4, and 96 % on 8
Tesla V100 SXM2 and on 2197 Tesla P100 GPUs (Fig. 11b),
respectively. The discrepancy between the 3D nonlinear dif-
fusion and visco-elastic Stokes flow solvers may arise due to
the difference in kernel sizes and workload, resulting in dif-
ferent memory and cache usages potentially impacting occu-
pancy. 2197 GPUs represent a 3D Cartesian topology of 133,
resulting in global problem sizes of 66323 and 49953 grid

cells for the nonlinear diffusion (291 giga DoFs) and visco-
elastic Stokes flow (1.2 tera DoFs), respectively. We empha-
sise that the number of DoFs we report here represents the
total number of DoFs, which is the product of the number of
grid cells and the per grid cell DoFs (Table 1). In terms of cu-
mulative effective memory throughput Teff, the 3D diffusion
and Stokes flow solver achieve 679 and 444 TB s−1, respec-
tively. This near petabyte per second effective throughput re-
flects the impressive memory bandwidth exposed by GPUs
and requires efficient algorithms to leverage it.

We emphasise that we follow a strict definition of paral-
lel efficiency, where the runtimes of the multi-xPU imple-
mentations are to be compared with the best known single-
xPU implementation. As a result, the reported parallel effi-
ciency is also below 100 % for a single GPU, correctly show-
ing that the implementation used for distributed parallelisa-
tion performs slightly worse than the best known single-GPU
implementation. This small performance loss emerges from
the computation splitting in boundary and inner regions re-
quired by the hidden communication feature. Parallel effi-
ciency close to 100 % is important to ensure weak scalability
of numerical applications when executed on a growing num-
ber of distributed-memory processes P , the path to leverage
current and future supercomputers’ exascale capabilities.

7.4 Multiple-inclusions parametric study

We perform a multiple-inclusions benchmark to assess the
robustness of the developed accelerated PT method. We vary
the viscosity contrast from 1 to 9 orders of magnitude to
demonstrate the successful convergence of iterations, even
for extreme cases, that might arise in geophysical applica-
tions such as strain localisation. Further, we vary the number
of inclusions from 1 to 46 to verify the independence of con-
vergence on the “internal geometry” of the problem. For each
combination of viscosity ratio and number of inclusions, we
perform a series of simulations varying the iteration parame-
terRe to assess the influence of the problem configuration on
its optimal value, and to verify whether the analytical predic-
tion obtained by the dispersion analysis remains valid over
the considered parameter range.

For this parametric study, we considered a computational
grid consisting of nx×ny = 20482 cells. At lower resolutions
the convergence deteriorates, resulting in configurations of
non-converging large viscosity contrasts. A high-resolution
grid is thus necessary for resolving the small-scale details of
the flow. We also adjust the nonlinear tolerance for the iter-
ations to 10−5 and 10−3 for momentum and mass balance,
respectively, given our interest in relative dependence of iter-
ation counts on the iteration parameter Re.

Figure 12 depicts the results for the shear-driven flow case.
For a single inclusion (Fig. 12a), the optimal value of the iter-
ation parameter Re does not differ significantly from the one
reported by Eq. (31). Moreover, the theoretical prediction for
Re remains valid for all viscosity contrasts considered in the
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Figure 9. Effective memory throughput Teff [GB s−1] for the (a) 2D and (b) 3D nonlinear diffusion Julia GPU implementations using
ParallelStencil.jl executed on various Nvidia GPUs (Tesla A100 SXM4, Tesla V100 SXM2 and P100 PCIe). The dashed lines report the
measured peak memory throughput Tpeak (1355 GB s−1 Tesla A100, 840 GB s−1 Tesla V100, 561 GB s−1 Tesla P100) one can achieve on a
specific GPU architecture, which is a theoretical upper bound of Teff.

Figure 10. Effective memory throughput Teff [GB s−1] for the (a) 2D and (b) 3D the visco-elastic Stokes flow Julia GPU implementations
using ParallelStencil.jl executed on various Nvidia GPUs (Tesla A100 SXM4, Tesla V100 SXM2 and P100 PCIe). The dashed lines report
the measured peak memory throughput Tpeak (1355 GB s−1 Tesla A100, 840 GB s−1 Tesla V100, 561 GB s−1 Tesla P100) one can achieve
on a specific GPU architecture, which is a theoretical upper bound of Teff.

study. For problem configurations involving 14 and 46 inclu-
sions (Fig. 12b and c, respectively), the minimal number of
iterations is achieved for values of Re close to the theoret-
ical prediction, only for the viscosity contrast of 1 order of
magnitude. For a larger viscosity contrast, the optimal value
of Re appears to be lower than theoretically predicted, and
the overall iteration count is significantly higher. These iter-
ation counts reach 40nx at the minimum among all values of
Re for a given viscosity ratio, and > 50nx for non-optimal
values of Re.

For buoyancy-driven flow (Fig. 13), the convergence of it-
erations is less sensitive to both the number of inclusions and
the viscosity ratio. The observed drift in the optimal value of

Re could be partly attributed to the lack of a good precondi-
tioning technique. In this study, we specify the local iteration
parameters, 1τ/ρ̃ and G̃/1τ (see Sect. 2.3), in each grid
cell based on the values of material parameters, which could
be regarded as a form of diagonal (Jacobi) preconditioning.
This choice is motivated by the parallel scalability require-
ments of GPU and parallel computing. Even without employ-
ing more advanced preconditioners, our method remains sta-
ble and successfully converges for viscosity contrasts up to
9 orders of magnitude, though at the cost of increased num-
ber of iterations. The physically motivated iteration strategy
enables one to control the stability of iterations through the
single CFL-like parameter (see Sect. 2.1.2).

https://doi.org/10.5194/gmd-15-5757-2022 Geosci. Model Dev., 15, 5757–5786, 2022



5774 L. Räss et al.: Accelerated pseudo-transient method

Figure 11. Parallel efficiency E as function of 1–8 Tesla
A100 SXM4, 1–8 Tesla V100 SXM2, and 1–2197 Tesla P100
Nvidia GPUs (P ). Weak-scaling benchmark for (a) the 3D nonlin-
ear diffusion solver and (b) the 3D visco-elastic Stokes flow solver
based on a 3D Julia implementation using ParallelStencil.jl and Im-
plicitGlobalGrid.jl.

In both shear-driven and gravity-driven problem setups,
the convergence is significantly slower than that of the
single-centred inclusion case. This slowdown could be ex-
plained by the complicated internal geometry involving non-
symmetrical inclusion placement featuring huge viscosity
contrasts which results in a stiff system.

7.5 Non-similar domain aspect ratio

In geoscientific models that resolve e.g. flow fields for ice
sheets and glaciers evolution, lithospheric deformation, or
atmospheric and oceanic circulation, there are usually or-
ders of magnitude differences between horizontal and verti-
cal scales. Such domain configurations feature a large aspect
ratio that may challenge the solvers because of the presence
of more orders-of-magnitude grid cells in the horizontal than
the vertical dimensions. Here we systematically investigate
the convergence of the 2D visco-elastic Stokes flow while
varying the aspect ratio defined as Lx/Ly from 1 to 8. We re-
peat the initial condition of the circular inclusion 1 to 8 times
in the x direction to investigate the sensitivity of the acceler-
ated PT solver on the domain aspect ratio. We proportionally
increase the number of grid cells in order to keep a constant
cell aspect ratio of 1. We report the normalised number of it-
erations to remain constant for all 5 investigated resolutions
when the aspect ratio equals 1 (Fig. 14). The number of nor-
malised iteration counts does not vary significantly while in-
creasing the aspect ratio, independently of the employed res-
olution. Note that we see a slight dependence of the optimal
iteration parameter Re on the aspect ratio.

8 Applications to nonlinear mechanical problems with
elasto-viscoplastic rheology

To demonstrate the versatility of the approach, we tackle the
nonlinear mechanical problem of strain localisation in 2D
and 3D. In the following applications we consider an E-VP
rheological model, thus the serial viscous damper is deac-
tivated and the flow includes effects of compressibility and
plastic dilatancy. We assume a small-strain approximation.
Hence, the deviatoric strain rate tensor may be decomposed
in an additive manner in Eq. (42). A similar decomposition is
assumed for the divergence of velocity in Eq. (43). The plas-
tic model is based on consistent elasto-viscoplasticity and the
yield function is defined as

F = τII−p sinφ− ccosφ− λ̇µvp, (46)

where τII is the second stress invariant, φ is the friction angle,
µvp is the viscoplastic viscosity and c is the cohesion. At the
trial state, F trial is evaluated assuming no plastic deformation
(λ̇= 0). Cohesion strain softening is applied and the rate of
c is expressed as

∂c

∂t
= λ̇h, (47)

where h is a hardening/softening modulus. Viscoplastic flow
is non-associated and the potential function is expressed as

Q= τII−p sinψ, (48)

where ψ is the dilatancy angle. If F ≥ 0, viscoplastic flow
takes place and the rate of the plastic multiplier is positive
and defined as

λ̇=
F trial

µve+µvp+K1t sinψ sinφ
. (49)

The initial model configuration assumes a random initial
cohesion field. Pure shear kinematics are imposed at the
boundaries of the domain (see Sect. 5.2). The reader is re-
ferred to Duretz et al. (2019a) for the complete set of material
parameters. We only slightly modify the value ofµvp with re-
spect to Duretz et al. (2019a), such that µvp

= 9×1018 Pas−1

in the present study.

8.1 Performance benefits for desktop-scale computing

Besides the potential to tackle nonlinear multi-physics prob-
lems at supercomputer-scale, the ability to solve smaller-
scale nonlinear problems remains an important aspect.
Here we investigate wall times for the simulation of the
previously-described E-VP shear-band formation in 2D
(Fig. 15). We compare a MATLAB-based direct-iterative
(DI) and a Julia GPU-based PT solver, respectively. The
M2Di MATLAB solver routines (Räss et al., 2017) rely on
a Newton linearisation of the nonlinear mechanical prob-
lem (Duretz et al., 2019a) and use a performant DI solver to
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Figure 12. Pure shear-driven flow. The left column reports the number of iterations for different values of viscosity ratio µ0
s /µ

inc
s and ratio

of numerical Reynolds number Re to the theoretically predicted value Reopt. Connected white dots indicate the value of Re at which the
minimal number of iterations is achieved. The right column depicts the distribution of pressure and velocity streamlines. Panels (a), (b)
and (c) correspond to problem configurations involving 1, 14 and 46 inclusions, respectively.

compute Newton steps. The solver combines outer Powell–
Hestenes and inner Krylov iterations (Global Conjugate
Residual) that are preconditioned with the Cholesky factori-
sation of the symmetrised Jacobian (Räss et al., 2017). In
the 2D PT solver, written in Julia using the ParallelSten-
cil.jl packages, the evaluation of nonlinearities is embedded
in the pseudo-time integration loop. The timings reported
for the DI and PT schemes were produced on a 2.9 GHz
Intel Core i5 processor and on a single Nvidia Tesla A100

GPU, respectively (Fig. 15a). Each simulation resolves 100
physical (implicit) time steps and we report the total accu-
mulated plastic strain (Fig. 15b) and the associated pressure
fields (Fig. 15c). Models were run on resolutions involving
622 to 5102 and up to 10222 grid cells for the DI and PT
scheme, respectively. As expected for 2D computations, re-
ported wall times are lower using the DI scheme at very low
resolutions of nx = 62. However, it is interesting to observe
that the GPU-accelerated PT scheme can deliver comparable
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Figure 13. Buoyancy-driven flow. The left column reports the number of iterations for different values of viscosity ratio µ0
s /µ

inc
s and ratio

of numerical Reynolds number Re to the theoretically predicted value Reopt. Connected white dots indicate the value of Re at which the
minimal number of iterations is achieved. The right column depicts the deviation of pressure from hydrostatic distribution and velocity
streamlines. Panels (a), (b) and (c) correspond to problem configurations involving 1, 14 and 46 inclusions, respectively.

wall times at already relatively low resolutions (nx ≈ 126).
For numerical resolution of nx = 510, the GPU-based PT
solver outperforms the DI solver by a factor ≈ 6 resulting in
a wall time of ≈ 20 minutes to resolve the 100 physical time
steps (see dashed lines on Fig. 15a). The employed CPU and
GPU can be considered as common devices on current scien-
tific desktop machines. We can thus conclude that the use of
the GPU-accelerated PT scheme is a viable and practical ap-
proach to solve nonlinear mechanical problems on a desktop-

scale computer. Moreover the proposed PT scheme has al-
ready turned out to be beneficial over common approaches
(DI schemes) at relatively low resolutions.

8.2 High-resolution 3D results

We present preliminary 3D results of the spontaneous devel-
opment of visco-plastic shear bands in pure shear deforma-
tion from an initial random cohesion field (Fig. 16). These 3D
results further demonstrate the versatility of the PT approach,
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Figure 14. Iteration count scaled by the number of time steps (nt )
and by the number of grid cells in the x direction (nx ) as a function
of increasing domain aspect ratios Lx/Ly for 5 different numerical
resolutions (a)–(e), respectively. The y-direction domain length is
kept constant while the x-direction domain length and number of
grid cells nx is increased up to 8 times. We use an identical 2D
configuration as in the main study with the only difference being
the nonlinear tolerance set here to tolnl = 10−6.

enabling the seamless port of the 2D E-VP algorithm to 3D,
extending recent work by Duretz et al. (2019a) to tackle
3D configurations. We generate the 3D initial condition, a
Gaussian random field with an exponential co-variance func-
tion, following the approach described in Räss et al. (2019b),
available through the ParallelRandomFields.jl Julia package
(Räss and Omlin, 2021). We perform 100 implicit loading
steps using the accelerated PT method and execute the paral-
lel Julia code relying on ParallelStencil.jl and ImplicitGlob-
alGrid.jl on 8 Tesla V100 on the Volta node. The scalability
of the 3D E-VP implementation is comparable to the 2D ver-

sion (Fig. 15a) with similar discrepancies as reported for the
visco-elastic Stokes case (Fig. 7).

Both the 2D and 3D E-VP algorithms require only mi-
nor modifications of the visco-elastic Stokes solver discussed
throughout this paper to account for brittle failure, deactiva-
tion of the serial viscous damper and viscoplastic regular-
isation without significantly affecting the convergence rate
provided by the second-order method. These results support
the robustness of the approach, predicting elasto-plastic de-
formation and capturing brittle failure categorised as a rather
“stiff” problem which challenges the numerical solvers ac-
cordingly.

9 Discussion

The continuous development of many-core devices, with
GPUs at the forefront, increasingly shapes the current and fu-
ture computing landscape. The fact that GPUs and the latest
multi-core CPUs turn classical workstations into personal su-
percomputers is exciting. Tackling previously impossible nu-
merical resolutions or multi-physics solutions becomes fea-
sible as a result of technical progress. However, the current
chip design challenges legacy serial and non-local or sparse
matrix-based algorithms, seeking solutions to partial differ-
ential equations. Naturally, solution strategies designed to
specifically target efficient large-scale computations on su-
percomputers perform most efficiently on GPUs and recent
multi-core CPUs, as the algorithms used are typically local
and minimise memory accesses. Moreover, efficient strate-
gies will not or only modestly rely on global communication
and as a result, exhibit close to optimal scaling.

We introduced the PT method in light of, mostly, itera-
tive type of methods such as dynamic relaxation and semi-
iterative algorithms (see, e.g. Saad, 2020, for additional de-
tails). These classical methods, as well as the presented ac-
celerated PT method, implement “temporal” damping by
considering higher-order derivatives with respect to pseudo-
time. This contrasts with multi-grid or multi-level methods,
building upon a “spatial” strategy based on space discreti-
sation properties to damp the low-frequency error modes.
Multi-grid, or multi-level methods are widely used to achieve
numerical solutions in analogous settings as described here
(Brandt, 1977; Zheng et al., 2013). Furthermore, multi-grid
methods may achieve convergence in O(nx) iterations by em-
ploying an optimal relaxation algorithm (Bakhvalov, 1966).

Besides their scalable design, most iterative methods are
challenged by configurations including heterogeneities and
large contrasts in material parameters, motivated by typi-
cal applications to a variety of geodynamics problems (e.g.
Baumgardner, 1985; Tackley, 1996; May et al., 2015; Kaus
et al., 2016). Well-tuned robust multi-grid solvers may over-
come these limitations at the cost of more complex imple-
mentations. Our systematic investigation results (Sect. 5.2)
suggest, however, that the PT method performs promisingly
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Figure 15. Performance comparison between the pseudo-transient (PT) and direct-iterative (DI) method resolving 2D shear-band formation
out of a random noise cohesion field. (a) Wall time in minutes as a function of numerical grid resolution in x direction (

√
ndof). The dashed

lines connect wall times for nx = 510 from both solvers. Panels (b) and (c) depict total accumulated plastic strain εpl
II and pressure [MPa],

respectively, from the 1022× 1022 resolution 2D PT-GPU simulation.

Figure 16. Total accumulated plastic strain εpl
II distribution for a multi-GPU replica of the 2D calculation (Fig. 15b) resolving 3D shear-band

formation out of a random noise cohesion field. The numerical resolution includes 378× 378× 192 grid cells. Panels depict elasto-plastic
shear-band formation after (a) 60 steps (corresponding 19.1 kyr and a strain of 0.03), (b) 80 steps (corresponding 25.4 kyr and a strain of
0.04) and (c) 100 steps (corresponding 31.6 kyr and a strain of 0.05).

well, and at no specific additional design efforts w.r.t. the ba-
sic accelerated PT method implementation. Beyond single-
phase mechanical considerations, the accelerated PT method
delivers accurate solutions in tightly coupled and nonlinear
multi-physics problems (e.g. Duretz et al., 2019b; Räss et al.,
2019a, 2020; Wang et al., 2021).

The ease of implementation is listed among the main ad-
vantages of the accelerated PT method over other more com-
plex ones, e.g. multi-grid. Particularly, all nonlinearities can
be relaxed within a unique iteration loop, as reported in the
nonlinear diffusion results (Sect. 7.1). Often, due to the prop-
erties of the problem, the number of iterations does not ex-
ceed or is even less than that in the case of constant coeffi-
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cients. Other methods, in which nonlinear iterations are per-
formed separately from the linear solver, cannot take advan-
tage of the details of the physical process to reduce itera-
tion counts. Also, for significantly nonlinear problems, e.g.
associated with plastic strain localisation, thermomechanical
shear-heating or two-phase fluid focusing, the physical pro-
cesses occur on multi-spatial scales. Thus, ensuring an ac-
curate description of these multi-scale solutions requires a
high-resolution computational grid. It may be challenging for
a coarse level multi-grid solver to provide sufficient informa-
tion in order to accurately resolve small-scale details that are
only resolvable on the fine grid. Note that for analogous rea-
sons, multi-grid methods are often used as a preconditioner
for other iterative algorithms rather than the solution method.

Besides seeking optimal convergence of the algorithm, the
implementation efficiency also favours the accelerated PT
method; the approach is simple but efficient, making it possi-
ble to further implement advanced optimisations such as ex-
plicit shared memory usage and register handling. The choice
of a Cartesian regular grid allows static and regular mem-
ory access patterns, resulting in access optimisation possibil-
ities and balanced interprocess communications. Addition-
ally, the absence of global reduction in the algorithm avoids
severe bottlenecks. Finally, the amount of data transferred in
the accelerated PT method is minimal, which allows achiev-
ing near-ideal scaling on distributed-memory systems, as re-
ported in Sect. 7.3.2. Previous studies (e.g. Räss et al., 2018;
Duretz et al., 2019b; Räss et al., 2019a, 2020) successfully
implemented most of the algorithm designs presented here,
although relying on a slightly different PT acceleration im-
plementation (see Appendix B).

The main task in the design of PT methods is the esti-
mation of optimal iteration parameters. For that, the spec-
tral radius of the finite-difference operator is often approxi-
mated based on the Gershgorin circle theorem (Papadrakakis,
1981). In this paper, we propose an alternative derivation of
the PT algorithm which is based entirely on a physical anal-
ogy. The analysis of the convergence rate can be carried out
within the framework of the spectral analysis of continuous
equations, rather than the finite-dimensional space discretisa-
tion. The advantage of this approach relies on the availabil-
ity of a physical interpretation of the iteration parameters, as
well as on a clear separation of physics and numerics. For ex-
ample, we show that for visco-elastic Stokes flow (Sect. 2.4),
the PT iteration parameters depend on the Reynolds num-
ber and the bulk-to-shear elastic modulus ratio. The stabil-
ity of the iterative process is ensured by a choice of pseudo-
physical material properties that is consistent with the condi-
tions obtained on the basis of a von Neumann stability anal-
ysis.

The determination of the optimal iterative parameters is
thereby reduced to the search for the optimal values of the di-
mensionless physical numbers that describe the properties of
the underlying physical process. The addition of new phys-
ical processes, such as heat conduction, two-phase flow and

chemical reactions will lead to the natural emergence of new
dimensionless parameters. Since many physical processes
have a similar or even identical mathematical description, it
is expected that the derivation of the accelerated PT method
for such processes can be carried out similarly to those al-
ready developed. In this paper, such a derivation is provided
for several important processes, namely, the linear and non-
linear diffusion, diffusion–reaction, non-stationary diffusion,
and the visco-elastic Stokes problem. The efficiency of the
accelerated PT method is demonstrated for essentially non-
linear problems, as well as for the problems with large con-
trasts in the material properties.

Recently, Wang et al. (2021) studied fluid flow in de-
formable porous media using an analogous numerical inte-
gration scheme. They show that under certain assumptions,
the equations governing the dynamics of such two-phase
flows reduce to a “double-damped wave equation” system
which is mathematically equivalent to the Eqs. (12) and (6)
describing the diffusion–reaction process (Sect. 2.1.3). They
also report the optimal parameters obtained by dispersion
analysis of these equations. These parameters are formulated
by Wang et al. (2021) in terms of dimensional physical pa-
rameters. Through appropriate rescaling it is possible to re-
cover the non-dimensional form presented in Sect. 2.1.3. We
believe that our derivation in terms of non-dimensional vari-
ables helps to reveal the analogy between seemingly different
physical properties and facilitates reusing the derived itera-
tion parameters for various applications. We provide analysis
for the variety of physical processes, including incompress-
ible Stokes flow, in a unified manner, filling some of the gaps
missing in previous studies.

The scalability of the accelerated PT method as a func-
tion of numerical resolution permits the prediction of the to-
tal iteration count, here for the nonlinear diffusion and the
visco-elastic Stokes in 3D. The weak-scaling benchmark re-
sults provide the time per iteration as a function of the nu-
merical resolution. Combining this information, it is possible
to predict the time-to-solution or wall time (Table 2) needed
to resolve nonlinear diffusion and visco-elastic Stokes flow
on 66323 and 49553 grid cells, respectively, on 2197 Nvidia
Tesla P100 GPUs on the Piz Daint supercomputer at CSCS.
Single-GPU problem size scaling results for different GPU
architectures further permit the extrapolation of these wall
times to the Nvidia Ampere or Volta architecture for exam-
ple, as time per iteration is directly proportional to the ef-
fective memory throughput Teff. There is a 3.0× and 1.5×
increase in Teff on the A100 and V100 compared to the P100
architecture, respectively, resulting in wall time in the order
of 2.5 min and 2.4 h on a A100 powered system and of 5 min
and 4.8 h on a V100 powered system, for the nonlinear diffu-
sion and the visco-elastic Stokes solver, respectively.

In practical applications, the patterns of the flow may
change drastically throughout the simulation owing to the
spontaneous flow localisation or evolution of the interface
between immiscible phases with significantly different prop-
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Table 2. Wall-time prognostic for resolving the nonlinear diffusion and the visco-elastic Stokes 3D Julia multi-GPU applications on 2197
(133) Nvidia Tesla P100 GPUs on the Piz Daint supercomputer at CSCS.

Application GPU nx local nx global ntot
dof t/iter (s) ntot

iter wall time

Nonlinear diffusion 3D Tesla P100 512 6632 0.292× 1012 0.0348 12’932 7.5 min
Visco-elastic Stokes 3D Tesla P100 383 4955 1.23× 1012 0.0644 408’788 7.31 h

erties. It is a requirement for the numerical method to be ro-
bust with respect to such changes. The iterative algorithm is
expected to converge even in extreme cases, e.g. in the pres-
ence of sharp gradients across material properties, and the it-
eration parameters should be insensitive to arbitrary changes
in the internal geometry. We present a parametric study to as-
sess the robustness of the accelerated PT method for typical
building blocks for geophysical applications. We considered
shear- and buoyancy-driven flows with multiple randomly
distributed inclusions in a viscous matrix as proxies for more
realistic problem formulations. We show that our method is
capable of modelling flows with viscosity contrasts up to 9
orders of magnitude. The values of optimal iteration param-
eters obtained by the means of systematic simulation runs do
not change significantly for a wide range of material proper-
ties and internal configurations of the computational domain.
We observe the significant slowdown in convergence for vis-
cosity contrasts larger than 5 orders of magnitude in some of
the considered cases. These results are expected, given the
ill-conditioned problem and thus motivate development of a
scalable preconditioner suitable for massively parallel GPU
workloads. The application of a robust preconditioner, with
reference to previous discussions, may help to partly allevi-
ate slow convergence. However, for viscosity contrasts of 6
orders of magnitude and more, a significant increase in the
number of iterations may be legitimate (May et al., 2015).

The numerical application to resolve shear-banding in
elasto-viscoplastic media in 3D supports the versatility and
the robustness of the presented approach putting emphasis
on successfully handling complex rheology. These examples
complement recent studies employing the accelerated PT
method to resolve spontaneous localisation owing to multi-
physics coupling (Räss et al., 2018, 2019a, 2020; Duretz
et al., 2019b) and entire adjoint-based inversion frameworks
(Reuber et al., 2020). The Sect. B of the Appendix provides
connections of the presented analysis with previous work.

10 Conclusions

The current HPC landscape redefines the rules governing
applications’ performance where the multi-core processors’
massive parallelism imposes a memory-bound situation. Our
work shows that simple dynamic relaxation schemes can
be employed efficiently to solve parabolic and nonlinear
systems, upon transforming the equations into hyperbolic

expressions. The transformation includes the addition of
physics-inspired terms which enable the possibility to re-
trieve optimal parameters that minimise the iteration counts.
The optimisation procedure includes von Neumann stabil-
ity and dispersion analysis for the pseudo-physical param-
eters. Moreover, the conciseness of the accelerated PT ap-
proach permits the applications to execute at effective mem-
ory throughput rate the approaching memory copy rates (a
theoretical upper bound) of latest GPUs. Further, hiding com-
munication behind computations permits the achievement of
parallel efficiency of more than 96 % on various distributed-
memory systems and up to 2197 GPUs. The physics we se-
lected for the numerical experiments represent key building
blocks to further tackle various multi-physics coupling, usu-
ally the combination of mechanical and diffusive processes.
Our systematic results on the multi-inclusion setup with huge
viscosity contrasts provide some preliminary results assess-
ing the robustness of the accelerated PT method, which we
further employ to resolve shear-band formation in 3D as a re-
sult of plastic yielding in E-VP materials. Our study paves the
way for resolving coupled and nonlinear multi-physics ap-
plications in natural sciences and engineering on extremely
high resolutions on the next generation of exascale-capable
supercomputers, revamping elegant iterative techniques and
implementing them with the portable Julia language.

Appendix A: Dispersion analysis

A1 First-order pseudo-transient (PT) diffusion

Let the total pseudo-time required to reach convergence be
τtot. To estimate τtot and the number of iterations in the nu-
merical implementation of the method, we consider the devi-
ation ε of H from the exact solution to Eq. (4). Linearity of
the problem makes it possible to reformulate Eq. (5) in terms
of ε:

∂ε

∂τ
= ν

∂2ε

∂x2 , (A1)

where ν =D/ρ̃. Equation (A1) is subject to homogeneous
boundary conditions: ε(0,τ )= ε(L,τ)= 0.

We study the convergence rate of the PT method by per-
forming the dispersion analysis of Eq. (A1). The general so-
lution to the Eq. (A1) with homogeneous Dirichlet boundary
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conditions has the following form:

ε(x,τ )=

∞∑
k=1

Ek exp
(
−λkVdτ

L

)
sin
(
πkx

L

)
, (A2)

where Vd = ν/L is the characteristic velocity scale of diffu-
sion, k is the wavenumber,Ek and λk are the initial amplitude
and the decay rate of the wave with wavenumber k, respec-
tively. Only values of k ≥ 1 are accounted for in Eq. (A2),
because for other values of k, homogeneous boundary condi-
tions are not satisfied.

We are interested in the exponential decay rate values λk ,
because they indicate the total time it takes for the error com-
ponent with wavelength πk to vanish. It is sufficient to con-
sider only one typical term from the solution Eq. (A2):

εk(x,τ )= Ek exp
(
−λkVdτ

L

)
sin
(
πkx

L

)
. (A3)

Substituting Eq. (A3) into Eq. (A1) gives

λk = π
2k2. (A4)

The dispersion relation Eq. (A4) indicates that the harmon-
ics with higher wavenumbers decay faster than the ones with
smaller wavenumbers. Therefore, the total time τtot to con-
vergence is controlled by the component of ε with the small-
est wavenumber k = 1. If the required non-dimensional accu-
racy, i.e. upper bound on ε, is εtol, then τtot can be obtained
by solving Eq. (A3) for τ at k = 1 and x = L/2:

τtot =
L2

π2ν
ln
(
E1

εtol

)
. (A5)

The stability analysis of Eq. (5) in discretised form sug-
gests that the maximal time step 1τ allowed by the explicit
integration scheme is proportional to the grid spacing 1x
squared: 1τ =1x2/ν/2. If the computational grid is uni-
form, as it is the case in this paper, L= nx1x, where nx is
the number of grid cells. Assuming τtot = nit1τ , where nit
is the number of PT iterations required for convergence, and
substituting expressions for L and τtot into the Eq. (A5), we
obtain

nit = 2
n2
x

π2 ln
(
E1

εtol

)
. (A6)

Thus, the number of pseudo-time iterations required for con-
vergence must be proportional to n2

x .

A2 Accelerated PT diffusion

Similar to the previous case, we reformulate the problem in
terms of deviation from the exact solution and consider the
typical term from the Fourier series expansion:

εk(x,τ )= Ek exp
(
−λkVpτ

L

)
sin
(
πkx

L

)
. (A7)

Substituting Eq. (A7) into Eq. (7) gives the following disper-
sion relation:

λ2
k −Reλk +π

2k2
= 0, (A8)

where Re = LVp/ν =
√
L2/ν/θr. The non-dimensional pa-

rameter Re can be interpreted as a numerical Reynolds num-
ber, or as the inverse of a numerical Deborah number’s square
root, characterising the ratio between relaxation time θr and
characteristic time of diffusion L2/ν.

Solving the Eq. (A8) for λk yields

λk1,2 =
Re±

√
Re2− 4π2k2

2
. (A9)

Depending on values of Re and k, λk can be complex. The
imaginary part of λk , =(λk), contributes to the oscillatory
behaviour of the solution, while the real part <(λk) con-
trols the exponential decay of deviation ε. The minimum of
<(λk) between the two roots of Eq. (A9) indicates the decay
rate of the entire solution. This minimum reaches maximal
value when both roots of Eq. (A9) are equal, i.e. when the
discriminant of Eq. (A9) D = Re2

− 4π2k2
= 0. Therefore,

Re =±2πk, but negative Re leads to exponential growth of
the exp(−λkVpt/L) term in the solution Eq. (A7), which is
non-physical. Finally, since choosing iteration parameters for
each wavelength independently is not realistic, we chose Re
such that the longest wave with wavenumber k = 0 is damped
most effectively. The optimal value of Re is then given by

Reopt = 2π. (A10)

Total pseudo-time τtot required for convergence with tol-
erance εtot is determined in the same way as in the previous
case:

τtot =
L

πVp
ln
(
E1

εtol

)
. (A11)

The stability analysis of the damped wave equation in dis-
cretised form suggests that in a certain range of values of
θr, the maximal time step1τ =1x/Vp (Alkhimenkov et al.,
2021a). The number of pseudo-time iterations required for
convergence nit can then be estimated as

nit =
nx

π
ln
(
E1

εtol

)
, (A12)

and proportional to nx in the accelerated scheme.

A3 Diffusion–reaction

Reformulating Eq. (13) in terms of the difference ε between
the exact steady-state solution and the PT solution and sub-
stituting it into Eq. (A7), one obtains the following dispersion
relation:

λ2
k −

(
Da

Re
+Re

)
λk +Da+π

2k2
= 0. (A13)
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Introducing the auxiliary parameter R̂e =Da/Re+Re, it
can be seen that the dispersion relation in Eq. (A13) is now
similar to the one reported in Eq. (A8). The solution for λk is
now given by

λk1,2 =
R̂e±

√
R̂e

2
− 4π2k2− 4Da

2
. (A14)

The resulting optimal value is R̂e = 2
√
π2+Da, and the op-

timal value for Re is obtained by solving R̂e(Re) for Re:

Reopt = π +
√
π2+Da. (A15)

As expected, in the limit of Da→ 0, i.e. when the process
becomes diffusion-dominated, the optimal value of the pa-
rameter Re, determined by Eq. (A15), coincides with the
value given by Eq. (A10) in the case of a purely diffusive
process.

The number of iterations required to converge to a toler-
ance εtol is

nit =
nx

√
π2+Da

ln
(
E1

εtol

)
. (A16)

Interestingly, the iteration count estimate given by Eq. (A16)
decreases proportionally to

√
Da. Therefore, the number of

iterations for a diffusion–reaction process will always be
lower than for a pure diffusion process if Da > 0.

A4 Incompressible viscous Stokes

The system of Eqs. (25)–(27) can be reduced to a single equa-
tion for velocity vx :

µs
ρ̃

G̃

∂3vx

∂τ 3 −µs

(
K̃

G̃
+ 2

)
∂3vx

∂τ∂x2 + ρ̃
∂2vx

∂τ 2

= K̃
∂2vx

∂x2 . (A17)

Following the established procedure, we reformulate
Eq. (A17) in terms of deviation ε from the exact solution,
and consider typical terms in the Fourier series expansion of
ε:

εk(x,τ )= Ek exp
(
−λkVpτ

L

)
sin
(
πkx

L

)
. (A18)

Substituting Eq. (A18) into Eq. (A17), we obtain the fol-
lowing dispersion relation:

λ3
k −Reλ

2
k +π

2k2(r + 1)λk −π2k2rRe = 0. (A19)

Depending on the values of the coefficients, the dispersion
relation in Eq. (A19) would have either one real root and two
complex conjugate roots or three real roots.

For analysis, it is useful to recast the dispersion relation in
Eq. (A19) to depressed form x3

+px+ q applying a change
of variables αk = λk −Re/(3(r + 2)):

α3
k +

[
π2k2

−
Re2

3(r + 2)2

]
αk+

2Re
9(r + 2)

[
π2k2

(
1+

1− 4r
r + 2

)
−

Re2

3(r + 2)2

]
= 0. (A20)

The discriminant of the depressed cubic equation is x3
+

px+q is−4p3
−27q2. Setting the discriminant of Eq. (A20)

to zero yields

rRe4
− (1− 2r2

+ 10r)(r + 2)π2k2Re2

+ (r + 2)5π4k4
= 0. (A21)

Equation (A21) is biquadratic w.r.t. Re. We denote the dis-
criminant of Eq. (A21) by D. For Re to be real, D must be
non-negative:

D = π4k4(r + 2)2(1− 4r)3 ≥ 0⇐⇒ r ≤
1
4
. (A22)

By definition, r is the ratio between the bulk and shear mod-
ulus, therefore, r must be positive. Thus, r ∈ (0;1/4].

By solving Eq. (A21), we obtain the relation between Re
and r:

Re1,2 =

√√√√ (r + 2)
(

1− 2r2
+ 10r ±

√
(1− 4r)3

)
2r

πk. (A23)

Only the positive branch of the solution is taken in Eq. (A23)
because Re must be positive.

When the depressed cubic equation x3
+px+ q has mul-

tiple roots, the simple root is x1 = 3q/p, and the double root
is x2 = x3 =−3q/(2p). Substituting expressions for q and
p from the dispersion relation in Eq. (A20), and changing
variables back to λk from αk , one obtains:

λk1 =
Re

r + 2

(
1+

2(r + 2)(1− 4r)π2k2

3(r + 2)2π2k2−Re2

)
, (A24)

λk2,3 =−Re
(1− 4r)π2k2

3(r + 2)2π2k2−Re2 . (A25)

Substituting Eq. (A23) into Eq. (A24), one obtains roots of
the dispersion relation in Eq. (A19) as a function of parame-
ter r . The roots depend monotonously on r for all choices
of Re (Fig. A1). The minimal root reaches its maximum
value at ropt = 1/4. The corresponding value of Re is then
Reopt = 9

√
3π/4 for k = 1.

Appendix B: Connection to the previous work

It is useful to provide an analogy between the presented
analysis and some previous studies, namely, PT continua-
tion model by Räss et al. (2018, 2019a, 2020); Duretz et al.
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Figure A1. Roots of the dispersion relation λk for two branches of
the numerical parameter Re. Solid and dashed lines show maximal
and minimal roots, respectively.

(2019b), and early work by Frankel (1950). For this com-
parison, we consider only a stationary diffusion process with
D = const.

We reformulate the damped wave equation, Eq. (7), as a
first-order system introducing R, the pseudo-time derivative
of H :

∂H

∂τ
= R, (B1)

θr
∂R

∂τ
+R =

1
ρ̃
∇kD∇kH. (B2)

In all mentioned studies the numerical discretisation of
Eqs. (B1) and (B2) were considered. Let f k be the finite-
difference operator approximating the right-hand side of
Eq. (B2) at time step k. Using a forward Euler scheme for
the time integration, one obtains

H k
i −H

k−1
i

1τ
= Rki , (B3)

θr
Rki −R

k−1
i

1τ
+Rk−1

i = f k. (B4)

Let gki = θrR
k
i /1τ . Rearranging Eqs. (B3) and (B4) to for-

mulate the update-rules for H k
i and gki :

H k
i =H

k−1
i +

1τ 2

θr
gki , (B5)

gki = f
k
i +

(
1−

1τ

θr

)
gk−1
i , (B6)

and using the definitions of θr and 1τ reported by Eqs. (10)
and (8):

1τ

θr
= C̃

ReL

1x
= C̃

Re

nx
, (B7)

it is evident that, if combined, Eqs. (B5), (B6) and (B7)
are equivalent to the formulation of PT continuation method
presented in Räss et al. (2018). Substituting Eq. (B6) into

Eq. (B5) and expressing gk−1
i in terms of H k−1

i and H k−2
i

yields

H k
i =H

k−1
i +

1τ 2

θr
f k+

(
1−

1τ

θr

)(
H k−1
i −H k−2

i

)
, (B8)

which is equivalent to the second-order Richardson method
proposed in Frankel (1950).
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