

40Ar-39 Ar dating, whole-rock and Sr-Nd isotope geochemistry of the Middle Eocene calc-alkaline volcanic rocks in the Bayburt area, Eastern Pontides (NE Turkey): Implications for magma evolution in an extension-related setting

Abdullah Kaygusuz, Cem Yücel, Emre Aydınçakır, Mehmet Ali Gücer, Gilles

Ruffet

▶ To cite this version:

Abdullah Kaygusuz, Cem Yücel, Emre Aydınçakır, Mehmet Ali Gücer, Gilles Ruffet. 40Ar–39 Ar dating, whole-rock and Sr-Nd isotope geochemistry of the Middle Eocene calc-alkaline volcanic rocks in the Bayburt area, Eastern Pontides (NE Turkey): Implications for magma evolution in an extension-related setting. Mineralogy and Petrology, 2022, 116, pp.379-399. 10.1007/s00710-022-00788-w . insu-03752052

HAL Id: insu-03752052 https://insu.hal.science/insu-03752052v1

Submitted on 6 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	⁴⁰ Ar– ³⁹ Ar dating, v	vhole-rock and Sr-Nd isotope geochemistry of
2	the Middle Eocene	calc-alkaline volcanic rocks in the Bayburt
3	area, Eastern Pont	ides (NE Turkey): Implications for magma
4	evolution in an exte	ension-related setting
5		
6	Abdullah Kaygusuz ¹ • C	em Yücel ² • Emre Aydınçakır ¹ • Mehmet Ali Gücer ¹ • Gilles
7	Ruffet ^{3, 4}	
8		
9	🖂 🛛 Abdullah Kaygusuz	2
10	abdullah.kaygusuz(agmail.com
11		
12	¹ Gümüşhane Univer	sity, Department of Geological Engineering, TR-29000
13	Gümüşhane, Turke	y
14	² Gümüşhane Univer	sity, Department of Mining Engineering, TR-29000 Gümüşhane,
15	Turkey	
16	³ CNRS (CNRS/INS	U) UMR6118, Géosciences Rennes, Université de Rennes1, F-
17	35042 Rennes Cede	ex, France
18	⁴ Université de Renn	es1, Géosciences Rennes, F-35042 Rennes Cedex, France
19		
20	Abstract	
21	Discussions continue abou	t whether Middle Eocene magmatism in the Eastern Pontides is
22	associated with collision of	subduction. This paper presents new whole-rock geochemistry,
23	Sr-Nd isotopic and ⁴⁰ Ar- ³⁹ .	Ar age data for Middle Eocene volcanic rocks from the Bayburt
24	area of the Eastern Pontide	s (NE Turkey) to investigate their sources and evolutionary history.

25	The new ${}^{40}\text{Ar}-{}^{39}\text{Ar}$ ages reveal that these volcanic rocks erupted between 44.6 ± 0.1 Ma and
26	43.5 ± 0.1 Ma, within the Lutetian (Middle Eocene). The studied volcanic rocks are composed
27	of basalt, andesite, basaltic andesite and minor dacite lava and pyroclastic rocks. These rocks
28	consist of plagioclase, amphibole, pyroxene, olivine, biotite, sanidine and minor quartz
29	phenocrysts with Fe-Ti oxides. They have microlithic, hyalo-microlithic, porphyritic and
30	rarely glomeroporphyritic textures. The volcanic rocks have low to high-K calc-alkaline
31	affinities. They display enrichment in large-ion lithophile elements and depletion in high-field
32	strength elements with high Th/Yb ratios, which indicate that the magmas forming the
33	volcanic rocks were derived from lithospheric mantle sources enriched by mostly slab-derived
34	fluids in the spinel stability field. 87 Sr/ 86 Sr _(i) values vary between 0.70485 and 0.70551 and
35	$^{143}\text{Nd}/^{144}\text{Nd}_{(i)}$ values vary between 0.51255 and 0.51267. These data correspond to the mantle
36	array on the isotope ratio diagram. The main solidification processes consist of fractional
37	crystallization with minor assimilation. In light of the data obtained in this study together with
38	data from previous studies, petrogenetic character of the Middle Eocene magmas from the
39	southern parts of the Eastern Pontides may be explained by melting of an enriched
40	lithospheric mantle source initially metasomatized by subduction fluids in a post-collisional
41	extensional-related tectonic setting.
42	
43	Keywords: ⁴⁰ Ar/ ³⁹ Ar geochronology • Post-collisional volcanism • Sr-Nd isotopes • NE

47 Introduction

Turkey • Eastern Pontides

In orogenic belts, extensional tectonics usually develop during the post-orogenic phase after the completion of continent-continent collision. This occurs due to a combination of factors including the readjustment of the thickened lithosphere, lithospheric thinning by mantle convection, lithospheric collapse, slab break-off or detachment (Davies and von Blanckenburg 1995; Platt and England 1994; Ruppel 1995). The delamination of the mafic lower crust is usually associated with regions undergoing extension, showing thinning of the continental crust (Wang et al., 2008; Zhai et al., 2007).

56 The Eastern Pontides (NE Turkey, Fig. 1a), or the Eastern Sakarya Zone (ESZ), is a 57 key area for understanding the geodynamic processes during the transition from pre- to post-58 orogenic stages and the temporal evolution of of compositions of syn- to post-collisional 59 magmas. In the ESZ, the subduction and collision-related magmatic processes formed various 60 types of igneous rocks. The subduction of the Neo-Tethyan Ocean beneath the Eurasian plate 61 resulted in the development of the Pontide magmatic arc during the closure of the northern 62 branch of the Neo-Tethyan, leading to the eventual collision of the Pontides and the 63 Anatolide-Tauride block (ATB) in Late Palaeocene-Early Eocene (Yılmaz et al., 1997; 64 Şengör and Yılmaz, 1981; Okay and Şahintürk 1997). The Middle Eocene volcanic activity in 65 this region is related to a post-collisional geodynamic setting (Adamia et al., 1977; Kazmin et 66 al., 1986; Şengör and Yılmaz, 1981; Robinson et al., 1995; Arslan et al., 1997; Okay and 67 Sahintürk 1997; Altherr et al., 2008; Kaygusuz et al., 2011; Aydınçakır, 2014; Temizel et al., 2012). 68

The volcanism in the ESZ continued during Mesozoic and Cenozoic (Aydın et al.,
2008; Eyuboğlu et al., 2011; Karslı et al., 2011; Dokuz et al., 2013; Arslan et al., 2013;
Özdamar, 2016; Yücel et al., 2017). The Cenozoic volcanism is characterized by four
magmatic cycles developed during the (1) Early Eocene, (2) Middle Eocene, (3) Late Eocene
to Oligocene, and (4) Miocene to Pliocene (Topuz et al., 2005; Aydın et al., 2008; Karslı et

74 al., 2020; Temizel et al., 2012; Dokuz et al., 2013; Eyuboğlu et al., 2013a; Arslan et al., 2013; 75 Aydıncakır and Sen, 2013; Aslan et al., 2014; Kaygusuz et al., 2011, 2019; Yücel et al., 76 2014). Volcanic rocks formed during the second cycle cover extensive areas within the ESZ, 77 whereas rocks from the other three cycles are more localised (Fig. 1b). The third cycle associated 78 with an extensional setting accompanied by the growth of extensional basins due to far-field 79 extensional forces (Karslı et al., 2020), whereas the fourth cycle occurred in an extensional 80 tectonic setting, combined with strike-slip movement at regional scale related to ongoing 81 delamination (Yücel et al., 2017).

The second cycle magmatism in the ESZ developed during a compressional regime contemporaneous with the extensional regime associated with the opening of the Black Sea basin (Robinson et al., 1995; Okay et al., 1994; Ustaömer and Robertson, 1997; Görür and Tüysüz, 1997). However, the style and timing of Black Sea basin opening remain controversial (Shillington et al., 2008).

87 The detailed understanding of the evolution of the ESZ remains poorly constrained 88 due to the scarcity of systematic geochronological, geochemical and isotopic data. In the 89 southern zone of the ESZ, the geochemical, geochronological and isotopic properties of the 90 Middle Eocene volcanic rocks (the second cycle) were studied around Torul-Gümüşhane 91 (Kaygusuz et al., 2011), Gümüşhane (Aslan, 2010; Aslan et al., 2014) and Gümüşhane-92 Bayburt (Arslan et al., 2013). These rocks consist of mafic to felsic lava flows, dykes and 93 associated pyroclastic deposits. They have clear subduction-related chemical signatures. The 94 Bayburt area of the southern subzone within the ESZ is much less studied, with only general 95 geology (Keskin et al., 1989), mineralogy and petrography (Kaygusuz et al., 2019), and whole-rock geochemistry (Eyuboğlu et al., 2017) described in the literature. 96 In this paper we present new ⁴⁰Ar-³⁹Ar dating, Sr-Nd isotope, and whole-rock 97

98 geochemical data from the Middle Eocene volcanic rocks (the second cycle) in the Bayburt

100 alkaline volcanism. 101 102 **Geological background** 103 104 **Regional and local geology** 105 106 107 The Pontides, which are one of the five main tectonic units forming the Anatolian Plate, are 108 bounded by the Black Sea and the Istanbul zone to the north, and by the east-west trending 109 İzmir-Ankara-Erzincan suture zone (IAES) to the south (Okay and Tüysüz, 1999) (Fig. 1a). 110 The Pontide belt consists of three subunits: the eastern, central and western Pontides (Ketin 111 and Canitez, 1972). The Eastern Pontides, also called the Eastern Sakarya Zone (ESZ), is part 112 of the Sakarya Zone situated in the north of Turkey that extends from the Biga Peninsula to 113 Lesser Caucasus. The ESZ is lithologically divided into two sub-zones; the northern subzone 114 and the southern subzone (Özsayar et al., 1981). Most studies agree that the ESZ is a well-115 preserved continental magmatic arc. Magmatism in the ESZ covers a span from 116 Carboniferous to the present. 117 The pre-Late Cretaceous rock units in the ESZ are represented by Early Carboniferous 118 metamorphic rocks (Topuz et al., 2007), Middle to Late Carboniferous plutonic rocks 119 (Kaygusuz et al., 2012, 2016; Dokuz., 2011; Topuz et al., 2010; Karslı et al., 2016), Late 120 Carboniferous to Permian sedimentary rocks, Middle to Late Triassic plutonic rocks (Dokuz 121 et al., 2010), Jurassic volcanic, volcaniclastic and plutonic rocks (Kandemir and Yılmaz, 122 2009; Saydam Eker et al., 2012; Dokuz et al., 2017; Aydınçakır et al., 2020) and Late Jurassic 123 to Early Cretaceous carbonates (Pelin, 1977). All these rocks are conformably overlain by

area of the ESZ (Figs. 1b and c). The results will be used to constrain the genesis of calc-

99

124	Late Cretaceous volcanic rocks (Özdamar, 2016; Eyuboğlu, 2010; Aydın, 2014), and crosscut
125	by plutonic rocks of late Cretaceous age (Şipahi et al., 2018; Karslı et al., 2010; Temizel et
126	al., 2019; Kaygusuz et al., 2021). The Cenozoic rocks are represented by the first cycle
127	adakitic rocks (Karslı et al., 2011; Topuz et al., 2005; Dokuz et al., 2013), the second cycle
128	volcanic-subvolcanic (Aslan et al., 2014; Eyuboğlu et al., 2013b; Arslan et al., 2013;
129	Aydınçakır, 2014; Yücel et al., 2017; Kaygusuz et al., 2011, 2019; Aydınçakır et al., 2022)
130	and plutonic rocks (Karslı et al., 2007; Boztuğ et al., 2004; Özdamar et al., 2017; Eyuboğlu et
131	al., 2017; Kaygusuz and Öztürk, 2015; Kaygusuz et al., 2018, 2020, 2021; Temizel et al.,
132	2018, 2020; Vural and Kaygusuz, 2021), the third cycle volcanic rocks (Aydın et al., 2008;
133	Arslan et al., 2013; Karslı et al., 2020) and the fourth cycle volcanic-subvolcanic and adakitic
134	rocks (Temizel et al., 2012; Aydın et al., 2008; Dokuz et al., 2013; Yücel et al., 2017).
135	Quaternary units comprise alluvium and terraces.
136	The study area is situated in the southern part of the ESZ (Fig. 1). The oldest rocks in
137	the study area are represented by Late Cretaceous volcanic and volcaniclastic rocks, which are
138	mainly composed of andesite, basalt and pyroclastic rocks (Fig. 2). The Early Eocene
139	sedimentary rocks representing the first cycle lie conformably on this unit and consist mainly
140	of nummulite-bearing limestones, sandstone, marl and sandy limestone. The Middle Eocene
141	volcanic-volcaniclastic rocks, which represent the first cycle, conformably overlie these Early
142	Eocene sedimentary units (Figs. 3a and b) and consist of basalt, andesite and minor dacite
143	lavas and their pyroclastic equivalents, intercalated with siltstone, sandstone, marl and
144	limestone. All these units were intruded by the second cycle plutonic rocks (43 to 45 Ma;
145	Kaygusuz et al., 2020). Quaternary alluvium forms the youngest rocks in the study area.
146	
147	Volcanic sequence

The Bayburt volcanic sequences extend in an east-west direction from Bayburt to Gümüşhane areas in the southern part of the ESZ (Figs. 1b and 2). This sequence cover an area of 200 km² in the study area and contain limestones interbedded with sandstone and siltstone at the base and pass upward into volcaniclastic rocks (tuff and agglomerate), lava flows and dykes. Sedimentary and volcaniclastic rocks are widespread at the base, they become rarer upwards and are replaced by lava flows.

155 The studied second cycle volcanic rocks consist of basalt, basaltic andesite, andesite 156 and minor dacite. Basalt and basaltic andesites are the dominant lithologies within the 157 sequence. Basalt contains subhedral to euhedral olivine, pyroxene and plagioclase 158 phenocrysts. Basaltic andesites have subhedral to euhedral plagioclase, pyroxene and amphibole phenocrysts. Andesitic rocks are characterized by the presence of subhedral to 159 160 euhedral plagioclase, pyroxene and amphibole phenocrysts. Dacitic rocks comprise a minor 161 part of the sequence, and have large quartz phenocrystals. Dacites also contain subhedral to 162 euhedral plagioclase, amphibole and biotite phenocrysts.

163 The pyroclastic deposits are mainly composed of basaltic/andesitic breccias succeeded 164 by medium- to thick-bedded tuffs. Angular breccia gravels, 5 to 40 cm in diameter, are 165 cemented by a fine-grained, altered volcanic matrix. Basaltic, andesitic and minor dacitic tuffs 166 and tuffites have less volume than the other members in the sequence. Their cavities are filled 167 with secondary calcite, epidote and quartz minerals. In places where the unit is altered, 168 exfoliation structures are observed. The total thickness of the studied volcanic sequence in the 169 study area is more than 1300 m.

170 Basaltic lavas, which form the oldest lava in the succession, yield an ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age of 171 44.6 ± 0.1 Ma (this study, Table 1). They are overlain by basaltic andesitic lava flows with an 172 ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age of 44.0 ± 0.1 Ma (this study, Table 1). Andesitic lava flows crop out above

173these rocks. Dacitic lavas, which are the youngest lava in the succession, conformably overlie174these rocks and yield an 40 Ar/ 39 Ar age of 43.5 ± 0.1 Ma (this study, Table 1).

175

176

177 Material and methods

178

179 Rock samples were crushed in steel crushers and ground in an agate mill to a grain size of less 180 than 200 mesh. Major elements were analyzed by inductively coupled plasma-emission 181 spectrometry (ICP-ES) from pulps after 0.2 g samples of rock powder were fused with 1.5 g LiBO₂ and then dissolved in 100 ml 5% HNO₃. Trace and rare earth elements were 182 183 determined by inductively coupled plasma-mass spectrometry (ICP-MS) from pulps after 0.2 184 g samples of rock powder were dissolved by four acid digestions. Sample solutions were 185 aspirated into an ICP mass spectrometer (Perkin-Elmer Elan 6000) or an ICP emission 186 spectrometer (Jarrel Ash Atomcomp Model 975) for element analyses. Loss on ignition (LOI) 187 was determined according to the weight difference at 1000°C. Analytical precision, as 188 calculated from replicate analyses, lies in the ranges of 0.01-0.04 wt% for the major elements 189 and 0.01–8.0 ppm for trace elements including rare earth elements (REEs).

190 Three single groundmass fragments from the studied volcanic rocks were analysed by the continuous laser probe (CO₂ Synrad) stepwise heating ³⁹Ar-⁴⁰Ar technique. The samples 191 192 were wrapped in Al foil to form small packets (11 mm \times 11 mm) that were stacked up to form 193 columns within which packets of fluence monitors were inserted every 10 samples. Irradiation 194 was performed at the McMaster reactor (Hamilton, Canada) and used ⁵C high flux location without Cd-shielding. It lasted 13.42 h (J/h $\approx 3.71 \times 10^{-4}$ h⁻¹). The irradiation reference was 195 196 sanidine TCRs (28.608 ± 0.033 Ma; according to Renne et al., 1998, 2010 and 2011). The 197 sample arrangement in the irradiation allowed us to monitor the flux gradient with a precision

198 of ± 0.2 %. Heating steps were performed with a CO₂ laser probe. All experiments concerned single grains. The experimental procedure was described by Ruffet et al. (1991, 1995). The 199 200 five argon isotopes and the background baselines were measured in 11 cycles, in peak-201 jumping mode. Blanks were performed routinely every first or third/fourth run and subtracted 202 from subsequent sample gas fractions. All isotopic measurements are corrected for K, Ca and 203 Cl isotopic interferences, mass discrimination and atmospheric argon contamination. 204 Apparent age errors are plotted at the 2σ level and do not include the errors on the 40 Ar*/ 39 Ar_K ratio and age of the monitor and decay constant. The errors on the 40 Ar*/ 39 Ar_K 205 206 ratio and age of the monitor and decay constant are included in the final calculation of the 207 (pseudo-) plateau age error margins or for apparent ages individually cited. The analyses were 208 performed on a Map215 mass spectrometer.

209 Sr and Nd isotopes from the studied volcanic rocks were conducted using thermal 210 ionisation mass spectrometry (TIMS) on a Finnigan MAT-262 mass spectrometer. For Sr and 211 Nd isotope analyses, approximately 50 mg of whole-rock powder was first dissolved in 52% 212 HF for four days at 140 °C on a hot plate, then dried, dissolved in 6 N HCl, dried again and 213 finally dissolved in 2.5 N HCl. Sr and Nd were separated using conventional ion exchange 214 techniques. Isotopic compositions were measured on a double Re filament configuration. Total blanks were Sr-Nd-Sm < 0.05 ng; uncertainties were 2% for 87 Rb/ 86 Sr ratio and 0.2% 215 for 147 Sm/ 144 Nd ratio. Sr and Nd isotope ratios were normalized to NBS987 (87 Sr/ 86 Sr = 216 0.710179 ± 0.00001) and JNd_(i) (¹⁴³Nd/¹⁴⁴Nd = 0.511958 ± 0.000006 ; after Tanaka et al. 217 218 (2000) standard. The values measured for these standards were 0.710246 ± 0.000010 and 219 0.512076 ± 0.000006 , respectively.

220

221

222 **Results**

224 Petrography

226	Basalts have microlithic and microlithic-porphyritic textures (Fig. 3c). They consist of
227	plagioclase, pyroxene, olivine phenocrysts and Fe-Ti oxides with a fine-grained groundmass.
228	Basaltic andesites have generally microlithic to microlithic-porphyritic textures with
229	phenocrysts of plagioclase, clinopyroxene and minor amphibole (Fig. 3d). The groundmass is
230	composed of plagioclase microlites, small pyroxene grains and minor interstitial glass.
231	Andesites exhibit hypo-crystalline porphyritic and glomeroporphyritic textures with
232	phenocrysts of plagioclase, clinopyroxene, amphibole and minor biotite (Figs. 3e and f). The
233	groundmass has a hyalopilitic texture and contains microliths of the main mineral constituents
234	along with volcanic glass. Dacites exhibit microgranular, glomeroporphyritic and porphyritic
235	textures characterized by plagioclase, amphibole, quartz and biotite phenocrysts set in a
236	groundmass including microlites of the same minerals, Fe–Ti oxide and glass.
237	Plagioclase is the most abundant phenocryst and groundmass phase, and is found in all
238	rock types. They exhibit albite twinning, oscillatory zoning, and prismatic-cellular growth.
239	Phenocrysts are common in basaltic andesites, andesites and dacites. Anorthite content range
240	between An_{88-49} in basalts, An_{83-46} in basaltic and esites, An_{60-35} in and esites, and An_{54-31} in
241	dacites (Kaygusuz et al., 2019). Pyroxene forms subhedral to euhedral crystals and is found in
242	glomeroporphyritic aggregates together with Fe-Ti oxides and plagioclase. The pyroxene
243	phenocrysts consist of both ortho and clinopyroxene. Clinopyroxene phenocrystals (up to 2
244	mm) are the most common mafic mineral in the basaltic andesites. Pyroxenes are augite and
245	diopside (Wo48-38 En46-38 Fo23-9, Kaygusuz et al., 2019). Diopside and augite are found in
246	basalts and basaltic andesites and augite in andesites (Kaygusuz et al., 2019). Inclusions of
247	opaque minerals and plagioclase occur in large pyroxene crystals (2.5 mm) showing poikilitic

248 texture. Some minerals are partially altered to calcite and uralite. Amphibole occurs as both 249 euhedral and subhedral phenocrystals and microlites in groundmass. They are found in 250 basaltic andesite, andesite and dacite. Phenocrystals (2-2.5 mm) are common in basaltic 251 andesites, andesites and dacites. Amphiboles are calcic magnesio-hornblende in composition 252 (Kaygusuz et al., 2019). Some crystals show partial chloritization. Olivine is found as 253 euhedral to subhedral crystals in basalt and basaltic andesite. Biotite, which is anhedral-254 subhedral, occurs in dacitic rocks and is rimmed by Fe-Ti oxide. Quartz is found in dacitic 255 rocks, and embayed quartz crystals are common. Fe-Ti oxides occur mainly together with 256 mafic minerals and are disseminated in the groundmass. They are magnetite-titanomagnetite 257 in composition (Kaygusuz et al., 2019). Kaygusuz et al. (2019) indicated that the 258 clinopyroxene pressure values of basalt, basaltic andesite and andesite range from 0.53 to 4.66 259 kbar and temperature values change from 1121 to 1182 °C. The clinopyroxene-liquid 260 thermobarometer of Putirka (2008) and the only clinopyroxene core compositions were used 261 to calculate the crystallisation temperature and pressure. Amphibole pressures and 262 temperatures give values of 1.86 to 2.54 kbar and 788 to 872 °C for the andesitic and dacitic 263 rocks (Kaygusuz et al., 2019). Al-in hornblende pressure calculations were made according to 264 Johnson and Rutherford (1989) and amphibole-plagioclase temperature calculations according 265 to Blundy and Holland (1990). Considering the thermobarometric calculations mentioned 266 above, it is concluded that the calc-alkaline magma forming the Bayburt volcanic rocks 267 equilibrated at shallow crustal depth.

- 268
- 269 ⁴⁰Ar / ³⁹Ar geochronology

270

To determine the age of volcanic rocks, we separated groundmass fractions from one basalt,
one basaltic andesite and dacite. The results are presented in Table 1, Table S1 and Fig 4. The

273	⁴⁰ Ar/ ³⁹ Ar dating of the groundmass of basalt M-36 was performed in 14 heating steps and the
274	age spectrum was defined by steps 9-14 with a plateau age 44.6 ± 0.1 Ma with 81.8% of the
275	released ³⁹ Ar (Fig. 4a, Table S1 in the electronic supplementary material, ESM). The isochron
276	age for this sample is 44.5 ± 0.4 Ma with mean square of weighted deviates (MSWD)=1.76
277	(Fig. 4b, Table S1). ⁴⁰ Ar/ ³⁹ Ar dating of groundmass of basaltic andesite K-2 was performed in
278	14 heating steps. Steps 4-14 produced a plateau age of 44.0 ± 0.1 Ma with 92.8% of the
279	released ³⁹ Ar (Fig. 4c, Table S1). The isochron age of this sample is 43.9 ± 0.2 Ma with
280	MSWD = 0.57 (Fig. 4d). 40 Ar/ 39 Ar dating of groundmass of dacite K-22 was performed in 15
281	steps (Table S1). The results suggest that the sample was affected by minor alteration or post-
282	crystallization heating. However, steps 6-13 yielded a plateau age of 43.5 ± 0.1 Ma (Figs. 4e
283	and f, Table S1). Obtained ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ ages vary between 44.6 ± 0.1 and 43.5 ± 0.1 Ma,
284	indicating that the studied volcanic rocks erupted in the Middle Eocene (Lutetian).

286 Geochemistry

287

Field and petrographic observations indicate that the studied volcanic samples in the Bayburt area suffered from minor alteration and partial chloritization and argillization. Most samples have loss on ignition (LOI) values <2.9 wt%, except for samples Y7 and Y35 that have LOI values of 3.5 and 3.1 wt%, respectively (Table 2).

292 Whole-rock compositions of the samples from the Bayburt volcanic rocks are given in

293 Table 2. These volcanic rocks have a large range of SiO_2 contents (48 to 68 wt%) and Mg

numbers $[Mg\# = 100 \times MgO/(MgO+Fe_2O_{3T})]$ (41 to 57; Table 2). The MgO and $Fe_2O_3^T$

contents range from 1.2% to 5.6% and from 3.5% to 10.6%, respectively (Table 2).

The samples plot in the sub-alkaline field on the TAS diagram (Fig. 5a). The samples
show calc-alkaline affinity on the Th versus Co diagram (Fig. 5b). Most samples are located

298	in the calc-alkaline field in the AFM diagram, but a few samples plotted on the tholeiitic and
299	calc-alkaline division line (Fig. 5c). Andesitic rocks have medium-K composition, whereas
300	basaltic and esitic rocks have high-K composition. Basalts have low to medium-
301	K composition (Fig. 5d).
302	Contents of CaO, Al ₂ O ₃ , Fe ₂ O ₃ , MgO, P ₂ O ₅ and TiO ₂ correlate negatively with SiO ₂
303	(Fig. 6), whereas K ₂ O shows a positive correlation and Na ₂ O shows a weak positive
304	correlation. Positive correlations are seen for Ba, Th, Nb, Rb, Zr, Pb and La versus SiO ₂ , and
305	weak negative correlations are seen for Sr, Ni and Y (Fig. 6). Basaltic rocks have higher
306	MgO, CaO, Fe ₂ O ₃ ^T , Al ₂ O ₃ , TiO ₂ and Ni, whereas dacitic rocks have higher K ₂ O, Ba, Zr, Rb
307	and Nb contents than basaltic andesitic and andesitic rocks (Fig. 6).
308	On primitive mantle-normalized diagrams all samples exhibit significant enrichment
309	in large ion lithophile elements (LILEs) (K, Th, Rb) relative to high field strength elements
310	(HFSEs) and also negative Nb, Ti and Ta anomalies relative rare earth element (REE) of
311	similar incompatibility (Figs. 7a-d). All samples have similar LREE enriched patterns
312	revealed by enrichment in light rare earth elements (LREE) and nearly flat heavy rare earth
313	elements (HREE) (La _n /Sm _n =1.85 to 5.62, Gd _N /Lu _N = 1.14 to 2.16, Table 2, Figs. 7e-h).
314	Dacites are characterised by negative Eu (Eu _n /Eu*) anomalies.
315	
316	Sr-Nd isotope geochemistry
317	
318	The studied samples have more radiogenic ⁸⁷ Sr/ ⁸⁶ Sr and less radiogenic ¹⁴³ Nd/ ¹⁴⁴ Nd isotopic
319	ratios than the bulk silica earth (BSE; Fig. 8a). The Bayburt volcanic rocks display relatively
320	homogeneous Sr-Nd isotopic compositions (Table 3; Fig. 8a). The values for ${}^{87}Sr/{}^{86}Sr_{(i)}$ range
321	from 0.70485 to 0.70551 and the values for $^{143}\mbox{Nd}/^{144}\mbox{Nd}_{(i)}$ range from 0.51255 to 0.51267

322 ($\epsilon Nd = -0.71$ to +1.76), plotting within the mantle array (Fig. 8a; Table 3). Basalts and

323	basaltic and esites have lower $^{8}/Sr/^{86}Sr_{(i)}$ values than and esites and dacites. A single-stage
324	depleted mantle Nd model ages of the studied Bayburt samples are in the range of 0.71-1.01
325	Ga (Table 3).

326 The Bayburt volcanic rocks partly overlap with the other second cycle volcanic rocks 327 from the ESZ (Kaygusuz et al., 2011; Aydınçakır and Şen, 2013; Arslan et al., 2013; Yücel et 328 al., 2017; Aslan et al., 2014) and the second cycle plutonic rocks (Karslı et al., 2007; 329 Eyuboğlu et al., 2017; Kaygusuz and Öztürk, 2015; Kaygusuz et al., 2020). However, they 330 have higher Sr isotopic ratios than the first cycle volcanic rocks (Aydınçakır, 2014; Temizel 331 et al., 2012, 2016), Early Eocene Kop adakitic rocks (Eyuboğlu et al., 2013a), the third cycle 332 adakitic rocks (Karslı et al., 2020), the fourth cycle adakitic rocks (Eyuboğlu et al., 2012; 333 Dokuz et al., 2013; Karslı et al., 2019) and the fourth cycle volcanic rocks (Temizel et al., 334 2012; Aydın et al., 2008; Yücel et al., 2017; Aslan et al. 2014). They have lower Sr isotopic 335 ratios than the other first cycle adakitic rocks (Eyuboğlu et al., 2011, 2018; Karslı et al., 2010) 336 (Fig. 8b). 337 338 Discussion 339 340

342

347

341

Age constraints

In previous studies, the age of the studied Bayburt volcanic rocks was estimated based on contact relationships, volcano-stratigraphic criteria and biostratigraphic data. Volcanic activity started in the Early Palaeocene and continued to Eocene time (Keskin et al., 1989). The new ⁴⁰Ar–³⁹Ar ages in this study place Bayburt volcanic rocks between 44.6 \pm 0.1 Ma

and 43.5 ± 0.1 Ma, within the Lutetian (the first cycle).

348	When compared with other Middle Eocene volcanic rocks in the ESZ, the new 40 Ar–
349	³⁹ Ar ages (44 to 43 Ma) of the studied Bayburt volcanic rocks are coeval with the Torul
350	(Gümüşhane) volcanic rocks (43 Ma; Kaygusuz et al., 2011), Alucra-Bayburt volcanic rocks
351	(44-43 Ma; Arslan et al., 2013) and Trabzon-Giresun volcanic rocks (44-43 Ma; Yücel et al.,
352	2017). The Bayburt volcanic rocks are younger than the Gümüşhane tuffs (45 Ma; Aslan,
353	2010), Trabzon-Giresun basaltic-andesitic lava flows (45 Ma; Yücel et al., 2017) and Borçka
354	volcanic rocks (46 Ma; Aydınçakır and Şen, 2013), but older than Trabzon-Giresun andesitic-
355	trachytic dikes (42-41 Ma; Yücel et al., 2017) and Gümüşhane volcanic rocks (37 Ma; Aslan
356	et al., 2014).

358 Fractional crystallization

359

The samples from the Bayburt volcanic rocks have low Mg#, MgO, Co, Ni and higher
 ⁸⁷Sr/⁸⁶Sr_(i) ratios demonstrating that the samples distinctively differ from primary magma
 composition and the magma has undergone significant fractional crystallization (FC; Tables 2
 and 4).

364 Increasing K₂O, Zr, Rb, Ba, Th, Nb and Pb versus SiO₂ and the decreasing in CaO, 365 Fe₂O₃^T, MgO, Al₂O₃, P₂O₅, TiO₂, Ni, Y and Sr content with increasing silica seen in basaltic 366 to dacitic rocks indicate that they evolved via FC processes (Fig. 6). Decreasing TiO₂, P₂O₅ 367 and Sr with increasing silica suggest fractionation of magnetite, apatite, and plagioclase, 368 respectively (Fig. 6). Decreasing CaO suggests clinopyroxene fractionation. Increasing K₂O 369 and Rb with increasing SiO₂ suggest that biotite and K-feldspar were not the early 370 fractionation phases. Increasing silica with decreasing Sr and the negative Eu anomalies 371 indicate plagioclase fractionation in the dacitic rocks (Figs. 6 and 7). The downward-concave 372 REE patterns of the rocks indicate clinopyroxene or hornblende fractionation (Thirlwall et al.,373 1994).

The effectiveness of the FC process was tested by a Rb versus Y plot (Fig. 9a). Since Rb has a positive correlation with the increase in SiO₂ (Fig. 6) content during fractionation, Rb is used as the fractionation index. The Y content of the studied samples has a negative correlation with the increasing Rb content (low-Y series), indicating plagioclase, clinopyroxene and hornblende fractionation (Fig. 9a). On the MgO versus Sr diagram, all samples have negative correlation (Fig. 9b). This

379 On the MgO versus St diagram, an samples have negative correlation (Fig. 90). This
 380 correlation indicates fractionation of ferro-magnesian minerals occurred in basalt, basaltic
 381 andesite and andesites, while feldspar fractionation occurred in dacitic rocks (Fig. 9b).

382

383 Assimilation - fractional crystallizations

384

The ⁸⁷Sr/⁸⁶Sr_(i) ratios correlate positively with SiO₂ and Th and negatively with. MgO (Figs. 10a, c and e). The ¹⁴³Nd/¹⁴⁴Nd_(i) ratios correlate negatively with SiO₂, and positively with MgO and Sm/Nd (Figs. 10b, d and f). Such trends suggest that the magmas were affected by assimilation - fractional crystallization processes. Assimilation of the crustal material was accompanied fractional crystallization.

The roles of crustal assimilation and fractional crystallization processes were evaluated using the equation described by DePaolo (1981). In our model, upper continental crust values of Taylor and McLennan (1985) are used as crustal end-members, and the upper mantle composition of Klein (2004) is used as parental magma composition. To estimate the assimilation rate of the crust material by ascending magmas, different theoretical curves were produced for the value of r = 0.2 (the ratio of the rate of assimilation to the rate of fractional crystallisation) and the bulk distribution coefficients (D_{Sr}, D_{Nd}) (Fig. 11a, Table S2 in the

397 ESM). The studied Bayburt samples matched the r = 0.2 curves indicating that the parental 398 magma was not significantly contaminated by continental crust (Fig. 11a). However, the 399 above model can be considered as indicative only, as the modelled curve rely on appropriate 400 values for the end-member compositions and Ds.

401

402 Mantle source

403

404 Among subduction-related magmas, those formed via addition of water-rich fluids to the 405 mantle wedge generally have higher Ba/La ratios (Sheppard and Taylor, 1992; Elburg et al., 406 2002), Ba/Th (>170; Hawkesworth et al., 1997) and Pb/Ce (>0.1; Elburg et al., 2002), 407 whereas magmas formed with the involvement of slab-derived melts and/or sediments are 408 generally characterised by high Th/Ce ratios (>0.15; Hawkesworth et al., 1997). The mean 409 values for Pb/Ce, Th/Ce and Ba/La ratios of the studied Bayburt volcanic rocks are 0.25, 0.09 410 and 20 (Table 2), respectively, indicating that water-rich fluids played an important role. This is also consistent with a range of Pb/Nd values at a constant ¹⁴³Nd/¹⁴⁴Nd_(i) (Fig. 11b) and with 411 412 a wide range of. Ba/Th ratios of the least fractionated samples (SiO₂ < 52 wt%) at similar 413 La/Sm (Fig. 11c). A typical subduction-related incompatible-element pattern on mantle-414 normalised diagrams, characterised by prominent negative Nb and Ta anomalies (Fig 7), is 415 also consistent with the important role of slab-derived fluids. Additionally, on the Ce/Pb 416 versus Ce diagram (Fig. 11d), most of the samples correspond to the field of arc volcanics. 417 The higher Th/Yb values at a given Ta/Yb compared to the mantle array (Fig. 11e; Pearce et 418 al., 1990) is another evidence for addition of subduction related components. The trend 419 displayed by the samples parallel to the mantle array can indicate either a range of variable 420 enriched mantle source, or involvement of crustal assimilation.

421	Given that the least fractionated rocks (SiO ₂ $<$ 52 wt%) have low Mg# (54 to 44),
422	MgO (5.55 to 3.14 wt%) and compatible trace element contents (Ni = 14.4 to 3.9 ppm and Co
423	= 28.9 to 20.1 ppm; Table 2) are substantially evolved (cf. 500 to 600 ppm Cr, 250 to 300
424	ppm Ni, and 27 to 80 ppm Co in primary magmas; Wilkinson and Le Maitre, 1987; Perfit et
425	al., 1980), no inferences on the mantle source composition of conditions of melting can be
426	made.

- 427
- 428

429 **Conclusions**

430

431 Comprehensive whole-rock major, trace and rare earth elements, geochronological and Sr-432 Nd-Pb isotope data for the studied volcanic rocks from the southern part of the Eastern 433 Pontides allow new insights into the petrogenetic evolution of the Middle Eocene magmas 434 and enable us to reach the following conclusions. (i) The studied Bayburt volcanic rocks vary 435 from basalt to dacite in composition, and define a calc-alkaline series showed enrichment of 436 LILEs and LREEs, and depletion of HFSEs, suggesting similar sources and petrogenetic processes. (ii) ⁴⁰Ar-³⁹Ar ages of the rocks reveals that the studied volcanic rocks were 437 438 emplaced in the Lutetian (44 to 43 Ma, Middle Eocene) and coincide with the time period of 439 the post-collisional extensional regime in the Eastern Pontides. (iii) The Bayburt volcanic rocks have narrow initial ⁸⁷Sr/⁸⁶Sr ratios varying between 0.70485 and 0.70551 and initial 440 ¹⁴³Nd/¹⁴⁴Nd values between 0.51255 and 0.51267 indicating enriched source composition. 441 442 These data correspond to the mantle array on the isotope ratio diagram. (iv) The Bayburt 443 volcanic rocks were mostly affected by fractional crystallization processes rather than the 444 other magmatic processes, such as AFC, according to trace element chemistry, mineral chemistry and isotope data. (v) The studied volcanic rocks were generated from an enriched 445

446 lithospheric mantle source initially metasomatized by subduction fluids in a post-collisional447 extensional-related geodynamic setting.

449	Acknowledgements Thanks are due to Ferkan Sipahi, H. Enes Atay and Damla Selvi for their
450	assistances in the fieldwork. The authors thanks David Vilbert for providing Sr-Nd isotopic
451	analyses at the Géosciences Rennes, France. We thank an anonymous reviewer and journal
452	editor Leonid V. Danyushevsky for their critical and constructive comments to improve our
453	paper. This study has been funded by the Gümüşhane University Research Fund (grant
454	17.F5114.01.03).
455	
456	
457	References
458	
459	Adamia SA, Lordkipanidze MB, Zakariadze GS (1977) Evolution of an active continental
460	margin as exemplified by the Alpine history of the Caucasus. Tectonophysics 40:183-
461	199
462	Altherr R, Topuz G, Siebel W, Şen C, Meyer HP, Satır M, Lahaye Y (2008) Geochemical and
463	Sr-Nd-Pb isotopic characteristics of Paleocene plagioleucitites from the eastern
464	Pontides (NE Turkey). Lithos 105:149–161
465	Arslan M, Temizel İ, Abdioğlu E, Kolaylı H, Yücel C, Boztuğ D, Şen C (2013) 40Ar-39Ar
466	dating, whole-rock and Sr-Nd-Pb isotope geochemistry of post-collisional Eocene
467	volcanic rocks in the southern part of the Eastern Pontides (NE Turkey): Implications
468	for magma evolution in extension-induced origin. Contrib Mineral Petr 166/1:113-142
469	Arslan M, Tüysüz N, Korkmaz S, Kurt H (1997) Geochemistry and petrogenesis of the
470	eastern Pontide volcanic rocks, Northeast Turkey. Chem Erde-Geochem 57:157–187

471 Aslan Z (2010) U-Pb zircon SHRIMP age, geochemical and petrographical characteristics of 472 tuffs within calc-alkaline Eocene volcanic rocks around Gümüshane (NE Turkey), 473 Eastern Pontides. Neues Jb Miner Abh 187(3):329–346 474 Aslan Z, Arslan M, Temizel İ, Kaygusuz A (2014) K-Ar dating, whole-rock and Sr-Nd 475 isotope geochemistry of calc-alkaline volcanic rocks around the Gümüşhane area: 476 implications for post-collisional volcanism in the Eastern Pontides, Northeast Turkey. 477 Miner Petrol 108:245-267 478 Aydın F (2014) Geochronology, geochemistry and petrogenesis of the Macka subvolcanic 479 intrusions: Implications for the Late Cretaceous magmatic and geodynamic evolution 480 of the eastern part of the Sakarya Zone, NE Turkey. Inter Geol Rev 56(10):1246-1275 Aydın F, Karslı O, Chen B (2008) Petrogenesis of the Neogene alkaline volcanic rocks with 481 482 implications for post collisional lithospheric thinning of the Eastern Pontides, NE 483 Turkey. Lithos 104:249–266 484 Aydınçakır E (2014) The Petrogenesis of Early-Eocene non-adakitic volcanism in NE 485 Turkey: Constraints on geodynamic implications. Lithos 208:361–377 486 Aydınçakır E, Gündüz R, Yücel C (2020) Emplacement conditions of magma(s) forming 487 Jurassic plutonic rocks in Gümüşhane (Eastern Pontides, Turkey). Bull Min Res Exp 488 162:175-196 489 Aydınçakır E, Şen C (2013) Petrogenesis of the post-collisional volcanic rocks from the 490 Borcka (Artvin) area: implications for the evolution of the Eocene magmatism in the 491 Eastern Pontides (NE Turkey). Lithos 172–173:998–117 492 Aydınçakır E, Yücel C, Ruffet G, Gücer MA, Akaryalı E, Kaygusuz A (2022) Petrogenesis of 493 post-collisional Middle Eocene volcanism in the Eastern Pontides (NE, Turkey): Insights from geochemistry, whole-rock Sr-Nd-Pb isotopes, zircon U-Pb and ⁴⁰Ar-³⁹Ar 494 495 geochronology. Chem Erde-Geochem 82:125871

496	Blundy JD, Holland, TJB (1990) Calcic amphibole equilibria and a new amphibole-
497	plagioclase geothermometer. Contrib Mineral Petrol 104:208-224
498	Boztuğ D, Jonckheere R, Wagner GA, Yeğingil Z (2004) Slow Senonian and fast
499	Palaeocene-Early Eocene uplift of the granitoids in the Central eastern Pontides,
500	Turkey: apatite fission-track results. Tectonophysics 382:213-228
501	Davies JH, Von Blanckenburg F (1995) Slab breakoff: a model of lithospheric detachment
502	and its test in the magmatism and deformation of collisional orogens. Earth Planet Sc
503	Lett 129:85–102
504	DePaolo DJ (1981) Trace element and isotopic effects of combined wall-rock assimilation
505	and fractional crystallization. Earth Planet Sc Lett 53:189-202
506	Dokuz A (2011) A slab detachment and delamination model for the generation of
507	Carboniferous high-potassium I-type magmatism in the Eastern Pontides, NE Turkey:
508	Köse composite pluton. Gondwana Res 19:926–944
509	Dokuz A, Aydınçakır E, Kandemir R, Karslı O, Siebel W, Derman AS, Turan M (2017) Late
510	Jurassic magmatism and stratigraphy in the eastern Sakarya zone, Turkey: Evidence
511	for the slab breakoff of Paleotethyan oceanic lithosphere. J Geology 125:1-31
512	Dokuz A, Karslı O, Chen B, Uysal İ (2010) Sources and petrogenesis of Jurassic granitoids in
513	the Yusufeli area, northeastern Turkey: Implications for pre- and post-collisional
514	lithospheric thinning of the Eastern Pontides. Tectonophysics 480:259–279
515	Dokuz A, Uysal İ, Meisel W, Turan M, Duncan R, Akçay M (2013) Post-collisional adakitic
516	volcanism in the eastern part of the Sakarya zone, Turkey: Evidence for slab and
517	crustal melting. Contrib Mineral Petr 166:1443-1468
518	Elburg MA, Bergen MV, Hoogewerff J, Foden J, Vroon P, Zulkarnain I, Nasution A (2002)
519	Geochemical trends across an arc-continent collision zone: magma sources and

520 slabwedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochim 521 Cosmochim Ac 66:2771–2789 522 Eyuboğlu Y (2010). Late cretaceous high-K volcanism in the Eastern Pontide Orogenic Belt, 523 and its implications for the geodynamic evolution of NE Turkey. Int Geol Rev 52(2-524 3):142–186 525 Eyuboğlu Y, Chung SL, Dudas FO, Santosh M, Akaryalı E (2011) Transition from 526 shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: implications 527 for slab window melting. Gondwana Res 19:413-429 528 Eyuboğlu Y, Dudas FO, Santosh M, Eroğlu-Gümrük T, Akbulut K, Yi K, Chatterje N (2018) 529 The final pulse of the Early Cenozoic adakitic activity in the Eastern Pontides 530 Orogenic Belt (NE Turkey): An integrated study on the nature of transition from 531 adakitic to non-adakitic magmatism in a slab window setting. J Asian Earth Sci 532 157:141-165 533 Eyuboğlu Y, Dudas FO, Santosh M, Yi K, Kwon S, Akaryali E (2013a) Petrogenesis and U-534 Pb zircon chronology of adakitic porphyries within the Kop ultramafic massif (Eastern 535 Pontides Orogenic Belt, NE Turkey). Gondwana Res 24(2):742-766 536 Eyuboğlu Y, Dudas FO, Thorkelson D, Zhu DC, Liu Z, Chatterjee N, Yi K, Santosh M (2017) 537 Eocene granitoids of northern Turkey: Polybaric magmatism in an evolving arc-slab 538 window system. Gondwana Res 50:311–345 539 Eyuboğlu Y, Santosh M, Dudas FO, Akaryali E, Chung SL, Akdag K, Bektas O (2013b) The 540 nature of transition from adakitic to non-adakitic magmatism in a slab-window setting: 541 a synthesis from the eastern Pontides, NE Turkey. Geosci Front 4:353–375 Eyuboğlu Y, Santosh M, Yi K, Bektaş O, Kwon S (2012) Discovery of Miocene adakitic 542 543 dacite from the Eastern Pontides Belt and revised geodynamic model for the late 544 Cenozoic Evolution of eastern Mediterranean region. Lithos 146–147:218–232

545	Fitton JG, James D, Leeman WP (1991) Basic magmatism associated with Late Cenozoic
546	extension in the western United States: compositional variations in space and time. J
547	Geophysical Res 96:13693–13712
548	Görür N, Tüysüz O (1997) Petroleum geology of southern continental margin of the Black
549	Sea. In: A. Robinson (Ed.), Regional and Petroleum geology of the Black Sea and
550	Surrounding Region. AAPG Memoir 68:241-254
551	Güven İH (1993) 1:25000 Scale geology and compilation of the eastern Pontide. General
552	Directorate of Mineral Research and Exploration (MTA) of Turkey, Ankara
553	(unpublished).
554	Harms U, Cameron KL, Simon K, Bratz H (1997) Geochemistry and petrogenesis of
555	metabasites from the KTB ultradeep borehole, Germany Geol Rund 86:155–166
556	Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007) Classification of altered volcanic island
557	arc rocks using immobile trace elements: Development of the Th-Co discrimination
558	diagram. J Petrol 48:2341–2357
559	Hawkesworth C J, Turner SP, McDermott F, Peate DW, van Calsteren P (1997) U-Th
560	isotopes in arc magmas; implications for element transfer from the subducted crust.
561	Science 276:551–555
562	Hofmann AW (1988) Chemical differentiation of the Earth: The relationship between mantle,
563	continental crust, and oceanic crust. Earth Planet Sci Lett 90:297-314
564	Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common
565	volcanic rocks. Canadian J Earth Sci 8:523–548
566	Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminiun in hornblende
567	geobarometer with application to Long Valley Caldera (California) volcanic rocks.
568	Geology 17:837–841

- Jung C, Jung S, Hoffer E, Berndt J (2006) Petrogenesis of Tertiary mafic alkaline magmas in
 the Hocheifel, Germany. J Petrol 47:1637–1671
- 571 Kandemir R, Yılmaz C (2009) Lithostratigraphy, facies, and deposition environment of the
- 572 Lower Jurassic Ammonitico Rosso type sediments (ARTS) in the Gümüşhane area,
- 573 NE Turkey: Implications for the opening of the northern branch of the Neo-Tethys
- 574 Ocean. J Asian Earth Sci 34:586–598
- 575 Karslı O, Caran Ş, Coban H, Şengün F, Tekkanat O, Andersen T (2020) Melting of the
- 576 juvenile lower crust in a far-field response to roll-back of the southern Neotethyan
- 577 oceanic lithosphere: the Oligocene adakitic dacites, NE Turkey. Lithos 105614:370–
- 578 371
- 579 Karslı O, Chen B, Aydın F, Şen C (2007) Geochemical and Sr-Nd-Pb isotopic compositions
 580 of the Eocene Dölek and Sarıçiçek plutons, Eastern Turkey: Implications for magma
- 581 interaction in the genesis of high-K calc-alkaline granitoids in a post-collision
- 582 extensional setting. Lithos 98:67–96
- 583 Karslı O, Dokuz A, Kandemir R (2016) Subduction-related late Carboniferous to early
- 584 Permian magmatism in the eastern Pontides, the Camlik and Casurluk plutons:
- 585 Insights from geochemistry, whole-rock Sr-Nd and in situ zircon Lu-Hf isotopes, and
- 586 U-Pb geochronology. Lithos 266-267:98–114
- 587 Karslı O, Dokuz A, Kandemir R, Aydın F, Schmitt AK, Ersoy EY, Alyıldız C (2019)
- 588 Adakitic parental melt generation by partial fusion of the juvenile lower crust, Sakarya
- 589Zone, NE Turkey: a far-field response to break-off of the southern Neotethyan oceanic
- 590 lithosphere. Lithos 338-339:58–72
- 591 Karslı O, Dokuz A, Uysal İ, Aydın F, Chen B, Kandemir R, Wijbrans J (2010) Relative
- 592 contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-

- 593 type granitoids in a subduction setting, with special reference to the Harşit Pluton,
- 594 Eastern Turkey. Contrib Mineral Petr 160:467–487
- 595 Karslı O, Uysal I, Ketenci M, Dokuz A, Aydın F, Kandemir R, Wijbrans RJ (2011) Adakite-
- 596 like granitoid porphyries in Eastern Pontides, NE Turkey: potential parental melts and
 597 geodynamic implications. Lithos 127:354–372
- 598 Kaygusuz A, Arslan M, Siebel W, Şen C (2011) Geochemical and Sr-Nd isotopic
- characteristics of post-collisional calc-alkaline volcanic rocks in the eastern Pontides
 (NE Turkey). Turk J Earth Sci 20:137–159
- 601 Kaygusuz A, Arslan M, Siebel W, Sipahi F, İlbeyli N (2012) Geochronological evidence and
- tectonic significance of Carboniferous magmatism in the southwest Trabzon area,
 eastern Pontides, Turkey. Int Geol Rev 54(15):1776–1800
- Kaygusuz A, Arslan M, Sipahi F, Temizel İ (2016) U-Pb zircon chronology and petrogenesis
 of Carboniferous plutons in the northern part of the Eastern Pontides, NE Turkey:
- 606 Constraints for Paleozoic magmatism and geodynamic evolution. Gondwana Res607 39:327–346
- 608 Kaygusuz A, Arslan M, Temizel İ, Yücel C, Aydınçakır E (2021) U–Pb zircon chronology
- and petrogenesis of the Late Cretaceous I-type granitoids in arc setting, Eastern
- 610 Pontides, NE Turkey. J African Earth Sci 174:104040
- 611 Kaygusuz A, Gücer MA, Yücel C, Aydınçakır E, Sipahi F (2019) Petrography and
- 612 crystallization conditions of Middle Eocene volcanic rocks in the Aydıntepe-Yazyurdu
- 613 (Bayburt) area, Eastern Pontides (NE Turkey). J Eng Res Appl Sci 8(2):1205–1215
- 614 Kaygusuz A, Öztürk M (2015) Geochronology, geochemistry, and petrogenesis of the Eocene
- 615 Bayburt intrusions, Eastern Pontides, NE Turkey: evidence for lithospheric mantle and
- 616 lower crustal sources in the high-K calc-alkaline magmatism. J Asian Earth Sci
- 617 108:97–116

618	Kaygusuz A, Yücel C, Arslan M, Sipahi F, Temizel İ, Çakmak G, Güloğlu ZS (2018)
619	Petrography, mineral chemistry and crystallization conditions of Cenozoic plutonic
620	rocks located to the north of Bayburt (Eastern Pontides, Turkey). Bull Min Res Exp
621	157:75–102
622	Kaygusuz A, Yücel C, Arslan M, Temizel İ, Yi K, Jeong YJ, Siebel W, Sipahi F (2020)
623	Eocene I-type magmatism in the Eastern Pontides, NE Turkey: Insights into magma
624	genesis and magma-tectonic evolution from whole-rock geochemistry, geochronology
625	and isotope systematics. Int Geol Rev 62(11):1406-1432
626	Kazmin VG, Sbortshikov IM, Ricou LE, Zonenshain LP, Boulin J, Knipper A (1986)
627	Volcanic belts as markers of the Mesozoic-Cenozoic evolution of Tethys,
628	Tectonophysics 123:123–152
629	Keskin İ, Korkmaz S, Gedik İ, Ateş M, Gök L, Küçümen Ö, Erkal T (1989) Bayburt
630	dolayının jeolojisi, MTA rap. No: 8995, 129 p, Ankara
631	Ketin İ, Canıtez N (1972) Yapısal jeoloji, İ.T.Ü Matbaası, Gümüşsüyü, 869, 520 p
632	Klein EM (2004) Geochemistry of the igneous oceanic crust. In: Treatise on geochemistry:
633	Holland HD, Turekian KK, (Ed.), Elsevier, Amsterdam, 3:433–463
634	Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate
635	environment of the Hercynian Fold Belt of central Europe: indications from a Nd and
636	Sr isotopic study. Contrib Mineral Petrol 98:129–138
637	Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev
638	37:215–224
639	Okay A, Şahintürk Ö (1997) Geology of the eastern Pontides. In: Robinson AG (ed.)
640	Regional and petroleum geology of the Black Sea and surrounding region. Am Assoc
641	Petr Geol B 68:291–311

642	Okay AI, Şengör AMC, Görür N (1994) Kinematic history of the opening of the Black Sea
643	and its effect on the surrounding regions: Geology 22:267–270
644	Okay AI, Tüysüz O (1999) Tethyan sutures of northern Turkey. In: Durand B, Jolivet L,
645	Horvath F, Seranne M (Eds.), Tethyan Sutures of Northern Turkey. Geol Soc Spec
646	Publ 156:475–515
647	Özdamar Ş (2016) Geochemistry and geochronology of late Mesozoic volcanic rocks in the
648	northern part of the Eastern Pontide Orogenic Belt (NE Turkey): implications for the
649	closure of the Neo-Tethys Ocean. Lithos 248–251:240–256
650	Özdamar Ş, Roden MF, Billor MZ (2017) Petrology of the shoshonitic Çambaşı Pluton in NE
651	Turkey and implications for the closure of the Neo-Tethys Ocean: insights from
652	geochemistry, geochronology and Sr-Nd isotopes. Lithos 284-285:477-492
653	Özsayar T, Pelin S, Gedikoğlu A (1981) Doğu Pontidler'de Kretase, KTÜ., Yerbilimleri
654	Dergisi 2:65–114
655	Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ, Güner Y, Şaroğlu F, Yılmaz Y,
656	Moorbath S, Mitchell JJ (1990) Genesis of collision volcanism in eastern Anatolia
657	Turkey. J Volcanol Geoth Res 44:189–229
658	Pelin S (1977) Alucra (Giresun) GD yöresinin petrol olanakları bakımından jeolojik
659	incelemesi. KTÜ Yayın No: 87, Trabzon
660	Perfit MR, Gust DA, Bence AE, Arculus RJ, Taylor SR (1980) Chemical characteristics of
661	island-arc basalts: Implications for mantle sources, Chem Geol 30:227-256
662	Putirka KD (2008) Thermometers and barometers for volcanic systems. In: Putirka KD,
663	Tepley F (eds). Rev Mineral Geochem 69:61–120
664	Platt JP, England PC (1994) Convective removal of lithosphere beneath mountain belts:
665	Thermal and mechanical consequences. Am J Sci 294:307-336

666	Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DL (1998)
667	Intercalibration of standards, absolute ages and uncertainties in ⁴⁰ Ar/ ³⁹ Ar dating. Chem
668	Geol 145:117–152
669	Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of ⁴⁰ K decay
670	constants and ⁴⁰ Ar*/ ⁴⁰ K for the Fish Canyon sanidine standard, and improved accuracy
671	for ⁴⁰ Ar/ ³⁹ Ar geochronology. Geochim Cosmochim Acta 74:5349–5367
672	Renne PR, Balco G, Ludwig KR, Mundil R, Min K (2011) Response to the comment by W.H.
673	Schwarz et al. on "Joint determination of 40K decay constants and 40Ar*/40K for the
674	Fish Canyon sanidine standard, and improved accuracy for ⁴⁰ Ar/ ³⁹ Ar geochronology"
675	by P.R. Renne et al., 2010. Geochim Cosmochim Acta 75:5097–5100
676	Robinson AG, Banks CJ, Rutherford MM, Hirst JPP (1995) Stratigraphic and structural
677	development of the eastern Pontides, Turkey. J Geol Soc Lond 152:861-872
678	Ruffet G, Féraud G, Amouric M (1991) Comparison of ⁴⁰ Ar/ ³⁹ Ar conventional and laser
679	dating of biotites from the North Trégor Batholith. Geochim Cosmochim Acta
680	55:1675–1688
681	Ruffet G, Féraud G, Ballèvre M, Kiénast JR (1995) Plateau ages and excess argon in
682	phengites: an ⁴⁰ Ar- ³⁹ Ar laser probe study of Alpine micas (Sesia Zone, Western Alps,
683	northern Italy). Chem Geol 121:327–343
684	Ruppel C (1995) Extensional processes in continental lithosphere. J Geophysical Res
685	100,24:187–215
686	Saydam Eker Ç, Sipahi F, Kaygusuz A (2012) Trace and rare earth elements as indicators of
687	provenance and depositional environments of Lias cherts in Gümüşhane, NE Turkey.
688	Chem der Erde Geoc72:167–177

689	Schmidberger SS, Hegner E (1999) Geochemistry and isotope systematics of calc-alkaline
690	volcanic rocks from the Saar-Nahe basin (SW Germany)-implications for Late-
691	Variscan orogenic development. Contrib Mineral Petr 135:373-385
692	Sheppard S, Taylor WR (1992) Barium- and LREE-rich, olivine-mica-lamprophyres with
693	affinities to lamproites, Mt. Bundey, Northern Territory, Australia. In: Foley S. and
694	Peccerillo A. (Eds.), Potassic and ultrapotassic magmas and their origin; Sixth meeting
695	of the European Union of Geosciences. Lithos 28,3-6:303-325
696	Shillington DJ, White N, Minshull TA, Edwards GRH, Jones SN, Edwards RA, Scott CL
697	(2008) Cenozoic evolution of the eastern Black Sea: a test of depth-dependent
698	stretching models. Earth Planet Sc Lett 265:360-378
699	Sipahi F, Kaygusuz A, Saydam Eker Ç, Vural A, Akpınar İ (2018) Late Cretaceous arc
700	igneous activity: The Eğrikar Monzogranite example. Int Geol Rev 60/3:382-400
701	Sun SS, McDonough WF (1989) Chemical and isotope systematics of oceanic basalts;
702	implication for mantle compositions and processes. In: Saunders AD, Nory MJ (Eds.),
703	Magmatism in the Ocean Basins. Geol Soc London Spec Publ 42:313-345
704	Şengör AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach.
705	Tectonophysics 75:181–241
706	Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M,
707	Orihashi T, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T,
708	Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a
709	neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol
710	168:279–281
711	Taylor SR, McLennan SM (1985) The Continental crust: Its composition and evolution.
712	Blackwell Publication, Oxford

713	Temizel İ, Abdioğlu Yazar E, Arslan M, Kaygusuz A, Aslan Z (2018) Mineral chemistry,
714	whole-rock geochemistry and petrology of Eocene I-type Shoshonitic plutons in the
715	Gölköy area (Ordu, NE Turkey). Bull Min Res Exp 157:121–152
716	Temizel İ, Arslan M, Ruffet G, Peucat JJ (2012) Petrochemistry, geochronology and Sr-Nd
717	isotopic systematics of the Tertiary collisional and post-collisional volcanic rocks from
718	the Ulubey (Ordu) area, eastern Pontide, NE Turkey: implications for extension-
719	related origin and mantle source characteristics. Lithos 128:126-147
720	Temizel İ, Arslan M, Yücel C, Abdioğlu Yazar E, Kaygusuz A, Aslan Z (2020) Eocene
721	tonalite-granodiorite from the Havza (Samsun) area, northern Turkey: Adakite-like
722	melts of lithospheric mantle and crust generated in a post-collisional setting. Int Geol
723	Rev 62(9):1131–1158
724	Temizel İ, Arslan M, Yücel C, Abdioğlu Yazar E, Ruffet G (2016) Geochronology and
725	geochemistry of Eocene-aged volcanic rocks around the Bafra (Samsun, N Turkey)
726	area: constraints for the interaction of lithospheric mantle and crustal melts. Lithos
727	258–259:92–114
728	Temizel İ, Arslan M. Yücel C. Abdioğlu Yazar E, Kaygusuz A, Aslan Z (2019) U-Pb
729	geochronology, bulk-rock geochemistry and petrology of Late Cretaceous syenitic
730	plutons in the Gölköy (Ordu) area (NE Turkey): Implications for magma generation in
731	a continental arc extension triggered by slab roll-back. J Asian Earth Sci 171:305-320
732	Thirlwall MF, Smith TE, Graham AM, Theodorou N, Hollings P, Davidson JP, Arculus RJ
733	(1994) High field strength element anomalies in arc lavas; source or process? J Petrol
734	35/3:819-838
735	Topuz G, Alther R, Schwarz WH, Siebel W, Satır M, Dokuz A (2005) Post-collisional
736	plutonism with adakite-like signatures: the Eocene Saraycık granodiorite (eastern
737	Pontides, Turkey). Contrib Mineral Petr 150:441-455

738	Topuz G, Altherr R, Schwarz WH, Dokuz A, Meyer HP (2007) Variscan amphibolite facies
739	metamorphic rocks from the Kurtoğlu metamorphic complex (Gümüşhane area,
740	eastern Pontides, Turkey). Int J Earth Sci 96:861–873
741	Topuz G, Altherr R. Siebel W, Schwarz WH, Zack T, Hasözbek A, Barth M, Satır M, Şen C
742	(2010) Carboniferous high-potassium I-type granitoid magmatism in the eastern
743	Pontides: the Gümüşhane pluton (NE Turkey). Lithos 116:92–110
744	Ustaömer T, Robertson AHF (1997) Tectonic-sedimentary evolution of the North-Tethyan
745	active margin in the Central Pontides of Northern Turkey. In: Robinson, A.G. (ed),
746	Regional and Petroleum Geology of the Black Sea Region. Am Assoc Petr Geol M
747	68:245–290
748	Vural A, Kaygusuz A (2021) Geochronology, petrogenesis and tectonic importance of Eocene
749	I-type magmatism in the Eastern Pontides, NE Turkey. Arab J Geocsi 14:467.
750	https://doi.org/10.1007/s12517-021-06884-z
751	Wang XL, Zhao G, Zhou JC, Liu Y, Hu J (2008) Geochronology and Hf isotopes of zircon
752	from volcanic rocks of the Shuangqiaoshan group, south China: Implications for the
753	Neoproterozoic tectonic evolution of the eastern Jiangnan orogen. Precambrian Res
754	14:355–367
755	Wilkinson JFG, Le Maitre RW (1987) Upper mantle amphiboles and micas and TiO ₂ , K ₂ O,
756	and P_2O_5 abundances and 100 Mg/(Mg + Fe ²⁺) ratios of common basalts and
757	andesites: Implications for modal mantle metasomatism and undepleted mantle
758	compositions. J Petrol 28:37–7
759	Yılmaz Y, Tüysüz O, Yiğitbaş E, Genç SC, Şengör AMC (1997) Geology and tectonics of the
760	Pontides. In: Robinson, A.G. (Eds.), Regional and petroleum geology of the Black Sea
761	and surrounding region. Am Assoc Petr Geol B 68:183-226

762	Yücel C, Arslan M, Temizel İ, Abdioğlu E (2014) Volcanic facies and mineral chemistry of
763	Tertiary volcanic rocks in the northern part of the Eastern Pontides, northeast Turkey:
764	implications for pre-eruptive crystallization conditions and magma chamber processes.
765	Miner Petrol 108:439–467
766	Yücel C, Arslan M, Temizel I, Yazar EA, Ruffet G (2017) Evolution of K-rich magmas
767	derived from a net veined lithospheric mantle in an ongoing extensional setting:
768	geochronology and geochemistry of Eocene and Miocene volcanic rocks from Eastern
769	Pontides (Turkey). Gondwana Res 45:65-86
770	Zhai MG, Fan QC, Zhang HF, Sui JL, Shao JA (2007) Lower crustal processes leading to

- 771 Mesozoic lithospheric thinning beneath eastern North China: underplating,
- replacement and delamination. Lithos 96:36–54

773 FIGURE CAPTIONS

775	Fig. 1 (a) Tectonic map of Turkey and its surroundings (modified from Okay and Tüysüz,
776	1999), (b) Simplified geological map of the Eastern Pontides showing the distribution of
777	Eocene and Miocene volcanic rocks and Eocene plutonic rocks (modified from Arslan et al.,
778	2013; Güven, 1993; Temizel et al., 2016). NAFZ – North Anatolian Fault Zone
779	
780	Fig. 2 Geological map of the study area
781	
782	Fig. 3 Field view and cross-polarised transmitted-light photomicrographs of textural features
783	of the studied Bayburt volcanic rocks (a) Field view of the contact between Eocene
784	sedimentary and volcanic rocks, (b) field view of Eocene volcanic rocks, (c) microlithic
785	textures in basalts, and (d-f) microlithic-porphyritic and glomeroporphyritic textures in
786	basaltic andesites and andesites (Pl: plagioclase, Cpx: clinopyroxene, Amp: amphibole)
787	
788	Fig. 4 ⁴⁰ Ar- ³⁹ Ar ages of the Bayburt volcanic rocks, (a-b) basalt (M-36), (c-d) basaltic
789	andesite (K-2) and (e-f) dacite (K-22)
790	
791	Fig. 5 (a) Silica versus total alkalis diagram (after Middlemost, 1994), (b) Th versus Co
792	diagram (after Hastie et al., 2007), (c) AFM diagram of Irvine and Baragar (1971), and (d)
793	K ₂ O versus SiO ₂ diagram for Bayburt volcanic rocks
794	
795	Fig. 6 (a-r) SiO_2 versus major oxides, trace elements and rare earth elements variation plots
796	for Bayburt volcanic rocks
797	

799	(e-h) chondrite-normalized (Taylor and McLennan, 1985) rare earth element patterns for
800	Bayburt volcanic rocks
801	
802	Fig. 8 (a-b) 143 Nd/ 144 Nd _(i) versus (87 Sr/ 86 Sr) _(i) diagrams for Bayburt volcanic rocks
803	
804	Fig. 9 (a) Y versus Rb, and (b) MgO versus Sr diagrams for Bayburt volcanic rocks
805	
806	Fig. 10 (a-b) SiO_2 versus ${}^{87}Sr/{}^{86}Sr_{(i)}$ and ${}^{143}Nd/{}^{144}Nd_{(i)}$, (c-d) MgO (wt%) versus ${}^{87}Sr/{}^{86}Sr_{(i)}$
807	and ${}^{143}Nd/{}^{144}Nd_{(i)}$, (e) ${}^{87}Sr/{}^{86}Sr_{(i)}$ versus Th, and (f) ${}^{143}Nd/{}^{144}Nd_{(i)}$ versus Sm/Nd diagrams for
808	Bayburt volcanic rocks
809	
810	Fig. 11 (a) $({}^{87}\text{Sr}/{}^{86}\text{Sr})_{(i)}$ versus $({}^{143}\text{Nd}/{}^{144}\text{Nd})_{(i)}$ diagram showing two-component mixing
811	model, (b) Pb/Nd versus $(^{143}$ Nd $/^{144}$ Nd $)_{(i)}$, (c) Ba/Th versus La/Sm, (d) Ce/Pb versus Ce (ppm),
812	and (e) Th/Yb versus Ta/Yb (after Pearce et al., 1990) diagrams for Bayburt volcanic rocks.

Fig. 7 (a-d) Primitive mantle-normalized (Sun and McDonough, 1989) trace element patterns,

- 813 (d): Data fields after Taylor and McLennan (1985), Hofmann (1988), Harms et al. (1997),
- 814 Schmidberger and Hegner (1999), Pearce et al. (1990), Fitton et al., (1991)

Tables and Captions

Table 1 ⁴⁰Ar-³⁹Ar dating results and locations of three samples for Bayburt volcanic rocks

Sample number	Material	Locality	Rock name	Plateau age (Ma)	$\pm \sigma$	Method
M-36	groundmass	Güvenli hill	basalt	44.6	0.1	⁴⁰ Ar/ ³⁹ Ar
K-2	groundmass	Yazyurdu hill	basaltic andesite	44.0	0.1	⁴⁰ Ar/ ³⁹ Ar
K-22	groundmass	Buğdaykabanı hill	dacite	43.5	0.1	⁴⁰ Ar/ ³⁹ Ar

									<u> </u>				
	Basalt								Basalti	c andes	ite		
Sample	Y2	S82	S83	S84	Y7	S56	M36	M11	B117	B118	M26	M34	Y9
Major oxi	des (wt	2%)											
SiO ₂	48.02	49.82	50.14	50.50	51.06	51.08	51.22	51.78	52.50	52.96	53.33	54.36	54.40
TiO ₂	0.95	0.92	0.90	0.92	0.98	0.82	1.04	0.97	0.83	0.82	0.79	0.73	0.76
Al ₂ O ₃	20.06	18.11	18.29	18.25	18.43	18.54	17.81	17.13	16.92	16.72	15.55	17.69	17.45
Fe ₂ O _{3T}	10.59	10.51	10.39	10.17	8.76	8.88	9.06	9.60	9.40	9.19	9.72	7.93	8.47
MnO	0.14	0.21	0.21	0.21	0.14	0.15	0.24	0.15	0.17	0.17	0.21	0.16	0.17
MgO	5.55	5.47	5.30	5.26	3.14	4.79	4.10	4.68	5.24	5.34	5.27	4.69	3.45
CaO	9.03	10.61	10.25	10.20	10.02	10.44	9.03	9.44	8.05	8.14	8.41	7.73	7.62
Na ₂ O	2.87	3.00	3.22	3.22	2.34	2.53	3.29	3.25	3.21	3.19	3.07	2.76	3.34
K ₂ O	0.30	0.27	0.31	0.30	1.18	0.54	1.45	1.64	1.48	1.50	2.00	1.49	1.58
P_2O_5	0.33	0.15	0.16	0.16	0.20	0.14	0.38	0.30	0.17	0.17	0.29	0.31	0.28
LOI	2.10	0.70	0.50	0.50	3.50	1.80	2.10	0.70	1.80	1.50	1.00	1.90	2.20
Total	99.94	99.77	99.67	99.69	99.75	99.71	99.72	99.64	99.77	99.70	99.64	99.75	99.72
Trace eler	nents (p	pm)					•••		• • • •				
Со	20.50	28.90	27.60	26.20	23.10	21.80	20.10	27.90	28.40	27.40	30.40	20.30	17.60
N1	14.40	4.80	6.60	6.70	12.40	12.50	3.90	12.40	11.60	11.10	9.80	10.70	2.90
V	314.00	292.00	302.00	301.00	257.00	264.00	226.00	260.00	235.00	234.00	260.00	165.00	160.00
Cu	183.30	49.70	45.30	45.10	78.00	458.20	35.20	51.90	/6.10	72.30	30.40	33.70	52.30
Pb	2.20	7.20	8.40	8.20	8.90	5.30	5.10	9.70	12.30	11.10	8.90	4.80	5.00
Zn	41.00	22.00	31.00	30.00	61.00	12.00	26.00	44.00	43.00	57.00	17.00	46.00	50.00
W	0.90	0.50	0.50	0.50	0.70	1.40	0.50	0.70	0.50	0.50	0.50	0.50	0.50
Rb	16.40	4.40	4.60	4.60	31.20	12.60	27.10	44.10	28.60	27.60	46.20	27.90	36.30
Ва	155.00	176.00	208.00	205.00	326.00	210.00	456.00	565.00	378.00	395.00	444.00	536.00	461.00
Sr	660.20	506.20	532.90	529.10	532.90	477.10	640.30	643.20	405.60	427.50	732.00	/17.50	618.90
Ta	0.10	0.10	0.20	0.20	0.30	0.20	0.40	0.40	0.30	0.20	0.30	0.40	0.40
Nb	2.80	3.50	3.50	3.60	5.70	3.20	8.20	8.20	4.70	5.30	4.50	8.60	6.80
Ht	1.30	1.90	1.80	1.80	2.30	1.50	3.00	2.60	2.80	3.20	2.50	2.80	2.50
Zr	47.00	70.00	66.40	65.70	90.50	57.70	113.10	99.20	98.90	110.60	90.60	114.80	104.40
Y	22.00	18.50	18.10	17.90	19.50	16.60	19.60	19.00	17.80	17.90	16.20	15.70	18.30
1h	1.20	1.10	1.50	1.40	4.00	3.90	5.80	6.00	3.80	/.60	3.60	4.10	4.10
U C-	0.40	0.30	0.40	0.30	1.40	1.30	1.00	1.60	0.90	1.10	1.10	1.10	1.20
Ga	1/.90	15.80	15.90	15.10	17.90	10.50	18.40	10.60	14./0	15.00	14.10	10.60	10.70
La	/.00	10.60	10.00	9.80	18.00	15.10	23.90	23.00	1/.40	16.70	19.60	27.10	20.50
Ce D:	14.70	21.90	23.00	22.90	33.80	24.40	48.50	42.30	33.70	35.20	41.00	46.90	39.40
Pr NJ	2.04	2.89	2.94	2.78	4.08	2.84	5.62	5.08	4.09	4.09	5.07	5.39	4.72
Nd	9.40	12.40	11.60	12.00	1/.10	11.50	23.50	20.50	1/.10	15.90	21.90	21.20	18.20
Sm En	2.38	5.14 0.05	2.89	3.06 1.00	5./9 1.14	2.31	4.45	4.25	5.50	5.58	4.54	5.85	3.8/
EU	0.86	0.95	1.01	1.00	1.14	0.85	1.45	1.21	1.01	1.00	1.55	1.14	1.20
Են Ծե	2.80	3.30 0.55	5.54 0.52	5.55	5.19	2.19	4.49	4.12	3.39	3.01	4.1/	3.49 0.52	3./4
10 D	0.48	0.55	0.33	0.54	0.38	0.40	0.00	0.01	0.38	0.30	0.58	0.55	0.39
Dy Lle	2.94	5.58	5.48 0.64	3.4/	5.40 0.72	2.70	5.72	5.56	5.29	5.25	5.24	2.85	5.41 0.71
H0 En	0.05	0.72	0.04	0.08	0.75	0.00	0.70	0.74	0.70	0.62	0.01	0.01	0./1
EI Tm	1.94	2.09	1.99	1.99	2.09	1./1	2.21	2.13	2.13	1.92	1.02	1.79	2.09
1 M Vh	0.27	0.50	0.30	0.28	0.30	0.20	0.29	0.50	0.28	0.51	0.25	0.24 1.65	0.50
10 I u	1.//	1.94	1.92	1.8/	2.03	1.00	2.07	1.90	2.02	1.90	1.03	1.05	2.14 0.22
LU (E. /E*)	0.28	0.50	0.28	0.28	0.52	0.20	0.50	0.30	0.30	0.52	0.24	0.24	1.00
(Eu/Eu [*])n	1.01	0.90	0.99	0.90	U.91 5 00	0.98	0.98	U.ð/ 7.04	0.80	U.8/	0.94 8 14	0.93	1.00
$(La/Lu)_n$	2.39	3.00 2.12	3.70 2.19	3.02 2.02	3.82 2.00	0.01	0.20 2.20	7.94 2.41	0.01	3.40 2.11	0.40 2.84	11.09	0.45
$(La/Sm)_n$	1.83	2.12 1.27	2.18 1.49	2.02	2.99 1 47	5.19 1.22	3.38 1.94	3.41 1.71	3.Uð 1.40	5.11 1.40	2.84 2.14	4.43 1 01	5.55 1 41
$(Gd/Lu)_n$	1.27	1.3/	1.48	1.49	1.4/	1.55	1.80	1./1	1.49	1.40	2.10	1.81	1.41
(La/Yb)n Ma#	2.0/	5.09	5.52	5.54 52.04	5.99 44 11	0.18	/.80	1.95	5.82	5.94 56.12	8.15 54.41	11.10	0.4/
Mg#	33.37	55.40 2.04	52.90	55.24 2.70	44.11	54.29	49.91	51.//	35.10	30.13	54.41	30.30	47.28
Ce/Pb	0.68	5.04	2.74	2.79	3.80	4.60	9.51	4.36	2.74	3.17	4.61	9.77	/.88
Nb/La	0.40	0.33	0.35	0.37	0.32	0.21	0.34	0.36	0.27	0.32	0.23	0.32	0.33
Ba/La	22.14	16.60	20.80	20.92	18.11	13.91	19.08	24.57	21.72	23.65	22.65	19.78	22.49
Dy/Yb	1.66	1.74	1.81	1.86	1.67	1.64	1.80	1.82	1.63	1.71	1.99	1.73	1.59
Pb/Ce	0.15	0.33	0.37	0.36	0.26	0.22	0.11	0.23	0.36	0.32	0.22	0.10	0.13
Th/Ce	0.08	0.05	0.07	0.06	0.12	0.16	0.08	0.14	0.11	0.22	0.09	0.09	0.10

 Table 2 Major and trace elements compositions for Bayburt volcanic rocks

	Basaltic	andesite	e		Andesit	e					Dacite		
Sample	Y6	B119	B109	K2	B113	B114	B112	Y29	Y22	B121	Y35	Y39	K22
Major oxid	es (wt%)												
SiO ₂	55.54	56.63	56.82	57.00	58.21	58.67	58.75	59.39	59.59	60.07	64.38	64.93	68.10
TiO ₂	0.75	0.65	0.79	0.76	0.70	0.71	0.67	0.55	0.56	0.64	0.34	0.33	0.40
Al ₂ O ₃	19.35	17.51	16.36	16.53	16.84	16.53	17.44	17.14	17.23	17.63	16.22	16.16	14.48
Fe ₂ O _{3T}	6.90	7.44	7.61	6.84	6.94	6.97	6.35	6.19	6.16	5.67	3.81	3.71	3.52
MnO	0.12	0.17	0.13	0.10	0.14	0.14	0.13	0.11	0.16	0.12	0.14	0.14	0.06
MgO	2.61	3.39	3.70	3.31	2.97	3.03	2.62	2.22	2.86	2.17	1.22	1.23	1.16
CaO	7.50	7.40	6.32	6.86	5.15	5.25	6.39	5.04	6.39	6.43	4.05	3.99	2.22
Na ₂ O	2.62	2.73	3.45	3.20	4.19	4.17	3.99	4.04	3.78	3.79	3.83	3.93	3.71
K ₂ O	2.44	1.81	2.08	2.50	1.60	1.50	1.70	1.96	1.38	1.96	2.54	2.47	3.92
P_2O_5	0.21	0.26	0.15	0.20	0.22	0.22	0.18	0.26	0.27	0.19	0.21	0.21	0.10
LOI	1.70	1.70	2.30	2.50	2.80	2.50	1.50	2.90	1.40	1.10	3.10	2.70	2.10
Total	99.74	99.69	99.71	99.80	99.76	99.69	99.72	99.80	99.78	99.77	99.84	99.80	99.77
Trace elem	ents (ppr	n)											
Со	15.60	15.40	19.80	16.90	13.80	13.20	13.00	10.80	13.70	10.20	4.50	3.90	5.60
Ni	4.30	7.10	7.20	9.20	3.50	3.60	3.80	7.20	5.40	2.60	0.70	0.40	1.80
V	156.00	143.00	185.00	163.00	140.00	150.00	145.00	87.00	111.00	117.00	40.00	40.00	50.00
Cu	72.10	42.20	63.40	39.60	25.60	24.00	46.30	32.60	30.90	29.20	3.50	2.50	9.40
Pb	6.10	9.60	6.30	6.60	3.80	3.90	12.20	12.40	3.80	8.80	9.30	8.40	12.10
Zn	37.00	44.00	49.00	33.00	32.00	36.00	48.00	56.00	45.00	48.00	63.00	60.00	23.00
W DL	0.90	0.50	0.50	1.10	0.50	0.50	0.50	0.70	0.70	0.50	5.30	0.80	0.50
KD Do	484.00	30.10 657.00	53.20	511 00	29.50	20.00	11.10	50.60 805.00	40.80	18.80	00.10 706.00	03.40	82.50
Da S.	402.20	602 10	220.80	285.20	550.00	576.20	504.00 711.70	578 00	579 60	423.00	790.00	735.00 526.90	810.00 246.10
SI Te	492.20	0.40	559.80 0.40	565.20 0.50	0.40	570.50 0.40	/11./0	378.90 0.40	578.00	579.00 0.40	521.20 0.40	0.40	240.10
1a Nh	6.30	0.40 6 50	0.40 6 50	0.50 8 50	0.40 8.00	0.40	7.00	0.40	7.80	0.40	0.40	0.40	0.50
INU LIF	2.40	0.50 3.10	3.50	3.50	8.00 3.50	7.60	7.90	8.30 3.40	7.60	0.70 3.00	0.20 3.10	0.70 3.30	9.00
7r	2.40 93.60	125 50	132 30	147.90	141.00	131 70	139.00	150.00	132.20	150.80	130.00	131 70	4.90
V V	17 50	20.40	21.00	20.90	19.00	18.60	20.30	15 30	152.20	21.20	14 50	131.70	1740
Th	5 70	3 40	5 30	8.00	3 50	3 10	20.50 4 40	6 30	5 10	4 00	6.80	6 50	8 80
U	1.60	1.00	1.80	2.70	0.80	1.00	1.10	1.60	1.50	1.00	1.70	1.50	2.20
Ga	16.90	14.40	15.00	13.80	13.30	12.70	14.50	15.90	16.60	15.10	15.00	14.70	13.00
La	21.40	21.90	20.20	25.30	24.20	23.10	23.10	29.70	27.80	25.20	30.60	29.90	29.40
Ce	38.10	47.90	39.50	45.50	47.60	48.70	45.40	51.20	50.20	48.40	54.10	53.30	52.50
Pr	4.52	5.36	4.71	5.33	5.51	5.38	5.27	5.65	5.57	5.42	5.73	5.78	5.57
Nd	18.10	21.00	18.60	19.80	20.90	21.60	20.20	21.40	22.00	21.10	21.10	21.70	19.90
Sm	3.81	4.13	3.80	4.15	4.00	4.18	3.48	3.67	4.06	3.97	3.43	3.44	3.41
Eu	1.09	1.24	0.99	1.07	1.06	1.11	1.08	1.15	1.12	1.09	1.03	0.98	0.77
Gd	3.61	4.02	3.93	4.21	3.90	3.85	3.63	3.19	3.41	3.79	3.07	3.11	3.11
Tb	0.53	0.60	0.62	0.63	0.60	0.60	0.57	0.49	0.51	0.55	0.43	0.43	0.48
Dy	3.23	3.55	3.68	3.64	3.42	3.75	3.77	2.86	3.05	3.51	2.43	2.60	2.84
Ho	0.68	0.74	0.78	0.81	0.77	0.75	0.70	0.58	0.61	0.72	0.49	0.49	0.63
Er	1.96	2.18	2.53	2.36	2.36	2.16	2.17	1.69	1.82	2.25	1.61	1.49	1.95
Tm	0.29	0.33	0.33	0.34	0.34	0.32	0.33	0.25	0.28	0.35	0.24	0.25	0.30
Yb	1.95	2.38	2.24	2.27	2.22	2.22	2.15	1.68	1.71	2.27	1.65	1.75	2.16
Lu	0.28	0.35	0.36	0.37	0.34	0.33	0.35	0.25	0.29	0.36	0.28	0.27	0.34
(Eu/Eu*)n	0.89	0.92	0.78	0.78	0.81	0.83	0.92	1.00	0.90	0.85	0.95	0.90	0.71
(La/Lu)n	7.91	6.48	5.81	7.08	7.37	7.25	6.83	12.30	9.93	7.25	11.32	11.47	8.95
(La/Sm) _n	3.54	3.34	3.35	3.84	3.81	3.48	4.18	5.09	4.31	4.00	5.62	5.47	5.43
(Gd/Lu)n	1.60	1.43	1.36	1.41	1.42	1.45	1.29	1.58	1.46	1.31	1.36	1.43	1.14
(La/Yb) _n	7.42	6.22	6.09	7.53	7.37	7.03	7.26	11.95	10.99	7.50	12.53	11.55	9.20
Mg#	45.44	50.08	51.70	51.58	48.51	48.90	47.60	44.12	50.55	45.73	41.35	42.19	42.05
Ce/Pb	6.25	4.99	6.27	6.89	12.53	12.49	3.72	4.13	13.21	5.50	5.82	6.35	4.34
Nb/La	0.29	0.30	0.32	0.34	0.33	0.34	0.34	0.29	0.28	0.35	0.27	0.29	0.31
Ba/La	22.62	30.00	25.64	20.20	21.90	22.25	15.76	27.10	20.97	16.87	26.01	25.18	27.76
Dy/Yb	1.66	1.49	1.64	1.60	1.54	1.69	1.75	1.70	1.78	1.55	1.47	1.49	1.31
Pb/Ce	0.16	0.20	0.16	0.15	0.08	0.08	0.27	0.24	0.08	0.18	0.17	0.16	0.23
I h/Ce	0.15	0.07	0.13	0.18	0.07	0.06	0.10	0.12	0.10	0.08	0.13	0.12	0.17

 $Fe_{2}O_{3T} \text{ is total iron as } Fe_{2}O_{3}, \text{ LOI is loss on ignition, } Mg\# (Mg number) = molar 100 \times MgO/(MgO + Fe_{2}O_{3T}), Eu*= (Sm + Gd)n/2$

 Table 3 Sr-Nd isotope compositions for Bayburt volcanic rocks

	Rb	Sr	87Rb/86Sr	⁸⁷ Sr/ ⁸⁶ Sr	(2σ)	${}^{87}\mathrm{Sr}^{86}\mathrm{Sr}_{(i)}$	Sm	Nd	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ / ¹⁴⁴ Nd	(2σ)	143Nd/144Nd(i)	εNd _(i) ^a	$T_{DM}{}^{b}$	T_{DM}^{c}
Sample	(ppm)	(ppm)					(ppm)	(ppm)							
<u>Basalt</u>															
Y2	16.40	660.20	0.0720	0.705004	10	0.704959	2.38	9.40	0.153069	0.512716	5	0.512672	1.76	1.01	0.71
Y7	31.20	532.90	0.1698	0.705261	10	0.705154	3.79	17.10	0.133993	0.512649	4	0.512610	0.56	0.90	0.81
M36	27.10	640.30	0.1227	0.705047	9	0.704971	4.45	23.50	0.114481	0.512666	5	0.512633	1.00	0.71	0.77
Basaltic ande	<u>site</u>														
M34	27.90	717.50	0.1128	0.705316	9	0.705245	3.85	21.20	0.109790	0.512607	5	0.512575	-0.11	0.76	0.86
Y9	36.30	618.90	0.1701	0.704953	11	0.704847	3.87	18.20	0.128552	0.512667	5	0.512630	0.94	0.82	0.78
Y6	65.80	492.20	0.3877	0.705205	10	0.704963	3.81	18.10	0.127258	0.512634	4	0.512597	0.31	0.86	0.83
Andesite															
B113	29.50	559.00	0.1530	0.705328	9	0.705233	4.00	20.90	0.115705	0.512620	5	0.512586	0.10	0.78	0.85
Y29	50.60	578.90	0.2535	0.705669	10	0.705511	3.67	21.40	0.103679	0.512601	5	0.512572	-0.19	0.73	0.87
Y22	40.80	578.60	0.2045	0.705305	10	0.705177	4.06	22.00	0.111569	0.512584	5	0.512552	-0.57	0.80	0.90
<u>Dacite</u>															
Y35	60.10	521.20	0.3344	0.705457	10	0.705248	3.43	21.10	0.098277	0.512592	5	0.512564	-0.35	0.71	0.88
Y39	63.40	536.80	0.3425	0.705478	10	0.705264	3.44	21.70	0.095838	0.512573	5	0.512545	-0.71	0.72	0.91
K22	82.50	246.10	0.9722	0.706042	10	0.705434	3.41	19.90	0.103595	0.512586	5	0.512556	-0.49	0.75	0.90

^a ϵ Nd_(i) values are calculated based on present-day ¹⁴⁷Sm/¹⁴⁴Nd=0.1967 and ¹⁴³Nd/¹⁴⁴Nd=0.512638 ^b Single stage model age (T_{DM}^b) calculated with depleted mantle present-day parameters ¹⁴³Nd/¹⁴⁴Nd=0.513151 and ¹⁴⁷Sm/¹⁴⁴Nd=0.219

^c Two-stage model age (T_{DM}^{c}) according to Liew and Hofman (1988) The Initial ¹⁴³Nd/¹⁴⁴Nd and ⁸⁷Sr/⁸⁶Sr ratios were calculated based on the ⁴⁰Ar–³⁹Ar ages reported in Table 1

Supplementary Tables

Step / Sample	⁴⁰ Ar	Error ⁴⁰ Ar	³⁹ Ar	Error ³⁹ Ar	³⁸ Ar	Error ³⁸ Ar	³⁷ Ar	Error ³⁷ Ar	³⁶ Ar	Error ³⁶ Ar	⁴⁰ Ar*/ ³⁹ Ar _K	Error ⁴⁰ Ar*/ ³⁹ Ar _K	Apparent age (Ma)	Error Age (Ma)	Delay to irradiation (day)
M36															
1	2030.403	5.886	11.426	0.042	0.0000010	0.0064	2.079	0.017	6.939	0.048	3.510	1.611	25.46	11.60	129.65
2	881.187	6.138	13.221	0.058	0.0000010	0.0074	2.046	0.028	3.017	0.030	1.299	0.879	9.46	6.39	129.67
3	1051.965	6.103	26.718	0.247	0.0000010	0.0102	4.484	0.025	3.278	0.020	4.377	0.371	31.69	2.66	129.69
4	2889.516	2.059	83.278	0.056	0.0000010	0.0110	17.527	0.110	8.580	0.039	5.414	0.213	39.12	1.53	129.71
5	706.199	4.839	34.045	0.321	0.0049210	0.0061	6.567	0.041	1.805	0.023	5.805	0.266	41.91	1.90	129.74
6	2196.906	5.599	100.862	0.322	0.0033680	0.0099	22.049	0.179	5.537	0.062	6.346	0.210	45.77	1.51	129.76
7	603.659	2.648	43.366	0.211	0.0095050	0.0094	12.975	0.114	1.203	0.008	6.388	0.102	46.07	0.75	129.85
8	2343.211	6.501	168.348	0.540	0.0000010	0.0094	36.213	0.171	4.746	0.043	6.149	0.100	44.36	0.74	129.87
9	1482.264	4.540	143.219	0.393	0.0077470	0.0071	21.077	0.059	2.261	0.017	6.055	0.059	43.70	0.46	129.89
10	3030.587	6.597	321.735	1.520	0.0000010	0.0054	33.432	0.062	3.847	0.015	6.171	0.046	44.52	0.38	129.92
11	4648.137	3.449	523.792	0.689	0.0000010	0.0117	44.500	0.148	5.154	0.037	6.209	0.033	44.80	0.30	129.96
12	3924.866	4.590	410.088	0.364	0.0000010	0.0104	38.320	0.145	5.071	0.044	6.191	0.043	44.67	0.36	129.98
13	6025.583	2.051	565.058	0.299	0.0000010	0.0149	95.344	0.153	9.304	0.058	6.203	0.044	44.75	0.37	130.00
Fusion	2957.472	0.792	206.176	0.109	0.0000010	0.0108	147.213	0.304	6.508	0.021	6.249	0.061	45.08	0.47	130.04
K-2															
1	10460.122	12.052	83.333	0.304	0.0092800	0.0127	3.946	0.018	34.496	0.062	6.734	0.690	48.71	4.93	130.67
2	3350.155	27.254	79.059	0.183	0.0000010	0.0116	2.972	0.010	10.187	0.053	5.458	0.448	39.59	3.22	130.68
3	5369.345	10.428	277.963	0.538	0.0000010	0.0136	10.047	0.036	13.046	0.047	5.932	0.101	42.99	0.75	130.70
4	10039.744	8.584	676.698	1.278	0.0000010	0.0086	16.395	0.015	20.740	0.078	6.116	0.066	44.30	0.51	130.74
5	5164.137	2.877	521.205	0.287	0.0000010	0.0114	12.007	0.066	7.102	0.059	6.076	0.044	44.01	0.36	130.76
6	3546.499	1.944	446.407	0.199	0.0000010	0.0081	11.036	0.035	2.977	0.043	6.113	0.034	44.28	0.30	130.78
7	6607.987	6.834	636.049	0.539	0.0000010	0.0054	18.708	0.072	9.778	0.024	6.063	0.035	43.92	0.31	130.80
8	4472.112	2.230	451.542	0.277	0.0000010	0.0094	18.735	0.055	6.206	0.020	6.062	0.032	43.91	0.29	130.84
9	2622.349	7.775	362.682	0.619	0.0000010	0.0111	16.240	0.089	1.653	0.031	6.030	0.037	43.69	0.32	130.87
10	2473.340	10.229	322.387	0.396	0.0018670	0.0100	15.000	0.080	1.950	0.014	6.047	0.039	43.80	0.33	130.89
11	6613.922	2.012	813.253	0.307	0.0000010	0.0104	39.010	0.074	6.105	0.109	6.091	0.044	44.12	0.36	130.91
12	5779.997	2.362	856.311	0.590	0.0000010	0.0109	50.769	0.135	2.361	0.092	6.087	0.034	44.09	0.30	130.95
13	2848.018	0.911	402.828	0.312	0.0000010	0.0091	69.587	0.169	1.801	0.025	6.063	0.023	43.92	0.25	130.97
Fusion	1906.303	0.971	220.643	0.181	0.0000010	0.0089	278.297	0.393	3.272	0.026	6.083	0.043	44.06	0.36	130.99
K-22															
1	6403.636	11.672	124.412	0.135	0.0014840	0.0146	1.537	0.023	20.404	0.101	4.416	0.360	32.16	2.60	133.67
2	3600.474	4.133	304.375	0.426	0.0000010	0.0168	2.200	0.059	6.723	0.074	5.541	0.083	40.26	0.62	133.68
3	10727.783	14.037	1351.797	1.633	0.0000010	0.0130	6.311	0.030	8.944	0.052	6.093	0.025	44.22	0.26	133.70

 Table S1 ⁴⁰Ar-³⁹Ar dating results for Bayburt volcanic rocks

4	8349.706	5.804	1226.863	0.936	0.0000010	0.0120	4.757	0.054	2.912	0.028	6.182	0.015	44.86	0.21	133.73	
5	5358.799	2.870	823.127	0.609	0.0000010	0.0092	3.214	0.033	1.178	0.021	6.157	0.014	44.68	0.21	133.77	
6	2696.424	16.509	426.616	1.890	0.0000010	0.0118	1.681	0.033	0.465	0.012	6.064	0.049	44.01	0.40	133.79	
7	4075.756	8.328	642.395	1.553	0.0000010	0.0119	2.969	0.019	0.877	0.013	6.010	0.023	43.62	0.24	133.82	
8	1989.140	7.010	314.668	1.043	0.0000010	0.0121	1.557	0.023	0.413	0.018	6.002	0.035	43.57	0.31	133.86	
9	1848.695	3.812	289.605	0.833	0.0000010	0.0151	1.684	0.033	0.458	0.012	5.988	0.027	43.47	0.26	133.88	
10	1844.046	12.395	281.148	0.872	0.0000010	0.0148	2.109	0.040	0.657	0.014	5.948	0.051	43.18	0.41	133.90	
11	2753.741	1.347	398.477	0.223	0.0000010	0.0141	4.940	0.031	1.382	0.024	5.982	0.023	43.43	0.24	133.95	
12	5518.200	3.830	736.469	0.564	0.0000010	0.0105	7.535	0.043	4.012	0.016	5.993	0.019	43.50	0.22	133.98	
13	6717.569	2.406	849.114	0.338	0.0000010	0.0095	13.005	0.065	5.846	0.029	6.005	0.021	43.59	0.24	134.00	
14	5411.710	2.309	694.503	0.277	0.0000010	0.0097	9.466	0.022	4.358	0.023	6.060	0.020	43.98	0.23	134.02	
Fusion	1537.283	0.676	172.713	0.173	0.0000010	0.0136	2.233	0.015	1.770	0.025	6.025	0.049	43.74	0.39	134.04	

 40 Ar_{atm}: atmospheric 40 Ar, 40 Ar*: radiogenic 40 Ar, Ca: produced by Ca-neutron interferences, K: produced by K-neutron interferences, Age (Ma): the date is calculated using the decay constants recommended by Steiger and Jäger (1977). The errors are at the 1 σ level and do not include the error in the value of the J parameter.

Table S2 (143Nd/144Nd)(i) and (87Sr/86Sr)(i) compositions assumed for the end-member components in the assimilation-fractional crystallizations calculation

	IC ₀	ICA	Total Partition coefficient (∑D)					
End member	(Parental magma)	(Upper continental crust)		D1	D2	D3		
Sr (ppm)	188	350	Sr	1.20	0.50	1.20		
Nd (ppm)	9.62	26	Nd	1.85	1.80	1.85		
⁸⁷ Sr/ ⁸⁶ Sr	0.7029	0.71463		all contine	ental crus	t modelling		
143Nd/144Nd	0.51319	0.511843						
	Klein (2004)	Taylor and McLennan (1985)	_					