A new green lacewing species of the extinct subfamily Limaiinae (Insecta: Neuroptera: Chrysopidae) from the mid-Cretaceous of Myanmar

Zuluan Chen, Corentin Jouault, Hongyu Li, Chunpeng Xu, André Nel, Diying Huang, Xingyue Liu

To cite this version:

Zuluan Chen, Corentin Jouault, Hongyu Li, Chunpeng Xu, André Nel, et al.. A new green lacewing species of the extinct subfamily Limaiinae (Insecta: Neuroptera: Chrysopidae) from the midCretaceous of Myanmar. Cretaceous Research, 2022, 140, pp.105326. 10.1016/j.cretres.2022.105326 . insu-03759320

HAL Id: insu-03759320
https://insu.hal.science/insu-03759320

Submitted on 24 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal Pre-proof

A new green lacewing species of the extinct subfamily Limaiinae (Insecta: Neuroptera: Chrysopidae) from the mid-Cretaceous of Myanmar

Zuluan Chen, Corentin Jouault, Hongyu Li, Chunpeng Xu, André Nel, Diying Huang, Xingyue Liu

PII: \quad S0195-6671(22)00190-2
DOI: \quad https://doi.org/10.1016/j.cretres.2022.105326
Reference: YCRES 105326

To appear in: Cretaceous Research

Received Date: 20 April 2022
Revised Date: 17 July 2022
Accepted Date: 23 July 2022

Please cite this article as: Chen, Z., Jouault, C., Li, H., Xu, C., Nel, A., Huang, D., Liu, X., A new green lacewing species of the extinct subfamily Limaiinae (Insecta: Neuroptera: Chrysopidae) from the midCretaceous of Myanmar, Cretaceous Research, https://doi.org/10.1016/j.cretres.2022.105326.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
© 2022 Elsevier Ltd. All rights reserved.

Zuluan Chen (First Author): Conceptualization, Methodology, Software, Investigation, Data Curation, Writing - Original Draft, Writing - Review \& Editing; Corentin Jouault: Resources, Software, Investigation, Writing - Review \& Editing;
André Nel: Investigation, Writing - Review \& Editing;
Hongyu Li: Investigation, Writing - Review \& Editing;
Chunpeng Xu: Resources, Writing - Review \& Editing;
Diying Huang: Writing - Review \& Editing, Supervision;
Xingyue Liu (Corresponding Author): Conceptualization, Writing - Review \& Editing, Supervision.

A new green lacewing species of the extinct subfamily Limaiinae (Insecta: Neuroptera:

Chrysopidae) from the mid-Cretaceous of Myanmar

Zuluan Chen ${ }^{\mathrm{a}}$, Corentin Jouault ${ }^{\mathrm{c}, \mathrm{d}, \mathrm{e}}$, Hongyu Li^{a}, Chunpeng Xu^{b}, André $\mathrm{Nel}^{\mathrm{c}}$, Diying Huang ${ }^{\mathrm{b}}$,

Xingyue Liu ${ }^{\text {a, * }}$
${ }^{\text {a }}$ Department of Entomology, China Agricultural University, Beijing 100193, China
${ }^{\mathrm{b}}$ State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China
${ }^{\text {c }}$ Institut de Systématique, Évolution, Biodiversité (ISYEB) Muséum national d’Histoire naturelle,

CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, F-75005 Paris, France
${ }^{\mathrm{d}}$ Université Rennes, CNRS, Géosciences Rennes, UMR 6118, F-35000, Rennes, France
${ }^{\mathrm{e}}$ CNRS, UMR 5554 Institut des Sciences de l'Évolution de Montpellier, Place Eugène Bataillon, F34095, Montpellier, France
*Corresponding author. E-mail: xingyue liu@yahoo.com (X. Liu).

Abstract

Chrysopidae (green lacewings) is one of the species-rich families of Neuroptera. The Cretaceous fossils of green lacewing currently comprise 11 genera and 26 species. Here we describe a new green lacewing species, Mesypochrysa coadnata sp. nov., from mid-Cretaceous Burmese amber. The new species belongs to the extinct subfamily Limaiinae and is characterized by the RP with seven zigzagged branches, the forewing CuA with four pectinate branches, and the hind wing CuA with three pectinate branches. The exquisite preservation of the new fossils facilitates the

understanding of the genital morphology of the Mesozoic green lacewings.

Key words: Chrysopoidea, Limaiinae, Mesypochrysa, Mesozoic, Burmese amber

1. Introduction

Chrysopidae is the second largest family of Neuroptera after Myrmeleontidae, and comprises at least 1416 species assigned to 82 genera (Oswald, 2022). The family is divided into three extant subfamilies, i.e., Apochrysinae, Chrysopinae, Nothochrysinae, and one extinct subfamily Limaiinae (Breitkreuz, 2018). The fossil records of Chrysopidae are comparatively rich, with about 71 species in 30 genera, which respectively belong to the subfamilies Limaiinae, Chrysopinae and Nothochrysinae. Among them, 35 species in 10 genera belong to Limaiinae, and these species have been reported from the Middle Jurassic to the Eocene (Archibald and Makarkin, 2015; Khramov et al., 2016). Most species of Limaiinae are known from the Cretaceous, currently with 10 genera and 27 species described from Brazil, China, Mongolia, Russia and the United Kingdom. The Jurassic Limaiinae comprise two genera and six species described from China and Kazakhstan. This subfamily extended the occurrence from the Eocene, but with only two species of same genus from Canada and Denmark.

Hitherto, only one species of Limaiinae has been described from the Burmese amber, namely Parabaisochrysa xingkei Lu et al., 2018, which represents the first finding of this subfamily from an amber inclusion. Compared with the rich records of chrysopid-like larvae from the Burmese amber, the adults of Chrysopidae as well as of Chrysopoidea are rarely found from this deposit (Liu et al., 2016, 2018; Haug et al., 2022).

Here we describe a new species of Limaiinae, Mesypochrysa coadnata sp. nov., based on three female specimens from mid-Cretaceous Burmese amber. Notably, the new species is the first species of Mesypochrysa Martynov, 1927 known to date from the amber inclusion, and represents the youngest fossil record of this genus. The new fossils are exquisitely preserved, and thus provide valuable new data, particularly on the genital morphology, for the Mesozoic green lacewings.

2. Material and methods

The Burmese amber samples under present study are from the Hukawng Valley in Tanai Township, Myitkyina District of Kachin State, Myanmar (see Yu et al., 2019: fig. 1). The age of this deposit has been dated to be 98.8 ± 0.6 million years (earliest Cenomanian) by U-Pb dating of zircons from the volcanoclastic matrix of the amber (Shi et al., 2012). The specimen is deposited in the Nanjing Institute of Geology and Palaeontology (NIGP), Chinese Academy of Sciences, Nanjing, and was legally collected before June 2017 (see Museum Catalogue Entry in Supplementary Material).

Photographs and drawings were made by using Zeiss SteREO Discovery V12 stereo microscope system. The figures were prepared with Adobe Photoshop CS6. Wing venation terminology generally follows Adams (1996) and Breitkreuz et al. (2017). Venational abbreviations: A, anal vein; C , costa; Cu , cubitus; CuA , cubitus anterior; CuP , cubitus posterior; MA, media anterior; MP, media posterior; RA, radius anterior; RP, radius posterior; ScA, subcosta anterior; ScP , subcosta posterior; im, intramedian cell; Psm, pseudomedia; Psc, pseudocubitus.

3. Systematics of palaeontology

Class Insecta Linnaeus, 1758

Order Neuroptera Linnaeus, 1758

Family Chrysopidae Schneider, 1851

Subfamily Limaiinae Martin-Neto \& Vulcano, 1989

Genus Mesypochrysa Martynov, 1927 (Type species: Mesypochrysa latipennis Martynov, 1927
)

Revised diagnosis. Forewing: costal crossveins simple; two gradate series of crossveins present; RP with 5-20 branches distally bifurcated; cell im proximally connected with stem of RP by a crossvein; MA and MP distally bifurcated; CuA with three to five pectinate branches; CuP distally bifurcated; A1 and A2 long and simple, but sometimes forked marginally; A1 connected with CuP by short crossvein or even partially fused together; A3 short. Hind wing: shape slightly narrower, shorter and distally more acute than forewing; costal space narrow, costal crossveins simple; two gradate series of crossveins present; RP with 5-18 branches; MA and MP distally bifurcated; CuA with three to five pectinate branches; CuP simple or bifurcated; A1 simple, but sometimes forked marginally. Female genitalia: Tergum 8 narrow; tergum 9 posteroventrally broadened; gonocoxites 9 broad; ectoprocts paired, ovoid, not fused with tergum 9.

Remarks. Mesypochrysa is the most species-rich genus of Limaiinae, comprising 21 described species, and it can be distinguished from the other limaiine genera mainly by the forewing characters. Mesypochrysa can be distinguished from Limaia Martins-Neto \& Vulcano, 1989 by the forewing RP with most branches distally bifurcated (the forewing RP branches mostly simple in Limaia) (Martins-Neto, 1997; Martins-Neto \& Vulcano, 1989). Mesypochrysa is distinguished from Drakochrysa Yang \& Hong, 1990 by the forewing RP branches mostly bifurcated distally, and the CuP distally bifurcated (the forewing RP branches mostly simple, and the CuP with four branches in Drakochrysa) (Yang and Hong, 1990). Mesypochrysa is distinguished from Aberrantochrysa

Khramov, 2017 by zigzagged RP branches and the presence of two parallel series of gradate veins in the forewing (in Aberrantochrysa, the RP branches are smooth, and the inner gradate veins are irregularly arranged in the forewing) (Khramov, 2017). Mesypochrysa is distinguished from Baisochrysa Makarkin, 1997 and Parabaisochrysa Nel, Delclòs \& Hutin, 2005 by the presence of two series of gradate veins in the forewing (in Baisochrysa and Parabaisochrysa, three series of gradate veins are present in the forewing) (Makarkin, 1997; Lu et al., 2018). Mesypochrysa is distinguished from Protochrysa Willmann \& Brooks, 1991 by having simple crossveins in the pterostigmal area (in Protochrysa, the crossveins in the pterostigmal area are forked) (Makarkin and Archibald, 2013).

Mesypochrysa coadnata sp. nov.

(Figs. 1-6)
urn:Isid:zoobank.org:act:6159CFE0-2436-4786-B018-CDDFBD039298

Diagnosis. Forewing RP with seven zigzagged branches; basal most ra-rp crossvein at or slightly distal to separation of first RP branch; MA distally bifurcated; cell im1 and im2 almost equal in length; CuA with four pectinate branches; A1 long and simple; A2 simple or distally bifurcated. Hind wing RP with seven branches; MA and MP separated distal to origin of RP; CuA with three pectinate branches; CuP simple, proximally coalescent with or connected with A1 by a crossvein; A1 simple.

Description. Female. Body length $6.44-7.46 \mathrm{~mm}$; preserved part of antenna $2.48-7.10 \mathrm{~mm}$ long; forewing $8.77-12.72 \mathrm{~mm}$ long and $3.24-4.34 \mathrm{~mm}$ wide; hind wing $8.42-10.72 \mathrm{~mm}$ long and $2.24-$ 3.32 mm wide (All materials are measured by electronic digital caliper, and the range values
represent the minimum and maximum lengths of this species, respectively).

Head (Fig. 1C, 5C) with vertex distinctly domed and ovoid. Compound eyes large, semiglobular. Antenna long filiform, setose, more than a quarter of forewing length; scape stouter than pedicel and flagellum, about three times as long as wide; pedicel smaller than scape, subcylindrical; flagellomere narrower than scape and pedicel. Mouthparts chewing-mandibulate; maxillary palpus with only three segments visible; labial palpus three-segmented, terminal segment acutely tapering.

Prothorax about twice as long as wide; meso- and metathorax robust. Legs long and slender, with short setae; tarsus (Fig. 1B, 5D) five-segmented, tarsomere 1 much longer than other tarsomeres, tarsomeres $2-5$ almost equal in length; pretarsus with seven to eight apical setae, including five to six long setae (the medial two longest), and a pair of short setae; pretarsal claws simple, slender and long, with sharp tips. Forewing (Fig. 2A, C, 4A, 5B, 6A) costal space dilated proximally, but strongly narrowed distad, with eight to ten simple crossveins; pterostigma distinct, nearly half of wing length, dark; ScP relatively long, extending nearly to midpoint of pterostigma; subcostal space narrow; RA long, entering wing margin anteriad wing apex, with at least six veinlets distally; 1scp-ra present, slightly distal to origin of RP; basal most ra-rp crossvein at or slightly distal to separation of first RP branch; RP with seven zigzagged branches, and most or all of them distally bifurcated; two gradate series of crossveins present in RP, complete and nearly parallel to each other; Psm and Psc not present; 1rp-m slightly distal to separation of MA and MP; MA and MP both distally bifurcated; cell im1 long and narrow, about five times as long as wide, proximally acutely tapering; cell im 1 and im2 almost equal in length; 1 m -cu present, proximal or slightly distal to separation of CuA and CuP ; CuA with four pectinate branches; CuP distally bifurcated; cell c 1 about $1 / 3$ length of c 2 ; A1 long and simple; A2 simple or distally bifurcated; A1 connected with

CuP by a short crossvein; a1-a2 present. Hind wing (Fig. 2B, 4B, C, 6B) slightly narrower, shorter and distally more acute than forewing; costal space narrow, and costal crossveins simple; RP with seven branches, and most of them distally bifurcated; two gradate series of crossveins present in RP; MA and MP both distally bifurcated; MA and MP separated distal to origin of RP; two (NIGP2022001 and NIGP2022002) or three (NIGP180324) crossveins between medial field and $\mathrm{CuA} ; \mathrm{CuA}$ with three pectinate branches; CuP simple, coalescent with A 1 for a distance (NIGP2022001 and NIGP2022002) or connected with A1 by a crossvein (NIGP180324); A1 long and simple; A2 simple or distally bifurcated; A3 simple; a1-a2 present; a2-a3 present.

Abdomen subcylindrical, setose. Male genitalia: Female genitalia (Fig. 1D, 3C, D, 5E): Tergum 8 much shorter than tergum 7; tergum 9 dorsally strongly shortened, but broadened posteroventrad; gonocoxites 9 well developed, semicircular; ectoprocts paired, ovoid, not fused with tergum 9; callus cerci circula.

Etymology. The specific epithet is derived from the Latin adjective of coadnatus, meaning coalescent, in reference to the hind wing CuP coalescent with A 1 in the new species.

Type material. Holotype: NIGP2022001: amber piece preserving a nearly complete female of Mesypochrysa coadnata sp. nov., only the right hind wing, the distal part of flagellum, and the parts of legs are not preserved. It is polished in the form of an elliptical cabochon, transparent, with length \times width about $32.9 \times 19.2 \mathrm{~mm}$, height about 11.6 mm . Paratype: NIGP2022002: the specimen preserved with three wings, thorax and abdomen. It is polished in the form of an elliptical cabochon, transparent, with length×width about $42.2 \times 19.4 \mathrm{~mm}$, height about 10.8 mm . NIGP180324: amber piece preserving a nearly complete female adult, only the distal part of flagellum is not preserved. It is polished in the form of an elliptical cabochon, transparent, with length \times width about 21.2×6.1
mm , height about 3.1 mm .

Remarks. The new species is assigned to Limaiinae based on the forewing characters, such as the ScP terminated within the pigmented pterostigma, the RA terminated near wing apex, the cell im long and narrow, and the $2 \mathrm{~m}-\mathrm{cu}$ crossvein located at the distal part of im (Makarkin, 1997; Nel et al., 2005; Makarkin and Archibald, 2013). The species is assigned to Mesypochrysa based on the following characters: the presence of two gradate series, the RP branches mostly bifurcated, and the CuP bifurcated distally in fore- and hind wing, and the forewing A1 and A2 long and simple (Khramov et al., 2016). The identification of three specimens as one species is based on their possession of the following characters: the forewing RP with seven zigzagged branches, the forewing cell im 1 and im 2 almost equal in length, the forewing CuA with four pectinate branches, the hind wing RP with seven branches, and the hind wing CuA with three pectinate branches. Notably, the position between the hind wing CuP and A1 is varies among individuals in the new species which is also present in some species of Chrysopidae, see details in the discussion below.

Key to species of Mesypochrysa based on forewing characters

1. RP branches mostly bifurcated distally.. 2

- RP branches mostly with three to six forks distally (Panvilov, 1980: fig. 112)

M. polyclada

2. Basal most ra-rp crossvein distinctly proximal to separation of first RP branch 3

- Basal most ra-rp crossvein at or distinctly distal to separation of first RP branch 10

3. CuA with three pectinate branches (Makarkin, 1997: fig. 13)chrysopa

- CuA with four to six pectinate branches.. 4

- CuA with five to six pectinate branches... 6

6. MA and MP zigzagged (Martins-Neto, 1992: fig. 3a) M. criptovenata

7. Forewing length $22.9 \mathrm{~mm}, \mathrm{CuA}$ and MP fused (Zhang et al., 2020: fig. 1c) $\cdots \cdots \cdots$ M. binervis

- Forewing length $24.5 \mathrm{~mm}, \mathrm{CuA}$ and MP not fused (Nel et al., 2005: fig. 13.1)

8. Cell im1 twice as long as im2 (Zhang et al., 2020: fig. 2c) M. pusilla

- Cell im1 only slightly longer than im2 (Ren and Guo, 1996: fig. 8b) M. polyneura

9. MA and MP curved posteriad, im1 twice as long as im2 (Makarkin, 1997: fig. 15)
M. curvimedia

- MA and MP straight, im1 slightly longer than im2 (Khramov, 2017: fig. 4c)
M. naranica

10. CuA with two anterior branches bifurcated distally (Khramov et al., 2016: fig. 4b)
M. sinica
CuA with all branches simple 11
11. RP with seven to eight branches 12
RP with 11-20 branches 13
12. A2 bifurcated distally (Ren and Guo, 1996: fig. 7b) M. miniscula
A2 simple (Figs. 2A, C and 4A) M. coadnata sp. nov.
13. RP with 20 branches (Makarkin, 1997: fig. 1). M. magna
RP with 11-15 branches 14
14. MA simple (Makarkin, 1997: fig. 17) M. augustialataMA bifurcated distally15
15. RP with 15 branches, A1simple (Nel et al., 2005: fig. 11.6) M. intermediaRP with 11 branches, A1 bifurcated distally (Khramov, 2017: fig. 3)............. M. cannabina

Key to species of Mesypochrysa based on hind wing characters

1. Hind wing length 25 mm (Makarkin, 1997: fig. 11)...

2. MA and MP separated distal to origin of RP, MA not coalescent with RP 3

- MA and MP separated proximal to origin of RP, MA proximally coalescent with RP $\ldots \ldots \ldots 7$

4. Hind wing length 12.1 mm (Martins-Neto and Vulcano, 1989: fig. 1c) $\cdots \cdots \cdots \cdots$. latipennis

- CuA with three pectinate branches (Ponomarenko, 2002: fig. 258) M. reducta

6. RP branches mostly simple (Ren \& Guo, 1996: fig. 7b) M. miniscula

- RP branches mostly bifurcated distally (Figs. 2B and 4B, C) M. coadnata sp. nov.

7. CuA with five pectinate branches (Makarkin, 1997: fig. 14) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$...........................

RP with 10 branches.. 10
8. Hind wing length 6.7 mm (Jepson et al., 2012: fig. 15a) .. M. minuta

Hind wing length 11.5 mm (Makarkin, 1997: fig. 18) ...
10. CuA simple (Martins-Neto, 2000: fig. 111) ..criptovenata

Due to poor preservation of important hind wing characters, M. binervis, M. cannabina, M.
curvimedia and M. intermedia are not listed in the key.

4. Discussion

The new species differs from many Mesypochrysa species, i.e., M. angustialata, M. magna, M. falcata, M. polyclada, M. intermedia, M. curvimedia, M. sinica, M. criptovenata, M. cannabina, M. chrysopoides, M. binervis, M. naranica, M. pusilla and M. chrysopa by having the forewing RP with seven branches, while the other species have the forewing RP with more than 10 branches. M. coadnata sp. nov. can be also distinguished from these species by the following characters: it differs from M. angustialata by the forewing MA being bifurcated distally, and the hind wing MA and MP separated distal to the origin of RP (in M. angustialata, the forewing MA is simple, and the hind wing MA is proximally coalescent with RP); it differs from M. magna by having the forewing MA and MP parallel to each other, and the Psc not present (in M. magna, the forewing MA and MP are zigzagged, and the Psc is present); it differs from M.falcata by the hind wing being apically rounded, and $8.61-10.72 \mathrm{~mm}$ long (in M. falcata, the hind wing is apically falcate, and ca. 25 mm long); it differs from M. polyclada by the forewing RP branches mostly bifurcated distally (in M. polyclada, the forewing RP branches are mostly three to seven forked); it differs from M. intermedia by the forewing cell c 1 about $1 / 3$ length of c 2 (in M. intermedia, the forewing cell c 1 is about $1 / 5$ length of c2); it differs from M. curvimedia, M. pusilla, M. criptovenata, M. chrysopa, M. binervis and M. chrysopoides by the forewing cell im 1 and im2 almost equal in length, and the basal most ra-rp crossvein at or slightly distal to the separation of the first RP branch (in the latters, the forewing cell im 1 is longer than im 2 , and the basal most ra-rp crossvein distinctly proximal to the separation of the first RP branch); it differs from M. cannabina and M. naranica by the forewing RP branches zigzagged, and the A1 simple (in the latter two species, the forewing RP branches are smooth, and
the A1 is bifurcated); it differs from M. sinica by the forewing CuA with four simple pectinate branches, and the hind wing RP branches mostly bifurcated distally (in M. sinica, the forewing CuA with two simple posterior branches and two distally bifurcated anterior branches, and the hind wing RP branches mostly three to six forked) (Panvilov, 1980; Makarkin, 1997; Nel et al., 2005; Khramov et al., 2016; Martins-Neto and Vulcano, 1989; Khramov, 2017; Ponomarenko, 1992; Zhang et al., 2020). The new species differs from M. polyneura by the forewing cell im1 and im2 almost equal in length, the basal most ra-rp crossvein at or slightly distal to the separation of the first RP branch, and the A1 and A2 simple (in M. polyneura, the forewing cell im1 is distinctly longer than im2, the basal most ra-rp crossvein is distinctly proximal to the separation of the first RP branch, and the A1 and A2 are bifurcated distally). The new species resembles M. miniscula in the forewing RP with seven to eight branches, the CuA with four pectinate branches, and the CuP bifurcated distally. However, it differs from M. miniscula by the forewing RP branches mostly bifurcated, and the hind wing CuP simple (in M. miniscula, the forewing RP branches are mostly simple, and the hind wing CuP is bifurcated distally) (Ren and Guo, 1996). There are four species, i.e., M. minuta, M. latipennis, M. minima, and M. reducta, described based on only hind wing characters. The new species resembles them in the hind wing RP with six to seven branches. However, it differs from M. minuta, M. latipennis, and M. minima by the hind wing MA and MP separated distal to the origin of RP, and the CuA with three pectinate branches (in these three species, the hind wing MA is proximally coalescent with RP , and the CuA with four pectinate branches, although the latter character is not preserved in M. latipennis). The new species and M. reducta share the MA and MP separated distal to the origin of RP, but the new species differs from the latter species by the cell im1 and im2 almost equal in length (Jepson et al., 2012; Martynov, 1927; Makarkin, 1997; Panvilov,
1980).

Remarkably, among the Mesozoic fossil green lacewings, the fusion between hind wing CuP and A1 is only shared by the Burmese amber limaiine species Parabaisochrysa xingkei Lu et al., 2018 , is of questionable value, as discussed below. The trait is also present in some extant genera of Chrysopidae, e.g., Berchmansus Navás, 1913, Nothochrysa McLachlan, 1868 and Apochrysa Schneider, 1851. However, the relative position between the hind wing CuP and A 1 expresses considerable interspecific and intraspecific variation. For example, in Chrysopodes spinellus Adams \& Penny, 1987, the hind wing CuP is fused with A1, while in Chrysopodes copius de Freitas \& Penny, 2001, it is not fused with A1. Furthermore, it also varies among individuals in the same species. In Apochrysa matsumurae Okamoto, 1912, the hind wing CuP is coalescent with A 1 or very close to it. Thus, considering the aforementioned interspecific and intraspecific examples of variation, the fusion between hind wing CuP and A 1 may not be a good character for generic and species identification of green lacewings (Tauber, 2007; Adam, 1967; Winterton and Gupta, 2020; Adams and Penny, 1985).

The length-width ratio of scape is sometimes used as a diagnostic character to distinguish genera in Chrysopidae. In the new species, the scape is about three times as long as wide, a trait that is used to distinguish Nineta vittata (Wesmael, 1841). However, this trait is variable in Nineta Navás, 1912, and such variation is also present in some genera of Chrysopinae, e.g., Nacarina Navás, 1915 and Chrysoperla Steinmann, 1964. Moreover, similar length-width ratios of scape are also present among different genera. In many species of Chrysopa Leach, 1815 and Leucochrysa McLachlan, 1868, the scape is about two times as long as wide (Aspöck et al., 1980; Garland, 1981; Alayo, 1968; de Freitas and Penny, 2001). Consequently, the reliability of the length-width ratio of scape for
generic delimitation needs further evaluation at least for some genera.

Finally, it is notable that the female genitalia herein described in M. coadnata sp. nov. shares some features with those of Nothochrysinae and Apochrysinae, especially the ectoprocts not being fused with tergum 9. In the new species, the ectoprocts and tergum 9 are completed separated which shared by some genera of Nothochrysinae, e.g., Kimochrysa Tjeder, 1966, Nothochrysa McLachlan, 1868, and Pimachrysa Adams, 1957, while the ectoprocts and tergum 9 are partially fused in genera of Apochrysinae, e.g., Apochrysa Schneider, 1851, and Domenechus Navás, 1913. The completed separation between ectoprocts and tergum 9, combined with similar venation, suggest that the new species or even Mesypochrysa appears to be closely related to Nothochrysinae which should be further research in the future. This character is also present in many lacewing families, e.g., Nemopteridae, Hemerobiidae and Nymphidae, and probably is the plesiomorphic condition for the Chrysopidae. However, in most species of Chrysopinae, the female ectoprocts and tergum 9 are fused into a single sclerite, which probably represents a derived condition (Tjeder, 1966; Tjeder, 1967; Brooks and Barnard, 1990; Hölzel, 1996; Zhao et al., 2013; New, 1981).

5. Conclusion

The presently described new species of Limaiinae from the mid-Cretaceous Burmese amber enriches our knowledge of the species diversity, phylogeny, and morphology of the Mesozoic Chrysopidae. The plesiomorphic separation between the female ectoprocts and tergum 9, first reported in Limaiinae, is consistent with the antiquity of this subfamily in Chrysopidae.

Acknowledgements

We thank the anonymous reviewers for their comments to improve the manuscript. This research was supported by the Second Tibetan Plateau Scientific Expedition and Research project (No. 2019QZKK0706), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB26000000), and the National Natural Science Foundation of China (No. 31972871, 41925008 and 41688103).

References

Adams, P.A., 1967. A review of the Mesochrysinae and Nothochrysinae (Neuroptera: Chrysopidae). Bulletin of the Museum of Comparative Zoology 135, 215-238.

Adams, P.A., 1996. Venational homologies and nomenclature in Chrysopidae, with comments on the Myrmeleontoidea. In: Canard, M., Aspöck, H., and Mansell, M.W. (Eds.), Pure and Applied Research in Neuropterology. Proceedings of the Fifth International Symposium on Neuropterology. Privately printed, Toulouse, France, pp. 19-30.

Adams, P.A., Penny, N.D., 1985. Neuroptera of the Amazon Basin. Part 11a. Introduction and Chrysopini. Acta Amazonica 15, 413-479.

Alayo, D.P., 1968. Los Neurópteros de Cuba. Poeyana 2, 1-127.

Archibald, S.B., Makarkin, V.N., 2015. A new species of Archaeochrysa Adams (Neuroptera: Chrysopidae) from the early Eocene of Driftwood Canyon, British Columbia, Canada. The Canadian Entomologist 147, 359-369.

Aspöck, H., Aspöck, U., Hölzel, H., 1980. Die Neuropteren Europas: eine zusammenfassende Darstellung der Systematik, ökologie und Chorologie der Neuropteroidea (Megaloptera, Raphidioptera, Planipennia) Europas, 2 vols. Goecke \& Evers, Krefeld, 495; 355 pp.

Breitkreuz, L.C., 2018. Systematics and evolution of the family Chrysopidae (Neuroptera), with an emphasis on their morphology (Unpubl. PhD thesis). University of Kansas, 661 pp.

Breitkreuz, L.C., Winterton, S.L., Engel, M.S., 2017. Wing tracheation in Chrysopidae and other Neuropterida (Insecta): a resolution of the confusion about vein fusion. American Museum Novitates 2017, 1-44.

Brooks, S.J., Barnard, P.C., 1990. The green lacewings of the world: a generic review (Neuroptera: Chrysopidae). Bulletin of the British Museum (Natural History), Entomology Series 59, 117286.
de Freitas, S., Penny, N.D., 2001. The green lacewings (Neuroptera: Chrysopidae) of Brazilian agroecosystems. Proceedings of the California Academy of Sciences 52, 245-395.

Garland, J.A., 1981. The taxonomy of the Chrysopidae of Canada and Alaska (Insecta: Neuroptera). 2 vol (Unpubl. PhD thesis). McGill University, 418 pp.

Haug, J.T., Linhart, S., Haug, G.T., Gröhn, C., Hoffeins, C., Hoffeins, H.W., Haug, C., 2022. The Diversity of Aphidlion-like Larvae over the Last 130 Million Years. Insects 13, 336.

Hölzel, H., 1996. Neue Chrysopidae-Spezies aus Afrika. 1. Apochrysa wagneri n. sp. (Neuroptera: Planipennia). Entomologische Zeitschrift mit Insektenbörse 106, 117-120.

Jepson, J.E., Makarkin, V.N., Coram, R.A., 2012. Lacewings (Insecta: Neuroptera) from the Lower Cretaceous Purbeck Limestone Group of southern England. Cretaceous Research 34, 31-47.

Khramov, A.V., 2017. A new assemblage of Early Cretaceous green lacewings (Chrysopidae: Neuroptera) from Transbaikalia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 107, 195-202.

Khramov, A.V., Liu, Q., Zhang, H., Jarzembowski, E.A., 2016. Early green lacewings (Insecta:

Neuroptera: Chrysopidae) from the Jurassic of China and Kazakhstan. Papers in Palaeontology 2, 25-39.

Liu, X.Y., Zhang, W., Winterton, S.L., Breitkreuz, L.C., Engel, M.S., 2016. Early morphological specialization for insect-spider associations in Mesozoic lacewings. Current Biology 26, 15901594.

Liu, X.Y., Shi, G.I., Xia, F.Y., Lu, X.M., Wang, B., Engel, M.S., 2018. Liverwort mimesis in a Cretaceous lacewing larva. Current Biology 28, 1475-1481.

Lu, X.M., Wang, B., Ohl, M., Liu, X.Y., 2018. The first green lacewing (Insecta: Neuroptera: Chrysopidae) from the mid-Cretaceous amber of Myanmar. Zootaxa 4399, 563-570.

Makarkin, V.N., 1997. Fossil Neuroptera of the Lower Cretaceous of Baisa, East Siberia. Part 3. Chrysopidae (Insecta). Spixiana 20, 107-118.

Makarkin, V.N., Archibald, S.B., 2013. A diverse new assemblage of green lacewings (Insecta, Neuroptera, Chrysopidae) from the early Eocene Okanagan Highlands, western North America. Journal of Paleontology 87, 123-146.

Martins-Neto, R.G., 1992. Neurópteros (Insecta, Planipennia) da Formaçao Santana (Cretáceo Inferior) Bacia do Araripe, Nordeste do Brasil. V - Aspectos filogenéticos, paleoecológicos, paleobiogeogr ficos e descriçao de novos taxa. Anais da Academia Brasileira de Ciencias 64, 117-148.

Martins-Neto, R.G., 1997. Neurópteros (Insecta, Planipennia) da Formaçao Santana (Cretáceo Inferior), Bacia do Araripe, Nordeste do Brasil. X - Descriçao de novos táxons (Chrysopidae, Babinskaiidae, Myrmeleontidae, Ascalaphidae e Psychopsidae). Revista da Universidade de Guarulhos, Série Ciências Exatas e Technológicas 2, 68-83.

Martins-Neto, R.G., 2000. Remarks on the neuropterofauna (Insecta, Neuroptera) from the Brazilian Cretaceous, with keys for the identification of the known taxa. Acta Geológica Hispanica 35, 97-118.

Martins-Neto, R.G., Vulcano, M.A., 1989. Neuropteros (Insecta, Planipennia) da Formaçao Santana (Cretaceo Inferior), bacia do Araripe, nordeste do Brasil. II. Superfamília Myrmeleontoidea. Revista Brasileira de Entomologia 33, 367-402.

Martynov, A.V., 1927. Über eine neue Ordnung der fossilen Insekten Miomoptera nov. Zoologischer Anzeiger 72, 99-109.

Nel, A., Delclòs, X., Hutin, A., 2005. Mesozoic chrysopid-like Planippenia: a phylogenetic approach (Insecta: Neuroptera). Annales de la Société Entomologique de France, New Series 41, 29-68.

New, T.R., 1981. A revision of the Australian Nymphidae (Insecta: Neuroptera). Australian Journal of Zoology 29, 707-750.

Oswald, J.D. (2022) Neuropterida Species of the World. Lacewing Digital Library, Research Publication No. 1. http://lacewing.tamu.edu/SpeciesCatalog/Main. Last accessed [16 January 2022].

Panfilov, D.V., 1980. Novye predstaviteli setcharokrylykh (Neuroptera) iz yury Karatau [=New representatives of lacewings (Neuroptera) from the Jurassic of Karatau]. In: Dolin, V.G., Panfilov, D.V., Ponomarenko, A.G., Pritykina, L.N. (Eds.), Iskopaemye nasekomye mezozoya [=Fossil insects of the Mesozoic]. Akademiya Nauk Ukrainskoi SSR, Institut Zoologii, Naukova Dumka, Kiev, pp. 82-111.

Ponomarenko, A.G., 1992. Novye setchatokrylye (Insecta, Neuroptera) iz mezozoya Mongolii. In: Grunt, T.A. (Eds.), Novye taksony iskopaemykh bespozronochnykh Mongolii. Akademiia Nauk

SSSR, Sovmestnaya Sovetsko-Mongol'skaya Paleontologicheskaya Ekspeditsiya, pp. 101-111.

Ponomarenko, A.G., 2002. Superorder Myrmeleontidea Latreille, 1802 (=Neuropteroidea Handlirsch, 1903). In: Rasnitsyn, A.P., Quicke, D.L.J. (Eds.), History of Insects. Kluwer Academic Publishers, Dordrecht, pp. 176-177.

Ren, D., Guo, Z.G., 1996. On the new fossil genera and species of Neuroptera (Insecta) from the Late Jurassic of northeast China. Acta Zootaxonomica Sinica 21, 461-479.

Shi, G., Grimaldi, D.A., Harlow, G.E., Wang, J., Yang, M., Lei, W., Li, Q., Li, X., 2012. Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research 37, 155163.

Tauber, C.A., 2007. Review of Berchmansus and Vieira and description of two new species of Leucochrysa (Neuroptera: Chrysopidae). Annals of the Entomological Society of America 100, 110-138.

Tjeder, B., 1966. Neuroptera-Planipennia. The Lace-wings of Southern Africa. 5. Family Chrysopidae. In: Hanström, B., Brinck, P., Rudebec, G. (Eds.), South African Animal Life, Vol. 12. Swedish Natural Science Research Council, Stockholm, pp. 228-534.

Tjeder, B., 1967. Neuroptera-Planipennia. The Lace-wings of Southern Africa. 6. Family Nemopteridae. In: Hanström, B., Brinck, P., Rudebec, G. (Eds.), South African Animal Life, vol. 13. Swedish Natural Science Research Council, Stockholm, pp. 290-501.

Winterton, S.L., Gupta, A., 2020. Review of the green lacewing genus Apochrysa Schneider (Neuroptera: Chrysopidae). Zootaxa 4729, 329-346.

Yang, C.K., Hong, Y.C., 1990. Drakochrysa, an Early Cretaceous new genus of Chrysopidae (Insecta: Neuroptera) from Laiyang Basin, Shandong Province. Geoscience 4, 15-27.

Yu, T., Kelly, R., Mu, L., Ross, A., Kennedy, J., Broly, P., Dilcher, D., 2019. An ammonite trapped in Burmese amber. Proceedings of the National Academy of Sciences 116, 11345-11350.

Zhang, T.W., Luo, C.S., Shi, C.F., Yang, Q., Ren, D., 2020. New species of green lacewings (Insecta, Neuroptera) from the Lower Cretaceous of China. Cretaceous Research 115, 104564.

Zhao, Y., Yan, B.Z., Liu, Z.Q., 2013. New species of Neuronema McLachlan, 1869 from China (Neuroptera, Hemerobiidae). Zootaxa 3710, 557-564.

Fig. 1. Mesypochrysa coadnata sp. nov., holotype NIGP200019, female. A. Habitus photo, lateral view; B. Tarsus and pretarsus (arrows indicate a pair of longest apical setae); C. Head, dorsal view; D. Photo of genitalia, lateral view. Scale bar: 1.0 mm (A, C, D); $0.5 \mathrm{~mm}(B)$. Fig. 2. Wing venation of Mesypochrysa coadnata sp. nov., holotype NIGP200019, female. A. Drawing of left forewing; B. Drawing of left hind wing; C. Drawing of right forewing. Scale bar: 1.0 mm .

Fig. 3. Mesypochrysa coadnata sp. nov., paratype NIGP200020, female. A. Habitus photo, lateral view; B. Habitus photo, lateral view; C. Photo of genitalia, lateral view; D. Drawing of genitalia, lateral view. Scale bar: 1.0 mm .

Fig. 4. Wing venation of Mesypochrysa coadnata sp. nov., paratype NIGP200020, female. A. Drawing of right forewing; B. Drawing of right hind wing; C. Drawing of left hind wing. Scale bar: 1.0 mm .

Fig. 5. Mesypochrysa coadnata sp. nov., paratype NIGP180324, female. A, Habitus photo, lateral view; B, Right forewing, lateral view; C, Head, dorsal view; D, Tarsus and pretarsus; E, Photo of genitalia, lateral view. Scale bars: 1.0 mm (A, B, C, E); $0.5 \mathrm{~mm}(\mathrm{D})$.

Fig. 6. Wing venation of Mesypochrysa coadnata sp. nov., paratype NIGP180324, female. A.

Drawing of right forewing; B. Drawing of right hind wing. Scale bar: 1.0 mm .

B

B

There is no potential conflict of interest reported by the authors.

Declaration of interests

\boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
\square The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

