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Abstract15

The hydraulic behaviour of fractured rocks under shear-thinning flow is a challenging16

topic of interest in several fields, related either to environmental remediation or to nat-17

ural resources recovery. The compound effect of fluid rheology and medium heterogene-18

ity strongly affects flow and transport in fractured geological formations. Here, a stochas-19

tic analysis is conducted via Monte Carlo simulations to investigate shear-thinning flu-20

ids behaviour in fractures subjected to natural and forced flow, considering different frac-21

ture dimensions, for a spatial correlation of the fracture that is an intrinsic parameter22

of the geological formation, independent of the fracture size. Under the lubrication ap-23

proximation, a generalized Reynolds equation for shear-thinning fluids is solved using24

an ad hoc, finite volume-based, numerical scheme. The influence of the rheology and aper-25

ture field heterogeneity on ensemble statistics of the velocity components and magnitude,26

as well as apparent fracture-scale transmissivity, is quantified over 103 fracture realiza-27

tions. The probability density functions (PDFs) obtained by averaging over the set of28

realizations and the relative confidence intervals are analysed to comprehend the appar-29

ent transmissivity transition from Newtonian to shear-thinning regime. The autocorre-30

lation functions of velocity components are computed to understand the impact of rhe-31

ology on spatial correlations of the flow. Velocity components exhibit narrow PDFs with32

nearly exponential decay. More elevated pressure gradients emphasize the shear-thinning33

behaviour, inducing a more pronounced flow localization, under otherwise identical con-34

ditions. This translates at the scale of the fracture into a larger apparent transmissiv-35

ity as compared to the same configuration with Newtonian rheology, by orders of mag-36

nitude.37

1 Introduction38

Flow modelling of complex fluids in geological formations is of interest in numer-39

ous industrial applications. Among them are enhanced oil recovery (Hirasaki et al., 2011;40

Leung et al., 2014), geothermal circulations in fractured reservoirs (Bchler et al., 2003;41

Magzoub et al., 2021) and fluid losses during drilling operations (Feng & Gray, 2017),42

where foams, muds, emulsions, colloidal or non-colloidal suspensions are commonly in-43

volved. The use of high-viscosity gels in hydraulic fracturing improves the proppant car-44

rying capacity and favours the generation of wider fracture in comparison to the use of45

slickwater (Pahari et al., 2021). Drilling muds provide cooling and lubrication to drill46

bit and are employed as mechanical stabilizers in the construction of the wellbore to pres-47

surize the borehole against collapse. The constitutive law of these fluids does not respect48

Newton’s law of viscosity, because their micro-structure induces a shear-thinning (ST)49

rheology at the continuum scale (Barati & Liang, 2014; Ansari et al., 2021). The non-50

Newtonian behaviour of these fluids lies in their physical make-up and the ability of meso-51

scopic components to cross-link chemically (e.g. polymer solutions, see (Wang et al., 2016))52

or interact electrostatically (e.g. colloidal suspensions, see (Parmar et al., 2008; Méheust53

et al., 2011)).54

Subsurface geological formations (e.g. crustal rocks) are discontinuous media, con-55

sisting in matrix blocks of low permeability separated by fractures, which provide ma-56

jor conduits for flow. The connectivity among fractures and their hydraulic behaviour57

are the features that control the entire formation permeability (Berkowitz, 1994). The58

simplest model to study the hydraulic behaviour of a fracture is the parallel plate model59

or cubic law. This model has been largely used for its simplicity, although it oversim-60

plifies wall topography. Different approaches have been proposed also to represent rough61

fractures: deterministic saw tooth (Wilson & Witherspoon, 1974), sinusoidal profiles (Elsworth62

& Goodman, 1986), or profiles with an assigned aperture probability distribution (Neuzil63

& Tracy, 1981; Felisa et al., 2018; Lenci & Di Federico, 2020). In minerals and rocks, how-64

ever, field and laboratory measurements on fracture walls highlight the stochastic self-65

affine nature of the surface morphology, for both natural (Brown & Scholz, 1985; Schmit-66
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tbuhl et al., 1993; Cox & Wang, 1993) and fresh artificial fractures (Schmittbuhl et al.,67

1993; Bouchaud, 1997). Several algorithms are able to reproduce this kind of rough sur-68

faces, which are more consistent with the experimental evidence: diamond-square algo-69

rithm (Fournier et al., 1982), successive random addition (Lu et al., 2003), and the FFT-70

based algorithm proposed by Méheust and Schmittbuhl (2003), which is far quicker.71

Predictions of fracture transmissivities based on the parallel plate model signifi-72

cantly deviate from measurements, especially under elevated normal (Gale, 1990) or cyclic73

shear stresses (Makurat, 1985), limiting its use to sufficiently smooth fractures. Tradi-74

tional computational fluid dynamics (Starchenko et al., 2016), lattice gas (Gutfraind et75

al., 1995; Stockman, 1997) and lattice Boltzmann methods (Meakin & Tartakovsky, 2009;76

Tian & Wang, 2017) have been adopted to capture the impact of the complex geome-77

try of fractures on Newtonian flow, and thus to accurately predict flow and transport78

attributes, although the simulations are computationally intensive. Alternative numer-79

ical methods, based on lubrication theory and computationally more convenient, have80

been proposed to solve Newtonian creeping flow in rough fractures: standard matrix in-81

version techniques (Brown, 1987) or pseudospectral methods (Plouraboué et al., 1998).82

Estimation of the mean hydraulic aperture of a large number of independent fractures83

show a difference no larger than 2 per cent (Mourzenko et al., 1995) between a lubrication-84

based solver and CFD simulations. Furthermore, due to the stochastic nature of the ge-85

ometry of geological fractures, fractures described by the same statistical geometrical pa-86

rameters can display a wide range of hydraulic behaviors (Méheust & Schmittbuhl, 2001,87

2003), including cases that are more permeable than the parallel plate of identical mean88

aperture (Méheust & Schmittbuhl, 2000): thus the typical hydraulic behavior of a ge-89

ological fracture should be understood as the average over a representative statistics, and90

the dispersion of the behaviors among the statistics should also be investigated. To our91

knowledge, Méheust and Schmittbuhl (2001) performed the first such Monte Carlo sim-92

ulations of Newtonian creeping flow in geological fractures with realistic geometries.93

Monte Carlo simulations have been adopted for decades to simulate different pro-94

cesses in a variety of geologic media: a limited number of realizations of 1-D fractures95

with variable aperture were produced by Tsang and Tsang (1987) to investigate flow in96

fracture channels; the same approach was then generalized to 2-D fractures, although97

with spatial distributions of apertures that are more relevant to 2-D aquifer permeabil-98

ity fields than to geological fractures (Moreno et al., 1988). The pioneering work of Bellin99

et al. (1992) investigated the conditions for the validity of first-order flow and transport100

theories in random porous media; Berkowitz and Scher (1998) adopted a Monte Carlo101

approach to determine velocity distributions in fracture networks, as a function of the102

fracture orientations, to study anomalous transport at the network scale; Gómez-Hernández103

and Wen (1998) analysed the applicability of multi-gaussian random function models in104

hydrogeology. More recently this methodology has been applied to study transient se-105

quentially coupled radionuclide transport (Hayek et al., 2020), to investigate flow in two106

dimensional conductivity field and derive a large-scale transport model (Comolli et al.,107

2019), to simulate CO2 plume migration (Zhong et al., 2019), and to perform uncertainty108

quantification (Yang et al., 2020).109

Notwithstanding the ubiquitous use of complex fluids in the subsurface, their rhe-110

ology is often taken to be Newtonian, with a limited number of studies having focused111

on non-Newtonian flow. Several analytical expressions have been proposed to compre-112

hend the flow features in simple geometries (Larson, 1992), or to qualitatively assess the113

effect of fluid rheology on flow in a variable aperture field of given distribution (Di Fed-114

erico, 1997). Different numerical strategies have been adopted to handle problem non-115

linearity when dealing with a complex rheology in a variable aperture field: Picard’s method116

(Morris et al., 2015), and sequential sweeping (Lavrov, 2013). A few studies have also117

addressed non-Newtonian flow in fractures with self-affine geometries (Auradou et al.,118

2008; Perkowska et al., 2016; Lenci et al., 2022). Recently, advances in computational119
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power have allowed the investigation of complex processes, such as: multiphase flow (Katiyar120

et al., 2020), transport in fracture of permeable walls (Dejam, 2019), and hydro-mechanical121

coupling (Moukhtari & Lecampion, 2018; Wrobel et al., 2021; Chiapponi et al., 2019; Ciriello122

et al., 2021).123

Despite this wealth of contributions using different constitutive models and hypothe-124

ses, to date stochastic analyses have never been applied to investigate ST hydrodynam-125

ics in rough fractures under natural and artificial flow conditions. In this study we ex-126

tend the state of the art by exploring the non-Newtonian, shear-thinning, hydraulic be-127

haviour of a rough fracture within a stochastic framework, using a depth-integrated, two-128

dimensional (2-D), flow model proposed by Lenci et al. (2022). A total of twelve thou-129

sands Monte Carlo simulations are run, with fractures partitioned adopting a million node130

regular mesh. A stochastic analysis of this phenomenon has never been conducted due131

to the limitations of numerical tools available prior to Lenci et al. (2022). Existing stud-132

ies in the literature typically involve one or few realizations and adopt small meshes (e.g.,133

33×33 in Lavrov (2013)) to achieve convergence in a reasonable amount of time. Here,134

we conduct a systematic analysis of the main quantities of interest in a variable aper-135

ture fracture, the velocity field and the transmissivity, by exploring their probabilistic136

behaviour. We do so in dimensionless form, starting from realistic values of dimensional137

parameters typical of the aforementioned subsurface applications. We thus unravel the138

intertwined roles of ST rheology and fracture heterogeneity.139

The article is organized as follows: section 2 presents the non-linear lubrication equa-140

tion for a non-Newtonian Ellis fluid, the generation process of discrete fractures, and de-141

scribes the implementation of the lubrication-based numerical code; in section 3, the adopted142

stochastic approach is outlined; section 4 presents the results of the Monte Carlo sim-143

ulations performed, emphasizing the ensemble statistics obtained: these include the ap-144

parent transmissivity, the vertical and longitudinal velocity components, and the veloc-145

ity modulus; the covariance of the latter is also analyzed. Conclusions and perspectives146

for future work are formulated in section 5.147

2 Modeling framework148

2.1 Generation of synthetic fractures149

A geological fracture is composed of two rough walls, whose parallel mean planes150

are separated by 〈w〉, defined as the mechanical aperture. The topographies of the up-151

per (zu) and lower wall (zl), assumed of mean 0, fluctuate with respect to their mean152

planes, and local apertures can be defined as the distance between them; at positions where153

the two walls interpenetrate, a zero aperture is imposed:154

w(x, y) = max(0, zu(x, y)− zl(x, y) + 〈w〉) . (1)

Fracture surfaces exhibit long-range spatial correlation (Candela et al., 2009; Schmit-155

tbuhl, Vilotte, & Roux, 1995). Therefore, the topography of a geological fracture’s rough156

wall is an isotropic self-affine surface, with the probability distribution function (PDF)157

f(∆z,∆r) scaling as:158

∀λ, f(∆z,∆r) = λHf(λH∆z,∆r), (2)

where ∆z is the height difference between two points separated by an in-plane segment159

of length ∆r, H is the Hurst exponent, and λ is a scaling factor. Note that fracture sur-160

faces in crystalline rocks consistently show a Hurst exponent of 0.8 (Méheust & Schmit-161

tbuhl, 2000), and this value has been proposed as universal by Bouchaud et al. (1990).162

However, exceptions exist, such as sandstones, in which the grain-induced roughness regime,163

for high frequencies in the power spectrum, may present values close to 0.5 (Boffa et al.,164

1999; Nigon et al., 2017). One consequence of the scaling property of the PDF in Eq. (2)165

is that the two-dimensional power density spectrum of wall topography scales as a power166
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Figure 1. (a) Binary logarithm of the power density spectrum of a synthetic fracture’s aper-

ture field, plotted as a function of the Fourier modes kx and ky (in linear scale); the isotropic

spectrum is stochastic and exhibits the typical radial power law decay ∝ (k2x +k2y)−(1+H) for wave

numbers k =
√
k2x + k2y larger than kc, and is constant otherwise (k ≤ kc). (b) Radial profile

obtained by averaging the spectrum in (a) over the azimuthal angles; it shows the aforementioned

self-affine behaviour more clearly. (c) 3-D representation of the fracture’s rough walls. (d) 2-D

cross-section of the fracture, corresponding to the blue lines in (c), with geometrical quantities of

interest. The vertical scale is 10 times larger than the horizontal scale. Other adopted parameters

are: the Hurst exponent H = 0.8, mean aperture 〈w〉 = 10−3 m, correlation length, Lc = 0.1 m,

closure σw/〈w〉 = 0.3 and correlation ratio L/Lc = 16.

law of the wave number in the form S(k) ∝ k−2(1+H), where the wave number k is the167

norm of the wave vector, i.e., k = (k2x+k2y)1/2, kx and ky being the components of the168

wave vector.169

The two walls of a geological fracture are matched at large length scales (i.e., their170

large scale topographies are identical), but differ at scales smaller than a crossover scale,171

which we shall denote the correlation length Lc (Brown, 1995). This is due to mechan-172

ical wear and chemical weathering over long times. It follows that the aperture field ex-173

hibits the same self-affinity as the walls at scales smaller than Lc, and, thus, that the aper-174

ture field’s Fourier spectrum exhibits the characteristic self-affine power-law scaling at175

these small scales, and an almost flat behaviour due to the matching of the two walls at176

scales larger than Lc. Consequently, the spectral power density of the aperture field ex-177

hibits the above-mentioned power-law radial decay, of negative exponent −2(H+1) for178

wave numbers higher than kc, the characteristic wave number corresponding to scale Lc179

(Schmittbuhl, Schmitt, & Scholz, 1995), and is flat for wave numbers smaller than kc.180

–5–
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Figure 2. Comparison between aperture fields for different values of L/Lc; the colorbar

reports the aperture magnitude in meters for both representations. The two realizations are gen-

erated with a Hurst exponent H = 0.8, a closure σw/〈w〉 = 0.8, a correlation length Lc = 10−1 m,

and a mean aperture 〈w〉 = 10−3 m. The red frames illustrate the size ratio between the two

fractures, which is 16.

This property can be used to generate realistic synthetic aperture fields from a two-181

dimensional white noise, maintaining its random phase and introducing the spatial cor-182

relations by multiplying the Fourier modes corresponding to scales smaller than Lc by183

the power-law behavior k−(H+1) (Méheust & Schmittbuhl, 2003). Applying an inverse184

Fourier transform then yields an aperture field with the appropriate geometry, which can185

then be scaled and translated vertically so as to impose the desired mean aperture and186

standard deviation of aperture fluctuations. Fig. 1a depicts the two-dimensional Fourier187

spectrum of such a synthetic aperture field, while Fig. 1b presents its average radial pro-188

file, with the scaling properties discussed above. Fig. 2 shows the comparison between189

two different aperture fields having the same correlation length but different fracture sizes,190

and thus a markedly different size-to-correlation-length ratio. The latter parameter will191

be later seen to affect the flow behaviour quite significantly.192

2.2 Flow Model193

2.2.1 Generalized Reynolds Equation194

We consider the steady-state, isothermal Stokes flow of an incompressible fluid be-195

tween two smooth parallel straight walls separated by a uniform distance w. Under the196

lubrication approximation (Brown, 1987), if the aperture field remains sufficiently smooth197

(∇w � 1), the vertical component of the velocity is negligible with respect to the hor-198

izontal component. Consequently, the pressure field is independent of the coordinate z199

whose axis is perpendicular to the mean fracture plane, and the projection of the mo-200

mentum balance on that plane can be written as201

∂

∂z

(
µ
∂u

∂z

)
= ∇‖P, (3)

where u is the velocity vector, ∇‖P is the projection of the pressure gradient onto the202

fracture plane, and µ is the dynamic viscosity or the apparent viscosity if the fluid is New-203

tonian or non-Newtonian, respectively. After defining the mean value z̄(x, y), which in-204

dicates the middle point of the fracture at position (x, y) along the fracture plane, and205

integrating once over the z-direction between z̄(x, y) and z, the momentum conservation206

–6–
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becomes (Lenci et al., 2022)207

µ
∂u

∂z
= (z − z̄)∇‖P , (4)

where we notice that the left term is actually the definition of the shear stress τ . The208

projection of the momentum balance onto the z axis shows that the component of ∇P209

along that axis can be neglected, so in the following we replace the notation ∇‖P above210

by ∇P .211

For a generalized Newtonian model, the apparent viscosity can be expressed in terms212

of the shear stress or shear rate. In particular, the Ellis fluid rheology is a three-parameter213

model in which the apparent viscosity is related to the magnitude τ of τ according to214

µ = µ0

[
1 +

(
τ

τ1/2

) 1
n−1]−1

, (5)

where µ0 is the dynamic viscosity at low shear rates, n is the ST index that defines the215

power-law trend at high-shear stress, and τ1/2 is a characteristic shear stress such that216

µ(τ1/2) = µ0/2. This model reduces to a Newtonian rheology either for n = 1 or τ1/2 →217

∞. For n = 1 the fluids presents a constant dynamic viscosity µ = µ0/2, whereas for218

τ1/2 → ∞ and n < 1 the transition from Newtonian plateau to the power law trend219

occurs at infinite shear stress (or equivalently, shear rate), which yields a constant vis-220

cosity µ = µ0. In Figure 3, the dependence of the apparent viscosity on the shear rate221

is represented in colors for two examples of Ellis fluids, showing the low shear-rate quasi-222

Newtonian plateau and the high shear rate ST power-law trend.223

The local flux q is defined as the integral of the three-dimensional fluid velocities224

over the local fracture aperture w(x) (i.e., along the direction transverse to the mean frac-225

ture plane) (Méheust & Schmittbuhl, 2001). If the fluid is Newtonian, the relationship226

between q and the local pressure gradient ∇P is given by the Hagen-Poiseuille law, which227

effectively expresses Darcy’s law with an intrinsic permeability w2/12. Similarly, for the228

Ellis model it is possible to analytically derive the velocity profile by introducing the ex-229

pression of τ as a function of ∇P (from Eq. (4)) in Eq. (5), and integrating between the230

value of z at the lower wall (at which the velocity is zero) and z. We thus obtain231

u(z) = −
{

1

8µ0

[
w2− 4z2

]
+

n

n+ 1

(
1

2n+1µn0 τ
1−n
1/2

) 1
n
[
w

1
n+1− 2

1
n+1|z| 1n+1

]
||∇P || 1n−1

}
∇P.

(6)
For n = 1 (or τ1/2 → 0), Eq. (6) returns the Newtonian, parabolic, velocity profile and232

leads to the aforementioned Hagen-Poiseuille law after integration over the fracture’s cross233

section. In general case, this integration leads to a generalized, non-linear relation be-234

tween the local flux and the pressure gradient:235

q = −
[
w3

12µ0
+

n

2n+ 1

(
1

21+nµn0 τ1/2
1−n

) 1
n

w
2n+1

n ‖∇P‖ 1
n−1

]
∇P . (7)

It follows from the definition of q, from the mass conservation for the incompressible fluid236

(continuity equation, ∇ · u = 0), and from the nullity of fluid velocities at the frac-237

ture’s walls, that q is conservative (∇ · q = 0). Introducing Eq. (7) in the conserva-238

tion of q yields the generalized Reynolds equation:239

−∇ ·
[(

w3

12µ0
+

n

(2n+ 1)

(
1

21+nµn0 τ
1−n
1/2

) 1
n

w
2n+1

n ‖∇P‖ 1
n−1

)
∇P

]
= 0 , (8)

which for n = 1 (Newtonian fluid) reduces to the classical Reynolds equation (Brown,240

1987).241
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Figure 3. Dependence of the apparent viscosity µ on the shear rate γ̇. The constitutive equa-

tion is represented for two Ellis fluids of different ST behaviour: a xanthan gum, the yellow-solid

line, and a silicon oil, the orange-solid solid lines. Both fluids show a low-shear rate Newtonian

plateau (µ → µ0), while black-dashed lines report the relative original Carreau model. The black

dashed lines are similar curves obtained for two Carreau fluids with the same low-shear plateaus

and power law behaviors as each of the two Ellis fluids, respectively, and a high shear asymptotic

viscosity of 10−3 Pa · s for one of them (the other one’s high shear plateau is not visible).

–8–
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The mean flow velocity at position (x, y) (i.e., vertically-averaged local velocity)242

is then defined as:243

u =
q

w
= −

[
w2

12µ0
+

n

2n+ 1

(
1

21+nµn0 τ1/2
1−n

) 1
n

w)
n+1
n ‖∇P‖ 1

n−1
]
∇P . (9)

Hereinafter, the magnitudes of the velocity u and of its longitudinal and transversal com-244

ponents, ux and uy, are denoted u, ux and uy, respectively.245

2.2.2 From fitted Carreau model parameters to Ellis model parameters246

In the literature, the four-parameter Carreau model (Carreau, 1972) is commonly247

adopted to fit rheological data for ST fluids, with the apparent viscosity expressed as a248

function of the shear rate as follows:249

µ = µ′∞ +
µ′0 − µ′∞[

1 +

(
γ̇
γ̇c

)2] 1−n′
2

. (10)

This model features a high viscosity (µ ' µ′0) plateau and a low viscosity (µ ' µ′∞)250

plateau at low and high shear rates, respectively. These plateaus are separated by a power251

law ST trend of exponent, or ST index, n′ (see black dashed lines in Fig. 3)); γ̇c is a char-252

acteristic shear rate that regulates the transition from the low-shear rate viscosity plateau253

to the ST behavior.254

Such plateaus are observed on experimental rheology data for ST fluids, which is255

why the Carreau model is well indicated. However, the Carreau constitutive equation256

does not allow deriving an explicit analytical expression of the flow rate as a function257

of the imposed pressure gradient. Alternatively, the Ellis model exhibits a high-viscosity258

low-shear rate plateau as well, but lacks the high-shear rate low-viscosity additional plateau,259

typical of the Carreau model. Due to the modest influence on the flow of the latter low-260

viscosity plateau, except at exceptionally high imposed macroscopic pressure gradient,261

the Ellis model represents a valid alternative to the Carreau model to simulate creep-262

ing flow of a ST fluid in variable aperture fractures. In this work, parameters for the El-263

lis model are inferred from the Carreau parameters fitted to experimental data of real264

fluids by Uddin et al. (2012). These parameters are obtained assuming the same low-265

shear rate viscosity plateau (µ0 = µ′0), and the same ST behavior at moderate to large266

shear rates. The latter conditions imposes both n = n′ and the value for the charac-267

teristic shear stress τ1/2. In particular, for γ̇ � γ̇c, the Carreau model can be re-written268

as269

µ ∼
γ̇�γ̇c

µ′0

(
γ̇c
γ̇

)1−n′

, (11)

while similarly, for τ � τ1/2, the Ellis model becomes270

µ ∼
τ�τc

µ0

(
τ1/2

τ

) 1−n
n

= µ0

(
τ1/2

µγ̇

) 1−n
n

. (12)

Equations (11) and (12) thus provide a simple expression of τ1/2 in terms of the Carreau271

parameters:272

τ1/2 = µ0γ̇c . (13)

2.2.3 When to expect a shear-thinning behavior ?273

From now on we shall denote ∇P the mascroscopic pressure gradient, i.e. the pres-274

sure gradient that is imposed at the fracture scale. The behaviour of the fluid inside the275

fracture will be all the more ST as ∇P is larger. A critical macroscopic pressure gradi-276

ent ∇P c, above which the non-linear rheology starts to manifest itself in the flow, can277
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Figure 4. (a) Fracture representation with boundary conditions and flow rate direction. (b)

Finite volume five-point stencil: the pressure is defined at the centre of the finite volumes (indi-

cated by the blue nodes), the aperture at the center of the edges (indicated by the yellow nodes)

via arithmetic mean.

be analytically derived in the following manner. Considering the parallel plate config-278

uration of aperture equal to the rough fracture’s mean aperture, when the maximum shear279

rate occurring in the flow (τmax) is higher than the critical shear rate τc = τ(γ̇c), the280

viscosity starts to deviate from the Newtonian plateau viscosity µ0. Given equation (4),281

the critical pressure gradient can be estimated as282

∇Pc =
2τc
〈w〉

, (14)

where the critical shear stress τc can be numerically evaluated from283

τc = µ0

[
1 +

(
τc
τ1/2

) 1
n−1]−1

γ̇c . (15)

Moreover, following Zami-Pierre et al. (2016) (who were addressing shear-thinning flow284

in porous media), we define the characteristic local flow rate magnitude qc for which tran-285

sition from Newtonian to ST is expected to occur, as:286

qc = γ̇c〈w〉
√
k0 , (16)

where k0 is the fracture intrinsic permeability defined classically for Newtonian flow.287

2.3 Flow Solver288

A lubrication-based numerical code has been implemented to solve Eq. (8) in a sin-289

gle fracture (Lenci et al., 2022), whose aperture geometry is generated by means of the290

synthetic fracture generator described in section 2.1. A fracture of dimensions L × L291

along its mean plane is discretized on a N×N regular grid, the flow resulting from an292

imposed pressure drop P0−P1 between the inlet (left-hand boundary) and outlet (right-293

hand boundary) of the fracture, along the x-direction. The corresponding macroscopic294

pressure gradient is ∇P = (P0−P1)/L. No-flow conditions are imposed along the two295

transverse boundaries of the flow domain.296

A finite volume scheme has been adopted to solve the flow (see Fig. 4). The pres-297

sure P (x, y) and aperture w(x, y) are defined at different locations, on a staggered grid.298

The pressure is defined at the centre of each mesh cell, the aperture on the boundary299
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Fluid (ID) Carreau Model Ellis Model
n′ µ′0 µ′∞ γ̇c n µ0 τ1/2

(−) (Pa s) (Pa s) (s−1) (−) (Pa s) (Pa)

Silicon oil (SO) 0.61 9.75 0 0.045 0.61 9.75 8.48
Xanthan gum (XG) 0.36 4.42 10−3 0.869 0.36 4.42 0.20

Table 1. Rheologic parameters for the two considered fluids: a silicon oil (Uddin et al., 2012)

and a Xanthan gum produced in the laboratory. Experimental data are originally fitted with the

Carreau model, after which Ellis parameters are inferred analytically from the fitted parameters.

between neighbouring cells via arithmetic mean (e.g., w
(j)
i = (wj + wi)/2). The dis-300

crete formulation of equation (8) can be written for node j as301

∑
i∈σ(j)

[
w

(j)
i

3

12µ0
+

n

2n+ 1

(
1

2n+1µn0 τ
1−n
1/2

) 1
n

w
(j)
i

2n+1
n

∣∣∣∣Pi − Pj∆

∣∣∣∣ 1n−1](Pi − Pj∆

)
= 0 , (17)

where σ(j) = {N,S,E,W} is the set of cells neighbouring the j-th cell, and ∆ = L/N302

is the mesh size.303

The resulting non-linear system of equations is solved with an inexact Newton-Krylov304

method, wherein the linearised symmetric system of equations is solved via variable-fill-305

in incomplete Cholesky preconditioned conjugate gradient (ICPCG) and a parameter con-306

tinuation strategy is adopted for configurations with strong non-linearities (i.e., small307

values of the exponent n). The solver is described in detail in Lenci et al. (2022).308

The numerical code is introduced in a parallel computing framework and outputs309

are saved and stored using a high-performance hierarchical data format (Koranne, 2010)310

to reduce the computational time required by the MC simulations and the post-processing.311

3 Stochastic analysis312

3.1 Application scenarios313

In this study, we consider the Ellis model for two ST fluids which have been selected314

such that the power-law exponents n differ sensibly between them and the viscosity cut-315

offs µ0 are similar, while no particular requirements are imposed to τ1/2. The Carreau316

parameters of a silicon oil fluid are taken from Uddin et al. (2012), while the other fluid317

is an ad hoc xanthan gum fluid produced in the laboratory. Table 1 lists the properties318

of theses two non-Newtonian fluids, while Figure 3 depicts the corresponding constitu-319

tive laws in an apparent viscosity versus shear rate plot. In the following, the flow of the320

two ST fluids will be compared to that of a Newtonian fluid of dynamic viscosity equal321

to µ0.322

The analysis is conducted for different imposed macroscopic pressure gradients ∇P323

and fracture lengths L. The former ranges from 102 to 103 Pa/m, which corresponds to324

typical orders of magnitude of groundwater natural potential gradients (Zimmerman &325

Bodvarsson, 1996), to 104 Pa/m, which can be associated with artificially-induced flow326

in hydraulic fracturing operations (Jung, 1989). Assuming a constant correlation length327

Lc = 0.1 m, a fracture lenght L = 0.1 m and a larger one L = 1.6 m are considered328

to illustrate the impact of the L/Lc ratio on the flow. Indeed, if one considers that the329

correlation length is a property of the formation, resulting from tectonic constrains and330

chemical weathering posterior to fracturing, then we can assume it to be independent331

of the fracture’s length (de Dreuzy et al., 2012); hence L/Lc increases as the fracture length332
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Correlation Length Lc (m) 10−1

Mean Aperture 〈w〉 (m) 10−3

Aperture Coefficient of Variation σw/〈w〉 (-) 0.8
Hurst Exponent H (-) 0.8
Mesh size N ×N (-) 210 × 210

Table 2. List of the fracture generator’s inputs that are common to all MC simulations and

realizations.

increases. Regarding the mean aperture, in situ measurements of fracture apertures are333

challenging (Barbati et al., 2016), thus mean apertures are typically obtained from rough334

wall measurements on laboratory sample. Typical values of mean fracture aperture range335

from 0.1 mm to 10 mm (Cipolla et al., 2008). However, values close to 1 mm are more336

frequent (Yeo et al., 1998; Nowamooz et al., 2013).337

3.2 Monte Carlo simulations338

In total, twelve (12) Monte Carlo (MC) sets of simulations have been performed.339

For each MC set, NMC = 103 fracture realizations were generated, changing the seed340

of the Mersenne Twister random number generator (RNG) (Matsumoto & Nishimura,341

1998); see the generation algorithm in Lenci et al. (2022). Table 3 reports the param-342

eters µ0, n and τ1/2 describing the fluid, the correlation length to length ratio, and the343

pressure gradient for all 12 MC sets, whereas the geometric parameters are listed in Ta-344

ble 2. The flow was then computed for each fracture realization of each MC set. The ac-345

ceptance criterion is based on the exit tolerance of the Newton method and on the re-346

spect of the mass conservation over the fracture domain. When such requirements were347

not met, the number of parameter continuation steps (see section 2.3) were increased un-348

til the criterion was fully satisfied. In fact, no simulations needed to be discarded in this349

analysis. The numerical code provides the following quantities of interest (QoI) for each350

process realization: the pressure field (P ), the longitudinal velocity component (ux), the351

transversal velocity component (uy), the velocity magnitude, and the apparent trans-352

missivity (T ). For non-Newtonian flow in fractures, the apparent transmissivity can be353

defined as:354

T =
Qµ0

∇P
, (18)

where Q is the volumetric flow rate. Note that for a ST rheology this transmissivity is355

not an intrinsic property of the fracture, and will depend on the mean velocity, or, equiv-356

alently, on the imposed macroscopic pressure gradient. As n goes to 1, T reduces to T0,357

which does not depend on the velocity magnitude but only on the fracture’s geometry,358

for a Newtonian fluid.359

The post-processing phase elaborates the outputs and produces PDFs of the di-360

mensionless QoIs for each realization; then, it computes the ensemble average of the PDFs361

with the relative confidence interval, estimated considering a range of one standard de-362

viation around the mean. In the following section, results concerning the non-Newtonian363

hydraulic behaviour of variable aperture fractures are discussed with a probabilistic ap-364

proach; to this end, the velocity components (ux and uy) are normalized by the mean365

velocity magnitude (〈u〉), i.e., the average over the fracture plane of the velocity u (which366

is itself the fluid velocity averaged over the local aperture). More generally, in the fol-367

lowing we shall denote by 〈·〉 the spatial average of any quantity over the fracture plane.368
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MC set µ0 τ1/2 n L/Lc ∇P ∇P/∇Pc

(Pa · s) (Pa) (-) (-) (Pa ·m−1) (-)

MC1 4.42 8.48 0.36 1 102 2.0× 10−1

MC2 4.42 8.48 0.36 1 103 2.2× 100

MC3 4.42 8.48 0.36 1 104 2.2× 101

MC4 4.42 8.48 0.36 16 102 2.0× 10−1

MC5 4.42 8.48 0.36 16 103 2.2× 100

MC6 4.42 8.48 0.36 16 104 2.2× 101

MC7 9.75 0.20 0.61 1 102 6.5× 10−4

MC8 9.75 0.20 0.61 1 103 6.5× 10−3

MC9 9.75 0.20 0.61 1 104 6.5× 10−2

MC10 9.75 0.20 0.61 16 102 6.5× 10−4

MC11 9.75 0.20 0.61 16 103 6.5× 10−3

MC12 9.75 0.20 0.61 16 104 6.5× 10−2

Table 3. ID-numbers of the Monte Carlo sets, and related parameters: fluid rheology (µ0,

τ1/2, n), ratio of aperture correlation to fracture size L/Lc, and pressure gradient ∇P . The ratio

∇P/∇Pc is reported to quantify the significance of non-linear effects. Other parameters common

to all simulations are listed in Table 1.

4 Results369

4.1 Probability density functions of depth-averaged flow velocities370

A thorough analysis based on the Monte Carlo framework discussed in the previ-371

ous section has been conducted to characterize the steady isothermal Stokes flow of ST372

fluids in rough fractures. Figure 5 provides an example of the spatial distribution of fluid373

velocities in the fracture plane of two fracture realizations with different values of the374

size-to-correlation-length ratio L/Lc. The velocity fields were obtained by solving the375

lubrication-based model described in section 2. The flow is mainly cocurrent, but local376

backward flow (i.e. negative ux/〈u〉 values) may occur due to contrasting adjacent aper-377

ture values near the fracture contact zones; these, in turn, occupy a good percentage of378

the fracture total surface (about 30%) for the selected coefficient of variation of the aper-379

ture field, which is σw/〈w〉 = 0.8. Flow localization is all the stronger as the ST fluid380

index n is smaller; this effect has been studied in detail by Lenci et al. (2022).381

The stochastic velocity dynamics is analysed by means of the ensemble average PDFs382

of the longitudinal and transversal velocity components, and of the velocity magnitude.383

Moreover, the confidence interval is provided for each PDF to measure the dispersion384

of the results around the mean behavior.385

The ensemble average PDFs of the longitudinal component of the velocity are de-386

picted in Fig. 6 for all parameter combinations listed in Table 3. The PDFs of the lon-387

gitudinal velocity component are distinctly narrow, with the positive cocurrent part ex-388

hibiting a decay which approaches an exponential decay for L/Lc = 16, and a stretched389

exponential for L/Lc = 1. A similar behaviour was observed in two and three dimen-390

sional porous media flows, for Newtonian (Siena et al., 2014) and non-Newtonian fluids391

(Zami-Pierre et al., 2016), which is not surprising since the rough fractures behave all392

the more as a two-dimensional porous medium as the correlation length is smaller. In-393

deed, a smaller correlation length means that spatial correlations in the apertures (which394

is essentially what distinguishes a fracture geometry from a uncorrelated 2-D porous medium)395

are restricted to a narrower range of scales, at small scales. Under strongly forced flow396

conditions, i.e. the highest values of the pressure gradient, the strongly shear thinning397
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Figure 5. Spatial distribution, in the fracture plane, of the dimensionless velocity (u/〈u〉), for

two fracture realizations with L/Lc = 1 (upper row) and L/Lc = 16 (lower row), respectively.

The other geometrical parameters are H = 0.8, σw/〈w〉 = 0.8, Lc = 0.1 m, and 〈w〉 = 10−3 m for

both realizations. Subfigures in the left hand column were obtained with a Newtonian rheology

(n = 1), while those in the right-hand column depict the behaviour of the xanthan gum solution

(see Table 1), exhibiting stronger flow localization than the Newtonian flow.
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Figure 6. Probability density functions of the dimensionless longitudinal velocity component

ux/〈u〉 for small (left column) and large (right column) fractures, and for small (top row), in-

termediate (middle row) and high (bottom row) macroscopic pressure gradients ∇P ; solid lines

represent the mean ensemble PDFs, while dashed lines define the confidence interval, with the

range estimated considering the standard deviation. Black lines refer to the Newtonian case

(n = 1), orange and yellow lines to the silicon oil (n = 0.61) and xanthan gum (n = 0.36),

respectively.
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fluid (n = 0.36) exhibits wider cocurrent and thinner countercurrent tails with respect398

to the less shear thinning fluid (n = 0.61), and even more so when compared to the New-399

tonian case in the same conditions. On the other hand, under lower pressure gradients400

the PDFs for Newtonian and non-Newtonian fluids almost overlap, clearly indicating that401

the fracture heterogeneity governs the flow and the nonlinear effects associated to rhe-402

ology are quite modest. Results for small fractures (i.e. L/Lc = 1) are almost indepen-403

dent of the rheology and flow regime, with a very modest increase/decrease of the cocur-404

rent/countercurrent tail only for the most ST fluid and the highest pressure gradient.405

In this type of geometry the strong channeling resulting from the aperture field hetero-406

geneity, which is correlated up to the fracture size, dominates over the effect of rheol-407

ogy. Although the ST flow is faster than Newtonian flow under identical conditions (see408

Lenci et al. (2022)), the PDF of the longitudinal velocity component normalized by the409

average velocity is little impacted by the rheology. For large fractures (L/Lc = 16) the410

effect is reversed but remains extremely modest for the lowest considered value of ∇P .411

412

Figure 7 depicts the ensemble average PDFs of the transversal velocity components:413

these are nearly symmetric around zero as expected. Results for small fractures (i.e. L/Lc =414

1) are invariant with respect to the rheology and flow regime, with no significant differ-415

ences for any combination of parameters. Again this behavior results from the strong416

geometry-mediated channeling. On the other hand, large fractures (L/Lc = 16) under417

high pressure gradient show wider tails, especially for the most shear thinning fluid. The418

PDFs of the transverse velocity components suggest, similarly to the longitudinal case,419

that under low pressure gradients the flow pattern is mainly dominated by fracture het-420

erogeneity, with contributions due to non-linear rheology that arise only for strongly ST421

fluids, especially in large fractures. A Newtonian fluid tends to spread more across the422

open portion of the fracture plane, as compared to a ST fluid. Conversely, the ST be-423

haviour induces a more marked flow localization, with the flow presenting more extreme424

values of velocities under the same flow conditions.425

The PDF of the velocity magnitude (i.e. the norm of the Eulerian velocity) is re-426

lated to a typical transport attribute, the spatial-Lagrangian PDF, through flux-weighting427

(Dentz et al., 2016). Several studies have aimed at relating the Eulerian velocity PDF428

to porous medium’s geometrical properties (de Anna et al., 2017; Hakoun et al., 2019;429

Puyguiraud et al., 2019a; Velásquez-Parra et al., 2021), and from there, anomalous trans-430

port to the Eulerian velocity PDF (Puyguiraud et al., 2019b; Velásquez-Parra et al., 2021).431

In Fig. 8, the dimensionless PDF of velocity magnitudes is depicted to show the influ-432

ence of rheology and fracture heterogeneity on the distribution of both high and low ve-433

locities. The dimensionless PDFs for the less ST fluid (n = 0.61) overlap with those434

for the Newtonian fluid for all the considered configurations, meaning that the fluid rhe-435

ology does not affect the shape of the PDF but only its magnitude. Conversely, the more436

ST fluid (n = 0.36) shows more extreme values of the velocity magnitude under high437

pressure gradients, which corresponds physically to a higher localization of flow under438

a ST rheology than under the Newtonian rheology, as discussed above. The differences439

between the two non-Newtonian fluids for intermediate and high pressure gradients in-440

crease when a small fracture (i.e. L/Lc = 1) is considered, which is expected, since flow441

channeling at the fracture scale is much stronger in that case, even for Newtonian flow.442

4.2 Autocorrelation function of the velocity components443

In Fig. 9, the autocorrelation functions of the velocity components are depicted for444

the case L/Lc = 1. The autocorrelation coefficients ρxx = Cov(ux, ux)/σ2
ux

and ρyy =445

Cov(uy, uy)/σ2
uy

are evaluated along their respective directions, i.e. the x-direction and446

y-direction respectively. These autocorrelation functions provide a metric of disorder (Rozenbaum447

& du Roscoat, 2014), which can be influenced by the fluid’s rheology. These functions448

show a more rapid decay for strongly non-Newtonian fluids under high pressure gradi-449

ent and in small fractures (L/Lc = 1), while larger fractures are not affected at all. All450
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Figure 7. Probability density functions of the dimensionless transversal velocity component

uy/〈u〉 for small (left column) and large (right column) fractures, and for small (top row), inter-

mediate (middle row) and high (bottom row) pressure gradients ∇P ; solid lines represent the

mean ensemble PDFs, while dashed lines define the confidence interval, with the range estimated

considering the standard deviation. Black lines refer to the Newtonian case (n = 1), orange and

yellow lines to the silicon oil (n = 0.61) and xanthan gum (n = 0.36), respectively.
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Figure 8. Probability density functions of the dimensionless velocity magnitude u/〈u〉; for

small (left column) and large (right column) fractures, and for small (top row), intermediate

(middle row) and high (bottom row) pressure gradients ∇P ; solid lines represent the mean

ensemble PDFs, while dashed lines define the confidence interval, with the range estimated con-

sidering the standard deviation. Black lines refer to the Newtonian case (n = 1), orange and

yellow lines to the silicon oil (n = 0.61) and xanthan gum (n = 0.36), respectively.
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Figure 9. Autocorrelation functions, averaged over the MC simulations, of the velocity com-

ponents (longitudinal ρxx and transversal ρyy) as a function of the dimensionless lag (l/∆), for

L/Lc = 1. The dimensionless lag is the ratio of the distance l to the mesh size ∆. Black lines

refer to the Newtonian case (n = 1), orange and yellow lines to the silicon oil (n = 0.61) and

xanthan gum (n = 0.36), respectively. The orange and the black lines overlap perfectly.

plots show a hole type covariance with zero integral scale: velocity fluctuations are pos-451

itively correlated at short distances and negatively correlated at longer distances, and452

tend to zero exponentially from below. A similar structure has been obtained by Bellin453

et al. (1992) for 2-D porous media. The influence of rheology and of the external pres-454

sure gradient on the autocorrelation coefficients is almost imperceptible in the flow di-455

rection, while the transverse component is to some extent affected, showing a faster short-456

scale correlation decay as the fluid becomes more ST.457

Figure 10 depicts the autocorrelation coefficients for the case L/Lc = 16. All com-458

binations of parameters result in the same hole covariances behaviour for ρxx and ρyy:459

a narrow short-scale positive correlation, with a fast short-scale exponential decay, and460

a long-scale negative correlation, slowly tending to zero from below.461

4.3 Fracture-scale hydraulic behavior462

Considering now the integral flow behaviour, i.e., the hydraulic behavior at the frac-463

ture scale, we see that the ST rheology enhances the fracture’s apparent transmissivity:464

this effect becomes relevant under the action of a sufficiently large macroscopic pressure465

gradient (i.e. sufficiently large average velocity). Fig. 11 depicts the dependence of the466

apparent transmissivity T , normalized with its Newtonian counterpart T0, on the veloc-467

ity normalized by the characteristic flux qc, for each realization; the average value for468

each Monte Carlo simulation is also shown. When the normalized velocity is smaller than469

1, T/T0 goes to 1, which is characteristic of the Darcian regime. When T/T0 is sufficiently470

larger than 1, it is related to the normalized velocity through a non-linear relation in the471

form 〈||q||〉n ∝ ||∇〈P 〉||, characteristic of the ST (power law) behavior. A similar macroscale472

transition between two such regimes has been observed for two-dimensional porous me-473
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Figure 10. Autocorrelation functions, averaged over the MC simulations, of the velocity com-

ponents (longitudinal ρxx and transversal ρyy) as a function of the dimensionless lag (l/∆), for

L/Lc = 16. The dimensionless lag is the ratio of the distance l to the mesh size ∆. The lines

corresponding to the different fluids overlap perfectly with the black solid line.

Figure 11. Dependence of the dimensionless transmissivity T/T0 on the dimensionless local

flux, 〈||q||〉/qc, for all realizations and the ensemble average of each Monte Carlo simulation: (a)

L/Lc = 1, (b) L/Lc = 16. Simulation results for the silicon oil and xanthan gum are in orange

and yellow, respectively; the darker the color, the higher the imposed global pressure gradient is.

Lines are a guide to the eyes.
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dia by Zami-Pierre et al. (2016). Apparent transmissivity values obtained for small frac-474

tures (L/Lc = 1) are more disperse around their ensemble average as compared to their475

larger counterpart (L/Lc = 16), for which values for an individual realization are al-476

most superimposed with their ensemble average. In other words, since no spatial cor-477

relations exist in the aperture field at scales larger than L/16, that field is mostly ran-478

dom and all realizations of it behave in the same way (see Méheust and Schmittbuhl (2003)479

for a similar result for Newtonian flow). However, comparing results for the two frac-480

tures shows that ensemble averages are almost insensitive to the fracture size, or, equiv-481

alently, to the ratio L/Lc. I.e., the fluid’s rheology dominates by far over aperture het-482

erogeneities in controlling the hydraulic behavior for such strongly ST fluids.483

5 Conclusions484

We conducted a comprehensive stochastic analysis aimed at elucidating how the485

effects of shear-thinning (ST) rheology and aperture variability impact the flow in re-486

alistic synthetic geological fractures. Our results provide an insight on the interplay be-487

tween the fluid’s ST nature and the fracture’s heterogeneity, covering the entire range488

of variability of the fluid ST index, fracture size to correlation length ratio, and imposed489

macroscopic pressure gradient. The ST behaviour of the fluid, modeled by means of the490

three-parameter Ellis rheology, is particularly relevant when the fracture is subjected to491

a sufficiently high macroscopic pressure gradient (typical of forced regimes). A transi-492

tion from the Darcian regime 〈||q||〉 ∝ ||∇P || to the non-linear regime 〈||q||〉n ∝ ||∇P ||493

occurs when increasing the imposed macroscopic pressure gradient. Under the same con-494

ditions, the ensemble statistics of the velocity components differ more from the Newto-495

nian case for a more ST fluid. In particular, the average PDFs of the normalised veloc-496

ity components show thicker tails for ST rheologies, indicating a higher frequency of ve-497

locities much larger than the mean value. The average PDFs of the velocity magnitude498

also display a higher dispersion of the velocity around the mean values. These results499

can be explained by the fact that for more strongly ST fluids the flow localization on cor-500

related large aperture channels is more intense. This stronger flow localization is con-501

sistent with results obtained on two-dimensional porous media in earlier studies. In rough502

fractures, however, long range spatial correlations create channeling at the scale of the503

correlation length, which is then the longitudinal scale at which flow localization occurs;504

this is an ingredient that is not present in uncorrelated 2-D porous media.505

In sum, the flow pattern is mostly governed by aperture heterogeneities, while the506

impact of the fluid rheology on the probability density function of velocity components,507

once normalized by the mean velocity, is relatively limited, except for ST fluids with a508

very low power law index. The fracture scale hydraulic behaviour, on the other hand,509

is strongly affected by the fluid rheology: the ratio of apparent non-Newtonian trans-510

missivities to those obtained for Newtonian flow increases with the ST power law index,511

reaching values much larger than unity. Ensemble averages of the overall hydraulic trans-512

missivity are almost independent of the fracture size (or, equivalently, of the ratio L/Lc),513

but smaller fractures (i.e., those with larger L/Lc ratios), whose transmissivities are more514

affected by structural disorder due to flow channeling up to the fracture scale (as for New-515

tonian flow), show a larger apparent dispersion around the mean apparent transmissiv-516

ity. Though the study was performed here on two given ST fluids, the generalization of517

our results to any ST fluid is straightforward: the increase in the fracture’s hydraulic be-518

havior under ST flow, as compared to the Newtonian behavior, is controlled by the fluid’s519

power law index n, and is observed for applied macroscopic pressure gradients larger than520

a critical value; that critical value can be predicted from the rheology (Eqs (14) and (15)).521

Equivalently, global ST flow behavior occurs if the mean local flux is larger than a crit-522

ical value whose analytical expression is given by Eq. (16).523
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The analysis of the velocity statistics proposed in this work will be used in a sim-524

ilar Monte Carlo framework to characterize solute transport (e.g., through spatial dis-525

persion or breakthrough curves).526
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