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1. Introduction
Flow modeling of complex fluids in geological formations is of interest in numerous industrial applications. 
Among them are enhanced oil recovery (Hirasaki et al., 2011; Leung et al., 2014), geothermal circulations in frac-
tured reservoirs (Bächler et al., 2003; Magzoub et al., 2021) and fluid losses during drilling operations (Feng & 
Gray, 2017), where foams, muds, emulsions, colloidal or non-colloidal suspensions are commonly involved. The 
use of high-viscosity gels in hydraulic fracturing improves the proppant carrying capacity and favors the genera-
tion of wider fractures in comparison to the use of slick water (Pahari et al., 2021). Drilling muds provide cooling 
and lubrication to the drill bit and are employed as mechanical stabilizers in the construction of the wellbore to 
pressurize the borehole against collapse. The constitutive law of these fluids does not respect Newton's law of 
viscosity, because their micro-structure induces a shear-thinning (ST) rheology at the continuum scale (Ansari 
et al., 2021; Barati & Liang, 2014). The non-Newtonian behavior of these fluids lies in their physical make-up and 
the ability of mesoscopic components to cross-link chemically (e.g., polymer solutions, see (Wang et al., 2016)) 
or interact electrostatically (e.g., colloidal suspensions, see Méheust et al., 2011; Parmar et al., 2008).

Subsurface geological formations (e.g., crustal rocks) are discontinuous media, consisting in matrix blocks of low 
permeability separated by fractures, which provide major conduits for flow. The connectivity among fractures 
and their hydraulic behavior are the features that control the entire formation permeability (Berkowitz, 1994). 
The simplest model to study the hydraulic behavior of a fracture is the parallel plate model or cubic law. This 
model has been largely used for its simplicity, although it oversimplifies wall topography. Different approaches 
have been proposed also to represent rough fractures: deterministic saw tooth (Wilson & Witherspoon, 1974), 
sinusoidal profiles (Elsworth & Goodman,  1986), or profiles with an assigned aperture probability distribu-
tion (Felisa et al., 2018; Lenci & Di Federico, 2020; Neuzil & Tracy, 1981). In minerals and rocks, however, 
field and laboratory measurements on fracture walls highlight the stochastic self-affine nature of the surface 
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morphology, for both natural (Brown & Scholz, 1985; Cox & Wang, 1993; Schmittbuhl et al., 1993) and fresh 
artificial fractures (Bouchaud,  1997; Schmittbuhl et  al.,  1993). Several algorithms are able to reproduce this 
kind of rough surfaces, which are more consistent with the experimental evidence: diamond-square algorithm 
(Fournier et al., 1982), successive random addition (Lu et al., 2003), and the FFT-based algorithm proposed by 
Méheust and Schmittbuhl (2003), which is far quicker.

Predictions of fracture transmissivities based on the parallel plate model significantly deviate from measure-
ments, especially under elevated normal (Gale, 1990) or cyclic shear stresses (Makurat, 1985), limiting its use 
to sufficiently smooth fractures. Traditional computational fluid dynamics (Starchenko et al., 2016), lattice gas 
(Gutfraind et al., 1995; Stockman, 1997) and lattice Boltzmann methods (Meakin & Tartakovsky, 2009; Tian 
& Wang, 2017) have been adopted to capture the impact of the complex geometry of fractures on Newtonian 
flow, and thus to accurately predict flow and transport attributes, although the simulations are computationally 
intensive. Alternative numerical methods, based on lubrication theory and computationally more convenient, 
have been proposed to solve Newtonian creeping flow in rough fractures: standard matrix inversion techniques 
(Brown, 1987) or pseudospectral methods (Plouraboué et al., 1998). Estimation of the mean hydraulic aperture 
of a large number of independent fractures show a difference no larger than 2% (Mourzenko et al., 1995) between 
a lubrication-based solver and CFD simulations. Furthermore, due to the stochastic nature of the geometry of 
geological fractures, fractures described by the same statistical geometrical parameters can display a wide range 
of hydraulic behaviors (Méheust & Schmittbuhl, 2001, 2003), including cases that are more permeable than the 
parallel plate of identical mean aperture (Méheust & Schmittbuhl, 2000): thus the typical hydraulic behavior of a 
geological fracture should be understood as the average over a representative statistics, and the dispersion of the 
behaviors among the statistics should also be investigated. To our knowledge, Méheust and Schmittbuhl (2001) 
performed the first such Monte Carlo simulations of Newtonian creeping flow in geological fractures with real-
istic geometries.

Monte Carlo simulations have been adopted for decades to simulate different processes in a variety of geologic 
media: a limited number of realizations of 1-D fractures with variable aperture were produced by Tsang and 
Tsang (1987) to investigate flow in fracture channels; the same approach was then generalized to 2-D fractures, 
although with spatial distributions of apertures that are more relevant to 2-D aquifer permeability fields than to 
geological fractures (Moreno et al., 1988). The pioneering work of Bellin et al. (1992) investigated the conditions 
for the validity of first-order flow and transport theories in random porous media; Berkowitz and Scher (1998) 
adopted a Monte Carlo approach to determine velocity distributions in fracture networks, as a function of the 
fracture orientations, to study anomalous transport at the network scale; Gómez-Hernández and Wen  (1998) 
analyzed the applicability of multi-Gaussian random function models in hydrogeology. More recently this meth-
odology has been applied to study transient sequentially coupled radionuclide transport (Hayek et al., 2020), to 
investigate flow in two dimensional (2-D) conductivity fields and derive a large-scale transport model (Comolli 
et al., 2019), to simulate CO2 plume migration (Zhong et al., 2019), and to perform uncertainty quantification 
(Yang et al., 2020).

Notwithstanding the ubiquitous use of complex fluids in the subsurface, their rheology is often taken to be Newto-
nian, with a limited number of studies having focused on non-Newtonian flow. Several analytical expressions have 
been proposed to comprehend the flow features in simple geometries (Larson, 1992), or to qualitatively assess the 
effect of fluid rheology on flow in a variable aperture field of given distribution (Di Federico, 1997). Different 
numerical strategies have been adopted to handle non-linear problems when dealing with a complex rheology in 
a variable aperture field: Picard's method (Morris et al., 2015), and sequential sweeping (Lavrov, 2013). A few 
studies have also addressed non-Newtonian flow in fractures with self-affine geometries (Auradou et al., 2008; 
Lenci et al., 2022; Perkowska et al., 2016). Recently, advances in computational power have allowed the investi-
gation of complex processes, such as: multiphase flow (Katiyar et al., 2020), transport in fractures of permeable 
walls (Dejam, 2019), and hydro-mechanical coupling (Chiapponi et al., 2019; Ciriello et al., 2021; Moukhtari & 
Lecampion, 2018; Wrobel et al., 2021).

Despite this wealth of contributions using different constitutive models and hypotheses, to date stochastic analy-
ses have never been applied to investigate ST hydrodynamics in rough fractures under natural and artificial flow 
conditions. In this study we extend the state of the art by exploring the non-Newtonian, ST, hydraulic behavior 
of a rough fracture within a stochastic framework, using a depth-integrated, 2-D, flow model proposed by Lenci 
et al. (2022). A total of twelve thousand Monte Carlo simulations are run, with fractures partitioned adopting a 
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million node regular mesh. A stochastic analysis of this phenomenon has never been conducted due to the limi-
tations of numerical tools available prior to Lenci et al. (2022). Existing studies in the literature typically involve 
one or few realizations and adopt small meshes (e.g., 33 × 33 in Lavrov (2013)) to achieve convergence in a 
reasonable amount of time. Here, we conduct a systematic analysis of the main quantities of interest in a variable 
aperture fracture, the velocity field and the transmissivity, by exploring their probabilistic behavior. We do so 
in dimensionless form, starting from realistic values of dimensional parameters typical of the aforementioned 
subsurface applications. We thus unravel the intertwined roles of ST rheology and fracture heterogeneity.

The article is organized as follows: Section 2 presents the non-linear lubrication equation for a non-Newtonian 
Ellis fluid, the generation process of discrete fractures, and describes the implementation of the lubrication-based 
numerical code; in Section 3, the adopted stochastic approach is outlined; Section 4 presents the results of the 
Monte Carlo simulations performed, emphasizing the ensemble statistics obtained: these include the apparent 
transmissivity, the vertical and longitudinal velocity components, and the velocity modulus; the covariance of the 
latter is also analyzed. Conclusions and perspectives for future work are formulated in Section 5.

2. Modeling Framework
2.1. Generation of Synthetic Fractures

A geological fracture is composed of two rough walls, whose parallel mean planes are separated by 〈w〉, defined 
as the mechanical aperture. The topographies of the upper (zu) and lower wall (zl), assumed of zero mean, fluc-
tuate with respect to their mean planes, and local apertures can be defined as the distance between them; at posi-
tions where the two walls interpenetrate, a zero aperture is imposed:

𝑤𝑤(𝑥𝑥𝑥 𝑥𝑥) = max (0𝑥 𝑧𝑧𝑢𝑢(𝑥𝑥𝑥 𝑥𝑥) − 𝑧𝑧𝑙𝑙(𝑥𝑥𝑥 𝑥𝑥) + ⟨𝑤𝑤⟩) . (1)

Fracture surfaces exhibit long-range spatial correlation (Candela et al., 2009; Schmittbuhl, Vilotte, & Roux, 1995). 
Therefore, the topography of a geological fracture's rough wall is an isotropic self-affine surface, with the proba-
bility densit function (PDF) f(Δz, Δr) scaling as:

∀𝜆𝜆𝜆 𝜆𝜆 (Δ𝑧𝑧𝜆Δ𝑟𝑟) = 𝜆𝜆𝐻𝐻𝜆𝜆
(
𝜆𝜆𝐻𝐻Δ𝑧𝑧𝜆Δ𝑟𝑟

)
𝜆 (2)

where Δz is the height difference between two points separated by an in-plane segment of length Δr, H is the 
Hurst exponent, and λ is a scaling factor. Note that fracture surfaces in crystalline rocks consistently show a Hurst 
exponent of 0.8 (Méheust & Schmittbuhl, 2000), and this value has been proposed as universal by Bouchaud 
et al. (1990). However, exceptions exist, such as sandstones, in which the grain-induced roughness regime, for 
high frequencies in the power spectrum, may present values close to 0.5 (Boffa et al., 1999; Nigon et al., 2017). 
One consequence of the scaling property of the PDF in Equation 2 is that the 2-D power density spectrum of wall 
topography scales as a power law of the wave number in the form S(k) ∝ k −2(1+H), where the wave number k is the 
norm of the wave vector, that is, 𝐴𝐴 𝐴𝐴 =

(
𝐴𝐴2
𝑥𝑥 + 𝐴𝐴2

𝑦𝑦

)1∕2 , kx and ky being the components of the wave vector.

The two walls of a geological fracture are matched at large length scales (i.e., their large scale topographies are 
identical), but differ at scales smaller than a crossover scale, which we shall denote the correlation length Lc 
(Brown, 1995). This is due to mechanical wear and chemical weathering over long times. It follows that the aper-
ture field exhibits the same self-affinity as the walls at scales smaller than Lc, and, thus, that the aperture field's 
Fourier spectrum exhibits the characteristic self-affine power-law scaling at these small scales, and an almost flat 
behavior due to the matching of the two walls at scales larger than Lc. Consequently, the spectral power density 
of the aperture field exhibits the above-mentioned power-law radial decay, of negative exponent −2(H + 1) for 
wave numbers higher than kc, the characteristic wave number corresponding to scale Lc (Schmittbuhl, Schmitt, & 
Scholz, 1995), and is flat for wave numbers smaller than kc.

This property can be used to generate realistic synthetic aperture fields from a 2-D white noise, maintaining 
its random phase and introducing the spatial correlations by multiplying the Fourier modes corresponding to 
scales smaller than Lc by the power-law behavior k −(H+1) (Méheust & Schmittbuhl, 2003). Applying an inverse 
Fourier transform then yields an aperture field with the appropriate geometry, which can then be scaled and 
translated vertically so as to impose the desired mean aperture and standard deviation of aperture fluctuations. 
Figure 1a depicts the 2-D Fourier spectrum of such a synthetic aperture field, while Figure 1b presents its aver-
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age radial profile, with the scaling properties discussed above. Figure  2 shows the comparison between two 
different aperture fields having the same correlation length but different fracture sizes, and thus a markedly 
different size-to-correlation-length ratio. The latter parameter will be later seen to affect the flow behavior quite 
significantly.

2.2. Flow Model

2.2.1. Generalized Reynolds Equation

We consider the steady-state, isothermal Stokes flow of an incompressible fluid between two smooth parallel 
straight walls separated by a uniform distance w. Under the lubrication approximation (Brown, 1987), if the 
aperture field remains sufficiently smooth (∇w ≪ 1), the vertical component of the velocity is negligible with 
respect to the horizontal component. Consequently, the pressure field is independent of the coordinate z whose 
axis is perpendicular to the mean fracture plane, and the projection of the momentum balance on that plane can 
be written as

�
��

(

� ��
��

)

= �
‖

� , (3)

Figure 1. (a) Binary logarithm of the power density spectrum of a synthetic fracture's aperture field, plotted as a function of the Fourier modes kx and ky (in linear 
scale); the isotropic spectrum is stochastic and exhibits the typical radial power law decay 𝐴𝐴 ∝

(
𝑘𝑘2
𝑥𝑥 + 𝑘𝑘2

𝑦𝑦

)−(1+𝐻𝐻) for wave numbers 𝐴𝐴 𝐴𝐴 =

√

𝐴𝐴2
𝑥𝑥 + 𝐴𝐴2

𝑦𝑦 larger than kc, and is 
constant otherwise (k ≤ kc). (b) Radial profile obtained by averaging the spectrum in (a) over the azimuthal angles; it shows the aforementioned self-affine behavior 
more clearly. (c) 3-D representation of the fracture's rough walls. (d) 2-D cross-section of the fracture, corresponding to the blue lines in (c), with geometrical quantities 
of interest. The vertical scale is 10 times larger than the horizontal scale. Other adopted parameters are: the Hurst exponent H = 0.8, mean aperture 〈w〉 = 10 −3 m, 
correlation length, Lc = 0.1 m, closure σw/〈w〉 = 0.3 and correlation ratio L/Lc = 16, with L fracture size.
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where u is the velocity vector, ∇‖P is the projection of the pressure gradient onto the fracture plane, and μ is 
the dynamic viscosity or the apparent viscosity if the fluid is Newtonian or non-Newtonian, respectively. After 
defining the mean value 𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥) , which indicates the middle point of the fracture at position (x, y) along the frac-
ture plane, and integrating once over the z-direction between 𝐴𝐴 𝐴𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥) and z, the momentum conservation becomes 
(Lenci et al., 2022)

� ��
��

= (� − �̄)�
‖

� , (4)

where we notice that the left term is actually the definition of the shear stress 
τ. The projection of the momentum balance onto the z axis shows that the 
component of ∇P along that axis can be neglected, so in the following we 
replace the notation ∇‖P above by ∇P.

For a generalized Newtonian model, the apparent viscosity can be expressed 
in terms of the shear stress or shear rate. In particular, the Ellis fluid rheology 
is a three-parameter model in which the apparent viscosity is related to the 
magnitude τ of τ according to

𝜇𝜇 = 𝜇𝜇0

[

1 +

(
𝜏𝜏

𝜏𝜏1∕2

) 1

𝑛𝑛
−1
]−1

, (5)

where μ0 is the dynamic viscosity at low shear rates, n is the ST index that 
defines the power-law trend at high-shear stress, and τ1/2 is a characteris-
tic shear stress such that μ(τ1/2) = μ0/2. This model reduces to a Newtonian 
rheology either for n = 1 or τ1/2 → ∞. For n = 1 the fluid presents a constant 
dynamic viscosity μ = μ0/2, whereas for τ1/2 → ∞ and n < 1 the transition 
from Newtonian plateau to the power law trend occurs at infinite shear stress 
(or equivalently, shear rate), which yields a constant viscosity μ  =  μ0. In 
Figure 3, the dependence of the apparent viscosity on the shear rate is repre-
sented in colors for two examples of Ellis fluids, showing the low shear-rate 
quasi-Newtonian plateau and the high shear rate ST power-law trend.

The local flux q is defined as the integral of the 3-D fluid velocities over the 
local fracture aperture w(x) (i.e., along the direction transverse to the mean 
fracture plane) (Méheust & Schmittbuhl, 2001). If the fluid is Newtonian, the 

Figure 2. Comparison between aperture fields for different values of L/Lc, with L fracture size; the color bar reports the 
aperture magnitude in meters for both representations. The two realizations are generated with a Hurst exponent H = 0.8, a 
closure σw/〈w〉 = 0.8, a correlation length Lc = 10 −1 m, and a mean aperture 〈w〉 = 10 −3 m. The red frames illustrate the size 
ratio between the two fractures, which is 16.

Figure 3. Dependence of the apparent viscosity μ on the shear rate 𝐴𝐴 𝐴𝐴𝐴 . 
The constitutive equation is represented for two Ellis fluids of different 
ST behavior: a xanthan gum, the yellow-solid line, and a silicon oil, the 
orange-solid solid lines. Both fluids show a low-shear rate Newtonian plateau 
(μ → μ0), while black-dashed lines represent the original Carreau model. The 
black dashed lines are similar curves obtained for two Carreau fluids with 
the same low-shear plateaus and power law behaviors as each of the two Ellis 
fluids, respectively, and a high shear asymptotic viscosity of 10 −3 Pa ⋅s, similar 
to water's, for one of them (the other one's high shear plateau is not visible).
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relationship between q and the local pressure gradient ∇P is given by the Hagen-Poiseuille law, which effectively 
expresses Darcy's law with an intrinsic permeability w 2/12. Similarly, for the Ellis model it is possible to analyti-
cally derive the velocity profile by introducing the expression of τ as a function of ∇P (from Equation 4) in Equa-
tion 5, and integrating between the value of z at the lower wall (at which the velocity is zero) and z. We thus obtain

�(�) = −

⎧

⎪

⎨

⎪

⎩

1
8�0

[

�2 − 4�2
]

+ �
� + 1

(

1
2�+1��

0�
1−�
1∕2

)
1
�
[

�
1
� +1 − 2

1
� +1

|�|
1
� +1

]

||�� ||
1
� −1

⎫

⎪

⎬

⎪

⎭

�� . (6)

For n = 1 (or τ1/2 → 0), Equation 6 returns the Newtonian, parabolic, velocity profile and leads to the aforemen-
tioned Hagen-Poiseuille law after integration over the fracture's cross section. In general case, this integration 
leads to a generalized, non-linear relation between the local flux and the pressure gradient:

� = −

[

�3

12�0
+ �

2� + 1

(

1
21+���

0�1∕21−�

)
1
�

�
2�+1
�
‖��‖

1
� −1

]

�� . (7)

It follows from the definition of q, from the mass conservation for the incompressible fluid (continuity equation, 
∇ ⋅ u = 0), and from the nullity of fluid velocities at the fracture's walls, that q is conservative (∇ ⋅ q = 0). Intro-
ducing Equation 7 in the conservation of q yields the generalized Reynolds equation:

−� ⋅
⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

�3

12�0
+ �

(2� + 1)

(

1
21+���

0�
1−�
1∕2

)
1
�

�
2�+1
�
‖��‖

1
� −1

⎞

⎟

⎟

⎠

��
⎤

⎥

⎥

⎦

= 0, (8)

which for n = 1 (Newtonian fluid) reduces to the classical Reynolds equation (Brown, 1987).

The mean flow velocity at position (x, y) (i.e., vertically-averaged local velocity) is then defined as:

� =
�
�

= −

[

�2

12�0
+ �

2� + 1

(

1
21+���

0�1∕21−�

)
1
�

�)
�+1
�
‖��‖

1
� −1

]

�� . (9)

Hereinafter, the magnitudes of the velocity 𝐴𝐴 𝐮𝐮 and of its longitudinal and transversal components, 𝐴𝐴 𝐮𝐮𝑥𝑥 and 𝐴𝐴 𝐮𝐮𝑦𝑦 , are 
denoted 𝐴𝐴 𝑢𝑢 , 𝐴𝐴 𝑢𝑢𝑥𝑥 and 𝐴𝐴 𝑢𝑢𝑦𝑦 , respectively.

2.2.2. From Fitted Carreau Model Parameters to Ellis Model Parameters

In the literature, the four-parameter Carreau model (Carreau, 1972) is commonly adopted to fit rheological data 
for ST fluids, with the apparent viscosity expressed as a function of the shear rate as follows:

𝜇𝜇 = 𝜇𝜇′
∞ +

𝜇𝜇′

0
− 𝜇𝜇′

∞

[

1 +

(
�̇�𝛾

�̇�𝛾c

)2
] 1−𝑛𝑛′

2

.
 (10)

This model features a high viscosity 𝐴𝐴
(
𝜇𝜇 ≃ 𝜇𝜇′

0

)
 plateau and a low viscosity 𝐴𝐴 (𝜇𝜇 ≃ 𝜇𝜇′

∞) plateau at low and high shear 
rates, respectively. These plateaus are separated by a power law ST trend of exponent, or ST index, n′ (see black 
dashed lines in Figure 3)); 𝐴𝐴 𝐴𝐴𝐴c is a characteristic shear rate that regulates the transition from the low-shear rate 
viscosity plateau to the ST behavior.

Such plateaus are observed on experimental rheology data for ST fluids, which is why the Carreau model is 
well indicated. However, the Carreau constitutive equation does not allow deriving an explicit analytical expres-
sion of the flow rate as a function of the imposed pressure gradient. Alternatively, the Ellis model exhibits a 
high-viscosity low-shear rate plateau as well, but lacks the high-shear rate low-viscosity additional plateau, typi-
cal of the Carreau model. Due to the modest influence on the flow of the latter low-viscosity plateau, except at 
exceptionally high imposed macroscopic pressure gradient, the Ellis model represents a valid alternative to the 
Carreau model to simulate creeping flow of a ST fluid in variable aperture fractures. In this work, parameters 
for the Ellis model are inferred from the Carreau parameters fitted to experimental data of real fluids by Uddin 
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et al. (2012). These parameters are obtained assuming the same low-shear rate viscosity plateau 𝐴𝐴
(
𝜇𝜇0 = 𝜇𝜇′

0

)
 , and 

the same ST behavior at moderate to large shear rates. The latter conditions imposes both n = n′ and the value for 
the characteristic shear stress τ1/2. In particular, for 𝐴𝐴 𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴c , the Carreau model can be re-written as

𝜇𝜇 ∼
�̇�𝛾𝛾 ̇𝛾𝛾c

𝜇𝜇′

0

(
𝛾𝛾c

�̇�𝛾

)1−𝑛𝑛′

, (11)

while similarly, for τ ≫ τ1/2, the Ellis model becomes

𝜇𝜇 ∼
𝜏𝜏𝜏𝜏𝜏c

𝜇𝜇0

( 𝜏𝜏1∕2

𝜏𝜏

) 1−𝑛𝑛

𝑛𝑛

= 𝜇𝜇0

(
𝜏𝜏1∕2

𝜇𝜇 𝜇𝜇𝜇

) 1−𝑛𝑛

𝑛𝑛

. (12)

Equations 11 and 12 thus provide a simple expression of τ1/2 in terms of the Carreau parameters:

𝜏𝜏1∕2 = 𝜇𝜇0�̇�𝛾c . (13)

2.2.3. When to Expect a Shear-Thinning Behavior?

From now on we shall denote 𝐴𝐴 ∇𝑃𝑃  the macroscopic pressure gradient, that is, the pressure gradient that is imposed 
at the fracture scale. The behavior of the fluid inside the fracture will be all the more ST as 𝐴𝐴 ∇𝑃𝑃  is larger. A critical 
macroscopic pressure gradient 𝐴𝐴 ∇𝑃𝑃 c , above which the non-linear rheology starts to manifest itself in the flow, can 
be analytically derived in the following manner. Considering the parallel plate configuration of aperture equal 
to the rough fracture's mean aperture, when the maximum shear rate occurring in the flow (τmax) is higher than 
the critical shear rate 𝐴𝐴 𝐴𝐴c = 𝐴𝐴 (�̇�𝛾c) , the viscosity starts to deviate from the Newtonian plateau viscosity μ0. Given 
Equation 4, the critical pressure gradient can be estimated as

��c =
2�c
⟨�⟩

, (14)

where the critical shear stress τc can be numerically evaluated from

𝜏𝜏c = 𝜇𝜇0

[

1 +

(
𝜏𝜏c

𝜏𝜏1∕2

) 1

𝑛𝑛
−1
]−1

�̇�𝛾c . (15)

Moreover, following Zami-Pierre et al. (2016) (who were addressing ST flow in porous media), we define the 
characteristic local flow rate magnitude qc for which transition from Newtonian to ST is expected to occur, as:

𝑞𝑞c = 𝛾𝛾c⟨𝑤𝑤⟩
√
𝑘𝑘0, (16)

where k0 is the fracture intrinsic permeability defined classically for Newtonian flow.

2.3. Flow Solver

A lubrication-based numerical code has been implemented to solve Equation  8 in a single fracture (Lenci 
et  al.,  2022), whose aperture geometry is generated by means of the synthetic fracture generator described 
in Section 2.1. A fracture of dimensions L × L along its mean plane is discretized on a N × N regular grid, 
the flow resulting from an imposed pressure drop P0 − P1 between the inlet (left-hand boundary) and outlet 
(right-hand boundary) of the fracture, along the x-direction. The corresponding macroscopic pressure gradient 
is 𝐴𝐴 ∇𝑃𝑃 = (𝑃𝑃0 − 𝑃𝑃1) ∕𝐿𝐿 . No-flow conditions are imposed along the two transverse boundaries of the flow domain.

A finite volume scheme has been adopted to solve the flow (see Figure 4). The pressure P(x, y) and aperture w(x, 
y) are defined at different locations, on a staggered grid. The pressure is defined at the center of each mesh cell, 
the aperture on the boundary between neighboring cells via arithmetic mean (e.g., 𝐴𝐴 𝐴𝐴

(𝑗𝑗)

𝑖𝑖
= (𝐴𝐴𝑗𝑗 +𝐴𝐴𝑖𝑖) ∕2 ). The 

discrete formulation of Equation 8 can be written for node j as

∑

𝑖𝑖∈𝜎𝜎(𝑗𝑗)

⎡
⎢
⎢
⎣

𝑤𝑤
(𝑗𝑗)

𝑖𝑖

3

12𝜇𝜇0

+
𝑛𝑛

2𝑛𝑛 + 1

(
1

2𝑛𝑛+1𝜇𝜇𝑛𝑛

0
𝜏𝜏1−𝑛𝑛
1∕2

) 1

𝑛𝑛

𝑤𝑤
(𝑗𝑗)

𝑖𝑖

2𝑛𝑛+1

𝑛𝑛
|
|
|
|

𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑗𝑗

Δ

|
|
|
|

1

𝑛𝑛
−1⎤
⎥
⎥
⎦

(
𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑗𝑗

Δ

)

= 0, (17)
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where σ(j) = {N, S, E, W} is the set of cells neighboring the jth cell, and Δ = L/N is the mesh size.

The resulting non-linear system of equations is solved with an inexact Newton-Krylov method, wherein the line-
arized symmetric system of equations is solved via variable-fill-in incomplete Cholesky preconditioned conjugate 
gradient (ICPCG) and a parameter continuation strategy is adopted for configurations with strong non-linearities 
(i.e., small values of the exponent n). The solver is described in detail in Lenci et al. (2022).

The numerical code is introduced in a parallel computing framework and outputs are saved and stored using a 
high-performance hierarchical data format (Koranne, 2010) to reduce the computational time required by the MC 
simulations and the post-processing.

3. Stochastic Analysis
3.1. Application Scenarios

In this study, we consider the Ellis model for two ST fluids which have been selected such that the power-law 
exponents n differ sensibly between them and the viscosity cut-offs μ0 are similar, while no particular require-
ments are imposed to τ1/2. The Carreau parameters of a silicon oil fluid are taken from Uddin et al. (2012), while 
the other fluid is an ad hoc xanthan gum fluid produced in the laboratory. Table 1 lists the properties of these two 
non-Newtonian fluids, while Figure 3 depicts the corresponding constitutive laws in an apparent viscosity versus 
shear rate plot. In the following, the flow of the two ST fluids will be compared to that of a Newtonian fluid of 
dynamic viscosity equal to μ0.

The analysis is conducted for different imposed macroscopic pressure gradients ��  and fracture lengths L. The 
former ranges from 10 2 to 10 3 Pa/m, which corresponds to typical orders of magnitude of groundwater natural 

potential gradients (Zimmerman & Bodvarsson, 1996), to 10 4 Pa/m, which 
can be associated with artificially-induced flow in hydraulic fracturing oper-
ations (Jung, 1989). Assuming a constant correlation length Lc = 0.1 m, a 
fracture length L = 0.1 m and a larger one L = 1.6 m are considered to illus-
trate the impact of the L/Lc ratio on the flow. Indeed, if one considers that 
the correlation length is a property of the formation, resulting from tectonic 
constrains and chemical weathering posterior to fracturing, then we can 
assume it to be independent of the fracture's length (de Dreuzy et al., 2012); 
hence L/Lc increases as the fracture length increases. Regarding the mean 
aperture, in situ measurements of fracture apertures are challenging (Barbati 
et  al.,  2016), thus mean apertures are typically obtained from rough wall 
measurements on laboratory samples. Typical values of mean fracture 

Figure 4. (a) Fracture representation with boundary conditions and flow rate direction. (b) Finite volume five-point stencil: 
the pressure is defined at the center of the finite volumes (indicated by the blue nodes), the aperture at the center of the edges 
(indicated by the yellow nodes) via arithmetic mean.

Carreau Model Ellis Model

Fluid (ID) n′𝐴𝐴 𝐴𝐴′

0
 𝐴𝐴 𝐴𝐴′

∞ 𝐴𝐴 𝐴𝐴𝐴𝑐𝑐 n μ0 τ1/2

(−) (Pa s) (Pa s) (s −1) (−) (Pa s) (Pa)

Silicon oil (SO) 0.61 9.75 0 0.045 0.61 9.75 8.48

Xanthan gum (XG) 0.36 4.42 10 –3 0.869 0.36 4.42 0.20

Experimental data are originally fitted with the Carreau model, after which 
Ellis parameters are inferred analytically from the fitted parameters.

Table 1 
Rheologic Parameters for the Two Considered Fluids: A Silicon Oil (Uddin 
et al., 2012) and a Xanthan Gum Produced in the Laboratory
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 aperture range from 0.1 to 10 mm (Cipolla et  al.,  2008). However, values 
close to 1 mm are more frequent (Nowamooz et al., 2013; Yeo et al., 1998).

3.2. Monte Carlo Simulations

In total, twelve (12) Monte Carlo (MC) sets of simulations have been 
performed. For each MC set, NMC = 10 3 fracture realizations were gener-
ated, changing the seed of the Mersenne Twister random number generator 
(RNG) (Matsumoto & Nishimura,  1998); see the generation algorithm in 
Lenci et al. (2022). Table 3 reports the parameters μ0, n and τ1/2 describing 
the fluid, the correlation length to length ratio, and the pressure gradient for 

all 12 MC sets, whereas the geometric parameters are listed in Table 2. The flow was then computed for each 
fracture realization of each MC set. The acceptance criterion is based on the exit tolerance of the Newton method 
and on the respect of the mass conservation over the fracture domain. When such requirements were not met, the 
number of parameter continuation steps (see Section 2.3) were increased until the criterion was fully satisfied. 
In fact, no simulations needed to be discarded in this analysis. The numerical code provides the following quan-
tities of interest (QoI) for each process realization: the pressure field (P), the longitudinal velocity component 

𝐴𝐴
(
𝑢𝑢𝑥𝑥
)
 , the transversal velocity component 𝐴𝐴

(
𝑢𝑢𝑦𝑦
)
 , the velocity magnitude, and the apparent transmissivity (T). For 

non-Newtonian flow in fractures, the apparent transmissivity can be defined as:

� =
��0

��
, (18)

where Q is the volumetric flow rate. Note that for a ST rheology this transmissivity is not an intrinsic property of 
the fracture, and will depend on the mean velocity, or, equivalently, on the imposed macroscopic pressure gradi-
ent. As n goes to 1, T reduces to T0, which does not depend on the velocity magnitude but only on the fracture's 
geometry, for a Newtonian fluid.

The post-processing phase elaborates the outputs and produces PDFs of the dimensionless QoIs for each real-
ization; then, it computes the ensemble average of the PDFs with the relative confidence interval, estimated 
considering a range of one standard deviation around the mean. In the following section, results concerning the 
non-Newtonian hydraulic behavior of variable aperture fractures are discussed with a probabilistic approach; to 
this end, the velocity components (𝐴𝐴 𝑢𝑢𝑥𝑥 and 𝐴𝐴 𝑢𝑢𝑦𝑦 ) are normalized by the mean velocity magnitude 𝐴𝐴

(
⟨𝑢𝑢⟩

)
 , that is, the 

average over the fracture plane of the velocity 𝐴𝐴 𝐮𝐮 (which is itself the fluid velocity averaged over the local aper-
ture). More generally, in the following we shall denote by 〈⋅〉 the spatial average of any quantity over the fracture 
plane.

4. Results
4.1. Probability Density Functions of Depth-Averaged Flow Velocities

A thorough analysis based on the Monte Carlo framework discussed in the previous section has been conducted 
to characterize the steady isothermal Stokes flow of ST fluids in rough fractures. Figure 5 provides an example 
of the spatial distribution of fluid velocities in the fracture plane of two fracture realizations with different values 
of  the size-to-correlation-length ratio L/Lc. The velocity fields were obtained by solving the lubrication-based 
model described in Section 2. The flow is mainly cocurrent, but local backward flow (i.e., negative 𝐴𝐴 𝑢𝑢𝑥𝑥∕⟨𝑢𝑢⟩ values) 
may occur due to contrasting adjacent aperture values near the fracture contact zones; these, in turn, occupy a 
good percentage of the fracture total surface (about 30%) for the selected coefficient of variation of the aperture 
field, which is σw/〈w〉 = 0.8. Flow localization is all the stronger as the ST fluid index n is smaller; this effect has 
been studied in detail by Lenci et al. (2022).

The stochastic velocity dynamics is analyzed by means of the ensemble average PDFs of the longitudinal and 
transversal velocity components, and of the velocity magnitude. Moreover, the confidence interval is provided for 
each PDF to measure the dispersion of the results around the mean behavior.

The ensemble average PDFs of the longitudinal component of the velocity are depicted in Figure 6 for all param-
eter combinations listed in Table 3. The PDFs of the longitudinal velocity component are distinctly narrow, with 

Correlation Length Lc (m) 10 –1

Mean Aperture 〈w〉 (m) 10 –3

Aperture Coefficient of Variation σw/〈w〉 (−) 0.8

Hurst Exponent H (−) 0.8

Mesh size N × N (−) 2 10 × 2 10

Table 2 
List of the Fracture Generator's Inputs That Are Common to All MC 
Simulations and Realizations
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the positive cocurrent part exhibiting a decay which approaches an exponen-
tial decay for L/Lc = 16, and a stretched exponential for L/Lc = 1. A similar 
behavior was observed in two and 3-D porous media flows, for Newtonian 
(Siena et  al.,  2014) and non-Newtonian fluids (Zami-Pierre et  al.,  2016), 
which is not surprising since the rough fractures behave all the more as a 
2-D porous medium as the correlation length is smaller. Indeed, a smaller 
correlation length means that spatial correlations in the apertures (which 
is essentially what distinguishes a fracture geometry from an uncorrelated 
2-D porous medium) are restricted to a narrower range of scales, at small 
scales. Under strongly forced flow conditions, that is, the highest values of 
the pressure gradient, the strongly shear thinning fluid (n = 0.36) exhibits 
wider cocurrent and thinner countercurrent tails with respect to the less shear 
thinning fluid (n = 0.61), and even more so when compared to the Newto-
nian case in the same conditions. On the other hand, under lower pressure 
gradients the PDFs for Newtonian and non-Newtonian fluids almost overlap, 
clearly indicating that the fracture heterogeneity governs the flow and the 
nonlinear effects associated to rheology are quite modest. Results for small 
fractures (i.e., L/Lc = 1) are almost independent of the rheology and flow 
regime, with a very modest increase/decrease of the cocurrent/countercurrent 
tail only for the most ST fluid and the highest pressure gradient. In this type 
of geometry the strong channeling resulting from the aperture field hetero-
geneity, which is correlated up to the fracture size, dominates over the effect 
of rheology. Although the ST flow is faster than Newtonian flow under iden-
tical conditions (see Lenci et al., 2022), the PDF of the longitudinal veloc-
ity component normalized by the average velocity is little impacted by the 
rheology. For large fractures (L/Lc = 16) the effect is reversed but remains 

extremely modest for the lowest considered value of ��  .

Figure 7 depicts the ensemble average PDFs of the transversal velocity components: these are nearly symmetric 
around zero as expected. Results for small fractures (i.e., L/Lc = 1) are invariant with respect to the rheology 
and flow regime, with no significant differences for any combination of parameters. Again this behavior results 
from the strong geometry-mediated channeling. On the other hand, large fractures (L/Lc = 16) under high pres-
sure gradient show wider tails, especially for the most shear thinning fluid. The PDFs of the transverse velocity 
components suggest, similarly to the longitudinal case, that under low pressure gradients the flow pattern is 
mainly dominated by fracture heterogeneity, with contributions due to non-linear rheology that arise only for 
strongly ST fluids, especially in large fractures. A Newtonian fluid tends to spread more across the open portion 
of the fracture plane, as compared to a ST fluid. Conversely, the ST behavior induces a more marked flow locali-
zation, with the flow presenting more extreme values of velocities under the same flow conditions.

The PDF of the velocity magnitude (i.e., the norm of the Eulerian velocity) is related to a typical transport 
attribute, the spatial-Lagrangian PDF, through flux-weighting (Dentz et al., 2016). Several studies have aimed 
at relating the Eulerian velocity PDF to porous medium's geometrical properties (de Anna et al., 2017; Hakoun 
et al., 2019; Puyguiraud et al., 2019a; Velásquez-Parra et al., 2021), and from there, anomalous transport to the 
Eulerian velocity PDF (Puyguiraud et al., 2019b; Velásquez-Parra et al., 2021). In Figure 8, the dimensionless 
PDF of velocity magnitudes is depicted to show the influence of rheology and fracture heterogeneity on the distri-
bution of both high and low velocities. The dimensionless PDFs for the less ST fluid (n = 0.61) overlap with those 
for the Newtonian fluid for all the considered configurations, meaning that the fluid rheology does not affect the 
shape of the PDF but only its magnitude. Conversely, the more ST fluid (n = 0.36) shows more extreme values 
of the velocity magnitude under high pressure gradients, which corresponds physically to a higher localization of 
flow under a ST rheology than under the Newtonian rheology, as discussed above. The differences between the 
two non-Newtonian fluids for intermediate and high pressure gradients increase when a small fracture (i.e., L/
Lc = 1) is considered, which is expected, since flow channeling at the fracture scale is much stronger in that case, 
even for Newtonian flow.

μ0 τ1/2 n L/Lc ��  ��∕��c 

MC set (Pa ⋅ s) (Pa) (−) (−) (Pa ⋅ m −1) (−)

MC1 4.42 8.48 0.36 1 10 2 2.0 × 10 −1

MC2 4.42 8.48 0.36 1 10 3 2.2 × 10 0

MC3 4.42 8.48 0.36 1 10 4 2.2 × 10 1

MC4 4.42 8.48 0.36 16 10 2 2.0 × 10 −1

MC5 4.42 8.48 0.36 16 10 3 2.2 × 10 0

MC6 4.42 8.48 0.36 16 10 4 2.2 × 10 1

MC7 9.75 0.20 0.61 1 10 2 6.5 × 10 −4

MC8 9.75 0.20 0.61 1 10 3 6.5 × 10 −3

MC9 9.75 0.20 0.61 1 10 4 6.5 × 10 −2

MC10 9.75 0.20 0.61 16 10 2 6.5 × 10 −4

MC11 9.75 0.20 0.61 16 10 3 6.5 × 10 −3

MC12 9.75 0.20 0.61 16 10 4 6.5 × 10 −2

The ratio 𝐴𝐴 ∇𝑃𝑃∕∇𝑃𝑃c is reported to quantify the significance of non-linear 
effects. Other parameters common to all simulations are listed in Table 1.

Table 3 
ID-Numbers of the Monte Carlo Sets, and Related Parameters: Fluid 
Rheology (μ0, τ1/2, n), Ratio of Fracture Size to Correlation Length L/Lc, 
Pressure Gradient 𝐴𝐴 ∇𝑃𝑃  , and Ratio of Pressure Gradient to Critical Pressure 

Gradient 𝐴𝐴 ∇𝑃𝑃∕∇𝑃𝑃c
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4.2. Autocorrelation Function of the Velocity Components

In Figure 9, the autocorrelation functions of the velocity components are depicted for the case L/Lc = 1. The 
autocorrelation coefficients ��� = Cov

(

��, ��
)

∕�2
��

 and ��� = Cov
(

��, ��
)

∕�2
��

 are evaluated along their respec-
tive directions, that is, the x-direction and y-direction respectively. These autocorrelation functions provide a 
metric of disorder (Rozenbaum & Du Roscoat, 2014), which can be influenced by the fluid's rheology. These 
functions show a more rapid decay for strongly non-Newtonian fluids under high pressure gradient and in small 
fractures (L/Lc = 1), while larger fractures are not affected at all. All plots show a hole type covariance with zero 

Figure 5. Spatial distribution, in the fracture plane, of the dimensionless velocity 𝐴𝐴
(
𝑢𝑢∕⟨𝑢𝑢⟩

)
 , for two fracture realizations with L/Lc = 1 (upper row) and L/Lc = 16 (lower 

row), respectively. The other geometrical parameters are H = 0.8, σw/〈w〉 = 0.8, Lc = 0.1 m, and 〈w〉 = 10 −3 m for both realizations. Subfigures in the left hand column 
were obtained with a Newtonian rheology (n = 1), while those in the right-hand column depict the behavior of the xanthan gum solution (see Table 1), exhibiting 
stronger flow localization than the Newtonian flow.
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integral scale: velocity fluctuations are positively correlated at short distances and negatively correlated at longer 
distances, and tend to zero exponentially from below. A similar structure has been obtained by Bellin et al. (1992) 
for 2-D porous media. The influence of rheology and of the external pressure gradient on the autocorrelation 
coefficients is almost imperceptible in the flow direction, while the transverse component is to some extent 
affected, showing a faster short-scale correlation decay as the fluid becomes more ST.

Figure 6. Probability density functions of the dimensionless longitudinal velocity component 𝐴𝐴 𝑢𝑢𝑥𝑥∕⟨𝑢𝑢⟩ for small (left column) 
and large (right column) fractures, and for small (top row), intermediate (middle row) and high (bottom row) macroscopic 
pressure gradients ��  ; solid lines represent the mean ensemble PDFs, while dashed lines define the confidence interval, with 
the range estimated considering the standard deviation. Black lines refer to the Newtonian case (n = 1), orange and yellow 
lines to the silicon oil (n = 0.61) and xanthan gum (n = 0.36), respectively.
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Figure 10 depicts the autocorrelation coefficients for the case L/Lc = 16. All combinations of parameters result in 
the same hole covariances behavior for ρxx and ρyy: a narrow short-scale positive correlation, with a fast short-scale 
exponential decay, and a long-scale negative correlation, slowly tending to zero from below.

Figure 7. Probability density functions of the dimensionless transversal velocity component 𝐴𝐴 𝐴𝐴𝑦𝑦∕⟨𝐴𝐴⟩ for small (left column) 
and large (right column) fractures, and for small (top row), intermediate (middle row) and high (bottom row) pressure 
gradients ��  ; solid lines represent the mean ensemble PDFs, while dashed lines define the confidence interval, with the 
range estimated considering the standard deviation. Black lines refer to the Newtonian case (n = 1), orange and yellow lines 
to the silicon oil (n = 0.61) and xanthan gum (n = 0.36), respectively.
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4.3. Fracture-Scale Hydraulic Behavior

Considering now the integral flow behavior, that is, the hydraulic behavior at the fracture scale, we see that the 
ST rheology enhances the fracture's apparent transmissivity: this effect becomes relevant under the action of 
a sufficiently large macroscopic pressure gradient (i.e., sufficiently large average velocity). Figure 11 depicts 
the dependence of the apparent transmissivity T, normalized with its Newtonian counterpart T0, on the velocity 

Figure 8. Probability density functions of the dimensionless velocity magnitude 𝐴𝐴 𝑢𝑢∕⟨𝑢𝑢⟩ ; for small (left column) and large 

(right column) fractures, and for small (top row), intermediate (middle row) and high (bottom row) pressure gradients ��  ; 
solid lines represent the mean ensemble PDFs, while dashed lines define the confidence interval, with the range estimated 
considering the standard deviation. Black lines refer to the Newtonian case (n = 1), orange and yellow lines to the silicon oil 
(n = 0.61) and xanthan gum (n = 0.36), respectively.
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normalized by the characteristic flux qc, for each realization; the average value for each Monte Carlo simulation is 
also shown. When the normalized velocity is smaller than 1, T/T0 goes to 1, which is characteristic of the Darcian 
regime. When T/T0 is sufficiently larger than 1, it is related to the normalized velocity through a non-linear 
relation in the form 〈||q||〉 n ∝|| ∇〈P〉||, characteristic of the ST (power law) behavior. A similar macroscale transi-
tion between two such regimes has been observed for 2-D porous media by Zami-Pierre et al. (2016). Apparent 
transmissivity values obtained for small fractures (L/Lc = 1) are more disperse around their ensemble average as 
compared to their larger counterpart (L/Lc = 16), for which values for an individual realization are almost super-
imposed with their ensemble average. In other words, since no spatial correlations exist in the aperture field at 
scales larger than L/16, that field is mostly random and all realizations of it behave in the same way (see Méheust 
and Schmittbuhl (2003) for a similar result for Newtonian flow). However, comparing results for the two fractures 
shows that ensemble averages are almost insensitive to the fracture size, or, equivalently, to the ratio L/Lc. that is, 
the fluid's rheology dominates by far over aperture heterogeneities in controlling the hydraulic behavior for such 
strongly ST fluids.

5. Conclusions
We conducted a comprehensive stochastic analysis aimed at elucidating how the effects of ST rheology and 
aperture variability impact the flow in realistic synthetic geological fractures. Our results provide an insight on 
the interplay between the fluid's ST nature and the fracture's heterogeneity, covering the entire range of variabil-
ity of the fluid ST index, fracture size to correlation length ratio, and imposed macroscopic pressure gradient. 
The ST behavior of the fluid, modeled by means of the three-parameter Ellis rheology, is particularly relevant 
when the fracture is subjected to a sufficiently high macroscopic pressure gradient (typical of forced regimes). A 
transition from the Darcian regime 〈 ||q||〉∝||∇P|| to the non-linear regime 〈||q||〉 n ∝ ||∇P|| occurs when increasing 

Figure 9. Autocorrelation functions, averaged over the MC simulations, of the velocity components (longitudinal ρxx and transversal ρyy) as a function of the 
dimensionless lag (l/Δ), for L/Lc = 1. The dimensionless lag is the ratio of the distance l to the mesh size Δ. Black lines refer to the Newtonian case (n = 1), orange and 
yellow lines to the silicon oil (n = 0.61) and xanthan gum (n = 0.36), respectively. The orange and the black lines overlap perfectly.
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the imposed macroscopic pressure gradient. Under the same conditions, the ensemble statistics of the velocity 
components differ more from the Newtonian case for a more ST fluid. In particular, the average PDFs of the 
normalized velocity components show thicker tails for ST rheologies, indicating a higher frequency of velocities 
much larger than the mean value. The average PDFs of the velocity magnitude also display a higher dispersion of 
the velocity around the mean values. These results can be explained by the fact that for more strongly ST fluids 
the flow localization on correlated large aperture channels is more intense. This stronger flow localization is 
consistent with results obtained on 2-D porous media in earlier studies. In rough fractures, however, long range 
spatial correlations create channeling at the scale of the correlation length, which is then the longitudinal scale at 
which flow localization occurs; this is an ingredient that is not present in uncorrelated 2-D porous media.

In sum, the flow pattern is mostly governed by aperture heterogeneities, while the impact of the fluid rheology 
on the probability density function of velocity components, once normalized by the mean velocity, is relatively 
limited, except for ST fluids with a very low power law index. The fracture scale hydraulic behavior, on the other 
hand, is strongly affected by the fluid rheology: the ratio of apparent non-Newtonian transmissivities to those 

Figure 10. Autocorrelation functions, averaged over the MC simulations, of the velocity components (longitudinal ρxx and transversal ρyy) as a function of the 
dimensionless lag (l/Δ), for L/Lc = 16. The dimensionless lag is the ratio of the distance l to the mesh size Δ. The lines corresponding to the different fluids overlap 
perfectly with the black solid line.

Figure 11. Dependence of the dimensionless transmissivity T/T0 on the dimensionless local flux, 〈||q||〉/qc, for all realizations 
and the ensemble average of each Monte Carlo simulation: (a) L/Lc = 1, (b) L/Lc = 16. Simulation results for the silicon oil 
and xanthan gum are in orange and yellow, respectively; the darker the color, the higher the imposed global pressure gradient 
is. Lines are a guide to the eyes.



Water Resources Research

LENCI ET AL.

10.1029/2022WR032024

17 of 19

obtained for Newtonian flow increases with the ST power law index, reaching values much larger than unity. 
Ensemble averages of the overall hydraulic transmissivity are almost independent of the fracture size (or, equiva-
lently, of the ratio L/Lc), but smaller fractures (i.e., those with larger L/Lc ratios), whose transmissivities are more 
affected by structural disorder due to flow channeling up to the fracture scale (as for Newtonian flow), show a 
larger apparent dispersion around the mean apparent transmissivity. Though the study was performed here on two 
given ST fluids, the generalization of our results to any ST fluid is straightforward: the increase in the fracture's 
hydraulic behavior under ST flow, as compared to the Newtonian behavior, is controlled by the fluid's power law 
index n, and is observed for applied macroscopic pressure gradients larger than a critical value; that critical value 
can be predicted from the rheology (Equations 14 and (15)). Equivalently, global ST flow behavior occurs if the 
mean local flux is larger than a critical value whose analytical expression is given by Equation 16.

The analysis of the velocity statistics proposed in this work will be used in a similar Monte Carlo framework to 
characterize solute transport (e.g., through spatial dispersion or breakthrough curves).

Data Availability Statement
There are no data sharing issues since all of the numerical information is provided in the figures produced by 
solving the equations in the paper.
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