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1.  Introduction
The Hunga Tonga-Hunga Ha'apai (hereafter referred to as Hunga Tonga) volcano (20.57°S, 175.38°W) started 
an eruptive phase on 20 December 2021, with gas, steam and ash plumes periodically injected at around 12 km 
altitude. In mid-January larger eruptive events occurred on 13 and 15 January e.g., Yuen et  al.  (2022), Carr 
et al. (2022). The sub-aerial eruption on 13 January started at 15:20 UTC, injected plumes into the stratosphere 
that were observed at altitudes as high as 20  km, with an estimated sulfur dioxide (SO2) burden of 0.05  Tg 
(Witze, 2022). A larger, submarine, explosive eruption started on 15/01 at 04:02 UTC (Yuen et al., 2022), with 
an estimated SO2 burden of 0.4–0.5 Tg (Witze, 2022). The CALIPSO-CALIOP (The Cloud-Aerosol Lidar and 
Infrared Pathfinder Satellite Observation) space LiDAR observed an aerosol plume with depolarizing properties 
at altitude of 38 km, on 15/01 (Sellitto et al., 2022). The plume is composed of sub-mironic sulfate particles, 
whereas no residual signature of ash is found starting a few hours after the injection with HIMAWARI and 
CALIOP observations (Legras et al., 2022). Stereoscopic geostationary observations suggest plume top altitudes 

Abstract  Following the Hunga Tonga eruption (20.6°S, 175.4°W, mid-January 2022), we present a 
balloon-borne characterization of the stratospheric aerosol plume one week after its injection (on 23 and 26 
January 2022, La Réunion island at 21.1°S, 55.3°E). Satellite observations show that flight (a) took place 
during the overpass of a denser plume of sulfate aerosols (SA) compared to a more diluted plume during 
flight. (b) Observations show that the sampled plumes (at around 22, 25 and 19 km altitude, respectively) 
consist exclusively of very small particles (with radius <1 µm). Particles with radii between 0.5 and 1.0 µm 
show optically transparent features pointing to predominant SA. Particles with radii below 0.5 µm are partly 
absorbing, which could point to small sulfate coated ash particles, a feature not identified with space-borne 
observations. This shows that in situ observations are necessary to fully characterize the microphysical 
properties of the plumes tracked by space-borne instruments.

Plain Language Summary  The Hunga Tonga-Hunga Ha'apai volcano (at 20.6°S, 175.4°W) erupted 
on 13 and 15 January 2022 with injection of gases and aerosols up to 55 km altitude. Here, we present a study 
based on in situ aerosol observations on weather balloons on La Réunion (21.1°S, 55.3°E) within the injected 
Hunga Tonga aerosol plume one week after the eruption (23 and 26 January 2022). With respective satellite 
observations, we show that the first measurement flight took place during the overpass of a denser aerosol 
plume compared to the second flight. We find that the plume exhibits only small particles <1 μm, mainly 
consisting of sulfate aerosols (for particles between 0.5 and 1 μm in size) and an absorbing component for very 
small particles (<0.5 μm), possibly pointing to small ash particles coated by sulfur. This letter “absorbing” 
feature is a unique contribution brought by in situ measurements that fills a gap left by space-borne instruments.
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of 50–55 km at 04:30 UTC (Carr et al., 2022; Proud et al., 2022) building a record altitude of any observed 
volcanic plume.

The extraordinary nature of this eruption in terms of explosivity and subsequent injection altitude in the strato-
sphere, as well as large aerosol and water vapor in-plume contents (Sellitto et al., 2022; Zhu et al., 2022), have 
immediately triggered vivid discussions and scientific exchange within the atmospheric community. We reac-
tively organized a fast in situ measurement campaign for high-resolution aerosol observations within the injected 
plume to characterize the optical and microphysical composition of the plume. Here, we present in situ obser-
vations on the aerosol concentration and size distribution and corresponding analysis of the optical and micro-
physical properties of the aerosols within the stratospheric Hunga Tonga plume with the Light Optical Aerosol 
Counter (LOAC) on two balloon flights from Observatoire de Physique de l’Atmosphère de la Réunion (OPAR, 
21.1°S and 55.3°E) on 23 and 26 January. At almost the same latitude and downwind of the Hunga Tonga plume's 
dispersion, OPAR is the ideal place for such early aerosol plume in situ investigations.

2.  Methods
2.1.  The LOAC Balloon-Borne Optical Counter

The Light Optical Aerosol Counter (LOAC) is an optical counter instrument that can be operated on weather 
balloons for observations in the stratosphere (Renard et al., 2016; Renard, Michoud, & Giacomoni, 2020), with 
substantial improvements throughout its existence). For the described measurement flights, we used version 1.5 
of the LOAC instrument with an improved optical chamber and sensitivity with a more powerful laser source 
compared to the previous version. LOAC provides measurements every 10 seconds. For an increased signal-to-
noise ratio, data are binned over an integration time of 20s.

We use in situ measurement from LOAC on weather balloon flights from 23 January (20:04–21:35 UTC) and 26 
January (17:24–19:54 UTC) at the Maïdo Observatory at La Réunion (21.1°S, 55.3°E). The LOAC instrument 
measures size-resolved aerosol concentration for particle sizes between 0.2 μm and ∼30 mm diameter (laser 
wavelength at 650 nm) distributed on 19 size classes. The detection uncertainty for the size attribution is around 
10% for particles >2 μm. For smaller particles, the size determination is within the calibration error bars, that 
is, 5% for particles between 0.7 and 1 μm and around ±0.025 μm for particles smaller than 0.6 μm (if more than 
400 particles are detected for each size class). Some uncertainties remain concerning the size distribution for 
non-spherical particles as discussed in (Renard et al., 2016). One outstanding feature of LOAC compared to other 
comparable instruments is the detection of scattered light at two angles (15 and 65° respective to the laser beam). 
This allows for a partial characterization of the light absorbing properties and thus the typology of the observed 
aerosols (i.e., distinction between optically absorbing, semi-transparent and transparent solid particles, liquid, 
ice particles (Renard et al., 2016). Aerosol extinction values stem from the conversion from measured aerosol 
concentration for size classes higher than 0.2 μm using Mie scattering theory and an estimate of the refractive 
index coming from the typology determination. A schematic diagram of the LOAC measurement principle is 
provided (Figure S1 in Supporting Information S1).

2.2.  LiDAR Observations at the Maïdo Observatory

LiDAR data used in this study are derived from observations conducted at the Maïdo Observatory, one of the 
three observation sites of the Atmospheric Physics Observatory of La Réunion (OPAR) located on Reunion 
Island (21.1°S, 55.3°E). The Maïdo Observatory is a permanent station, situated at 2160 m above mean sea level, 
for long term atmospheric observations (Baray et al., 2013). The used LiDAR system is the aerosol wing of the 
LIO3T (Duflot et al., 2017). The aerosol optical properties are retrieved following the Rayleigh slope method 
presented in Chazette et  al.  (1995). With a significant aerosol load between aerosol-free layers, it allows for 
conclusions on the aerosol optical thickness (AOT) of the plume. This constraint, as an input of an iterative Klett 
method (Klett, 1985) for the LiDAR inversion, enables to assess both the aerosol extinction coefficient and an 
average LiDAR ratio of the aerosol layer. The LiDAR ratio is the ratio of the extinction-to-backscatter coeffi-
cient and gives indications on some microphysical properties of the observed aerosols. According to Dieudonné 
et  al.  (2015) only the Lidar Ratios obtained during phases of aerosol extinction observation >0.02 km −1 are 
presented. The final temporal and vertical resolutions of the presented profiles are 5 min and 50 m, respectively. 
Presented observations are sensitive for aerosol extinction values above 10 −4 km −1.
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2.3.  IMS Sulfate Aerosols Speciation and Retrieval

The Rutherford Appleton Laboratory (RAL) Infra-red/Microwave Sounder (IMS) retrieval core scheme 
Siddans (2019) uses an optimal estimation (OE) spectral fitting procedure to retrieve atmospheric and surface 
parameters jointly from co-located measurements by Infrared Atmospheric Sounding Interferometer (IASI), 
Advanced Microwave Sounding Unit (AMSU) and Microwave Humidity Sounder (MHS) on MetOp spacecraft 
series, using RTTOV 12 (Radiative Transfer for TOVS) (Saunders et al., 2017) as the forward radiative transfer 
model. The use of RTTOV12 enables the retrieval of volcanic-specific aerosols (sulfate aerosol: SA) and trace 
gases (SO2). The present paper uses IMS SA observations from its near-real time implementation (images can 
be viewed here: http://rsg.rl.ac.uk/vistool). The IMS scheme retrieves the optical depth of the SA at ∼1200 cm −1 
(the peak of the mid-infrared extinction cross section, Sellitto and Legras (2016), assuming a Gaussian extinc-
tion coefficient profile shape peaking at 20 km altitude, with 2 km full-width-half-maximum. The bulk of the 
spectroscopic information on SA, in the IMS scheme, thus comes from the IASI Fourier transform spectrometer 
(Clerbaux et al., 2009), thus we will refer to these observations as IMS/IASI in the following.

3.  Results
3.1.  Transport of the Hunga Tonga Plume Above La Réunion Island

To bring LOAC in situ observations in the larger scale context of the transported Hunga Tonga plume, we show 
the horizontal plume distribution with IMS SA optical depth observations in Figure  1. The first dispersion, 

Figure 1.  Infra-red/Microwave Sounder/Infrared Atmospheric Sounding Interferometer sulfate aerosols (IMS/IASI SA) optical depth observations with the respective 
timestamp of equator crossing in UTC (a) on 23 January and (b) on 26 January. The red cross shows the location of Light Optical Aerosol Counter measurement flights 
at La Réunion. Areas of no measurements and clouds are indicated in white.
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removal of larger ash particles and rapid formation of SA has been shown by Sellitto et  al.  (2022), with the 
HIMAWARI Ash RGB recipe and CALIOP observations. An animation of MSG-1 brightness temperature obser-
vations (Da, 2015) with the Eumetrain RGB recipe (Eumetrain, 2020) is shown in (Movie S1 and Text S1 in 
Supporting Information S1, respectively) for an overview of the subsequent transport of the volcanic plume over 
the southern Indian Ocean. The RGB recipe allows for differentiations between water and ice clouds (grayish and 
shades of brown), ash (shades of red) and SO2 and SA (shades of bright green). The spectral signatures of SO2 and 
SA superpose in the spectral range covered by the RGB recipe and they cannot be readily disentangled without 
complementary information, as provided in Sellitto et al. (2017). In this case, greenish plumes are most likely 
an indication of SA-dominated plumes (Sellitto et al., 2022). The MSG-1 observations show a dense volcanic 
SA plume above La Réunion, starting from 21 January and clearly visible until 23 January. During the night 
of the first LOAC observations (23 January, 20:04–21:35 UTC) the bulk SA plume had already moved to the 
South-West. The RGB MSG-1 analysis does not reveal a clear signature of transported ash from the Hunga Tonga 
eruption. However, the brightness temperature RGB retrieval is only sensitive to relatively high concentrations of 
ash or SA; low concentrations will therefore not clearly appear in the respective color on the map.

For a more quantitative analysis of the plume, Figure  1 shows the horizontal distribution of the SA optical 
depth from IMS/IASI on 23 January (Figure 1a) and 26 January (Figure 1b), close in time to LOAC measure-
ments during the night time overpass (at La Réunion at around 18:00 UTC, compared to LOAC observations 
20:04–21:35 UTC for 23 January and 17:24–19:54 UTC for 26 January). Consistently with what is observed 
with MSG-1 for SO2/SA, IMS/IASI measurements suggest that the flight on 23 January took place when a denser 
plume of SA was transported over La Réunion. Observations on 26 January indicate a more diluted phase of the 
plume overpassing the island.

Values of the thermal infrared SA optical depth as large as 0.05 are found for 23 January, pointing at a dense SA 
plume.The vertical aerosol extinction distribution of the aerosol plume at La Réunion, from the ground-based 
LIO3T observations at the Maïdo Observatory, is shown on the left side in Figure 2. These remote sensing obser-
vations are taken around the measurement time frame of LOAC in situ observations. Respective LOAC aerosol 
extinction observations at 532 nm (wavelength chosen according to LiDAR observations), observed during the 
indicated time frame (20:04–21:35 UTC), are shown on the right side (and in Figure S2 in Supporting Infor-
mation S1). On 23 January at 20:04–21:35 UTC LOAC observations (Figure 2a, right side and Figure S2 in 
Supporting Information S1) identify two main plume layers at around 22.6 and 24.9 km altitude, with peak values 
up to ∼4 10 −3 km −1. The LIO3T time series shows that LOAC observations were taken right before the arrival of 
a much denser section of the plume. With an average ascending speed of the balloon of 6 m/s in the stratosphere 
and a counting integration time of 20 s only a few measurement points originate from the plume. Peak aerosol 
extinction values between 22 and 23 km altitude from LIO3T observations during LOAC observations (∼15 
10 −3 km −1, with a LiDAR uncertainty of around 25% at the plume's altitude) exceed LOAC aerosol extinction 
values (∼3 10 −3 km −1) by a factor of 5. Multiple factors contribute to this observed difference:

1.	 �With an average ascending speed of the balloon of 6 m/s in the stratosphere and a counting integration time of 
20 s only a few measurement points originate from the plume.

2.	 �LOAC observations do not consider particles with diameters below 200 nm and therefore represent a lower 
limit of the sampled plume. However, lab experiments show that the contribution of small particles (<200 nm) 
to the respective Aerosol extinction values cannot account for more than that of larger particles (>200 nm). 
Therefore, the respective underestimation in Aerosol extinction remains well below a factor of 2.

3.	 �LIO3T observations show the heterogeneous nature of the plume and similar extinction values compared to 
LOAC measurements have been observed within 2 hr of the flight. At the altitude of the plume (at ∼22.5 km), 
LOAC and LIO3T observations were 15.5  km apart and the plume speed was at around 15  m/s. This is 
expected to be the main reason for the visible discrepancy.

During the time of the LOAC observations, LIO3T data do not show aerosol enhancements at 25 km altitude 
(at 25 km altitude LOAC was flying around 12 km further North compared to LIO3T observations). However, 
4 hr prior to LOAC observations a strong plume signal was observed at 25 km altitude for several hours to days 
(Figure 2, LIO3T results and longer time series will be published in more detail by Baron et al.). Furthermore, 
OMPS observations (Figure S4a in Supporting Information S1) show the clear presence of an aerosol plume 
above La Réunion at around 10 UTC up to ∼27 km altitude, with peak values at ∼25 km. The respective strato-
spheric Aerosol Optical Depth of 0.12 (see Figure S4b in Supporting Information S1) is significantly larger than 
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LIO3T integrated optical depth observations, probably because of dense plume sections at lower stratospheric 
altitudes which are observed by OMPS but not by the ground LIO3T. The plume's evolution between the OMPS 
overpass and LOAC observations on 23 January is presented in Figures S4c and S4d in Supporting Informa-
tion S1, respectively (light green shaded area). A LiDAR ratio of 68 ± 18 is observed within the peak aerosol 
plume. This is similar to what has previously been observed for volcanic plumes at 532 nm (Prata et al., 2017), 
but cannot be used to rule out the possible presence of ash, especially if diluted.

On 26 January 17:24–19:54 UTC, LOAC peak aerosol extinction values were observed at around 19.5 km alti-
tude, with peak values at 0.4 10 −3 km −1. LIO3T observations show peak aerosol extinction values of up to 40 
10 −3 km −1 (around 100 times higher than LOAC observations), with a LiDAR uncertainty of about 50% at the 
plume altitude (18–20 km). From the LIO3T time series, it becomes evident that the LOAC time frame took place 

Figure 2.  (left) LIO3T aerosol observations at Observatoire de Physique de l’Atmosphère de la Réunion at 532 nm wavelength for (a) 23 January and (b) 26 
January. The gray shaded blocks represent the timing of the Light Optical Aerosol Counter (LOAC) in situ observations. (right) Equivalent aerosol extinction at 
532 nm, retrieved from LOAC aerosol concentration in situ observations with respective error bars. Horizontal shaded areas (also shown in Figure S2 in Supporting 
Information S1) define altitude ranges used for further analysis (red: above/below plume, blue and green: in-plume).
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during the end phase of the plume (peak phase) overpass at La Réunion. Starting from 2 hr after the flight, LIO3T 
observations show a patchy and fast dissolving vertical structure of the plume. With a balloon ascending speed of 
6 m/s, a horizontal plume speed of ∼13 m/s and a distance of ∼20 km between in situ and LIO3T observations, 
it is likely that LOAC measurements missed the bulk of the plume in terms of aerosol extinction. However, the 
slightly increased aerosol extinction values at the plume altitude level (as observed by LIO3T) and the clearly 
distinguished size distribution and typology analysis give confidence that LOAC sampled particles of the respec-
tive aerosol plume. CALIOP aerosol backscatter data capture part of the same plume around 15° further West 3 hr 
after LOAC observations at the same altitude range (see Figure S5 in Supporting Information S1).

3.2.  Characterization of the Plume's Microphysical Properties With in Situ Observations

Based on the general consistency of LOAC and LIO3T observations at La Réunion, we exploit the LOAC obser-
vations to derive the optical and microphysical properties of the Hunga Tonga plume. Aerosol size distribution 
observations from the two LOAC flights within and below the aerosol plume (as defined in Figure 2, right side 
and in Figure S2 in Supporting Information S1) are presented in Figure 3. Observed number concentrations for 
the two peak altitudes at 22 and 25 km on 23 January exceed aerosol background concentrations at 20 km altitude 
by a factor of 10–40. The observed size distribution of the background aerosol is comparable to background 
conditions observed during previous LOAC flights (e.g., Renard, Berthet, et al. (2020)). Size distribution obser-
vations within the aerosol plume are in the same order of those observed in other volcanic plumes (e.g., after the 
Calbuco eruption in 2015, Bègue et al. (2017)). One highlight result of LOAC observations is the clear identifi-
cation of the upper limit aerosol size range within the Hunga Tonga plume. For the Pinatubo eruption (1991), for 
example, a coarse mode of aerosol peak concentration for particles with radii >1 μm was observed besides the 
typical concentration peak for radii <1 μm (Deshler et al., 1993) and typically associated with coarse ash parti-
cles. For the Hunga Tonga aerosol plume, LOAC observations (measuring aerosol particles up to 30 μm) reveal 
the absence of such a second mode, that is, plume particles radii exclusively remain below ∼1 μm (Figures 3a 
and 3b for the flights on 23 January and 26 January, respectively). Such a monomodal feature has already been 
observed for example, for the Sarychev and Calbuco volcanic plumes from 2009 to 2015, respectively (Bègue 
et al., 2017; Lurton et al., 2018; Zhu et al., 2018).

LOAC typology particle classifications (optically absorbing, semi-transparent, transparent, liquid or ice particles) 
at the selected plume altitudes (as indicated in Figure 2) for the in situ observations are summarized in Table 1 
(and visualized in more detail in Figure S3 in Supporting Information S1). For both measurement flights the 
aerosol plume forms a distinct layer of partly absorbing, semi-transparent particles for aerosol radii <0.5 μm, 
and transparent, liquid particles for aerosol radii between 0.5 and 1.0 μm, at lower altitudes (around 22 km). The 
upper aerosol plume at 25 km altitude, measured on 23 January shows a distinct layer of transparent (<0.5 μm) 
and liquid (0.5–1.0 μm) particles. Aerosols at altitude levels outside the plumes (as defined in Figures 2 and S2 in 

Figure 3.  Observed aerosol size distribution at the identified aerosol plume heights as identified in Figure 1 and below the aerosol plume for the Light Optical Aerosol 
Counter (LOAC) measurements from (a) 23 January and (b) 26 January. Measurement uncertainties in size attribution and concentration are detailed in Renard 
et al. (2016).
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Supporting Information S1) are purely identified as liquid aerosol particles by the LOAC typology retrieval. It is 
important to note that the partly absorbing component of the lower layer (∼22 km) is associated with small parti-
cles (<0.5 μm) and therefore not dominant (i.e., in the extinction signal) compared to the non-absorbing compo-
nent of larger particles (>0.5 μm). This can explain why absorbing aerosols are not observed by satellites with 
reduced sensitivity to small particles. Furthermore, Legras et al. (2022) show with HIMAWARI and CALIOP 
observations that no absorbing/ash component is detected a few days after the UTLS injection of the plume (due 
to fast sedimentation and condensation with sulfuric acid and water). Finally, during both LOAC measurement 
flights ice particles were not identified.

4.  Discussion
Based on LOAC plume observations on aerosol size distribution, concentration, and typology analysis we present 
possible aerosol compositions for the sampled Hunga Tonga plume.

One first overarching remark is that the Hunga Tonga plume exhibits very different microphysical features 
compared to the Pinatubo eruption of 1991, as well as more recent moderate stratospheric eruptions like Raikoke 
2019 (Kloss et al., 2021), with a completely absent coarse ash aerosol mode. The Hunga Tonga plume (1–2 weeks 
after its eruption) is composed of very small particles. For all analyzed plume altitudes, the LOAC typology anal-
ysis consistently identifies liquid and transparent particles for particles of the size range 0.5–1.0 μm. This points 
to the dominance of SA droplets within the plume. Sulfate aerosols are also consistently detected with satellite 
products (e.g., IMS/IASI SA optical depth). However, for all measured plumes (except 23/01 at 25 km altitude) 
the LOAC typology classification for particles with radii <0.5  μm identifies absorbing and semi-transparent 
particles. This could point to partially small sulfate-coated ash particles or a thin, separated layer of ash below a 
layer of SA particles, with a vertical extent too thin to be identified as a separate layer by LOAC and space-borne 
observations. Such an ash-SA altitude separation was observed in Vernier et  al.  (2016) following the Kelud 
eruption in 2014. Lab experiments show that even a small ratio of ash to sulfuric acid can produce optically 
absorbing particles. Hence, the identification of absorbing particles does not necessarily point to a composition 
dominated by ash. The absorbing particles observed by LOAC are exceptionally small (<0.5 μm). For example, 
3 months after the Kelud eruption ash particles with radii exclusively above 0.5 μm were observed (Vernier 
et al., 2016). The exceptionally small ash particles in the Hunga Tonga plume could have originated from the 
particular eruption dynamics (magma-seawater interaction, Wylie et al. (1999) and Yuen et al. (2022), with the 
inherent production of particularly small ash particles originating from the phreatomagmatic nature of the under-
water Hunga Tonga eruption. The fact that satellite observations completely miss the small absorbing component 
of the sampled aerosol plume (based on Legras et al. (2022) and satellite observations presented in this study) 
shows how valuable and important it is to not only rely on global-space-borne observations, but also to consider 
highly sensitive in situ observations with better spatial resolution. Altogether, the observed absorbing component 
is not expected to have a significant impact on the larger scale optical/radiative properties of the plume.

The specific nature of the underwater eruption has produced record-breaking high stratospheric concentrations of 
water vapor with strong implications on aerosol formation and the stratospheric chemistry (Sellitto et al., 2022; 
Zhu et  al., 2022). First results with the Microwave Limb Sounder and radio-sounding observations show the 

Flight Particle size range Typology

23rd January <0.5 µm Transparent, semi-transparent and absorbing

lower peak (∼22 km) 0.5–1.0 µm Liquid

23rd January <0.5 µm Semi-transparent

upper peak (∼25 km) 0.5–1.0 µm Transparent

26th January <0.5 µm Absorbing, semi-transparent and transparent

0.5–1.0 µm Transparent and liquid

Note. The complete aerosol typology information on all altitude levels are given in Figure S3 in Supporting Information S1.

Table 1 
Aerosol Typology Within the Hunga Tonga Plume at the Altitude Levels as Defined in Figure 2 and Figure S2 in Supporting 
Information S1
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injection of exceptionally large water content into the stratosphere during the Hunga Tonga eruption (Legras 
et al., 2022).

The plume measured at 25 km altitude on 23/01 shows a different composition compared to the plumes observed 
at 22 km. Particles of both size classes have a higher tendency toward optically transparent particles. This could 
point to a layer of predominant sulfate particles, clearly separating the plumes in terms of altitude and optical 
properties.

Overall, this study provides necessary, high resolution, complementary information to the existing and future 
studies on the microphysical properties of the plume, based on space-borne observations.

Data Availability Statement
LOAC in situ observations can be accessed from https://zenodo.org/record/6522689#.YrBjAd869hE. LiO3 obser-
vations are available at https://geosur.osureunion.fr/geonetwork/srv/fre/catalog.search#/metadata/f2c35798-
47b7-433c-8927-46cf7babca83. For the access of the OMPS v 2.0 data are available at https://disc.gsfc.nasa.gov/
datasets/OMPS_NPP_LP_L2_AER_DAILY_2/summary (NASA EarthData registration required). CALIOP and 
MSG-1 data are available at https://www.icare.univ-lille.fr/asd-content/archive/?dir=CALIOP/ and https://www.
icare.univ-lille.fr/asd-content/archive/?dir=GEO/MSG+0415/L1_B/ (Free instantaneous registration on icare is 
required https://www.icare.univ-lille.fr/asd-content/register).
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