
HAL Id: insu-03777342
https://insu.hal.science/insu-03777342

Submitted on 15 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical properties and correlation length in
star-forming molecular clouds. I. Formalism and

application to observations
E. Jaupart, G. Chabrier

To cite this version:
E. Jaupart, G. Chabrier. Statistical properties and correlation length in star-forming molecular
clouds. I. Formalism and application to observations. Astronomy and Astrophysics - A&A, 2022,
663, �10.1051/0004-6361/202141084�. �insu-03777342�

https://insu.hal.science/insu-03777342
https://hal.archives-ouvertes.fr


Astronomy
&Astrophysics

A&A 663, A113 (2022)
https://doi.org/10.1051/0004-6361/202141084
© E. Jaupart and G. Chabrier 2022

Statistical properties and correlation length in star-forming
molecular clouds

I. Formalism and application to observations

E. Jaupart1 and G. Chabrier1,2

1 École normale supérieure de Lyon, CRAL, Université de Lyon, UMR CNRS 5574, 69364 Lyon Cedex 07, France
e-mail: etienne.jaupart@ens-lyon.fr

2 School of Physics, University of Exeter, Exeter, EX4 4QL, UK
e-mail: chabrier@ens-lyon.fr

Received 14 April 2021 / Accepted 12 May 2022

ABSTRACT

Observations of molecular clouds (MCs) show that their properties exhibit large fluctuations. The proper characterization of the general
statistical behavior of these fluctuations, from a limited sample of observations or simulations, is of prime importance to understand the
process of star formation. In this article, we use the ergodic theory for any random field of fluctuations, as commonly used in statistical
physics, to derive rigorous statistical results. We outline how to evaluate the autocovariance function (ACF) and the characteristic
correlation length of these fluctuations. We then apply this statistical approach to astrophysical systems characterized by a field of
density fluctuations, notably star-forming clouds. When it is difficult to determine the correlation length from the empirical ACF,
we show alternative ways to estimate the correlation length. Notably, we give a way to determine the correlation length of density
fluctuations from the estimation of the variance of the volume and column-density fields. We show that the statistics of the column-
density field is hampered by biases introduced by integration effects along the line of sight and we explain how to reduce these biases.
The statistics of the probability density function (PDF) ergodic estimator also yields the derivation of the proper statistical error bars.
We provide a method that can be used by observers and numerical simulation specialists to determine the latter. We show that they (i)
cannot be derived from simple Poisson statistics and (ii) become increasingly large for increasing density contrasts, severely hampering
the accuracy of the high end part of the PDF because of a sample size that is too small. As templates of various stages of star formation
in MCs, we then examine the case of the Polaris and Orion B clouds in detail. We calculate, from the observations, the ACF and the
correlation length in these clouds and show that the latter is on the order of ∼1% of the size of the cloud. This justifies the assumption
of statistical homogeneity when studying the PDF of star-forming clouds. These calculations provide a rigorous framework for the
analysis of the global properties of star-forming clouds from limited statistical observations of their density and surface properties.
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1. Introduction

Observations of molecular clouds (MCs) show that their main
properties (velocity and column-density) exhibit large fluctua-
tions. These fluctuations are at the heart of the star formation
process (Padoan & Nordlund 2002; Mac Low & Klessen 2004;
Hennebelle & Chabrier 2008; Hopkins 2012), implying that
knowledge of their statistical characteristics is of prime impor-
tance. The accurate determination of the statistics of any quantity
must rely on either a large enough number of samples or a
large enough sample, so that a natural question arises: can we
derive accurate statistical properties of MCs from observations,
and if so how can we evaluate the level of accuracy? The rel-
evance of a general statistical analysis of the global properties
of MCs (e.g., mass, density PDF, temperature and velocity dis-
persion) deduced from observations and numerical simulations
for studies of star formation processes must be assessed prop-
erly. For example, all of the theories that aim at determining
the mass spectrum, that is the initial mass function (IMF) or
the star formation rate (SFR) in a molecular cloud, rely on the
assumption that a restricted number of observations or numerical

simulations are representative of any MCs with similar prop-
erties (see e.g., Hennebelle & Chabrier 2008; Hopkins 2012;
Vázquez-Semadeni et al. 2019 and reference therein). This key
assumption must be tested.

Indeed, in studies of star formation based on observations or
numerical simulations, one only has access to a small number
of samples (and in reality only one most of the time). There-
fore, in order to evaluate the statistics of the various stochastic
fields of interest, one makes the basic assumption, sometimes
called the “fair-sample hypothesis”, that the available sample
is large enough for volumetric (or time) averages to be mean-
ingful (see e.g., Peebles 1973 for a discussion in the context
of cosmology). This assumption is only valid for stochastic
fields that are statistically homogeneous and ergodic (Papoulis &
Pillai 1965). Here, one should note that statistical homogeneity
must not be confused with spatial homogeneity (we come back
to this point below). The assumption of statistical homogene-
ity has been adopted by many authors, for example in studies
of turbulent flows with or without self gravity (Chandrasekhar
1951a,b; Batchelor 1953; Pope 1985; Frisch 1995; Pan et al. 2018,
2019a,b; Jaupart & Chabrier 2020, 2021) and in cosmology for
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studies of the dynamics of structures in the Universe (Peebles
1973; Heinesen 2020). This assumption, however, provides no
information on the magnitude of fluctuations around the average.

Quantifying (i) whether the “fair-sample hypothesis” is cor-
rect and, if so, (ii) what are the statistical error bars that derive
from it, is an important issue when addressing PDF determina-
tions in star-forming clouds. This is related to the completeness
of the observations which we reformulate in this study in terms
of statistical accuracy. In the context of the PDF of column-
densities, Alves et al. (2017), for instance, made an attempt to
illustrate this problem by introducing the concept of open and
closed density contours. These authors suggest that complete
observations, that is considered as statistically significant and
worth studying, correspond to closed contours. Although inter-
esting, such an approach, however, can not be considered as
a robust statistical determination of the bias and the statistical
errors corresponding to incomplete observations of a cloud PDF.
It is one of the very aims of this article to provide such a robust
statistical analysis, using standard tools of random field theory
and signal processing. Notably, one of the goals of the paper
is to identify the statistical properties of the density field in a
cloud inferred from column density data, and to derive proce-
dures, based on the aforementioned tools, to accurately estimate
these properties, whatever the PDF (lognormal or not). As such
our approach does not make any assumption about the initial
driving mechanism of the random motions responsible for the
PDF of a cloud: turbulence or gravity.

The proper and standard way of addressing the previous issue
relies on Ergodic theory. Ergodic Theory allows one to circum-
vent the problem of dealing with a single sample and to derive
a robust measure of the accuracy of field statistics derived from
the available data. In the present context, it also enables us to
assess and quantify the relevance of a statistical approach on the
evolution of star forming MCs. The key quantity is the corre-
lation length, which is defined in terms of the integral of the
auto-covariance function (see e.g., Papoulis & Pillai 1965). The
fundamental result is that ergodic estimates are accurate if the
dimensions of the sample, i.e. a whole cloud or part of it, are
large enough compared to the correlation length. A proper deter-
mination of the correlation length in MCs is therefore of prime
importance.

In pioneer works, Scalo (1984); Kleiner & Dickman (1985)
studied the correlations of centroid velocities of the ρ-Oph
and Taurus complex respectively and only found evidence of
weak correlations at short scale on the order of their resolution.
Kleiner & Dickman (1984) studied the correlation of the column
density field of the Taurus complex in search of a statistically
significant length scale characterizing the separation of conden-
sations within the complex but did not perform an evaluation of
the correlation length, as defined above.

The objectives of this article are twofold. First, our main
objective aims at examining the relevance and validity of a sta-
tistical approach based on ergodic theory to study the stochastic
fields of star-forming MCs. Second, we seek to identify which
statistical properties of the density field can be inferred from col-
umn density data and we derive procedures to obtain accurate
estimates of these properties. The article is organized as follows.
In Sect. 2, we outline the mathematical framework that yields the
definition of the auto-covariance function (ACF) and correlation
length of any statistical sample. In Sect. 3 we derive ways to
determine the correlation length of any stochastic field without
having to compute the ACF. In Sect. 4, we examine the case of
astrophysical stochastic fields induced by compressible turbulent
motions. In Sect. 5, we focus on the case of star-forming clouds

and on the ways to infer the statistics of these fields from obser-
vations of column-densities. In Sect. 6, we apply our calculations
to the typical star-forming cloud Polaris. We identify artifacts
that are generated when one uses the statistical properties of the
column-density field to infer those of the real density field; we
show how to reduce these biases. In particular we derive a pro-
cedure to obtain proper error bars for the column density PDF.
In Sect. 7, we examine the case of Orion B. Section 8 is devoted
to the conclusion.

2. Methods: Mathematical framework for a
statistical approach

As mentioned in the introduction, a statistical approach of the
properties of a cloud (or part of) is valid if this latter is large
enough, compared to the correlation length of the quantity of
interest, for the measured statistical quantities to be represen-
tative with high confidence of the genuine quantities. How to
measure this confidence level and thus the relevance of a statisti-
cal approach is given by the ergodic theory, as commonly used in
statistical physics or in the study of dynamical systems. Indeed,
ergodicity implies by definition that different observations and
realizations of a given statistical quantity yield results compara-
ble enough for each of them to be representative of the average
real quantity. It is described in the next section.

2.1. Ergodic theory

We rederive here some ergodic theorems that lead to the defini-
tion of the correlation length. Let us consider a (scalar) stochastic
field X(y), which depends on a D-dimensional position vector y
(D = 1, 2 or 3). For a specific and fixed y, X(y) is a random
variable of which we want to accurately determine the statistics.

2.1.1. Frequency interpretation and repeated trials

The usual way to estimate the statistical average or expectation
E (X(y)) of the random variable X(y) is to observe N samples
X(y, ωi), 1 ≤ i ≤ N, of X(y) and to build the unbiased estimator

X̂y,N =
1
N

N∑
i=1

X(y, ωi), (1)

with variance

Var(X̂y,N) = σ(X̂y,N)2 =
Var(X(y))

N
=
σ(X(y))2

N
, (2)

where σ is the standard deviation (std). From Bienaymé-
Tchebychev inequality (Papoulis & Pillai 1965), we know that,
for any real number m > 0,

P
(
|X̂y,N − E (X(y)) | ≤ mσ(X̂y,N)

)
≥ 1 −

1
m2 , (3)

where P denotes the probability of a given event. We note that
this inequality is valid for any random field, whether it is Gaus-
sian or not. Although Tchebychev inequality gives a lower limit
for the probability, it allows to give a confidence interval to mea-
sure the accuracy of the estimator given by Eq. (1). The larger
the number of samples N, the smaller the std σ(X̂y,N) and the
more accurate the estimate in Eq. (1).

In case of statistical homogeneity for field X, the expectation
E (X(y)) and std σ(X(y)) are no longer functions of the positions
and one can drop the reference to y in Eqs. (2) and (3).
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2.1.2. Ergodic theorems, autocovariance function, correlation
length

In the context of the study of MCs, one usually has only a single
sample of X(y). As mentioned in the introduction, if one wants
to be able to describe the stochastic fields at play, one assumes
statistical homogeneity and build the unbiased estimator

X̂L =
1

LD

∫
Ω

X(y) dy, (4)

where Ω = [− L
2 ,

L
2 ]D is a control volume of linear size L and vol-

ume LD, which we want to be as large as possible1. The ergodic
estimator X̂L has a variance

Var(X̂L) =
1

(L)D

∫
[−L,L]D

CX(y)
D∏

k=1

(
1 −
|yk |

L

)
dy, (5)

where CX(y) = E (X(y′ + y) X(y′)) − E (X)2 is the auto-
covariance function (ACF) of X at a lag y. The stochastic field
X is said to be mean ergodic if the estimator X̂L converges
toward E (X) as L → ∞ either in the mean square (MS) sense,
meaning:

E
(
|X̂L − E (X) |2

)
= Var(X̂L) −−−−→

L→∞
0, (6)

or in probability meaning that, for every ϵ > 0,

P
(
|X̂L − E (X)) | > ϵ)

)
−−−−→
L→∞

0. (7)

Bienaymé-Tchebychev inequality (Eq. (3)) not only shows that if
X is MS mean ergodic X̂L also converges in probability, but it
also provides a confidence interval for the estimate X̂L. Slutsky’s
theorem allows to write an equivalence for the ergodicity of X
in a more convenient form: indeed, X is MS mean ergodic if and
only if

1
(L)D

∫
[−L,L]D

CX(y)dy −−−−→
L→∞

0. (8)

From there we obtain two sufficient (physical) conditions for X
to be mean ergodic. Either:∫
RD

CX(y)dy < ∞, (9)

or

CX(y) −−−−→
|y|→∞

0. (10)

We assume both, and use the common definition of the correla-
tion length lc(X) of the field X as a function of the ACF (Papoulis
& Pillai 1965):

(lc(X))D =
1

2D CX(0)

∫
RD

CX(y)dy. (11)

This definition generalizes the usual definitions for 1D fields:

lc(X) =
1

CX(0)

∫
[0,+∞[

CX(y)dy =
1

2 CX(0)

∫
R

CX(y)dy. (12)

1 The following calculations are made with this particular type of cubic
control volume, as the calculations are easier to follow. We give in
Appendix A the calculations for a control volume of any shape.

For lc(X) ≪ L we then have from Eq. (5)

Var(X̂L) ≃ Var(X)
(

2 lc(X)
L

)D

= Var(X)
(

lc(X)
R

)D

, (13)

where R = L/2. If we compare Eq. (13) with Eq. (2), we see
that instead of having the number of samples, N, we now have
the ratio (R/lc)D, where R (or L) is usually an observationally
accessible quantity. We can thus interpret the ratio (R/lc)D as
an effective number of “independent” samples. This result is
of prime importance in the analysis of fluctuations within any
stochastic field.

Furthermore, the correlation length is linked to the value of
the power spectrum PX(k) of X at k = 0. Indeed

(lc(X))D =
1

2D CX(0)

∫
RD

CX(y)dy,

=
1

2D CX(0)
PX(0). (14)

2.1.3. Ergodic hypothesis and ergodic theory

The results of ergodic theory derived above enable us to define
under which conditions volumetric averages correspond to sta-
tistical averages and to provide a confidence interval for the
estimate X̂L of the expectation of X. However, these results rely
on the knowledge of the statistical properties of X and more pre-
cisely of its ACF, which is in general not known. To apply this
theory to the study of a real field, such as the density field for
example, one must use ergodicity as an assumption. The above
results can then be used to test the validity of this assumption
and the accuracy of the estimates that are derived from it in a
self-consistent way.

2.2. Estimates of the autocovariance function and correlation
length

As shown in the previous section, the knowledge of the ACF of
X (or of the value of the power spectrum of X at k = 0) is of cru-
cial importance to measure the relevance of a statistical approach
in studies of the properties of large (astrophysical) systems. In
practice, however, the ACF of X must be evaluated from data.

2.2.1. Reliability of the estimators of the auto-covariance and
the power spectrum.

In most cases, data are drawn from a finite size sample so that
the ACF is not reliable at large lag (large scales). To simplify the
notation, we now introduce the variable Xµ = X − E (X) = X − µ
and define the estimate, for a sample of size L,

ĈL
X(y)=

1∏
i (L − |yi|)

$ R− |yi |
2

−R+ |yi |
2

Xµ

(
u −
y

2

)
Xµ

(
u +
y

2

)
du (15)

=
1∏

i (L − |yi|)

$ L−|yi |

−L+|yi |

Xµ

(u − y
2

)
Xµ

(u + y
2

) du
2D . (16)

This is an unbiased estimate of CX(y) but its variance is increas-
ing as |yi| → L and eventually becomes very large due to poor
sampling. We thus introduce the biased estimate

ĈX,L(y) =
∏

i (L − |yi|)
LD ĈL

X(y), (17)
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which is still a good estimate at small scales compared to L and
has a reduced variance. We note however that it is an unbiased
estimator of the quantity entering the integral in Eq. (5). Finally,
it is also the Fourier Transform of the periodogram S L which is
defined as:

S L(k) =
1

LD

∣∣∣∣∣∣
∫

[− L
2 ,

L
2 ]D

X(y)eik·ydy

∣∣∣∣∣∣2 . (18)

It is the usual estimate of the power spectrum of X, PX . It is,
however, a biased estimator of the power spectrum PX and is
only unbiased asymptotically, in the limit L→ ∞. Moreover, the
variance of the estimator S L does not vanish as L→ ∞ (Papoulis
& Pillai 1965), which makes it quite unreliable.

We thus see that, because of the finite size of the sample, one
cannot obtain a reliable estimate of the ACF (or of the power
spectrum) for all lag values. Furthermore, in many cases, the
mean value of X is not known and is replaced in Eq. (16) by its
estimate X̂L = µ̂, which introduces further, but reasonable, bias
(see Papoulis & Pillai 1965 for a more complete discussion).

2.2.2. Periodic estimators

To get rid of the effect of finite sampling, one may perform simu-
lations in periodic calculation boxes or may artificially add some
periodicity to the available data to obtain the following estimate:

ĈX,per(y) =
1

LD

∫
[− L

2 ,
L
2 ]D

(
Xµ̂(y + u) Xµ̂(u)

)
du, (19)

where Xµ̂ = X − µ̂ = X − X̂L and where one makes the identifi-
cation Xµ̂(y + nL) = Xµ̂(y). However, in such cases, the spatial
average of the estimated ACF is necessarily 0. Indeed∫

[− L
2 ,

L
2 ]D

ĈX,per(y)
LD d y =

∫
([− L

2 ,
L
2 ]D)2

(
Xµ̂(y + u) Xµ̂(u)

)
L2D du dy

=

∫
[− L

2 ,
L
2 ]D

Xµ̂(u)
LD du

2

= 0, (20)

due to the assumption that Xµ̂ is periodic.
Therein lies a significant problem: as the correlation length

is defined as an integral over all possible lags, it is not easy
to evaluate the reliability of estimates that are obtained in this
manner.

Therefore, one traditionally produces an estimate for lc (or
the integral scale li) in either of the next two ways. Either one
searches for the e−1 value of the reduced ACF ĈX/Var (X) to
obtain an estimate of the correlation length (see e.g. Kleiner
& Dickman 1984, 1985), assuming some exponential envelop
for the ACF. Or, if the ACF decays fast enough at scales larger
than lc(X), as is the case in turbulence (see previous section), the
ACF is then generally extrapolated with a decaying exponential
in regions where it becomes non monotonic (see e.g. Batchelor
1953; Reinke et al. 2016, 2018) so one can perform the integral
and give a reliable estimate of lc(X) if lc(X) ≪ L.

3. Fluctuations and estimation of the correlation
length

3.1. Expected fluctuations in repeated trials

Be it for (numerical) experiments that can be repeated several
times or for a statistically homogeneous and stationary field, vol-
ume averaged quantities fluctuate around their true expectations.

In the former case, the volume averaged quantities fluctuate
between the different samples while in the latter case they fluc-
tuate in time. As we show in the following, these fluctuations
depend on the ratio (lc/R). By studying these, we thus aim to
obtain an accurate estimate of (lc/R), without having to calculate
the ACF.

We consider here the case where one can reproduce several
times the same experiment, as can be done for instance with
numerical experiments or as can be approximated for clouds with
similar conditions. We wish to determine the expected ampli-
tudes of fluctuations of volume averaged quantities between
samples.

To each experiment i of the N trials corresponds a value of
the estimate X̂L,i defined by Eq. (4). From Bienaymé-Tchebychev
inequality, we know that X̂L,i lies around the true expectation
E (X) within a distance such that, in probability,

P

|X̂L,i − E (X) | ≤ mσ(X)
(

lc(X)
R

)D/2 ≥ 1 −
1

m2 . (21)

The average over the N trials (or sample average)

X̂(N)
L =

1
N

N∑
i=1

X̂L,i (22)

is obviously a better estimate of E (X) as

P

|X̂(N)
L − E (X) | ≤ m

σ(X)
√

N

(
lc(X)

R

)D/2 ≥ 1 −
1

m2 . (23)

We then expect the X̂L,i to fluctuate around the sample average
X̂(N)

L with variance

Var
(
X̂L,i − X̂(N)

L

)
= σ(X)2

(
lc(X)

R

)D (
1 −

1
N

)
, (24)

such that

P

|X̂L,i − X̂(N)
L | ≤ mσ(X)

(
lc(X)

R

)D/2 (
1 −

1
N

)1/2 ≥ 1−
1

m2 . (25)

If lc(X) is known, Eqs. (21), (24) and (25) allow one to give statis-
tical error bars. Conversely, if lc(X) is not known, these equations
give information on the product σ(X)(lc(X)/R)D/2 by performing
the same statistical experiment several times and studying the
dispersion of the X̂L,i around X̂(N)

L .
Indeed, the half length l50% of the segment centered on X̂(N)

L
within which 50% of the estimate X̂L,i falls, verifies2

√
2σ(X)

(
lc(X)

R

)D/2 (
1 −

1
N

)1/2

≲ l50%. (26)

This gives a quick and easy qualitative determination of
σ(X)(lc(X)/R)D/2. More quantitatively, the empirical variance of
the sample of the N trials

Var(N) =
1

N − 1

N∑
i=1

(
X̂L,i − X̂(N)

L

)2
, (27)

2 If the statistics are Gaussian, we obtain an equality where we have
0.67 instead of

√
2 in Eq. (26).
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is an unbiased estimator of

Var
(
X̂L,i

)
= σ(X)2(lc(X)/R)D. (28)

Computing the variance Var(N) thus yields an easy and rigorous
method to determine (lc(X)/R)D and the correct error bars for
statistical experiments.

3.2. Expected temporal fluctuations for a statistically
homogeneous and stationary field

We consider here the case of a statistically homogeneous and
stationary field (i.e., whose statistical properties are invariant
under space and time translations). This can for example describe
a steady turbulent flow (e.g. as simulated in a periodic box)
without gravity.

As before, to each time t corresponds a value of the estimate
X̂L(t) defined by Eq. (4) which lies around the true expectation
E (X) within a distance such that, in probability,

P

|X̂L(t) − E (X) | ≤ mσ(X)
(

lc(X)
R

)D/2 ≥ 1 −
1

m2 . (29)

The time average over a large timescale T

X̂L,T =
1
T

∫ t0+T

t0
X̂L(t) dt, (30)

where t0 is a time at which the steady state is reached, is a better
estimate of E (X) as it has a variance

Var
(
X̂L,T

)
≃ σ(X)2

(
lc(X)

R

)D
τc(XL)

2T
, (31)

where τc(XL) ≪ T is the correlation time. Then, the signal
X̂L(t) will fluctuate around X̂L,T with an empirical (temporal)
variance

VarT =
1
T

∫ t0+T

t0

(
X̂L(t) − X̂L,T

)2
dt (32)

which, providing that τc(XL) ≪ T , is an accurate estimate of

Var
(
X̂L(t)

)
= σ(X)2(lc(X)/R)D. (33)

Hence, computing the variance VarT yields an easy and robust
estimate of (lc(X)/R)D and the correct error bars for a statistically
stationary field.

3.3. Fluctuations of integrated fields over a column

The previous cases work for experiments that can be repeated
or for statistically stationary fields. However, in some situations,
the two conditions cannot be fulfilled either because it is impos-
sible to reproduce the experiment a large number of times or
because the fields are not stationary (for instance in the presence
of gravity).

In that case an estimate of ratio (lc/R) can be obtained if one
has access to the integral of field X over a column of fixed length
L = 2R:

ΣX(r) =
∫

[0,L]
X(r, z)dz, (34)

where r is a vector of D− 1 dimension (typically 2). The column
must have a constant length to avoid creating spurious biases (see
Sect. 5).

As ΣX/L corresponds to averaging X along one direction, we
thus expect that its fluctuations will be reduced in comparison of
those of X. The longer the length L of the column, the smaller
the fluctuations of ΣX/L are expected to be. More quantitatively,
the variance of ΣX/L is

Var
(
ΣX

L

)
=

Var (ΣX)
L2 =

E (ΣX(r)ΣX(r))
L2 (35)

=
1
L2

∫
[0,L]2

CX(0, z − z′)dz dz′ (36)

=
1
L

∫
[−L,L]

Cρ(0, u)
(
1 −
|u|
L

)
du. (37)

A similar equation for the centroid velocities was given in Scalo
(1984). Now, if the ACF of X is isotropic at short lags and
lc(X) ≪ L, one can make the approximation

Var
(
ΣX

L

)
≃

1
L

∫
[−L,L]

Cρ(|u|)du, (38)

≃ Var (X)
2li(X)

L
, (39)

where li(X) is the integral scale (Batchelor 1953) which, in most
cases, verifies li(X) ≃ lc(X) (see Jaupart & Chabrier 2021). Thus
a quick and easy estimate of ratio lc(X)/R is given by

Var (ΣX)
L2Var (X)

≃
lc(X)

R
. (40)

This method was applied to the density field (ρ = X) in Jaupart
& Chabrier (2021). The above estimate (Eq. (40)) was shown to
produce the trends predicted analytically and thus to be a good
approximation of the actual ratio lc(ρ)/R.

4. Application to astrophysical fields

The general results derived in Sect. 2 can be applied to many
physical and astrophysical systems. They have been used exten-
sively in cosmology but have somehow been overlooked in
studies of star formation. Today, it is generally accepted that
star formation is triggered by density fluctuations generated by
compressible turbulence injected at a large scale in MCs (see
e.g. McKee & Ostriker 2007 and reference therein). In this con-
text, the density field ρ (or the logarithmic density field s =
ln(ρ/E (ρ))) is of prime interest and its cumulative distribution
function (CMF) and probability density function (PDF) must be
determined accurately.

Each of these statistical quantities is associated with a
stochastic field X to which the results of Sect. 2 can be applied.
For instance, the CMF Fρ(ρ0) at ρ0 is linked to the stochastic
field hρ0 (y) = Θ (ρ0 − ρ(y)) (where Θ is the Heavyside function),
as

Fρ(ρ0) = E
(
hρ0 (y)

)
= E

(
hρ0

)
, (41)

while the PDF fρ(ρ0) is given by fρ(ρ0) = E
(
δρ0 (y)

)
= E

(
δρ0

)
,

where δρ0 (y) = δ (ρ0 − ρ(y)) is Dirac’s distribution. Usually the
PDF is rather deduced from histograms with some bin size ∆ρ
such that

fρ(ρ0)∆ρ ≃ Fρ(ρ0 + ∆ρ) − Fρ(ρ0) = E
(
hρ0+∆ρ − hρ0

)
. (42)
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In principle, knowledge of the ACF of all these fields is
required to establish the accuracy of the estimations. Fortu-
nately, it can be shown that sometimes, with a few simplifying
assumptions, one can proceed with the ACF of ρ, only, in some
situations. This is explained in detail in Appendix B.

4.1. Exact results regarding the properties of the
auto-covariance function (ACF) of ρ

For a statistically homogeneous field, the ACF of ρ, the den-
sity field, can be expressed in term of the second order structure
function:

S (2)
ρ (y) = E

(
{ρ(u + y) − ρ(u)}2

)
, (43)

as S (2)
ρ (y) = 2

(
Cρ(0) −Cρ(y

)
. A similar statement can be made

for the logarithmic density field s = ln(ρ/E (ρ)). This helps us to
grasp some key features of the ACF. At very short scale (below
the viscous scale), the density field is supposed to be differen-
tiable and hence Cρ must possess second-derivatives at y = 0.
Then, due to the parity of the ACF and because it is maximal at
y = 0, its gradient must exist and be equal to 0 at y = 0.

Furthermore, Jaupart & Chabrier (2021), generalizing the
work of Chandrasekhar (1951a), show that for a statistically
homogeneous density field, the quantity

E (ρ) Var (es) lc(ρ)3 =
Var (ρ)
E (ρ)

lc(ρ)3 (44)

is an invariant of the dynamics.

4.2. Phenomenology of (compressible) turbulence

The phenomenology of compressible turbulence (Kritsuk et al.
2007) can be derived, with some adjustments, from that of
incompressible turbulence (Frisch 1995). Thus, we use the lat-
ter to derive some expected features of the density ACF in
star-forming MCs that can be described by such phenomenology.

In isotropic turbulence, the second order structure function
is observed to be a monotonic increasing function of separation
distance, at least in the inertial range, and to converge rapidly
toward 2Var (ρ) at scales that are larger than the integral scale li.
This integral scale (not to be confused with the injection scale of
turbulence, see Sect. 4.3) is defined in the same manner as the
correlation length (Batchelor 1953)

li =
1

C(0)

∫ ∞

0
C(r)dr. (45)

In many situations, lc ∼ li, as shown in Jaupart & Chabrier
(2021). Thus, at small scales (short lags) and in the inertial range,
the ACF must be a monotonically decreasing function. Above the
inertial range, it is often assumed that the structure function and
the ACF are still monotonic and the ACF is usually approximated
by a decaying exponential, even though density fluctuations are
likely to generate oscillations of the observed and estimated ACF
as it tends to zero (Batchelor 1953; Reinke et al. 2016, 2018).

In compressible isothermal and stationary turbulence, the
density field ρ is found to be approximately lognormal (Kritsuk
et al. 2007; Federrath et al. 2010), implying that the logarithmic
density field s = ln(ρ/E (ρ)) is Gaussian with variance σ(s)2 =
ln(1 + (bM)2). In such Gaussian conditions, the ACFs of ρ and
s are linked by the following equation:

Cρ(y) = E (ρ)2
(
eCs(y) − 1

)
. (46)

As a consequence, if Cρ (or Cs) is monotonically decaying
toward 0, we deduce that:(
σ(s)2

eσ(s)2
− 1

)1/3

lc(s) ≤ lc(ρ) ≤ lc(s), (47)

where we have used the following inequalities: eax − 1 ≤ x(ea −

1) for 0 ≤ x ≤ 1 and ax ≤ eax − 1 ∀x. For typical star forming
conditions, σ(s)2 ≲ 4, implying that:

0.4 lc(s) ≲ lc(ρ) ≤ lc(s), (48)

or,

lc(s) ∼ lc(ρ). (49)

This shows that under Gaussian conditions, for the two lengths
lc(s) and lc(ρ), knowledge of one of them is sufficient to charac-
terize the other one within an order of magnitude.

4.3. Large injection scale but small correlation length

Density and velocity fluctuations in MCs are thought to originate
from turbulent motions driven at large scale (McKee & Ostriker
2007; Brunt et al. 2009), i.e. at scale comparable to the cloud
scale L. This means that the energy of these turbulent motions is
injected at an injection scale linj ∼ L, below which the turbulent
cascade eventually occurs.

The injection scale linj, however, is not the correlation length
lc of either the velocity, kinetic energy or density fields. Oth-
erwise, if linj = lc, every estimate produced from volumetric
averages of the former fields would be inaccurate and far from
the actual statistical values. This could result in large fluctuations
of these averaged quantities either between different simulations
(samples) or at different times for steady turbulent flows (see
Sect. 3). What is instead observed in numerical simulations of
compressible and steady turbulent flow is that volume averaged
quantities of these fields display rather small fluctuations around
their mean values. This is the case, for example, for the rms
Mach number M = vrms/cs, where vrms is the root of the vol-
ume average square velocity u2 and cs the sound speed. To be
more explicit,

M2 =
1
L3

∫
[− L

2 ,
L
2 ]3

u2(y)
c2

s
dy, (50)

so the result of Sect. 3 can be applied with X = u2/c2
s andM2 =

X̂L.
In Federrath (2013), a series of numerical simulations of

isothermal compressible turbulence driven to M ≃ 17 with an
injection scale linj = L/2 = R is presented. Once a statistical
steady state is reached, the volume averaged Mach number M
(or M2 which is a measure of the volume averaged specific
kinetic energy) displays fluctuations that are rather small com-
pared to their average values (their Fig. 1). Would we have
lc(u2) = linj = R, fluctuations of the signal M2(t) would have
yielded a temporal variance (Eq. (32)):

VarT ≃ σ
2
(
u2

) ( lc(u2)
R

)3

= σ2
(
u2

)
, (51)

from Eq. (33). Since the statistics of u are close to being Gaussian
(their Fig. A1), this would imply

VarT ≃ 2M4
T , (52)
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whereMT is the average of the signalM(t) over a time T . This
would thus yield large fluctuations incompatible with their Fig. 1.
The actual temporal variance VarT of signalM(t)2 in Federrath
(2013) rather yields a ratio

lc(u2)
R
=

lc(u2)
linj
≃ 0.1, (53)

which shows that lc(u2) ≪ linj = R.
Furthermore, Jaupart & Chabrier (2021) used the estimate

produced by Eq. (40) to compute the correlation length of the
density field ρ. They found that within a factor of order unity,

lc(ρ) ≃ λs = L/M2 ≪ L = 2 linj, (54)

where λs is the sonic length which is found to be close to the
average width of filamentary structures in isothermal turbulence
(Federrath 2016).

The above results show that a large injection scale does not
imply a large correlation length and that, on the contrary, corre-
lation lengths in star-forming MCs are small compared with the
injection scale (see above and Jaupart & Chabrier 2021).

4.4. Practical assumptions regarding the ACF

From the above results, we thus assume that the ACF decays
rapidly at scales larger than the correlation length lc (lc ∼ li, the
integral scale) and then that the defining integral Eq. (11) can be
calculated only up to a few lc. Moreover, we assume that the ACF
can be bounded by a decaying exponential exp(−|y|/λ), where
λ ∼ lc above and in the inertial range to allow the computation of
the correlation length (we note that such an exponential behavior
is prohibited at very small scales due to the differentiability of ρ).

5. Star-forming clouds. Column densities as
tracers of the underlying density field

We now turn to observations of star-forming molecular clouds.
Measurements provide values of the column-density Σ(x, y),
which is the integral of density along the line of sight
(l.o.s.(x, y)):

Σ(x, y) =
∫

l.o.s.(x,y)
ρ(x, y, z) dz

= E (ρ) l(x, y) +
∫

l.o.s.(x,y)
δρ(x, y, z) dz, (55)

where l(x, y) is the thickness of the cloud along the l.o.s. at (x, y)
and δρ = ρ − E (ρ) is the density fluctuation. Column densities
are the only data that depend directly on the density field and one
must determine how to retrieve reliable information from them.

5.1. Inhomogeneity and anisotropy due to integration over the
line of sight

Star forming clouds are shaped by turbulent motions confer-
ring statistical properties to their geometrical characteristics, and
hence to the area projected in a plane perpendicular to the line of
sight and to the thickness projected along the line of sight. This
is responsible for difficulties in evaluating exactly the statistical
average of Σ(x, y). However, provided that the cloud thickness is
much larger than the correlation length, that is if l(x, y) ≫ lc(ρ),
we can reasonably assume that (see Eq. (55)):

E (Σ(x, y)) ≃ E (ρ)E (l(x, y)) . (56)

One must note here that we are dealing with the statistical aver-
age and not with the spatial average. This equation shows that
Σ(x, y) may not be statistically homogeneous even if the density
field ρ is, just because of integration effects. To illustrate this
important point, let us imagine two idealized situations. In one
of them, the cloud is a sphere of radius R. In the other one, the
cloud is a “cube” of side L misaligned with the line of sight and
seen from one of its edges such that the projected surface is of
size
√

2L× L (see Fig. 1). For the sphere, the thickness along the
line of sight is:

E
(
lS(R)

)
(x, y) = 2R

(
1 −

x2 + y2

R2

)1/2

, x2 + y2 < R2, (57)

whereas for the cubic cloud it is:

E
(
lC(L)

)
(x, y) =

√
2L

1 − √2|x|
L

 , |x| ≤ L
√

2
, |y| ≤

L
2
. (58)

Even though they are very simple, these two examples demon-
strate that the column-density field may exhibit large-scale
gradients and hence may not be statistically homogeneous, even
if the density field is. Furthermore, as seen with the example of
the cube, integration effects can also generate some anisotropy
in the column-density field.

To reduce these effects, one can use a low pass filter to fil-
ter out large-scale gradients (Kleiner & Dickman 1984) and then
treat the column density field as if it were homogeneous. Further-
more, most of the integration effects are expected to be produced
by the first term of the r.h.s of Eq. (55). Thus they are expected
to affect column densities that are around the (surface) average
of the column density map ⟨Σ⟩. In contrast, high column density
(Σ(x, y) > ⟨Σ⟩, the regions of interest for star formation) are most
likely to originate from the second term of the r.h.s of Eq. (55)
and be produced by dense pockets along the line of sight. They
are thus expected to be less affected by the integration effects and
by the low pass filter. Studying the statistics of these high column
density is thus expected to bear insights on the bias introduced
by integration effects.

In Sect. 6, we will apply the above considerations to the
observations of the Polaris cloud.

5.2. Column-density field in a simulation box

For a cubic simulation domain of size L, projecting the density
field along one of the 3 principal directions of the cube leads to
a statistically homogeneous column density field such that:

E (Σ(x, y)) = E (ρ) × L. (59)

The results of Sects. 2 and 3 can thus be applied with X = Σ and
the ACF of Σ in this case is

CΣ(r) = E ((Σ(u + r) − E (ρ) L) (Σ(u) − E (ρ) L))

=

∫
[−L/2,L/2]2

Cρ(r, z − z′) dz dz′

=

∫
[−L,L]

Cρ(r, u)du
∫ L−|u|

−L+|u|

dv
2

= L
∫

[−L,L]
Cρ(r, u)

(
1 −
|u|
L

)
du. (60)

Its variance is

Var(Σ) = CΣ(0) = L
∫

[−L,L]
Cρ(0, u)

(
1 −
|u|
L

)
du. (61)
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Fig. 1. Projection of the two idealized situation. Left panel: case of a sphere. Right panel: case of a cuboid mis-aligned with the line of sight.

Then, if the density field is statistically isotropic at small scales
(i.e. the ACF is isotropic at short lag) and lc(ρ) ≪ L,

Var(Σ) ≃ 2 L lc(ρ) Var(ρ). (62)

Then Eq. (62) yields:

Var
(
Σ

E (Σ)

)
≃ Var

(
ρ

E (ρ)

)
2 lc(ρ)

L
= Var

(
ρ

E (ρ)

)
lc(ρ)

R
, (63)

which is a reformulation of Eq. (40). This is an important result
because it gives a measure of lc(ρ)/R without having to compute
the ACF. Brunt et al. (2010); Federrath et al. (2010) for example
found a ratio Var (Σ/E (Σ)) /Var (ρ/E (ρ)) between 0.03 and 0.15.

Vázquez-Semadeni & García (2001) were the first to study
the impact of the lc(ρ)/R ratio on the statistics of column-
density fields. Based on a crude interpretation of the central
limit theorem (CLT), they proposed that, for lc(ρ)/R → 0, the
column-density PDF should appear to be Gaussian instead of
lognormal. This is not consistent with the apparent lognormality
of the observed column-density PDFs, which led these authors
to conclude that lc(ρ)/R cannot be vanishingly small and that it
must be on the order of 10−1. However, the CLT only applies to
independent variables and can hardly be valid for the sum of cor-
related variables, even if correlations decay. This casts doubt on
the conclusions of Vázquez-Semadeni & García (2001). More
recently, Szyszkowicz & Yanikomeroglu (2009) and Beaulieu
(2011) have shown that, for some special types of correlations,
the sum of a large number N of lognormal variables tends to
a lognormal distribution as N → ∞. We conclude that knowl-
edge of the lc(ρ)/R value does not allow robust conclusions on
the shape of the column-density PDF. However, as shown by
Eq. (63), the variance Var

(
Σ
E(Σ)

)
does become vanishingly small

as lc(ρ)/R tends to zero. In that case, one can show with high
probability that:

ln
(
Σ

E (Σ)

)
≃
Σ − E (Σ)
E (Σ)

. (64)

Thus, in the limit of vanishing values of lc(ρ)/R, the distributions
of Σ/E (Σ) and its logarithm are both Gaussian if one of them is.

5.3. Decay length of correlations

We now examine how the decay of correlations of ρ impacts
the decay of correlations of Σ. For sake of simplicity, we again
consider the case of a cubic box in order to avoid unncessary
complications. For the 2D field Σ, the correlation length is given
by:

lc(Σ)2 =
1
4

1
Var (Σ)

"
CΣ(r) dr,

=
1
4

1
Var (Σ)

"
L
∫

[−L,L]
Cρ(r, u)

(
1 −
|u|
L

)
du dr,

≃ 2
LVar (ρ)
Var (Σ)

lc(ρ)3.

(65)

Using Eq. (62), this implies that:

lc(Σ)2 ≃ lc(ρ)2. (66)

This shows that correlations of the column-density fields are
decaying over a characteristic length close to lc(ρ), the corre-
lation length of the underlying density field. In general, we can
thus assume that lc(Σ) ∼ lc(ρ), so that information gathered from
the column-density yields an estimate of the characteristic decay
length of correlations of the underlying density field ρ.

6. Application to the observations of the Polaris
cloud

As mentioned in Sect. 5, observations trace back the column-
density (Kleiner & Dickman 1984; Schneider et al. 2015;
Ossenkopf-Okada et al. 2016). These observations of the
column-density PDFs in MCs show that regions where star
formation has not occurred yet exhibit lognormal PDFs while
regions with numerous prestellar cores develop power-law tails
(PLTs) at high column densities (Kainulainen et al. 2009;
Schneider et al. 2013). In addition to the integration effects yield-
ing potentially the observed column-density to be anisotropic
and inhomogeneous, observational data suffer further biases due
to line of sight (l.o.s) contamination and noise (Schneider et al.
2015; Ossenkopf-Okada et al. 2016). L.o.s contamination causes
two important biases. The observed power-law tail appears to be
steeper than its corrected and uncontaminated counterpart while
the observed variance in the lognormal part appears to be smaller
than its corrected counterpart (Schneider et al. 2013). The over-
all effect of l.o.s contamination is to produce an underestimation
of the total variance of the column-density.

6.1. Polaris

As a typical example of initial conditions of star formation in
MCs, we focus on the Polaris flare, where line of sight con-
tamination appears to be negligible (André et al. 2010; Miville-
Deschênes et al. 2010; Schneider et al. 2013). Furthermore, most
of the stellar cores in this cloud are still unbound (André et al.
2010), showing that star formation activity is very recent. Polaris
is therefore a good candidate to probe the statistics of initial
phases of star formation in MCs.
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Fig. 2. Column and volume density PDF of the Polaris cloud. Left:
Observed logarithmic column-density (η = ln(Σ/ ⟨Σ⟩)-PDF (Schneider
et al. 2013; Jaupart & Chabrier 2020). Right: Estimated and recon-
structed underlying logarithmic density (s = ln(ρ/E (ρ)))-PDF with the
procedure from Jaupart & Chabrier (2020).

Data from Herschel Gould Belt survey extend across part
of this cloud over approximately a 10 square degrees region
with a linear size L ∼ 10 parsecs (pc) (André et al. 2010).
The cloud total mass and area above an extinction Av ≥ 1 are
Mc,Av≥1 = 1.21× 103M⊙ and Ac,Av≥1 = 3.9 pc2, respectively. Dust
temperatures are in a narrow Tdust = 13± 1 K interval, indicat-
ing fairly isothermal conditions with an average Mach-number
M ≃ 3 (Schneider et al. 2013).

The Polaris logarithmic column-density field η, where η =
ln(Σ/ ⟨Σ⟩), has a PDF with an extended Gaussian part and two
emerging power-law tails, a first one with exponent αη,1 ≃ −4
followed by a shallower one with exponent αη,2 ≃ −2 (Fig. 2).
Jaupart & Chabrier (2020) have shown that the first steep PLT
is due to gravity beginning to affect turbulence in parts of the
cloud and hence records an early stage of (local) collapse. Fur-
thermore the authors outlined a procedure to reconstruct the
underlying logarithmic volume density PDF, noted s-PDF, where
s = ln(ρ/E (ρ)), from data on the η-PDF. The underlying s-PDF
displays a Gaussian part and two PLTs with exponents αs,1 = −2
and αs,2 = −3/2, respectively (see Fig. 2).

6.2. Filtering large-scale gradients

As seen in Sect. 5, integration effects can produce large-scale
gradients and break statistical homogeneity as well as isotropy
in the column density field.

Filtered and unfiltered column-density maps of the Polaris
flare are displayed in Figs. 3 and 4. The low pass filter does
not alter qualitatively the intricate structures that exist, while
the high-pass filter reveals a large-scale gradient likely due to
integration effects. In order to partially reduce measurement arti-
facts, we use a low pass filter that screens out structures larger
than L/2 in the column-density contrast (Σ− ⟨Σ⟩), where L is the
linear size of the observed region and we recall that ⟨Σ⟩ is the
(surface) average of the column density map. We can then treat
the column-density field as if it was homogeneous.

The low pass filter slightly diminishes the variance
Var (Σ/ ⟨Σ⟩) which is ≃0.20 and ≃0.17 for the unfiltered and
low pass filtered data, respectively. It barely affects structures
with a positive column-density contrasts but increases the occur-
rence of highly negative column-density contrasts. This is seen
in Fig. 5, which portrays the η-PDFs of the unfiltered and low
pass filtered column-density maps. As mentioned in Sect. 5, high

column density are not expected to be sensitive to integration
effects.

6.3. Estimated ACF and correlation length

6.3.1. Correlation length of η from the ACF

We now estimate the ACFs of the logarithmic column-density
field η = ln(Σ/ ⟨Σ⟩) for the three data sets (unfiltered, low and
high pass filtered), using Eq. (17). The 2D heat-maps of the
reduced ACFs Ĉη/Var (η) are given in Fig. 6. We only display the
top-right quadrant of possible lags (x > 0, y > 0) which amounts
to half of the space useful to study the ACF due to its symme-
try. The high pass filtered ACF illustrates the bias that can be
introduced by integration effects.

The three ACFs all seem to be fairly isotropic at very short
lags (scales) but are anisotropic at large ones. The low pass
filtered ACF seems to decay more rapidly at short lags with
a reduce anisotropy than the unfiltered one. Figure 7 displays
the reduced ACF of the low pass filtered map in three differ-
ent directions, x (θ = 0), x = y (θ = π/4) and y (θ = π/2). As
can be seen from the heat maps but also from Fig. 7, a strong
anisotropy is detected at large scales in the x direction (x/L ≥
2 × 10−2), while the ACF if fairly isotropic at shorter lags. From
the y-direction to the π/4-direction, the data seem to be fairly
isotropic and bounded by an exponential with λ/L ≃ 5× 10−2.
Anisotropy is most pronounced along the x-direction and the
resulting estimated correlation length l̂c(η) is:

l̂c(η) ≃ 6× 10−2 L ≃
1
2

(2π)1/2λ, (67)

or l̂c(η)/R ≃ 1.2× 10−1, thus l̂c(η)/R ∼ 10−1. We then use l̂c(η)
as an estimate of lc(ρ) to within an order of magnitude, such as

lc(ρ) ∼ 10−1 R. (68)

In fact, we expect Eq. (67) to provide upper bounds for ratios
lc(η)/R and lc(ρ)/R, because integration artifacts are only par-
tially cancelled by the low pass filter.

6.3.2. Correlation length of η from Eq. (40)

To obtain an estimate of lc(η) we could also apply the results of
Sect. 3 to the low pass filtered map. By integrating the column
density map along the x (θ = 0) or y (θ = π/2) direction and com-
puting the variance of the resulting integrated field we can obtain
with Eq. (40) two estimates l̂c,x(η) and l̂c,y(η) of lc(η) within a fac-
tor of order unity. However, the estimated ACF displays a strong
anisotropy in the x direction at large scales (x/L ≥ 2 10−2), so we
expect the estimates to give rather different results. Computing
the estimates yields

l̂c,x(η) ≃ 2.6 × 10−1R (69)

l̂c,y(η) ≃ 3.5 × 10−2R, (70)

with l̂c,x(η) > l̂c,y(η), as can be expected from the anisotropy of
the observed ACF. Since the anisotropy of the ACF starts before
it is significantly smaller than the variance, it is not clear which
of the two estimates gives the better approximation of the actual
lc(η). However, they are both within a factor 3 of the estimate
produced by Eq. (67) from the ACF which yielded l̂c(η) ∼ 10−1R.

Using lc(η) as an estimate of lc(ρ) yields again, to within an
order of magnitude, lc(ρ) ≲ 10−1 R.
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Fig. 3. Column-density maps of the Polaris cloud. Left panel: without filter. Middle panel: with a high-pass filter filtering scales smaller than L/2.
Right panel: with a low pass filter filtering scales larger than L/2. The low pass filter does not alter qualitatively the richness of structures found in
the Polaris flare, while the high-pass filter shows a large-scale gradient that can be produced by an integration effect.
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Fig. 4. Same as Fig. (3), but for the binary map Θ(log(Σ/ ⟨Σ⟩)) where Θ is Heaviside’s step function. Regions where Σ > ⟨Σ⟩ appear darker than
regions where Σ < ⟨Σ⟩.

6.3.3. Correlation length of ρ from Eqs. (40) or (63) and the
variance of Σ

As discussed in Sect. (5.2) and Eq. (63), one can also estimate
the ratio lc(ρ)/R by (1) computing the variance Var (Σ/E (Σ)),
(2) giving an estimate of Var (ρ/E (ρ)) and (3) giving an estimate
of the average thickness of the cloud (the length of the line of
sight), for example by assuming that the cloud has roughly the
same dimension in the three directions.

In pure isothermal turbulence, Var (ρ/E (ρ)) ≃ (bM)2, which
is ≃ 1 for the Polaris case (b ≃ 0.3–0.4,M ≃ 3). However, when
gravity starts generating power-law tails in the density PDF,
the variance becomes larger than (bM)2 (Jaupart & Chabrier
2020). For Polaris, the column-density PDF displays a power-law
tail with exponent αη ≃ −4, which is linked to an underly-
ing density PDF with a power law tail exponent αs ≃ −2
(Federrath & Klessen 2013; Jaupart & Chabrier 2020). Using the
reconstructed s-PDF of Fig. (2) from the procedure described
in Jaupart & Chabrier (2020), we can derive an estimate of
Var (ρ/E (ρ)). In principle, for such a model PDF, the variance
is infinitely large due to the power-law tails exponents αs,1 = −2
and αs,2 = −3/2. However, we expect a cut-off at high (column)-
density, which is indeed visible in the data. This cutoff may be

due to a change of thermodynamic conditions of the cloud, e.g.
from isothermal to adiabatic conditions. For a typical cut-off
number-density nad = 1010 cm−3 (Masunaga & Inutsuka 2000;
Machida et al. 2006; Vaytet et al. 2013, 2018) and for a cloud
of average density n = 103 cm−3, the cutoff occurs at sad ≃ 16.
However, there may be other causes for a high density cut-off. In
order to assess this possibility, we thus determine three different
estimates of the variance Var (ρ/E (ρ)) from the reconstructed
s-PDF of Fig. 2: one densities up to 6.3 (s ≤ 6.3), which corre-
sponds to the onset of the 2nd PLT, a second one for s ≤ 8 in
order to include contributions from the 2nd PLT, and a third one
for s ≤ 16 ≃ sad in order to include all the data up to the adi-
abatic limit. We obtain Var (ρ/E (ρ)) ≃ 5, 7, 227, respectively,
such that:

lc(ρ)/R ≃ 0.04, 0.03, 0.001. (71)

This provides us with the conservative estimate lc(ρ)/R ∼ 10−2,
which is an order of magnitude smaller than the value estimated
from the ACF (Eq. (67)) but closer to the estimate Eq. (70).

It is thus important to understand whether most of the
anisotropy in the ACF originates from some integration artifacts
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Fig. 5. η-PDFs. Blue round and purple triangular symbols represent the
PDFs of the unfiltered and low pass filtered maps, respectively. The filter
does not alter regions with η > 0 but increases the occurrence of regions
with η < −1. Horizontal errorbars represent bin spacing.

and whether it causes or not an overestimation of the correlation
lengths of η or ρ.

6.4. Ergodic estimate of the observed PDF, real error bars,
and reduced integration artifacts

As mentioned earlier, column-density PDFs serve as tracers of
the statistics of the underlying density field. The various forms
of these PDFs can be attributed to the various processes that
are operating in MCs, from a fully lognormal distribution when
purely turbulent motions dominate to a lognormal distribution
with high density PLTs when gravitational effects become sig-
nificant (Vazquez-Semadeni 1994; Passot & Vázquez-Semadeni
1998; Kainulainen et al. 2009; Schneider et al. 2013). This calls
for a precise determination of the statistical uncertainty on the
observed PDF, especially at high-density values.

The empirical PDF f̂X(ξ0) of stochastic field X (here X will
be the column density η) is deduced from histograms with some
bin size ∆ξ. Error bars are usually estimated from Poisson statis-
tics (using the number of points per bin) and can therefore be
very small (Schneider et al. 2013). It is worth delving deeper
into this issue. A histogram yields the following estimate:

f̂X;L(ξ0)∆ξ ≃ F̂X;L(ξ0 + ∆ξ) − F̂X;L(ξ0), (72)

where F̂X;L is the empirical cumulative distribution function.
Formally, this amounts to the ergodic estimate of the average
of the following field, noted gξ0 (y):

gξ0 (y) = hξ0+∆ξ(X(y)) − hξ0 (X(y)), (73)
where hξ0 (X(y)) = Θ(ξ0 − X(y)), (74)

(see Sect. 2.1.2 and 4). Thus, proper statistical error levels must
be calculated using the results of Sect. 2 and in general are not
given by Poisson statistics.

In Appendix B.2, we study in detail ergodic estimates of
average quantities. In general, the correlation length of gξ0 is a
function of ξ0 itself. For Gaussian (or lognormal) distributions,
an important result is that the confidence interval becomes quite

large for values |ξ0 − E (X) | ≥ σ(X), resulting in large errors if
the sample size is too small. Thus, a reliable evaluation of the
statistics of rare events (away from the average) requires very
large sample sizes.

6.4.1. Reduced integration effects at high density contrasts

In this study, we focus on the column-density field X = η and its
PDF, noted p(η). Using gη0 (y) and its ACF for various values η0,
we are able to determine the appropriate statistical error bars and
to get rid of some of the artifacts that are due to integration along
the line of sight. In practice, we expect that such artifacts are not
significant in high column-density regions (see Sect. 6.2). For
example, anisotropy of the Polaris column density ACF in the
x-direction is likely due to integration effects (see Sect. 6.3).

We expect, however, that the ACF of field gη0 for η0 > 0 is
expected to show a reduced anisotropy at short scales. We thus
obtain an empirical ACF of gη0 using Eq. (17). Figure 8 displays
the estimated PDF of gη0 for the low pass filtered column-density
map. At low column-density (η0 = −1.06), a strong anisotropy
is observed in the x-direction starting at x/L ≥ 2× 10−2, as for
the ACF of η (see Fig. 7). For positive column density con-
trasts (η0 > 0), this anisotropy is reduced and the ACFs are fairly
isotropic at small scales in both the x and θ = π/4 directions, up
to x/L ∼ 10−1 and r/L ∼ 10−1, respectively, where r denotes
separation distance in the θ = π/4 direction. At larger separation
distances, the data become quite noisy. This is consistent with
the fact that the low path filtering procedure does not modify the
PDF significantly in regions where η > 0 (see Fig. 5).

This suggests that most of the η ACF anisotropy in the x-
direction at scales in the 10−2−10−1 range is due to integration
effects. The peak of the correlation in the π/4-direction at high
column-densities (η0 = 1.58) is probably due to the presence of
the “Saxophone”-shaped filamentary structure that may be seen
at the top of Fig. 3, which hosts most of the Polaris high density
regions (Schneider et al. 2013).

6.4.2. Statistical errorbars

Using the statistics of gη0 (y) has several advantages. One is that
it reduces the impact of l.o.s. integration artifacts. In addition, it
leads to proper error estimates for the empirical PDF.

Introducing some function of η0 noted φ(η0) which is
expected to increase for increasing values of |η0|, the confi-
dence interval above (1 − 1/m2) can be written as follows (see
Bienayme-Tchebychev inequality, Eq. (21)):

p(η0) ≡ fη(η0) = f̂L(η0)

1±m (φ(η0))1/2
(

lc(η)
R

)D/2 , (75)

with D = 2 and where

φ(η0) =
Var

(
gη0

)
f̂L(η0)2(∆η)2

×

(
lc(gη0 )
lc(η)

)2

, (76)

=
1

f̂L(η0)(∆η)
×

(
lc(gη0 )
lc(η)

)2

, (77)

because Var
(
gη0

)
≃ f̂L(η0)(∆η) and where lc(gη0 )2 ∝ ∆η so that

the error bars on the PDF do not depend on the choice of bin size
(for small ∆η, see Appendix B.2).

From the empirical ACF Cgη0
, one can then estimate the cor-

relation length of gη0 and thus φ(η0) for every η0. Unfortunately,
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Fig. 6. Reduced ACF function of η (Ĉη/Var (η)) for the Polaris flare. Left panel: without filter. Middle panel: with a high pass filter filtering scales
smaller than L/2. Right panel: with a low pass filter filtering scales larger than L/2. Contours from black to purple to blue to light blue give the
value of the reduced ACF at 0.5, e−1 ≃ 0.37, 0.1, −0.1.
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Fig. 7. Reduced ACF of the low pass filtered map in three differ-
ent directions. Blue line: x-direction (y = 0). Purple line: y-direction
(x = 0). Red line: π/4 or x = y-direction. Green line: exponential profile
giving an estimate of the rate of decay (here λ/L ≃ 5 × 10−2). A strong
anisotropy is present in the x direction at large scales (x/L ≥ 2 × 10−2).

this procedure is hampered by the fact that the ACF becomes
increasingly noisy at high contrasts |η0| > 1, due to sample sizes
that are too small.

In principle, to determine φ(η0) and its variation one must
calculate the complete integral that defines lc(gη0 ). This may be
avoided as follows. The growth of φ(η0) may be obtained by look-
ing at the short scale behavior of the ACFs of gη0 . In Fig. 8, it
appears that the values of Ĉgη0

for positive column density con-
trasts (η > 0) are isotropic and close to being ∝ |y|−1/2 at short
scales. We thus write that:

Ĉgη0
(y) = ( fη(η0)∆η)2 × c√ |y/L|−1/2 (78)

where c√ is a constant of proportionality that depends on η0.
Values of c√ as a function of η0 are given in Fig. 9. We have
only studied gη0 for −0.7 ≤ η0 ≤ 1.58, because the ACFs are
extremely noisy at high positive density contrasts (η ≥ 1.58)
due to poor sampling. At negative density contrasts (η ≤ −0.7),
where integration artifacts are the largest (see Sect. 6.4.1), the

ACFs are no longer sufficiently isotropic and do not conform to
a scaling in |y|−1/2. Figure 9 shows that c√ (η0) is an increas-
ing function of |η0| for large |η0|, illustrating the fact that φ(η0)
is expected to be large compared to fη(η0) for large contrasts
|η0| > 1.

6.4.3. Correlation length of gη0 from Eq. (40)

To obtain an estimate of lc(gη0 ) and thus of φ(η0), we can use the
results of Sect. 3. For each η0 we compute the field gη0 (x, y) from
the column density map η(x, y). We then produce the two fields
Σgη0 ,x(y) and Σgη0 ,y

(x) obtained from the integration of gη0 (x, y)
along the x and y direction, respectively:

Σgη0 ,x(y) =
∫

gη0 (x, y)dx, (79)

Σgη0 ,y
(x) =

∫
gη0 (x, y)dy. (80)

Computing the variance of these integrated fields we can obtain
with Eq. (40) two estimates l̂c,x(gη0 ) and l̂c,y(gη0 ) of lc(gη0 ) within
a factor of order unity:

l̂c,x(gη0 )
Rx

=
Var

(
Σgη0 ,x

)
Var

(
gη0

) 1
L2

x
, (81)

l̂c,y(gη0 )
Ry

=
Var

(
Σgη0 ,y

)
Var

(
gη0

) 1
L2
y

, (82)

where Lx,y = 2Rx,y are the lengths of the column density map in
the x and y directions. For the present map of Polaris these two
lengths are approximately equal, Lx ≃ Ly = L.

As, for η0 > 0, the experimental ACFs of gη0 are fairly
isotropic, we expect the above estimates of lc(gη0 )/R (Eqs. (81)
and (82)) to give similar and accurate results. They are given
in Fig. 10 for ∆η = 0.1 and always yield the same order of
magnitude.

To test the accuracy of the estimates l̂c,x(gη0 ) and l̂c,y(gη0 )
of lc(gη0 ), we have tested how they scale with bin size ∆η.
If they were accurate estimates, they would have to conform
to a scaling l̂c,x,y(gη0 ) ∝ (∆η)1/2 so that the error bars on the
PDF (Eq. (75)) do not depend on the choice of bin size (see
Appendix B.2). At positive density contrasts, η > 0, the esti-
mates l̂c,x(gη0 ) and l̂c,y(gη0 ) follow a scaling close to the predicted
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Fig. 8. Estimated ACF of the field gη0 (y) for different values of η0 = η in 3 different directions. Blue, purple and red lines represent respectively
the x, y and π/4 (x = y) directions. Two top panels are for η0 = −1.06 and 0.69, whereas the two bottom panels are for η0 = 0.94 and 1.58. At low
column-densities (η0 = −1.06), a strong anisotropy is detected in the x-direction and becomes noticeable at x/L ≥ 2 × 10−2 as was the case for the
column-density ACF (see Fig. 7). For high column-densities (η0 > 0), however, the anisotropy is subdued and the ACFs are fairly isotropic at small
scales up to x/L, r/L ∼ 10−1 where the data become quite noisy. Green dashed lines show the profile of an isotropic ACF proportional to r−1/2 that
matches the data at short scales fairly well, at least over a decade.
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Fig. 9. Constant of proportionality c√ such that Cgη0
(y) =

( fη(η0)∆η)2 × c√ /
√
|y|/L at short scales.

l̂c,x,y(gη0 ) ∝ (∆η)1/2. They do not, however, for negative contrasts,
η < 0, where the ACF is no longer isotropic and where there are
strong integration artifacts. This can be seen on Fig. 11 where
we display the shadded regions bounded by the two estimates
l̂c,x(gη0 ) and l̂c,y(gη0 ) for different bin sizes ∆η at 4 values of η0 =
−1.1, 0.7, 1.1, 1.6.
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Fig. 10. Estimate of the ratio lc(gη0 )/R from Eqs. (81) and (82) at differ-
ent η0 for ∆η = 0.1. The blue line gives the values of estimate l̂c,y(gη0 )
while the red dash-dotted line gives the values of l̂c,x(gη0 ). The two esti-
mates always yield the same order of magnitude.

We then conclude that l̂c,x(gη0 ) and l̂c,y(gη0 ) can be used to
accurately estimate lc(gη0 ) for η > 0, i.e. in the regions of interest
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Fig. 11. Shadded regions bounded by the two estimates l̂c,x(gη0 ) and
l̂c,y(gη0 ) for different bin sizes ∆η at four values of η0 = −1.1, 0.7, 1.1,
1.6 from light to dark blue respectively. For clarity the values of the
estimates for η0 = −1.1 and η0 = 0.7 were multiplied by 15 and 1.5
to shift their curves upward. Red dash-dotted lines indicate a scaling
∝ (∆η)1/2. At positive density contrasts η > 0 the estimates follow a
scaling close to the predicted l̂c,x,y(gη0 ) ∝ (∆η)1/2.

for star formation. In practice we should assume that lc(gη0 ) lies
somewhere between l̂c,x(gη0 ) and l̂c,y(gη0 ) and compute error bars
with both values. This is done in the next section.

6.4.4. Effective error bars on the observed PDF

Once we have obtained these estimates of lc(gη0 )/R and tested
their accuracy, we can compute effective error-bars at a given
confidence interval for the PDF p(η0) = fη(η0) with Bienayme-
Tchebychev inequality, Eq. (21):

p(η0) ≡ fη(η0) = f̂L(η0)

1±m
1(

f̂L(η0)∆η
)1/2

lc(gη0 )
R

 , (83)

with f̂L(η0) the estimate of the PDF produced by histograms of
bin size ∆η and m giving a confidence interval of over 1 − 1/m2.

Figure 12 displays the empirical Polaris PDF, with error
bars computed from Eq. (83) for the two estimates l̂c,x(gη0 ) and
l̂c,y(gη0 ) with ∆η = 0.1. We have taken m = 2 to obtain a confi-
dence interval of over 75%. As expected, the amplitudes of the
error bars and thus of φ(η0) grow with increasing values of |η0|.
These error bars may be inaccurate for η0 < 0 because the esti-
mates l̂c,x(gη0 ) and l̂c,y(gη0 ) show a dependence that is too strong
on bin size ∆η at these low column densities (see Sect. 6.4.3).
However, they are accurate at high column densities η0 > 0 and
serve to emphasize that error bars should not be derived from
Poisson statistics and that the accuracy of the low and high end
parts of the PDF are severely degraded by sample sizes that are
too small.

7. Applications to the Orion B cloud

In this section, we apply the results of Sect. 2 to the Orion B
cloud (Schneider et al. 2013; Orkisz et al. 2017), another well
studied star-forming MC. In this case, one encounters additional
difficulties because the observed field is markedly elongated in
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Fig. 12. PDF of the logarithmic column-density η with statistical error-
bars for m = 2 and the two estimates l̂c,x(gη0 ) and l̂c,y(gη0 ) respectively
in blue and red. This emphasizes that error bars should not be derived
from Poisson statistics and that the accuracy of the low and high end
parts of the PDF are degraded by the small sample size.

the “vertical” direction (y) with data over a region whose geo-
metrical shape is not suited to a straightforward data analysis (see
Fig. 13). For this reason, we have extracted 2 parts of the cloud
with rectangular shapes. One is elongated with a length that is
close to the vertical dimension (Ly) of the total field of obser-
vation, which we shall refer to as a “filament”. A second part is
a rectangular one with an aspect ratio close to 1, with a length
close to the maximum horizontal length of the full cloud (Lx),
which we shall refer to as a “square” region (see Fig. 13). We
determine the ACF of these two subregions and the associated
correlation lengths in Appendix C.

Using the ACF, we find that lc(η)/Lx ∼ 10−1. When using the
variances Var (ρ) and Var (Σ), we obtain a lower value: lc(η)/Lz ∼

10−2, where Lz is the characteristic thickness of the cloud (along
the line of sight).

8. Conclusion

In this article, we have examined the validity of statistical
homogeneity and ergodicity when deriving general properties of
star-forming molecular clouds from observations or numerical
results of some of their properties. Notably, we have focused on
the field of density fluctuations and its PDF. This is a funda-
mental quantity since these fluctuations are believed to be at the
root of the star formation process. It is thus essential to exam-
ine the validity of a statistical approach in order to assess the
accuracy of the determination of the statistical properties of the
cloud from the observations or simulations of a limited number
of samples. To fulfill this goal, we first use the ergodic theory
for any random field X to derive some rigorous statistical results.
We explain how to calculate the correlation length of fluctua-
tions in this field, lc(X), from the autocovariance function (ACF)
(Eq. (11)). We show that the estimation of the correlation length
allows one to define an effective number of samples, N, such that
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Fig. 13. Column-density maps of the Polaris cloud. Left panel: full observed field. Middle panel: extracted filamentary region. Right panel:
extracted “square” region, unfiltered and low pass filtered (see Sect. 6).

a space (or time) average of a single realization is formally equiv-
alent to averaging over N independent samples (see e.g. Papoulis
& Pillai 1965). When it is difficult to determine the correlation
length from the empirical ACF, we have shown alternative ways
to estimate it from fluctuations in Sect. 3.

We then apply this statistical approach and the results of
ergodic theory to astrophysical systems in Sects. 4–6. In Sect. 4,
we examine in particular the stochastic fields induced by com-
pressible turbulent motions driven at large scale. We show that
while the energy of turbulent motion is injected at large scale,
comparable to the whole system L, the correlation length of
either the specific kinetic energy or the density is actually small
compared to L (see Sect. 4.3) . We stress that there is no contra-
diction in these results since the injection scale and correlation
length are two completely different quantities.

In Sect. 5 we apply our results to the observed column-
density field, which is related to the (volume) density field in
the cloud. Applying the results of Sect. 3, we have devised a
method to determine the correlation length, or more exactly the
ratio of the correlation length over the size of the cloud (or the
box of numerical simulations), from the variances of both the
volume-density and column-density fields. We have also shown
that the statistics of the column-density field are affected by arti-
facts due to integration along the line of sight. These artifacts
tend to generate an artificial anistropy in the colum density field
and thus in the empirical ACF. Using the previous results, we
have then examined in detail the Polaris cloud, which serves as a
template for initial stages of star formation in MCs, in Sect. 6. We
showed that the artificial anistropy in the empirical ACF results
in an overestimation of the correlation length of density fluctua-
tions within the cloud. Estimating the variance of the underlying
density field, Var (ρ/ ⟨ρ⟩), and computing the variance of the
column-density field, Var (Σ/ ⟨Σ⟩), we are able to derive a more
accurate estimate of the correlation length lc (Eq. (63)), which

can be an order of magnitude smaller than the one obtained from
the empirical ACF (Sect. 6.3).

Moreover, we have shown that studying the statistics of
the PDF ergodic estimator for positive column-density contrasts
enables us to get rid of most of the integration anisotropy bias
(Sect. 6.4.1). It also allows a proper evaluation of statistical error
bars and shows that these (i) cannot be derived from simple Pois-
son statistics and (ii) become increasingly large for increasing
density contrasts (|η| ≥ 1), severely reducing, in particular, the
accuracy of the high end part of the PDF because of the small
sample size (see Sect. 6.4.2). Furthermore, we provide a method
that can be used by observers and numericists to determine
robust error bars in Sect. 6.4.4.

Finally, we found that the correlation length of the density
field in the Polaris cloud is of about ∼1% of the size of the
cloud (lc(ρ)/R ∼ 10−2). We have also examined the more com-
plex Orion B cloud to confirm the results obtained for Polaris in
Sect. 7.

These calculations provide a rigorous framework for the
analysis of the global properties of star-forming clouds from
limited statistical observations of their density and surface fluc-
tuating properties. They show in particular that for typical
star-forming clouds at the onset of the star formation process, the
correlation length of density fluctuations is much smaller than
the size of the cloud. This justifies the assumption and the rele-
vance of a statistical approach based on statistical homogeneity
when studying the PDF of the cloud (Jaupart & Chabrier 2020,
2021), as done e.g. in cosmology or in the study of turbulence.

Acknowledgements. The authors are grateful to Christoph Federrath for always
providing data from his numerical simulations upon request. This research has
made use of data from the Herschel Gould Belt survey (HGBS) project (http:
//gouldbelt-herschel.cea.fr). The HGBS is a Herschel Key Programme
jointly carried out by SPIRE Specialist Astronomy Group 3 (SAG 3), scientists of
several institutes in the PACS Consortium (CEA Saclay, INAF-IFSI Rome and

A113, page 15 of 20

http://gouldbelt-herschel.cea.fr
http://gouldbelt-herschel.cea.fr


A&A 663, A113 (2022)

INAF-Arcetri, KU Leuven, MPIA Heidelberg), and scientists of the Herschel
Science Center (HSC).

References
Alves, J., Lombardi, M., & Lada, C. J. 2017, A&A, 606, L2
André, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102
Batchelor, G. K. 1953, The Theory of Homogeneous Turbulence (Cambridge:

Cambridge University Press)
Beaulieu, N. C. 2011, IEEE Trans. Commun., 60, 23
Brunt, C., Heyer, M., & Mac Low, M.-M. 2009, A&A, 504, 883
Brunt, C. M., Federrath, C., & Price, D. J. 2010, MNRAS, 403, 1507
Chandrasekhar, S. 1951a, Proc. R. Soc. London Ser. A. Math. Phys. Sci., 210, 18
Chandrasekhar, S. 1951b, Proc. R. Soc. London Ser. A Math. Phys. Sci., 210, 26
Federrath, C. 2013, MNRAS, 436, 1245
Federrath, C. 2016, MNRAS, 457, 375
Federrath, C., & Klessen, R. S. 2013, ApJ, 763, 51
Federrath, C., Roman-Duval, J., Klessen, R., Schmidt, W., & Mac Low, M.-M.

2010, A&A, 512, A81
Frisch, U. 1995, Turbulence: the Legacy of AN Kolmogorov (Cambridge:

Cambridge University Press)
Heinesen, A. 2020, J. Cosmol. Astropart. Phys., 2020, 052
Hennebelle, P., & Chabrier, G. 2008, ApJ, 684, 395
Hopkins, P. F. 2012, MNRAS, 423, 2037
Jaupart, E., & Chabrier, G. 2020, ApJ, 903, L2
Jaupart, E., & Chabrier, G. 2021, ApJ, 922, L36
Kainulainen, J., Beuther, H., Henning, T., & Plume, R. 2009, A&A, 508, L35
Kleiner, S., & Dickman, R. 1984, ApJ, 286, 255
Kleiner, S., & Dickman, R. 1985, ApJ, 295, 466
Kritsuk, A. G., Norman, M. L., Padoan, P., & Wagner, R. 2007, ApJ, 665, 416

Mac Low, M.-M., & Klessen, R. S. 2004, Rev. Mod. Phys., 76, 125
Machida, M. N., Inutsuka, S.-i., & Matsumoto, T. 2006, ApJ, 647, L151
Masunaga, H., & Inutsuka, S.-i. 2000, ApJ, 531, 350
McKee, C. F., & Ostriker, E. C. 2007, ARA&A, 45, 565
Miville-Deschênes, M.-A., Martin, P., Abergel, A., et al. 2010, A&A, 518, L104
Orkisz, J. H., Pety, J., Gerin, M., et al. 2017, A&A, 599, A99
Ossenkopf-Okada, V., Csengeri, T., Schneider, N., Federrath, C., & Klessen,

R. S. 2016, A&A, 590, A104
Padoan, P., & Nordlund, Å. 2002, ApJ, 576, 870
Pan, L., Padoan, P., & Nordlund, Å. 2018, ApJ, 866, L17
Pan, L., Padoan, P., & Nordlund, Å. 2019a, ApJ, 876, 90
Pan, L., Padoan, P., & Nordlund, Å. 2019b, ApJ, 881, 155
Papoulis, A., & Pillai, S. 1965, Variables Stochastic Processes (New York:

McGraw-Hill)
Passot, T., & Vázquez-Semadeni, E. 1998, Phys. Rev. E, 58, 4501
Peebles, P. J. E. 1973, ApJ, 185, 413
Pope, S. B. 1985, Prog. Energy Combustion Sci., 11, 119
Reinke, N., Fuchs, A., Hölling, M., & Peinke, J. 2016, in Fractal Flow Design:

How to Design Bespoke Turbulence and Why (Berlin: Springer), 165
Reinke, N., Fuchs, A., Nickelsen, D., & Peinke, J. 2018, J. Fluid Mech., 848, 117
Scalo, J. 1984, ApJ, 277, 556
Schneider, N., André, P., Könyves, V., et al. 2013, ApJ, 766, L17
Schneider, N., Ossenkopf, V., Csengeri, T., et al. 2015, A&A, 575, A79
Szyszkowicz, S. S., & Yanikomeroglu, H. 2009, IEEE Trans. Commun., 57, 3538
Vaytet, N., Chabrier, G., Audit, E., et al. 2013, A&A, 557, A90
Vaytet, N., Commerçon, B., Masson, J., González, M., & Chabrier, G. 2018,

A&A, 615, A5
Vazquez-Semadeni, E. 1994, ApJ, 423, 681
Vázquez-Semadeni, E., & García, N. 2001, ApJ, 557, 727
Vázquez-Semadeni, E., Palau, A., Ballesteros-Paredes, J., Gómez, G. C., &

Zamora-Avilés, M. 2019, MNRAS, 490, 3061

A113, page 16 of 20

http://linker.aanda.org/10.1051/0004-6361/202141084/1
http://linker.aanda.org/10.1051/0004-6361/202141084/2
http://linker.aanda.org/10.1051/0004-6361/202141084/3
http://linker.aanda.org/10.1051/0004-6361/202141084/4
http://linker.aanda.org/10.1051/0004-6361/202141084/5
http://linker.aanda.org/10.1051/0004-6361/202141084/6
http://linker.aanda.org/10.1051/0004-6361/202141084/7
http://linker.aanda.org/10.1051/0004-6361/202141084/8
http://linker.aanda.org/10.1051/0004-6361/202141084/9
http://linker.aanda.org/10.1051/0004-6361/202141084/10
http://linker.aanda.org/10.1051/0004-6361/202141084/11
http://linker.aanda.org/10.1051/0004-6361/202141084/12
http://linker.aanda.org/10.1051/0004-6361/202141084/13
http://linker.aanda.org/10.1051/0004-6361/202141084/14
http://linker.aanda.org/10.1051/0004-6361/202141084/15
http://linker.aanda.org/10.1051/0004-6361/202141084/16
http://linker.aanda.org/10.1051/0004-6361/202141084/17
http://linker.aanda.org/10.1051/0004-6361/202141084/18
http://linker.aanda.org/10.1051/0004-6361/202141084/19
http://linker.aanda.org/10.1051/0004-6361/202141084/20
http://linker.aanda.org/10.1051/0004-6361/202141084/21
http://linker.aanda.org/10.1051/0004-6361/202141084/22
http://linker.aanda.org/10.1051/0004-6361/202141084/23
http://linker.aanda.org/10.1051/0004-6361/202141084/24
http://linker.aanda.org/10.1051/0004-6361/202141084/25
http://linker.aanda.org/10.1051/0004-6361/202141084/26
http://linker.aanda.org/10.1051/0004-6361/202141084/27
http://linker.aanda.org/10.1051/0004-6361/202141084/28
http://linker.aanda.org/10.1051/0004-6361/202141084/29
http://linker.aanda.org/10.1051/0004-6361/202141084/30
http://linker.aanda.org/10.1051/0004-6361/202141084/31
http://linker.aanda.org/10.1051/0004-6361/202141084/32
http://linker.aanda.org/10.1051/0004-6361/202141084/33
http://linker.aanda.org/10.1051/0004-6361/202141084/34
http://linker.aanda.org/10.1051/0004-6361/202141084/35
http://linker.aanda.org/10.1051/0004-6361/202141084/36
http://linker.aanda.org/10.1051/0004-6361/202141084/37
http://linker.aanda.org/10.1051/0004-6361/202141084/38
http://linker.aanda.org/10.1051/0004-6361/202141084/38
http://linker.aanda.org/10.1051/0004-6361/202141084/39
http://linker.aanda.org/10.1051/0004-6361/202141084/40
http://linker.aanda.org/10.1051/0004-6361/202141084/41
http://linker.aanda.org/10.1051/0004-6361/202141084/42
http://linker.aanda.org/10.1051/0004-6361/202141084/43
http://linker.aanda.org/10.1051/0004-6361/202141084/44
http://linker.aanda.org/10.1051/0004-6361/202141084/45
http://linker.aanda.org/10.1051/0004-6361/202141084/46
http://linker.aanda.org/10.1051/0004-6361/202141084/47
http://linker.aanda.org/10.1051/0004-6361/202141084/48


E. Jaupart and G. Chabrier: Statistical properties and correlation length: I. Formalism and application

Appendix A: Ergodic estimate for a general control
volume Ω.

We described in Sec. (2) some known ergodic results, but they
are derived for a cubic control volume Ω = [− L

2 ,
L
2 ]D. These

results obviously do not depend on the shape of the control
volume. We give here the general formulation for any control
volume Ω possessing a center of symmetry (meaning that ∀y ∈
Ω, −y ∈ Ω). We again denote |Ω| the volume of Ω and define the
linear size ofΩ as LD = |Ω|. The ergodic estimate Eq. (4) is then

X̂Ω =
1
|Ω|

∫
Ω

X(y) dy. (A.1)

To obtain its variance, one has to compute the double integral

Var
(
X̂Ω

)
=

1
|Ω|2

"
Ω2
E

(
X(y) X(z) − E (X)2

)
dy dz

=
1
|Ω|2

"
Ω2

CX(y − z) dy dz. (A.2)

Using the change of variables (u, u) = φ(y, z) = (y − z, y + z),
one obtain

Var
(
X̂Ω

)
=

1
|Ω|2

∫
2Ω

CX(u)
∫
φu

2 (Ω)

du du
2D (A.3)

where

φu
2(Ω) = 2 ((Ω − u) ∩Ω) + u (A.4)

to obtain

Var
(
X̂Ω

)
=

1
|Ω|

∫
2Ω

CX(u)
|(Ω − u) ∩Ω|

|Ω|
du. (A.5)

We then obtain the general Slutsky’s theorem, X is mean ergodic
if and only if

1
LD

∫
2Ω

CX(u) du −−−−→
L→∞

0. (A.6)

Appendix B: Ergodic estimators of the CMF and
PDF

Appendix B.1: Cumulative Distribution Function (CMF)

The CMF of the stochastic field X can be constructed as the
average of a particular function of the field X. Indeed, by defini-
tion, FX(x0) = P (X(y) ≤ x0) and a simple calculation shows that
P (X(y) ≤ x0) = E

(
hx0 (X(y))

)
with hx0 (z) = Θ(x0 − z), where Θ

is Heaviside step function. We are then ready to determine the
confidence interval for the estimated CMF FX of X. To do so, we
need to apply the results of Sec. (2) to the field hx0 (X(y)). The
“natural" ergodic estimator of FX(x0) is thus:

F̂L(x0) =
1

LD

∫
[− L

2 ,
L
2 ]D

hx0 (X(y)) dy. (B.1)

Then, to obtain the variance of F̂L(x0) we need to express the
ACF of hx0 (X(y)). We have

Chx0
(y) = F(2)

X (x0, x0, y) − FX(x0)2 (B.2)

where F(2)
X (x0, x0, y) = P (X(u + y)) ≤ x0; and X(u) ≤ x0) is the

second-order distribution function and is the probability to have

both X(u + y) ≤ x0 and X(u) ≤ x0. The variance of F̂L(x0) is
then

Var
(
F̂L(x0)

)
=

1
(L)D

∫
[−L,L]D

Chx0
(y)

D∏
k=1

(
1 −
|yk |

L

)
dy (B.3)

≃ Chx0
(0)

(
lc(hx0 )

R

)D

= FX(x0) (1 − FX(x0))
(

lc(hx0 )
R

)D

, (B.4)

providing Chx0
is integrable so one can define lc(hx0 ). Again,

comparing with the result for a repeated trial experiment where
N samples of X(y) are drawn (for the same point y) shows that
the ratio (R/lc(hx0 ))D serves as an effective number N of trials
(see e.g. Papoulis & Pillai 1965).

For practical purpose and in order to give an interval of con-
fidence, when FX is not known one can use the estimate F̂L in
Eq. (B.4) (Papoulis & Pillai 1965). Furthermore, here, lc(hx0 )
is a function of x0 and cannot in general be simply estimated
from lc(X). The length lc(hx0 ) can, however, be estimated by
repeating the experiment several times and using the results of
Sec. (3.1).

Appendix B.2: Probability Density Function (PDF)

To build an estimator of the PDF fX(x0) of X we do not use the
definition fX(x0) = E (δ(X(y) − x0)) but the common approxima-
tion, suited for data analysis, fX(x0)∆x ≃ FX(x0+∆x)−FX(x0) =
E

(
hx0+∆x(X(y)) − hx0 (X(y))

)
for a sufficiently small bin spacing

∆x. Noting gx0 (X(y) = hx0+∆x(X(y)) − hx0 (X(y)) we build the
estimator

f̂L(x0)∆x =
1

LD

∫
[− L

2 ,
L
2 ]D

gx0 (X(y)) dy. (B.5)

The ACF of gx0 (X) is

Cgx0
(y) = F(2)

X (x0 + ∆x, x0 + ∆x, y) + F(2)
X (x0, x0, y)

−F(2)
X (x0 + ∆x, x0, y) − F(2)

X (x0, x0 + ∆x, y)

− (FX(x0 + ∆x) − FX(x0))2 (B.6)

with

Cgx0
(0) = FX(x0 + ∆x) − FX(x0) − (FX(x0 + ∆x) − FX(x0))2

≃ fX(x0)∆x (1 − fX(x0)∆x) + O(∆x2) (B.7)
≃ fX(x0)∆x + O(∆x2). (B.8)

We then know that a sufficient condition for X to be density
ergodic is either Cgx0

(y) −−−−→
|y|→∞

0 or Cgx0
(y) is integrable.

To find out how rapidly Cgx0
(y) decays to zero we note that

Cgx0
(y) ≃

 ∂2F(2)
X

∂x1∂x2
(x0, x0, y) − fX(x0)2

∆x2 + O(∆x3) (B.9)

=
(

f (2)
X (x0, x0, y) − fX(x0)2

)
∆x2 + O(∆x3), (B.10)

where f (2)
X is the second-order density function. Eqs. B.9 and

B.10 are only valid for y , 0 because f (2)
X is degenerate for

y = 0 as F(2)
X (x1, x2, 0) = FX(min(x1, x2)), where min(x1, x2) is
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not differentiable. The variance of the ergodic estimator f̂L,x0 is,
then,

Var
(

f̂L,x0

)
= ( fX(x0)∆x)

(
lc(gx0 )

R

)D

, (B.11)

where lc(gx0 )D ∝ ∆x (see Eq. (B.10)).

Appendix B.3: Gaussian process

If the field X(y) is Gaussian we have

f (2)
X,G(x1, x2, y) =

1

2π
∣∣∣Σ(y)

∣∣∣1/2 exp
(
−

1
2

(xµ)TΣ(y)−1(xµ)
)

(B.12)

where xµ = (x1 − µ, x2 − µ), with µ = E (X),
∣∣∣Σ(y)

∣∣∣ is the
determinant of the matrix Σ(y) and

Σ(y) =
(
σ(X)2 CX(y)
CX(y) σ(X)2

)
, (B.13)

We see that, as
∣∣∣Σ(y)

∣∣∣ = σ(X)4 − CX(y)2 =(
σ(X)2 −CX(y)

) (
σ(X)2 +CX(y)

)
, f (2) is degenerate for

y = 0. However, for y , 0, we have

f (2)
X,G(x0, x0, y) =

1

2π
∣∣∣Σ(y)

∣∣∣1/2 exp
(
−x2

0,µ
σ(X)2 −CX(y)
σ(X)4 −CX(y)2

)

=
1

2π
∣∣∣Σ(y)

∣∣∣1/2 exp
(
−

(x0 − µ)2

σ(X)2 +CX(y)

)
(B.14)

Hence

Cgx0
(y) ≃

 1((
1 + CX (y)

σ(X)2

) (
1 − CX (y)

σ(X)2

))1/2 exp

 CX(y)(x0 − µ)2

σ(X)4
(
1 + CX (y)

σ(X)2

)  − 1


×
∆x2

2πσ(X)2 exp
(
−

(x0 − µ)2

σ(X)2

)
+ O(∆x3). (B.15)

Noting the normalized ACF C̃X = CX/CX(0) = CX/σ(X)2 and
the reduced variable xr

0 = (x0 − µ)/σ(X) we have

Cgx0
(y) ≃

 1(
1 − C̃X(y)2

)1/2 exp
C̃X(y)(xr

0)2

1 + C̃X(y)

 − 1


×
∆x2

2πσ(X)2 exp
(
−(xr

0)2
)
+ O(∆x3) (B.16)

≃

 1(
1 − C̃X(y)2

)1/2 exp
C̃X(y)(xr

0)2

1 + C̃X(y)

 − 1


× fX(x0)2 (∆x)2 + O(∆x3). (B.17)

Appendix B.3.1: Integrability of the ACF and short scale
analysis

If CX decays to zero (as assumed) then for |y| → ∞, we have
Cgx0(y) ∼ C̃X(y) (xr

0)2 fX(x0)2 (∆x)2. Thus, if CX is integrable,
then so is Cgx0 at |y| → ∞.

As mentioned above, Eq. (B.17) is only valid for |y| > 0,
so the divergence at y = 0 is artificial as Cgx0

(0) = fX(x0)∆x

is finite. However, if Eq. (B.17) is integrable at y = 0, this ensures
that the errors of approximation of Cgx0

near y = 0 have a small
effect on the estimation of lc(gx0 ) (which is an integral). The
divergence of Eq. (B.17) at y = 0 is given by

1(
1 − C̃X(y)2

)1/2 exp
(
−

1
2

(xr
0)2

)
× fX(x0)2 (∆x)2. (B.18)

For an exponential isotropic ACF this yields a divergence ∝
r−1/2, while for a differentiable field X with an ACF being
isotropic at short scales this yields a divergence ∝ r−1. Thus, in
most cases for D ≥ 2 Eq. (B.17) is integrable at |y| → 0.

Computing the integral of Cgx0
(y) is not straightforward

for any decaying and integrable ACF CX(y). Expanding the
exponential in Eq. (B.17), we have

exp
C̃X(y)(xr

0)2

1 + C̃X(y)

 = 1 +
∑
n≥1

(xr
0)2n

n!

(
C̃X(y)

1 + C̃X(y)

)n

. (B.19)

We then have to specify or bound the integrals

1
2D

∫
RD

(
C̃X(y)

1 + C̃X(y)

)n dy(
1 − C̃X(y)2

)1/2 = lc(X)D cn, (B.20)

1
2D

∫
RD

 1(
1 − C̃X(y)2

)1/2 − 1

 dy = lc(X)D c0, (B.21)

to obtain

1
2D

∫
RD

Cgx0
(y) dy = lc(X)Dφ(xr

0) × fX(x0)2 (∆x)2 + O(∆x3),

(B.22)

where φ(xr
0) is a function of x0 which we need to bound to obtain

a confidence interval. A lower bound of φ(xr
0) can be obtained

due to the convexity of the exponential:

φ(xr
0) ≥ c0 + c1(xr

0)2 (B.23)

For general monotonic decreasing (hence positive) ACFs, the
study of the functions x

1+x
1

(1−x2)1/2 and 1
(1−x2)1/2 − 1 shows that

c0 ≳ 0.1 and c1 ≥ 0.77.

Appendix B.3.2: Exponential ACF

To go a little further and obtain a formula that will help to grasp
some expected features of the ergodic estimate of gx0 we study
the special case of an exponential ACF. For the present study we
limit ourselves to the case D ≤ 2. Then if C̃X is an (isotropic)
exponential, C̃X(y) = exp(−|y|/λ), we can bound the integral of
Eq. (B.17). Indeed, for n ≥ 1,

lc(X)D

2n−1 ≥
1

2D

∫
RD

(
C̃X(y)

1 + C̃X(y)

)n

×
dy(

1 − C̃X(y)2
)1/2 . (B.24)

We then have

1
2D

∫
RD

Cgx0
(y) dy ≤ lc(X)D

2 exp
 (xr

0)2

2

 + c̃D
0 − 2


× ( fX(x0)∆x)2 + O(∆x3) (B.25)

where c̃D
0 = ln(2) and 0.17 for D = 1 and D = 2, respectively.

This gives an upper bound to the correlation length of gx0 but
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overestimates its value for |xr
0| ≫ 1. However, near the average

(|xr
0| ≪ 1) we can approximate

1
2D

∫
RD

Cgx0
(y) dy ≃ lc(X)D

(
c̃D

1 (xr
0)2 + c̃D

0

)
× ( fX(x0)∆x)2 + O(∆x3), (B.26)

where c̃D
1 = 1 and 0.88 for D = 1 and D = 2, respectively. We

note that, due to the convexity of the exponential, the right hand
side of Eq. (B.26) is actually a lower bound of the integral ∀x0.

We can then construct a confidence interval with more than
1 − 1/m2 of confidence such that the true fX(x0) lies in

fX(x0) = f̂L(x0)

1 ± m
(
φ(xr

0)
)1/2

(
lc(X)

R

)D/2 ,
where

c̃D
1 (xr

0)2 + c̃D
0 ≤ φ(xr

0) ≤ 2 exp
 (xr

0)2

2

 + c̃D
0 − 2. (B.27)

Using the lower bound to approximate φ(xr
0), φ(xr

0) ≃ c̃D
1 (xr

0)2 +

c̃D
0 , while accurate for |xr

0| ≪ 1, is most probably an underestima-
tion for |xr

0| ≫ 1. However, it allows to show that the statistics of
events that deviate largely from the mean needs an increasingly
large sample size to have a high degree of confidence.

Appendix B.4: Deterministic function of a Gaussian field.

The results derived in Sec. (B.3) can be extended to the case
where X(y) = ψ(S (y)) with ψ a diffeomorphism and S a Gaus-
sian field. A particular example is that of a lognormal field
where ψ = exp. We call this function ψ a deterministic function
because statistical properties of the field X can be obtained from
those of S . Indeed, for such a field X, the first and second order
distribution functions read

fX(x0) =
fS (s0)

|(ψ−1)′(x0)|
(B.28)

f (2)
X (x1, x2; y) =

f (2)
S (s1, s2; y)

|(ψ−1)′(x1)||(ψ−1)′(x2)|
, (B.29)

where s j = ψ−1(x j) (Papoulis & Pillai 1965). Without loss of
generality we can further assume that the field S is centered with
variance unity. We note that the function ψ can be obtained by
inverting Eq. (B.28). Indeed, if only fX and fS are known we can
obtain ψ by realizing that ψ−1 verifies the differential equation:

|(ψ−1)′(x0)| =
fS ((ψ−1)(x0))

fX(x0)
. (B.30)

If one further assumes that ψ is an increasing diffeomorphism
(ψ−1)′ ≥ 0, one obtains

s0 = ψ
−1(x0) =

√
2 erf−1

(
−1 + 2

∫ x0

xmin

fX(x) dx
)
, (B.31)

where xmin is the minimum value that can be taken by the field
X and erf−1 is the inverse of the error function. The use of this
equation requires a high precision on fX due to the large variation
of erf−1, which is complicated in general.

Then the ACF of X can be obtained by performing the
integral:

CX(y) =
∫

ψ(s1)ψ(s2)
(

f (2)
S (s1, s2; y) − fS (s1) fS (s2)

)
ds1 ds2.

Then Eq. (B.17) becomes

Cgx0
(y) ≃

 1(
1 − C̃S (y)2

)1/2 exp
(
C̃S (y)(s0)2

1 + C̃S (y)

)
− 1


× fX(x0)2 (∆x)2 + O(∆x3). (B.32)

Appendix B.4.1: Log-normal fields

For a log-normal field ρ = exp(s), ψ = exp, ψ−1 = ln and s is not
centered (E (s) , 0) and does not have a variance unity (σ(s) ,
1), in general. Then the calculation of the ACF yields:

Cρ(y) = E (ρ)2
(
eCs(y) − 1

)
. (B.33)

As a consequence, because eax − 1 ≤ x(ea − 1) for 0 ≤ x ≤ 1
and ax ≤ eax − 1 ∀x, if Cρ (or Cs) is monotonically decaying to
0 then(
σ(s)2

eσ(s)2
− 1

)1/3

lc(s) ≤ lc(ρ) ≤ lc(s). (B.34)

In typical star forming conditions σ(s)2 ≲ 4, giving

0.4 lc(s) ≲ lc(ρ) ≤ lc(s), (B.35)

or

lc(s) ∼ lc(ρ). (B.36)

This suggests that as long as Var (X) = Var (ψ(S )) is not too big,
one can expect to have lc(X) ∼ lc(S ).

Appendix C: Orion B cloud
Appendix C.1: ACF of the square and filament region

We computed the ACF of the unfiltered and low pass filtered
square region (up to scale L/2, see §6), as well as the (unfil-
tered) “filament" region. The results are presented in Figs. (C.1)
and (C.2). Filtering large-scale gradients reduces again the
anisotropy at short scales and reduces the estimated correlation
length.

To have a closer look at the behavior of the ACF of Orion B,
we display in Fig. (C.3) the reduced ACF of the low pass filtered
map in 3 different directions, x (θ = 0), x = y (θ = π/4) and y
(θ = π/2). As seen from the heat maps but also from fig. (C.3), a
strong anisotropy is present and located in the y direction at large
scales (y/L ≥ 10−1). The resulting estimated correlation length
l̂c(η) is of the order lc(η)/Lx ≃ 10−1.

Appendix C.2: Correlation length from the variance of the
column densities.

As seen from Sec. (5.2) and Eq. (63), one can also give an
estimate of the ratio lc(ρ)/R by (1) computing the variance
Var (Σ/E (Σ)), (2) giving an estimate of Var (ρ/E (ρ)) and (3) giv-
ing an estimate of the average thickness of the cloud (along the
line of sight) Lz. Here Orion B appears as a very elongated struc-
ture, and we will therefore only assume that Ly ≥ Lz ≳ Lx (with
Ly ≃ 3 − 4 Lx).

From observations of column densities we obtain
Var (Σ/ ⟨Σ⟩) ≃ 1.1 while the PDF of column densities,
exhibiting a power-law tail of exponent αη = −2 (Schneider
et al. 2013; Jaupart & Chabrier 2020), indicates an underlying
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Fig. C.1. ACF of the “square region". Left panel: unfiltered. Right panel: low pass filtered up to scale L/2. Again, filtering large-scale gradients
reduces the anisotropy at short scales and reduces the estimated correlation length.
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Fig. C.2. ACF of the unfiltered “filament region". A strong anisotropy
is present in the y-direction.
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Fig. C.3. Reduced ACF of the low pass filtered map in three different
directions. Red line: x-direction (y = 0). Blue line: y-direction (x = 0).
Green line: π/4 or x = y-direction. Dash dotted lines represent the val-
ues of the ACF when it is negative. A strong anisotropy is present in the
y direction at large scales (y/L ≥ 10−1).

density PDF with a power-law tail of exponent −3/2 implying
a large variance. As For Polaris, running the power-law tail
from s = 8 to s = sad ≃ 16 yields a variance Var (ρ/E (ρ)) = 40
and Var (ρ/E (ρ)) ≃ 2300 respectively (see Jaupart & Chabrier
2020). This yields a ratio lc(ρ)/Lz ≲ 10−2.
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