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1.  Introduction
Seamless climate information for the near-term future (up to ∼40 years) is crucial for the development of mitiga-
tion and adaptation strategies (Hewitt & Lowe, 2018; Jones & Mearns, 2005; Nissan et al., 2019). Historically, 
scientific products providing weather and climate information have been designed for specific time scales, for 
example, daily weather forecasts, seasonal or decadal climate predictions (from hereon called decadal predic-
tions), or long-term climate projections. This is motivated by the fact that short-term predictions (up to  ∼5 years) 
require accurate assimilation of the observed state at the start of the model integration, whereas for predictions/
projections beyond 5–10 years the correct representation of external forcings is thought to be more important 
(Branstator & Teng, 2010). As initialized decadal predictions are only providing data for the following 10 years 
after initialization, only climate projections can be used to provide seamless information beyond the 10 years 
time scale. However, as climate projections are not initialized using observations, they are likely – depend-
ing on variable and region – less skillful than initialized predictions for shorter lead times (Boer et al., 2016; 
Meehl et al., 2009, 2014). Users of climate information require the most accurate, reliable and consistent climate 

Abstract  This study presents an approach to provide seamless climate information by concatenating 
decadal climate predictions and climate projections in time. Results for near-surface air temperature over 29 
regions indicate that such an approach has potential to provide meaningful information but can also introduce 
significant inconsistencies. Inconsistencies are often most pronounced for relatively extreme quantiles of 
the CMIP6 multi-model ensemble distribution, whereas they are generally smaller and mostly insignificant 
for quantiles close to the median. The regions most affected are the North Atlantic, Greenland and Northern 
Europe. Two potential ways to reduce inconsistencies are discussed, including a simple calibration method and 
a weighting approach based on model performance. Calibration generally reduces inconsistencies but does not 
eliminate all of them. The impact of model weighting is minor, which is found to be linked to the small size of 
the decadal climate prediction ensemble, which in turn limits the applicability of that method.

Plain Language Summary  Continuous and consistent information about the evolution of climate 
in next 1–40 years is crucial for the development of mitigation and adaptation strategies. Historically, scientific 
products providing weather and climate information have been designed for specific time scales, for example, 
seasonal or decadal climate predictions (1–10 years), or long-term climate projections (1–100 + years). As 
a consequence, currently only climate projections can be used to provide continuous information beyond the 
10 years time scale. However, as climate projections are not initialized using observations, they are likely – 
depending on the variable and region – less skillful than initialized predictions for shorter lead times. In this 
study we assess if meaningful continuous climate information can be obtained by concatenating decadal climate 
predictions and climate projections in time. Results suggest that significant inconsistencies (materialized in 
jumps in the resulting time series) can be introduced by this approach, however, for some regions temporal 
concatenation might provide meaningful climate information beyond decadal time scales. Furthermore, 
potential ways to reduce inconsistencies when concatenating are discussed.
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information within and beyond the next 10 years, which demands the temporal combination of initialized predic-
tions and uninitialized projections.

The initialized products with the longest forecast range currently available are decadal prediction ensembles 
providing climate information up to 10 years into the future (Boer et al., 2016; Meehl et al., 2009, 2014). Several 
studies analyzed the skill of decadal predictions to forecast past observed variability and their added value 
over climate projections (e.g., Borchert, Koul, et al., 2021; Boer et al., 2016; Doblas-Reyes et al., 2013; Meehl 
et al., 2014; Smith et al., 2019; Yeager & Robson, 2017). One approach to make use of the added value of initial-
ization carried by decadal predictions at interannual lead times, and to provide seamless climate information 
beyond decadal time scale, has been recently developed by Befort et al. (2020). In this framework, uninitialized 
climate projections are constrained using decadal predictions by selecting only those projections that are closest 
to the decadal prediction ensemble mean. Befort et al.  (2020) show that the constrained projection ensemble 
is significantly more skillful at predicting near-surface air temperatures over the North Atlantic (NAT) Gyre 
region compared to the unconstrained climate projection ensemble, even beyond decadal time scales when no 
information from decadal prediction is available anymore. A similar approach based on the idea of sub-sampling 
climate projections was applied to a large single model ensemble (Mahmood et al., 2021). The advantage of 
using sub-sampling approaches is that the resulting constrained ensembles are physically consistent as they are 
based solely on climate projections which are available for the entire period from the present up to the end of the 
century.

In this study we examine a new approach to provide seamless climate information beyond decadal time scales for 
near-surface air temperatures, based on the temporal concatenation of decadal predictions with climate projec-
tions. A particular focus is assessing to what extent temporal concatenation of prediction and projection time 
series introduces significant inconsistencies, for example, jumps. We also discuss ways to reduce potential incon-
sistencies by applying a calibration as well as a model weighting method.

2.  Datasets
Near-surface air temperature (SAT) data are used from eight decadal ensemble prediction systems from the 
CMIP6 archive (Boer et al., 2016) and their corresponding uninitialized historical simulations (Eyring et al., 2016) 
(see Table S1 in Supporting Information S1). Each decadal prediction system consists of 10 members except 
CanESM5, which has 20 members. For NorCPM1, data for two different initialization techniques (i1 and i2) 
with 10 ensemble members each are available, which are treated as two different ensembles. To make prediction 
and projection ensembles comparable, the same number of ensemble members for each model is used, except for 
HadGEM3-GC31-MM as only four projection ensemble members are available but still 10 prediction members 
are used. Decadal prediction systems are corrected for lead-time dependent biases following Boer et al. (2016), 
using the years 1970–2014. For each historical climate projection ensemble, anomalies are calculated with 
respect to the single model ensemble average from 1970 until 2014.

All analyses are carried out for annual mean SAT (January to December averages) over 29 geographic regions: 
the 26 Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change 
Adaptation (SREX) regions (Field et al., 2012), the tropical central Pacific (NINO3.4) region, the NAT Ocean 
basin (identical to the N. Atlantic-Ocean region in Iturbide et al., 2020), and the global average (see Figure 3a for 
region boundaries). Note that no land-sea masking has been applied for any of the 29 regions.

3.  Methodology
3.1.  Framework for Temporal Concatenation

The main objective is to assess whether the temporal concatenation of decadal predictions and climate projections 
is sensible and to what extent it introduces inconsistencies, such as unrealistic year-to-year variations at the time 
of the concatenation (the precise definition is presented below). Figure 1 shows an example for the simple concat-
enation of predictions and projections after forecast year 10 for Northern Europe (NEU) annual mean SAT using 
the prediction initialized in 1975. Figure 1a presents time series of the climate projection multi-model ensemble 
(MME) from 1976 until 2001, whereas Figure 1b shows the decadal prediction MME from 1976 until 1985 and 
the concatenated projections thereafter. For this example, the decadal prediction MME is largely different to the 



Geophysical Research Letters

BEFORT ET AL.

10.1029/2022GL098568

3 of 11

climate projection MME, which leads to inconsistencies (materialized in jumps in the time series) for different 
quantiles of the ensemble distributions around the year 1986 when both datasets are concatenated in time. These 
discontinuities in the time series appear to be larger than those present in the climate projection MME between 
1985 and 1986 (Figure 1a). However, the climate projection MME itself also exhibits some degree of interannual 
variability, which raises the question of how to objectively quantify significant inconsistencies introduced by the 
temporal concatenation of these different datasets.

3.2.  Metrics to Assess Inconsistencies

The approach used here is based on the SAT interannual increments between 1970 and 2014, which are calculated 
as the difference in SAT between year n and year n + 1 (1970 ≤ n ≤ 2013). First the interannual increments are 
calculated for climate projection data only (an example is shown in Figures 2a and 2b). The resulting increment 
distribution consists of 44 values and is from now on referred to as baseline (Figure 2c). Second, increments 
between year n of the decadal predictions and year n + 1 from the projection (pairs of predictions and projections) 
as they would occur when concatenated are calculated (see Figures 2d and 2e for an example). The resulting 
distribution (of 44 values) is from now on called merged (Figure 2f). To investigate inconsistencies for different 
lead times, the merged increment distributions are calculated for different forecast years (ranging from 1 to 10). 
The baseline and merged increment distributions are further calculated for different quantiles of the prediction 
and projection MMEs (see Figure 1 for examples for different quantiles in the case of NEU). In this study 11 
different quantiles ranging from 0 (minimum) to 1 (maximum) in 0.1 steps are analyzed, which are calculated 
by ranking the different realizations of the ensemble. From here on we define quantiles between 0.4 and 0.6 as 
central quantiles, 0.2–0.3, 0.7–0.8 as moderate quantiles, and 0.0–0.1, 0.9–1.0 as extreme quantiles.

To quantify whether concatenating produces larger interannual increments than the baseline values, four different 
metrics are defined and calculated for each quantile separately (Figure 2).

Metric 1 (M1) aims to quantify the difference between the merged and baseline increment means. M1 is calcu-
lated using the absolute differences of the mean values of merged and baseline divided by the standard deviation 
of the baseline distribution (this is the interannual standard deviation of the increment time series). The value 
of M1 is also known as the standard score (z-score). In the example of Figure 2g, the absolute z-score is 0.8, 
meaning that the differences in the means of merged and baseline distributions equals 0.8 times the interannual 
standard deviation of the baseline distribution. A small z-score close to 0 indicates that merged and baseline 
distributions are consistent with each other whereas larger z-scores hint toward inconsistencies.

Metric M2 aims to assess differences of the whole merged and baseline distributions. This is done by calculat-
ing the overlap between merged and baseline increment distributions after estimating their probability density 
functions. Here, a value of one indicates a complete overlap (perfect consistency between merged and baseline 

Figure 1.  Example of inconsistencies introduced by concatenation of decadal predictions and climate projections. Time series of near-surface air temperatures over 
Northern Europe region (NEU) for (a) uninitialized climate projections from 1976 to 2001 (b) decadal predictions from 1976 to 1985 (initialized in 1975) and climate 
projections from 1986 to 2001 and (c) same as (b) but for calibrated decadal prediction and calibrated climate projection, using the variance inflation method. Solid 
lines in figures show 10th/90th percentile and median for the respective ensemble. Shading illustrates 10th/90th percentiles as well as tercile and quartile boundaries. 
Percentiles are calculated by ranking the different realizations of the ensemble.
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distributions) whereas a value of 0 indicates no overlap. To assess statistical significance, we calculated the over-
lap between the baseline distribution and 1,000 samples of the distribution generated by randomly sampling 44 
values (as there are 44 increments) from the baseline distribution with replacement. For the example in Figure 2h, 
the overlap is about 0.67, which is smaller than the 10th percentile of the 1,000 randomly bootstrapped samples.

Metric 3 (M3) is based on the p-values of a t-test to estimate the significance of the mean difference between the 
merged and baseline distributions. Here we test the difference distribution (baseline–merged) against an expected 
value of 0. For the example of the 80th percentile of NEU averaged SAT (Figure 2i), M3 is below 0.01 indicating 
that the mean of the difference distribution is significantly different from 0.

Metric 4 (M4) is based on the p-value of the Kolmogorov-Smirnov test statistics comparing baseline and merged 
increment cumulative distributions (Figure 2j). Similarly to M3, a small p-value indicates significant differences 
between the two increment distributions.

Note that the bias-correction applied to projections and predictions directly leads to small (close to 0) differences 
between the mean increment for the MME median for the merged and baseline distributions. In other words 
metrics M1 and M3 for the median (quantile: 0.5) will likely indicate non-significant differences between merged 
and baseline distributions. This is not necessarily the case for M2 & M4, which compare the full distributions.

4.  Results
4.1.  Examining the Temporal Concatenation of Predictions and Projections

Results of the metrics M1 & M2 when concatenating decadal predictions after forecast year 10 with climate 
projections are shown in Figure 3b. These suggest there are relatively small inconsistencies for central quantiles 
(0.4–0.6) of the MME for almost all regions. For M1 this is to a large extent related to the bias-correction applied 
to predictions and projections (see Section 3). However, the high M2 values indicate that the whole increment 
distributions are also in agreement with each other. The only exceptions are NAT, NEU and Greenland (CGI) 

Figure 2.  Approach used to assess inconsistencies when concatenating decadal predictions and climate projections illustrated using data for the 80th percentile of 
Northern Europe surface air temperature. (a) climate projection timeseries. (b) interannual increments of the projection timeseries. The dark red bar indicates the 
increment shown as concatenating example in (a). (c) resulting baseline increment distribution (red curve shows Gaussian fit). (d) example for concatenating decadal 
prediction data from 1976 to 1985 and climate projections afterwards. (e) interannual increments when concatenating prediction using forecast year 10 and projections 
for all years (1970–2014). The dark blue bar indicates the increment shown as concatenating example in (d) and (f) resulting merged increment distribution. Overview 
of metrics: (g) M1: baseline and merged increment distributions (Gaussian fits are plotted for visualization). Location of the respective means is shown as dashed lines, 
whereas the dotted line illustrates the standard deviation of the baseline increment distribution and the difference between the distribution means (Δmean) respectively. 
The value of M1 (absolute z-score) is given on top. (h) M2: Probability density functions (pdf) for baseline and merged distributions as well as their overlap (gray 
shading). The value of M2 is displayed on top (i) M3: Distribution of the difference between baseline and merged increment timeseries (b and e). The p-value is derived 
from the one-sided t-test. (j) M4: Cumulative distributions for baseline and merged and the associated Kolmogorov-Smirnov test p-value. Note that panels (g) and (h) 
represent the same distributions using a parametric (g) and non-parametric (h) approach to estimate the pdfs.
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Figure 3.  (a) Map illustrating significant inconsistencies for the 29 regions used in this study. Each region is represented by a “dartboard”-plot, with the rings 
representing results for different quantiles. The inner ring represents central quantiles (0.4–0.6), the middle ring represents moderate quantiles (0.2–0.3, 0.7–0.8) 
and the outer ring represents the extreme quantiles (0–0.1, 0.9–1). The color in the ring indicates the level of inconsistencies introduced when concatenating decadal 
predictions and climate projections after forecast year 10. Here, the color indicates the average M1 metric value over the respective quantiles. (b) Results for metrics 
M1when concatenating decadal predictions after forecast year 10 and climate projections. Regions are shown on the x-axis, while the y-axis displays the quantiles that 
are examined. (c) same as (b) but for metric M2. The circles in M2 indicate those values which are significantly different to the 10th percentile of randomly sampled 
baseline distribution overlaps (see method section).
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regions, for which the overlap of the baseline and merged distributions is significantly smaller for several central 
quantiles than what is expected from sampling the sensitivity of the underlying baseline distribution. This result 
for central quantiles is generally supported by M3 and M4 (Figure S1 in Supporting Information S1), which also 
indicate no significant inconsistencies with the exception of the NAT, NEU and CGI regions for M3.

For moderate and extreme quantiles (0–0.3 & 0.7–1.0) larger inconsistencies are indicated by M1 for some 
regions. These include CGI, NEU, NAT and globally averaged SAT (GLOB). This is supported by M2, which 
also indicates significant differences between the full distributions for these regions. Additionally, significant 
differences for M2 are also found for example, the Mediterranean (MED), Western Asia (WAS) and Tibet (TIB) 
regions. For other regions M2 also indicates significant differences for some quantiles, however, the relatively 
small sample size of only 44 increment values needs to be taken into account, which might affect the robustness of 
statistical tests as well as the estimation of the probability density functions. Thus, we put focus on those regions 
for which several different metrics suggest the appearance of significant inconsistencies as we regard the trust-
worthiness of these results as increased. Results for M3 and M4 are in line with those from M1 and M2 (Figure 
S1 in Supporting Information S1), significant inconsistencies found for CGI, NEU, NAT, GLOB in both metrics 
whereas inconsistencies are found for several moderate and extreme quantiles for MED, WAS, TIB for M3.

Overall, inconsistencies appear to be largely symmetric for all regions meaning they tend to be larger for extreme 
quantiles rather than for central quantiles. This potentially indicates that these are related to differences of the 
spreads of the decadal prediction and the climate projection ensembles.

Figure 3a synthesizes the main results found for concatenating SAT predictions after forecast year 10 with climate 
projections. Based on metric M1 it is found that for all regions concatenating both datasets is generally unprob-
lematic for central quantiles of the MME, which is partly related to the bias correction performed. Furthermore, 
inconsistencies for moderate and extreme quantiles are small for most of the American continent, eastern Asia 
and Australia. Elsewhere, inconsistencies tend to be larger for these quantiles, being most pronounced for CGI, 
NAT, NEU, and GLOB.

In principle, the climate projection ensemble could be concatenated to each forecast year from 1 to 10 from the 
predictions. The effect using shorter lead times is shown in Figure S2 of Supporting Information S1. As expected, 
inconsistencies for all quantiles tend to decrease with longer lead times. For example, over the Amazon and 
South East Asia regions inconsistencies are largest when using forecast years 1 to about 3, whereas for forecast 
years 4–10 metric M1 indicates similarly low levels of inconsistencies in the increment distribution means. For 
NEU and GLOB, inconsistencies decrease with lead time as well, but they are still apparent at forecast year 10 
in line with the previous results. Results for all regions for forecast year 2 and 7 are shown in Figure S3/S4 of 
Supporting Information S1. When concatenating after forecast year 2, inconsistencies are more pronounced over 
the tropics compared to the extratropics (with the exception of CGI, NAT, NEU). This might be partly related to 
the fact that the tropical regions are linked to sea surface temperatures (SSTs) over the tropical Pacific Ocean, 
which are to some extent predictable beyond annual time scales by current decadal prediction systems (e.g., 
Befort et al., 2021). Inconsistencies introduced when concatenating after forecast year 7 are similar to those when 
using forecast year 10. Figure S5 in Supporting Information S1 illustrates for each region the first forecast year 
at which predictions and projections can be concatenated without introducing significant inconsistencies based 
on metric M4.

4.2.  Testing the Effect of Calibration & Model Weighting on the Concatenation of Predictions and 
Projections

Our results suggest that the concatenation inconsistencies are primarily due to large differences in the predictions 
and projections ensemble spreads. To examine this further, we calibrated the MMEs using the variance infla-
tion (VINF) method which scales the ensemble spread and signal using observed variability (see Doblas-Reyes 
et al., 2005; O’Reilly et al., 2020, and Supporting Information S1 for further information). VINF is applied to the 
climate projection MME from 1970 to 2014 and separately for each forecast year to the decadal prediction MME 
(using leave-one-out cross-validation, Doblas-Reyes et  al.  (2005); Gangstø et  al.  (2013)). An example of the 
VINF calibration is shown in Figure 1c. Compared to the uncalibrated time series, the calibrated time series have 
a smaller ensemble spread, most notably for the projections. The inconsistencies between the prediction in 1985 
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(forecast year 10) and the climate projection in 1986 are smaller than the concatenated uncalibrated data sets (i.e., 
Figure 1b) and this seems particularly pronounced for more extreme quantiles of the distribution.

Results from the concatenation of calibrated decadal predictions and calibrated climate projections for all regions 
are shown in Figure 4b. Compared to uncalibrated data (i.e., Figure 3b) the magnitude of inconsistencies in M1 

Figure 4.  As Figure 3 but for calibrated decadal predictions and calibrated climate projections.
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and M2 are reduced, especially for GLOB, WAS and TIB. Smaller inconsistencies are also found for both metrics 
for NAT, CGI and NEU. However, even though M2 indicates that the overlap is large for most regions/quantiles 
(and increased compared to uncalibrated data), significant inconsistencies are still present, especially for NAT, 
CGI and NEU. The inability of the VINF method to entirely eliminate inconsistencies could be linked to increased 
predictability from initialization but might also be related to non-stationary prediction and projection ensemble 
spreads. In line with results for M1/M2, M3 and M4 indicate fewer significant inconsistencies between both 
increment distributions, particularly for moderate and extreme quantiles (See Figure S6 in Supporting Informa-
tion S1). Overall, the positive effect of calibration on the consistency of temporal concatenation for most regions 
indicates that most of the inconsistencies encountered when concatenating predictions and projections arise from 
differences in the MME spreads. However, the application of the VINF method is not a panacea, as significant 
inconsistencies remain for some regions and quantiles, especially for CGI, NAT, NEU and MED (Figure 4a).

In addition to the VINF method we also test the potential of a weighting approach that assigns weights to each 
model based on its ability to capture past observed variability (e.g., Knutti et al., 2017). This model-weighting 
approach has been shown to better quantify and ultimately reduce model uncertainty in projections of mid-to 
end-of-century future changes on regional and global scales (Brunner et al., 2019, 2020; Lorenz et al., 2018). 
Here, we apply this model weighting scheme, for the first time, to initialized decadal predictions. Due to the 
small number of models available the method can not be applied with the typically used model-as-truth test 
which requires at least several tens of models (see Supporting Information S1 for further information). This test, 
in the standard approach, regulates the strength of the weighting (Brunner et al., 2020). Here, we use a simplified 
version of the weighting method that just calculates the weights as the normalized inverse distance of the models 
to the observations (see Supporting Information S1 for more details on the calculation of the distances).

For decadal predictions the weights are generally higher for shorter lead-times as can be expected due to the 
information from the initialization (see Figure S7 in Supporting Information S1 for a distribution of weights 
for GLOB). Considerable differences in the weights between forecast years 8–10 and the projections for several 
models are found, also indicating potential problems for concatenating. Results for average SAT over all regions 
when concatenating weighted predictions and weighted projections are shown in Figure S8 of Supporting Infor-
mation  S1. These results suggest that the weighting has only minor influence on inconsistencies introduced 
compared to using bias-corrected data only (Figures 3b & S1 in Supporting Information S1). This limited effect 
of the weighting is most probably related to the small number of models, which all receive relatively similar 
weights.

5.  Summary & Discussion
In this study we have assessed the possibility to provide meaningful seamless climate information beyond decadal 
time scales by concatenating (bias-corrected) initialized decadal predictions and uninitialized climate projections 
from CMIP6. To analyze to what extent this simple concatenation introduces significant inconsistencies, the 
decadal predictions are concatenated to the climate projection in the following year, for all years between 1970 
and 2013. This is done for near-surface air temperatures over the 26 SREX regions, in addition to the NAT, the 
NINO3.4 region and globally averaged, as well as for 11 different quantiles (ranging from 0 to 1 in 0.1 steps) in 
order to evaluate the full distribution. Four different metrics designed to assess the level of inconsistencies intro-
duced when concatenating predictions and projections are used.

For the bias-corrected decadal prediction and climate projection MMEs it is found that for most regions the 
simple concatenation after forecast year 10 is not problematic for central quantiles close to the MME median, 
which is to a large extent attributed to the bias correction applied. However, significant inconsistencies are found 
for moderate and extreme quantiles and over some regions, most prominently over the NAT, CGI and NEU. This 
suggests that the simple bias correction commonly applied to predictions and projections does not entirely elim-
inate inconsistencies between prediction at forecast year 10 and projections for subsequent years, implying that 
merging information from both types of experiments is not trivial.

Results for most regions suggest that inconsistencies are caused by differences in the prediction and projection 
ensemble spreads. This motivated the application of the variance-inflation (VINF) calibration technique to both 
systems as this technique scales the signal and ensemble spread to obtain a reliable (calibrated) ensemble. Over-
all, the application of the VINF method mostly reduces inconsistencies, especially for moderate and extreme 
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quantiles, compared to using bias-corrected data only. The fact the there are fewer inconsistencies when concat-
enating the calibrated prediction and projection MMEs indicates similar levels of skill of prediction in forecast 
year 10 and projections as the ensemble spread of the calibrated ensemble is determined by the correlation 
between ensemble mean and observations (see Supporting Information S1). However, the VINF method alone 
is not sufficient to eliminate all significant inconsistencies, for example, over CGI, NAT and NEU. Thus, while 
results based on the VINF method confirm that differences in spread drive some of the inconsistencies, other 
factors, for example, differences in skill or non-stationary ensemble spreads might also contribute to inconsist-
encies. Further research on how to apply calibration methods to facilitate temporal concatenation of predictions 
and projections is necessary.

The impact of a second approach, using a weighting method based on model performance, on inconsistencies 
when concatenating predictions and projections has been tested. It is found that results for weighted predictions 
and projections are very similar to those for the equally weighted MMEs. The main reason for this is the small 
number of models that provide both decadal predictions and projections which meant that the weighting method 
could not be applied in an optimal setup. Further research is necessary to investigate how to potentially over-
come this issue to make this weighting approach applicable to prediction ensembles consisting of few individual 
models.

Inconsistencies are most pronounced over the NAT, CGI, NEU and globally averaged (GLOB). Over the NAT 
region (as well as neighboring regions: CGI and NEU as no land-sea masking has been applied), might be 
partly linked to erroneous SST hindcasts over parts of this region due to initialization as found for CanESM5 
(Sospedra-Alfonso et  al.,  2021). Initialization shock and model drift might also be a reason for differences 
between decadal predictions and climate projections as found for EC-Earth (Bilbao et al., 2021). Another expla-
nation for the inconsistencies after forecast year 10 could be differences in skill between decadal predictions and 
climate projections. Based on CMIP5 data it has been found that decadal predictions are more skillful compared 
to climate projections in predicting SAT over the North Atlantic Subpolar Gyre region (SPG) (see Yeager & 
Robson, 2017). However, the skill difference for SAT between initialized decadal predictions and climate projec-
tions is smaller in CMIP6, mainly due to an improvement of the climate projections in predicting SPG SATs 
(Borchert, Menary, et al., 2021).

However, if inconsistencies are linked to added value from initialization, other methods, for example, constraining 
projections using decadal predictions might be more applicable (e.g., Befort et al., 2020; Mahmood et al., 2021). 
In the case that inconsistencies are linked to higher skill of climate projections over decadal predictions, neither 
simple concatenation nor constraining approaches are likely to provide robust seamless climate information 
beyond the 10 year time scale.

The explicit use of decadal prediction data for the first 10 years (and climate projections thereafter) is the main 
advantage of the proposed concatenation framework. While further work is needed to reconcile remaining incon-
sistencies for the more extreme percentiles, results indicate that the proposed approach can already be applied to 
provide seamless climate information for expected median changes for some regions. In such cases the approach 
allows a potential user to benefit from initial condition information on short time scales while also being able to 
draw on climate projection for longer time scales.

Data Availability Statement
In this study, CMIP6 dcppA-hindcast as well as historical climate projection data is used from the following 
models: CanESM5 (Sospedra-Alfonso et  al.,  2021), EC-Earth3 (Bilbao et  al.,  2021; Haarsma et  al.,  2020), 
IPSL-CM6A-LR (Boucher et al., 2020), MIROC6 (Kataoka et al., 2020; Tatebe et al., 2019), HadGEM3-GC31-MM 
(Andrews et al., 2020; Williams et al., 2018), MPI-ESM1-2-HR (Mauritsen et al., 2019; Müller et al., 2018) 
and NorCPM1 (Bethke et  al.,  2021). All datasets can be accessed through the Earth System Grid federation 
https://esgf-node.llnl.gov/search/cmip6/.

https://esgf-node.llnl.gov/search/cmip6/
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