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Abstract. Several single-platform satellite missions have
been designed during the past decades in order to retrieve
the atmospheric concentrations of anthropogenic greenhouse
gases (GHG), initiating worldwide efforts towards better
monitoring of their sources and sinks. To set up a future
operational system for anthropogenic GHG emission mon-
itoring, both revisit frequency and spatial resolution need
to be improved. The Space Carbon Observatory (SCARBO)
project aims at significantly increasing the revisit frequency
of spaceborne GHG measurements, while reaching state-
of-the-art precision requirements, by implementing a con-
cept of small satellite constellation. It would accommodate
a miniaturised GHG sensor named NanoCarb coupled with
an aerosol instrument, the multi-angle polarimeter SPEXone.
More specifically, the NanoCarb sensor is a static Fabry–
Pérot imaging interferometer with a 2.3× 2.3 km2 spatial
resolution and 200 km swath. It samples a truncated inter-
ferogram at optical path differences (OPDs) optimally sen-
sitive to all the geophysical parameters necessary to re-
trieve column-averaged dry-air mole fractions of CO2 and
CH4 (hereafter XCO2 and XCH4 ). In this work, we present
the Level 2 performance assessment of the concept pro-
posed in the SCARBO project. We perform inverse radia-
tive transfer to retrieve XCO2 and XCH4 directly from syn-
thetic NanoCarb truncated interferograms and provide their

systematic and random errors, column vertical sensitivities,
and degrees of freedom as a function of five scattering-error-
critical atmospheric and observational parameters. We show
that NanoCarb XCO2 and XCH4 systematic retrieval errors
can be greatly reduced with SPEXone posterior outputs used
as improved prior aerosol constraints. For two-thirds of the
soundings, located at the centre of the 200 km NanoCarb
swath, XCO2 and XCH4 random errors span 0.5–1 ppm and
4–6 ppb, respectively, compliant with their respective 1 ppm
and 6 ppb precision objectives. Finally, these Level 2 perfor-
mance results are parameterised as a function of the explored
scattering-error-critical atmospheric and observational pa-
rameters in order to time-efficiently compute extensive L2
error maps for future CO2 and CH4 flux estimation perfor-
mance studies.

1 Introduction

The monitoring of anthropogenic greenhouse gas (GHG)
emissions is crucial to assess the progress made towards the
2015 Paris Agreement goals, and satellite remote estima-
tions of GHG atmospheric concentration can help to better
constrain anthropogenic and natural GHG emissions through
top-down atmospheric inversion studies (Ciais et al., 2010).
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As urban areas concentrate about 70 % of all fossil-fuel-
related emissions on a very small fraction of the continen-
tal surface (Duren and Miller, 2012; Liu et al., 2020), a fre-
quent monitoring of local-scale and point sources would en-
able the constraint of a large fraction of anthropogenic carbon
dioxide emissions. With near and shortwave infrared (NIR
and SWIR) measurements that are sensitive to atmospheric
layers close to the surface where emissions take place, the
spectro-imagery of CO2 performed by large-swath sensors
with small ground-size adjacent pixels (e.g. 2×2 km2) offers
an adequate spatial resolution to detect point-source emis-
sion plumes (≥ 10 Mt CO2 yr−1, e.g. Kuhlmann et al., 2019).
Anthropogenic emission rates can indeed be inferred by
different types of methods relying on CO2 plume images
and/or enhancements (Bovensmann et al., 2010; Varon et
al., 2018; Pandey et al., 2019; Cusworth et al., 2021; Nassar
et al., 2021) or usual atmospheric flux inversion approaches
(e.g. Pillai et al., 2016; Broquet et al., 2018). Coverage and
revisit frequency are also critical for an operational emission
monitoring system. For instance, considering satellites car-
rying sensors with a 250 km swath, the annual number of de-
tected CO2 plumes over Berlin ranges from 13 to 50, with a
constellation that includes from one to six satellites, respec-
tively (Kuhlmann et al., 2019). Five satellites are enough to
ensure a daily global coverage at a fixed overpass time (Ve-
lazco et al., 2011).

Currently flying NIR and SWIR satellite missions include
JAXA’s Greenhouse Gases Observing Satellites (GOSAT
and GOSAT-2), NASA’s Orbiting Carbon Observatory-2 and
3 (OCO-2 and OCO-3), the Chinese mission TanSat, and
ESA’s Sentinel 5-Precursor/TROPOMI. CO2 and/or CH4
integrated columns are retrieved from their measurements
thanks to inverse radiative transfer algorithms that determine
the state of the atmosphere that best fits the infrared measure-
ments provided by these missions. Imperfections in forward
radiative transfer and inverse modelling result in systematic
errors or increased variability of the retrieved GHG columns
with regard to reference products, such as those produced by
the ground-based Total Carbon Column Observing Network
(TCCON) (Wunch et al., 2011). In NIR and SWIR spectral
bands, taking into account scattering particles such as op-
tically thin cirrus clouds or aerosols is particularly critical
as they change the optical path of the measured radiation.
Their imperfect modelling thus results in sizeable system-
atic errors of retrieved column-averaged dry-air mole frac-
tions of CO2 (denoted XCO2 ) (e.g. Houweling et al., 2005;
Reuter et al., 2010). State-of-the-art XCO2 retrieval algo-
rithms do account for the detrimental impact of scattering
particles; however, empirical corrections of their results that
depend on aerosol parameters are still necessary (e.g. Guer-
let et al., 2013; Reuter et al., 2017; O’Dell et al., 2018; Wu
et al., 2018). The remaining (or not corrected) systematic er-
rors can then perturb GHG atmospheric flux inversions, as
shown in synthetic flux inversion studies (e.g. Chevallier et
al., 2007; Pillai et al., 2016; Broquet et al., 2018). Thus, ac-

counting for the scattering particle impact on satellite-based
GHG column retrievals remains a key challenge for the per-
formance of satellite missions.

In addition, none of these currently flying NIR and SWIR
missions have the requisite spatial coverage, spatial reso-
lution, or revisit frequency to meet the standards (global
scale, 2×2 km2 or better, better than every 4 d, respectively)
for the space component of an operational system for top-
down monitoring of anthropogenic fossil-fuel-related emis-
sions (Ciais et al., 2014; Ciais and Joint Research Centre
(European Commission), 2016). Compact GHG sensors con-
cepts are well suited to address these previous limitations:
their small sizes (and lower costs) allow to envision con-
stellation concepts that could close the coverage and revisit
gaps in the objectives of current or planned single-platform
high-end reference instruments (e.g. Strandgren et al., 2020;
Wilzewski et al., 2020). For example, the Canadian com-
pany GHGsat recently put into orbit the demonstrator for
a small satellite concept observing methane with a Fabry–
Pérot imaging spectrometer (Jervis et al., 2021). Besides spa-
tial resolution, it requires that their precisions reach an ac-
ceptable level of performance: better than 1 ppm and 10 ppb
forXCO2 andXCH4 precisions, respectively, in the case of the
upcoming high-end Copernicus CO2 Monitoring (CO2M)
mission (Meijer and Earth and Mission Science Division,
2019).

The Space Carbon Observatory (SCARBO, https://
scarbo-h2020.eu/, last access: 8 August 2022) project funded
by the European Union Horizon 2020 research and inno-
vation programme investigates the feasibility of a low-cost
GHG monitoring satellite constellation (Brooker, 2018). The
proposed concept targets natural and anthropogenic GHG
emissions and aims to address the previously described lim-
itations through various design features. First, SCARBO
satellites would carry a nadir-pointing miniaturised GHG
sensor named NanoCarb (∼ 9 kg), which is a static Fabry–
Pérot imaging spectrometer that samples truncated interfero-
grams at optical path differences (OPDs) related to the GHG
signature in NIR and SWIR spectral regions. These OPDs
are selected to be optimally sensitive to geophysical parame-
ters necessary to retrieveXCO2 andXCH4 (Ferrec et al., 2019;
Gousset et al., 2019; see Sect. 2.1). The currently considered
imager would have a ∼ 200 km swath with a 2.3× 2.3 km2

spatial resolution, enabling the detection of emission plumes
from hotspots such as megacities or point sources (e.g. >
10 Mt CO2 yr−1 power plants). Secondly, the NanoCarb sen-
sor would be coupled with an aerosol instrument, the multi-
angle polarimeter SPEXone (van Amerongen et al., 2019;
Hasekamp et al., 2019), whose measurements can help limit
the impact of scattering errors in GHG retrievals and thus
mitigate the systematic errors they can cause on XCO2 and
XCH4 (Rusli et al., 2021). Both the NanoCarb and SPEX-
one instruments could be carried on small satellite plat-
forms (< 100 kg). With the objective of reaching precisions
within 1 ppm and 6 ppb for XCO2 and XCH4 , respectively, a
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SCARBO constellation could thus be envisioned as a valu-
able companion to CO2M. Finally, with about 20 satellites, it
could provide daily revisits (and even intra-daily visits de-
pending on the regions, with cloudy overpasses included)
over megacities and emission hotspots and thus close the re-
visit gap in the current CO2M plans. More specifically, the
SCARBO project pursues two parallel objectives: (1) the de-
velopment of an airborne prototype for the NanoCarb con-
cept that can be deployed in an airborne campaign together
with the SPEX airborne instrument (Smit et al., 2019) and
(2) the performance assessment of the NanoCarb coupled to
SPEXone concept for GHG column retrieval (Level 2, here-
after L2) and GHG flux estimation (Level 4, hereafter L4).

In this work, we present the Level 2 performance assess-
ment of the concept proposed in the SCARBO project. For
a set of scattering-error-critical atmospheric and observa-
tional parameters, we perform inverse radiative transfer to
retrieve XCO2 and XCH4 directly from synthetic NanoCarb
truncated interferograms. This differs from usual concepts
that use infrared spectra as measurements: the discontinuous
and sparse sampling of NanoCarb truncated interferograms
do not allow the calculation of the spectra through Fourier
transform formalism. In this paper, we first seek to analyse
the information content of such measurements as well as
their vertical sensitivities. Following the approach outlined
in Buchwitz et al. (2013) for the preparation of CarbonSAT,
retrievedXCO2 andXCH4 systematic and random retrieval er-
rors are then analysed and parameterised as functions of the
explored atmospheric and observational parameters. We es-
pecially study the impact of improved prior knowledge of
aerosol parameters brought by SPEXone measurements on
the L2 performance of the concept. Finally, considering a
synthetic constellation of SCARBO satellites, we exemplify
how the derived L2 error parameterisations can be applied
to time-efficiently compute large XCO2 and XCH4 error maps
that can be used as inputs to L4 performance studies.

This paper is structured as follows. Section 2 describes the
NanoCarb and SPEXone instruments. Section 3 presents the
general approach and the inverse method used in this work.
Section 4 details the synthetic atmospheric setup, the se-
lected scattering-error-critical atmospheric and observational
parameters, and the two studied design scenarios: without
and with SPEXone aerosol measurements that can be used
as improved prior constraint for GHG retrievals. Section 5
details NanoCarb measurement information content and the
vertical sensitivity of the retrieved columns and describes the
two design scenario retrieval results. Section 6 presents the
L2 error parameterisation approach and illustrates how it can
be applied to yield typical error maps. Finally, Sect. 7 high-
lights the conclusions of this work.

2 Description of the SCARBO concept

2.1 NanoCarb

NanoCarb is a static Fourier transform imaging spectrometer
that samples a truncated interferogram at optical path differ-
ences that are optimally sensitive to geophysical parameters
necessary to retrieve XCO2 and XCH4 . Its optical design, the
optimised OPD selection, the measurement principles, the
expected radiometric performance and the resulting statis-
tical error on XCO2 are extensively described in Gousset et
al. (2019).

To summarise, narrow-band filters, described by their cen-
tral wavelength and full width at half maximum (FWHM),
first select the light incoming from a given field of view
(hereafter FOV) in the four spectral bands considered for
the NanoCarb instrument and detailed in Table 1. For each
spectral band, the truncated interferogram is sampled thanks
to an array of Fabry–Pérot interferometers of fixed OPDs.
They produce images of the whole FOV modulated with in-
terference rings on the camera detector. Thus, an image of
the FOV is recorded for each spectral band and for all of
their respective selected OPDs, and (conversely) a truncated
interferogram is measured at the selected OPDs for all the
ground pixels within the FOV. Figure 1 shows how spec-
tral bands, OPDs and FOV images are accommodated on
the instrument detectors: the measured intensity depends on
the observed atmospheric scene, on the spectral band and
OPD, and on the transversal θT (across-track) and longitu-
dinal θL (along-track) angles characterising a given ground
pixel within the FOV. This spectral response at pixel level
arises from the angular dependence of the Fabry–Pérot and
narrow-band filter transmissions. Figure 2 shows a synthetic
NanoCarb measurement corresponding to one of the central
pixels of the NanoCarb FOV displayed in Fig. 1. Finally, the
camera detector captures snapshots with a frequency set so
that NanoCarb records a truncated interferogram for all the
FOV ground pixels every time the FOV moves forward by
one ground pixel in the along-track direction.

This work uses the latest design of the NanoCarb concept,
based on an selection of 60 OPDs per spectral band, opti-
mised for the central part of a FOV that accommodates 170
(across-track, θT between−9.3 and 9.3◦)×102 (along-track,
θL between −5.5 and 5.5◦) ground 1.15× 1.15 km2 pixels.
This latest NanoCarb design hypothesis takes into account
entanglements between CO2, CH4, O2, H2O and aerosols
signals, with the assumption that albedo models are con-
stant over all four spectral bands. As this study is the first L2
performance assessment for the NanoCarb concept, choices
made for the state vector design (see Sect. 3.2) and simu-
lation setups (see Sect. 4.2) are consistent with those hy-
potheses. Here, we use a NanoCarb instrumental model that
implements (1) a model of the spectral transmission for a
three-cavity narrow-band filter that simulates the angular de-
pendency within the FOV and (2) an analytical approxima-
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Table 1. NanoCarb spectral band characteristics.

Band 1: Band 2: Band 3: Band 4:
O2 A-band CO2-weak CH4-band CO2-strong

Region 0.76 µm 1.6 µm 1.66 µm 2.06 µm
Measurement Surface pressure, aerosols CO2, H2O CH4 CO2, aerosols
Narrow-band filter reference wavenumber 13 093 cm−1 6213 cm−1 6078 cm−1 4840 cm−1

Narrow-band filter FWHM 35 cm−1 24 cm−1 69 cm−1 18 cm−1

Radiative transfer simulation limits 12 940–13 175 cm−1 6180–6280 cm−1 6000–6200 cm−1 4820–5010 cm−1

Figure 1. Example of a complete NanoCarb measurement. The left-hand panels show the measured intensities for the four spectral bands
(denoted BD in the figure) for all their 60 OPDs and for all FOV pixels. The right-hand panel illustrates the FOV intensity for one given
OPD. This example has been computed for a vegetation surface type, with a solar zenith angle of 25◦.

tion of the Fabry–Pérot transmission (Gousset et al., 2019).
Given a synthetic radiance spectrum, computed by a line-
by-line forward radiative transfer model, and the transversal
θT and longitudinal θL angles characterising a given ground
pixel within the FOV, it yields a NanoCarb truncated interfer-
ogram. This analytical model assumes perfect processing of
the raw measurements and does not account for possible op-
tical defects (such as stray light) or instrumental inaccuracies
(such as faulty thermal regulation, which impact is assessed
separately), nor does it take into account the point spread
function (PSF) of the instrument.

2.2 SPEXone

SPEX (Spectro-Polarimeter for Planetary Exploration) is a
family of aerosol sensors that have been co-developed by
the Netherlands Institute for Space Research (SRON) and
its academic and industrial partners. SPEXone, the latest and
most compact multi-angle polarimeter of this family (6 dm3),
is currently being developed by SRON, supported by opti-
cal expertise from Airbus Defence and Space Netherlands
and the Netherlands Organisation for Applied Optics (TNO)

(van Amerongen et al., 2019). It measures visible light at
five viewing angles ±50, ±20 and 0◦ along the satellite
track and makes use of the spectral modulation technique
(Snik et al., 2009) to encode the degree of linear polarisa-
tion (DoLP) in the measured spectrum. Radiance measure-
ments will be provided at the spectral sampling (1 nm) and
resolution (2 nm) of the spectrometer. The DoLP will be pro-
vided at 50 spectral bands with a spectral resolution rang-
ing from about 10–30 nm. A key feature of SPEXone is
that it is designed to measure the DoLP at very high ac-
curacy (0.003, comprising both systematic and random er-
rors) allowing the retrieval of aerosol size, refractive index,
and single-scattering albedo in addition to the aerosol optical
depth (AOD) (Hasekamp et al., 2019).

2.3 Sizing of the SCARBO constellation concept

The constellation sizing aims at ensuring intra-daily revisit
of the largest possible amount of anthropogenic CO2 emis-
sion hotspots. Those are defined as small areas which emis-
sion rate produce an XCO2 enhancement that can be detected
with the 1 ppm SCARBO XCO2 precision objective. For this
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Figure 2. Example of a NanoCarb truncated interferogram for the four spectral bands (denoted BD in the figure), for a central pixel of the
field of view, simulated for the same situation as for Fig. 1. Intensities are plotted as a function of the OPD indices as the OPD sampling is
very discontinuous.

purpose, we use the reprocessing of the Open Source Data
Inventory of Anthropogenic CO2 (ODIAC) database com-
piled by Wang et al. (2019). They identified the emission
clumps (area and point fossil fuel emission CO2 sources) that
are compatible with the detection of an XCO2 anthropogenic
plume by a satellite flying around noon for different levels of
XCO2 precision. Figure 3 shows the repartition of the emis-
sion hotspots compatible with the 1 ppm SCARBO precision
objective and gives the revisit statistics over these hotspots
for a constellation of 22, 24 or 26 satellites flying at 600 km
on sun-synchronous orbits and equally distributed over two
orbital planes at 10:00 and 14:00 local time (LT). With 24
satellites, the SCARBO constellation provides global cover-
age and guarantees daily revisit for all hotspots and intra-
daily revisit for 73 % of the hotspots (those beyond ±30◦ of
latitude). This number of satellites provides an optimal com-
promise between coverage, cost, and available launch and de-
ployment capabilities.

3 Methodology

3.1 General approach

Level 4 atmospheric flux inversions targeting regional or
global scales exploit extensive amounts of Level 2 prod-
ucts. The preparation of planned satellite missions usually
includes observing system simulation experiments (OSSEs)
that build a realistic numerical model of the atmosphere and
simulate the instrument orbit and its measurements, upon

which retrieval algorithms are then tested. This kind of com-
putationally expensive approach is out of scope for the early
stage readiness of the NanoCarb truncated interferogram
concept. This is why we propose here to follow the approach
used for CarbonSat preparation (Buchwitz et al., 2013).

First, given synthetic atmospheric and aerosol models
(Sect. 4.1), we introduce five scattering-error-critical atmo-
spheric and observational parameters (Sect. 4.2) for which
we simulate synthetic NanoCarb truncated interferograms
(without adding a random draw of artificial noise to them)
for parameter values that span realistic intervals. Follow-
ing this, for two different SCARBO design scenarios (with-
out and with SPEXone, described in Sect. 4.3) we assess
the L2 performance of the concept by performing inverse
radiative transfer to retrieve XCO2 and XCH4 directly from
the previously simulated synthetic NanoCarb measurements.
Key L2 performance results presented in Sect. 5 comprise
the systematic and random errors of the retrieved XCO2 and
XCH4 , as well as the vertical sensitivities of these retrieved
columns, which are, for instance, essential to yield pseudo-
observed columns from simulated GHG concentration pro-
files. Finally, those results are parameterised as functions of
the selected scattering-error-critical atmospheric and obser-
vational parameters (Sect. 6). This yields fast and easily us-
able L2 performance models that enable the production of
large amounts of L2 data.

https://doi.org/10.5194/amt-15-4835-2022 Atmos. Meas. Tech., 15, 4835–4858, 2022
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Figure 3. Map of hotspots (point sources in red, and other types of emission clumps in blue) with an emission rate compatible with the
detectability of an XCO2 plume around noon with a 1 ppm precision spaceborne instrument. Yellow, green and blue horizontal lines give the
minimum latitude for better intra-day revisit for a constellation of 22, 24 and 26 satellites, respectively. The left panel gives the corresponding
average number of revisits as a function of latitude for a constellation of 22, 24 and 26 satellites, respectively.

3.2 Retrieval method: the 5AI inverse scheme

In the context of this work, inverse radiative transfer aims to
determine the geophysical parameters and their uncertainties
that best explain a given noised infrared measurement. For
this purpose, we use the 5AI retrieval scheme (Dogniaux et
al., 2021) that implements the optimal estimation (hereafter
denoted OE) inverse method, iterating with a Levenberg–
Marquardt optimisation method (Rodgers, 2000).

In the framework of OE, we consider a state vector x,
containing various geophysical variables that adequately de-
scribe the state of the atmosphere and of the surface, and a
measurement vector y (here, the NanoCarb truncated inter-
ferogram). Both are Gaussian random variables described by
an average and an uncertainty given in a covariance matrix.
Prior to the measurement, climatologies or ad hoc choices
describe the knowledge of the state x: this is called the a pri-
ori state. Its uncertainty has a strong impact on the retrieval
result as it constrains how the measurement can be allowed
to modify the state. Given this a priori state with its uncer-
tainty and the measurement y, the uncertainty of which is
known thanks to the noise characteristics of the instrument,
OE enables us to find the most probable a posteriori state x̂

that best fits the measurement y, thus verifying the following
equation:

y = F (x)+ ε, (1)

with F being the forward radiative transfer model that de-
scribes the physics linking the state to the measurement and ε

the measurement noise for which statistics are known from
the instrument and detector characteristics. Besides, OE re-
lies on a Bayesian formalism that translates the measurement
uncertainty into state uncertainty, thus yielding an a posteri-
ori covariance matrix for the retrieved a posteriori state x̂ that
describes the estimation random error. Finally, OE also pro-
vides the averaging kernel matrix, usually denoted A, which
describes how the retrieved state x̂ relates to the true (but
unknown) values of its chosen parameters.

The key L2 performance results that we seek to determine
are computed from these outputs: (1) the systematic errors of
the retrieved XCO2 and XCH4 are defined as the differences
between retrieved columns, computed from the a posteriori
state x̂, and the synthetic true column; (2) XCO2 and XCH4

random errors are computed from the a posteriori covariance
matrix; and (3) XCO2 and XCH4 vertical sensitivities are de-
scribed by the column-averaging kernels, computed from the
averaging kernel matrix A.

Here, 5AI state vector includes all the main geophysical
variables that impact shortwave infrared radiative transfer
and may interfere with XCO2 and XCH4 retrieval. Table 2
describes the state vector, the a priori value of its elements
and their prior uncertainties (no covariance is taken into ac-
count). The interfering impact of atmospheric temperature
has not been taken into account for the latest optimised OPD
selection used in this work and is not considered in the state
vector. In addition, except for the prior uncertainties of the
aerosol optical depths, which depend on the design scenario
we consider (see Sect. 4.3), all the prior uncertainties are pur-
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Table 2. 5AI retrieval state vector.

Parameters Size A priori value A priori uncertainty

H2O profile scaling factor 1 factor 1.0 0.1

CO2 profile scaling factor 1 factor 1.0 0.1

CH4 profile scaling factor 1 factor 1.0 0.1

Surface pressure 1 1013.0 hPa 4.0 hPa

Constant band-wise albedo 4 spectral bands Synthetic true value 1.0

Coarse-mode aerosol Optical Depth (COD) 1 layer Depends on design scenario Depends on design scenario
(see Table 3) (see Table 3)

Fine-mode aerosol optical depth (FOD) 1 layer Depends on design scenario Depends on design scenario
(see Table 3) (see Table 3)

posefully large as we also aim to determine the information
content of the NanoCarb truncated interferogram. Finally, the
standard deviation of the instrument noise used for the 5AI
retrievals can be calculated as follows:

εi,j =

√
Ii,j + r

2
j , (2)

with εi,j being the standard deviation of the a priori noise
for the ith OPD of the j th spectral band, Ii,j being the trun-
cated interferogram intensity for the ith OPD of the j th spec-
tral band, and rj being the readout noise of the spectral band
camera detector.

For its forward radiative transfer simulations, the 5AI
scheme relies on the operational version of the Automatized
Atmospheric Absorption Atlas (4A/OP) (Scott and Chédin,
1981) that is coupled with the Linearized Discrete Ordi-
nate Radiative Transfer model (LIDORT, Spurr, 2002) in or-
der to take into account multiple scattering caused by thin
clouds and/or aerosols. Regarding spectroscopy, we use the
2015 version of the Gestion et Études des Informations Spec-
troscopiques Atmospheìriques: Management and Study of
Atmospheric Spectroscopic Information (GEISA) spectro-
scopic database (Jacquinet-Husson et al., 2016), and we take
into account line-mixing and collision-induced absorption in
the O2 A-band (Tran and Hartmann, 2008), as well as line-
mixing and H2O-broadening of CO2 lines (Lamouroux et
al., 2010).

For this work, in order to take into account the use of trun-
cated interferograms, 5AI is coupled to the NanoCarb instru-
mental model: for all the spectral bands defined in Table 1,
a synthetic spectrum and its partial derivatives with regard to
the state variables (also called Jacobians) are computed line-
by-line by 4A/OP and used as inputs to the NanoCarb instru-
mental model. It yields a NanoCarb truncated interferogram
and its partial derivatives, which are the measurement and its
Jacobians used within the 5AI scheme in this work, respec-
tively. As an example, Fig. 4 shows the partial derivatives
with regard to the 5AI state vector elements of the NanoCarb
truncated interferogram shown in Fig. 2.

3.3 Field of view

One NanoCarb measurement is not made of one truncated
interferogram but of 170 (across-track)×102 (along-track)
truncated interferograms measured in snapshot mode in the
instrument field of view. As the foreseen time between
two consecutive snapshots corresponds to the FOV mov-
ing by one ground pixel, up to 102 independent single-pixel
NanoCarb truncated interferograms can be measured for a
given fixed location on the ground, during the ∼ 20 s over-
flight by the SCARBO satellite. The strategy to achieve pre-
cision below 1 ppm and 6 ppb for XCO2 and XCH4 , respec-
tively, is then to combine (for details, see Appendix A),
for every ground pixel associated with a transversal posi-
tion θT within the swath, all their respective available along-
track single-pixel measurements in order to retrieve one final
unique state of the atmosphere per transversal position. Con-
sequently, all the NanoCarb retrieval results presented in this
work also depend on the transversal position θT of the situa-
tion within the swath.

Several hypotheses are made to speed up calculations
within the FOV. Because we assume that it is uniform, it suf-
fices to compute single-pixel L2 results for the whole FOV
and then combine them in the along-track direction in order
to simulate the final L2 results. In addition, we assume that
the along-track direction is aligned with the sun, and single-
pixel L2 results are thus perfectly symmetrical with respect
to the longitudinal axis (results can be shown for positive
values of θT only) and nearly symmetrical (because of the
impact of the asymmetrical aerosol phase function) with re-
spect to the transversal axis. In reality, due to the very na-
ture of NanoCarb measurements (see interference rings in
Fig. 1), single-pixel L2 results exhibit a near-central symme-
try. Processing all 170× 102 pixels within the FOV would
lead to unmanageable computation times, this is why we
make use of the near-central symmetry in single-pixel L2
results to perform retrievals for a careful selection of 23
NanoCarb FOV pixels only (see the Supplement). Single-
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Figure 4. Example of a NanoCarb truncated interferogram Jacobian matrix for the 5AI state vector geophysical variables used in this work. It
corresponds to the NanoCarb truncated interferogram shown in Fig. 2. Again, partial derivatives are plotted as a function of the OPD indices
as the OPD sampling is very discontinuous.

pixel L2 performance results are then interpolated from those
23 selected pixels to the whole FOV. Assuming that the CO2
and CH4 state vector parameters can be retrieved indepen-
dently from the other geophysical variables, we then combine
the single-pixel L2 performance results for XCO2 and XCH4

in the along-track direction following (for scalar quantities)
the method described in Appendix A. This last step yields fi-
nal L2 performance results that only depend on the transver-
sal position θT within the swath, in addition to the five at-
mospheric and observational parameters considered here (see
Sect. 4). Errors arising from the interpolation have been as-
sessed and are negligible (not shown, up to 0.01 ppm for
XCO2 systematic and random errors and up to 0.05 ppb for
XCH4 systematic and random errors, all evaluated on a test
case). These final L2 results are, like single-pixel L2 results,
symmetrical along θT, and thus only results for θT between 0
and 9.3◦ need to be shown.

4 Simulation setups

4.1 Synthetic atmospheric and aerosol models

The L2 performance assessment presented here is done for
an atmospheric situation representative of the meteorolog-
ical conditions that can be found over Europe. More pre-
cisely, for all our inverse radiative transfer simulations, we

use the average mid-latitude temperate atmospheric situation
computed from the Thermodynamic Initial Guess Retrieval
(TIGR) climatology library (Chedin et al., 1985) (available
at https://ara.lmd.polytechnique.fr/index.php?page=tigr, last
access: 9 August 2022). The corresponding temperature, wa-
ter vapour and ozone profiles have been discretised over 20
pressure levels bounding 19 layers, as for the ACOS al-
gorithm (O’Dell et al., 2018). The surface pressure is set
to 1013 hPa. For this synthetic performance study, constant
trace gas concentration profiles have been used: 394.85 ppm
for CO2 and 1855.3 ppb for CH4. The use of these constant
background GHG concentration profiles is a strong hypoth-
esis, which is in line with the one chosen by Bovensmann
et al. (2010) for CarbonSat performance studies. Eventually,
realistic CO2 and CH4 profiles should be considered in full
OSSEs, as the SCARBO concept improves in its readiness.

We consider the presence of two aerosol modes in the at-
mosphere: a fine mode and a coarse mode. This assumption
is in line with the ones made for the SPEXone retrieval ca-
pability study (Hasekamp et al., 2019) and, apart from the
cirrus contribution, follows the assumptions made for the full
physics retrieval algorithm developed at the University of Le-
icester (Cogan et al., 2012). Here, the fine aerosol mode is
treated under a log-normal size distribution with an effective
size of 0.20 µm, an effective variance of 0.2 µm and a refrac-
tive index of 1.50+ 10−7i. This fine mode is representative
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Figure 5. True spectral dependence of the three albedo models con-
sidered in this work. Constant band-wise fits of these models are
used here.

of typical industrial non-organic aerosols and is located in
a fixed atmospheric layer between 0 and 2 km. As for the
coarse mode, it is treated under a log-normal size distribu-
tion with an effective size of 1.6 µm, an effective variance of
0.6 µm, a refractive index of 1.53+ 0.00254i and a spheroid
fraction of 0.95. This coarse mode is representative of typ-
ical mineral dust and is located at a varying altitude. Non-
spherical aerosols are described as a size–shape mixture of
randomly oriented spheroids, and we use the Mie- and T-
matrix-improved geometrical optics database by Dubovik et
al. (2006) along with their proposed spheroid aspect ratio dis-
tribution for computing optical properties (extinction coeffi-
cient, single-scattering albedo and asymmetry parameter) for
a mixture of spheroids and spheres. These optical properties
are then used as inputs to the 5AI scheme.

4.2 Atmospheric and observational parameters for L2
performance assessment

We consider five parameters related to scattering error:
(1) the albedo model, (2) the solar zenith angle, (3) the coarse
layer height, (4) the coarse-mode aerosol optical depth, and
(5) the fine-mode aerosol optical depth. Those are usual pa-
rameters considered for L2 performance assessments as they
can strongly impact the photon optical path or the overall
amount of signal measured by the satellite detector (Boesch
et al., 2011; Buchwitz et al., 2013). Different values for these
five parameters are explored, yielding a set of 324 atmo-
spheric and observational situations for which the SCARBO
L2 performance assessment is performed.

Regarding albedo (hereafter ALB), we consider three dif-
ferent ground albedo models representative of soil, vegeta-
tion and desert scenes that are generated from the ASTER
spectral library (Baldridge et al., 2009). As detailed in
Sect. 2, the current optimisation of the NanoCarb OPDs as-

sumes constant band-wise albedos. Hence, in this work, the
simulated NanoCarb truncated interferograms and the XCO2

and XCH4 retrievals use the same assumption: Fig. 5 shows
the spectral dependence of the three albedo models we con-
sider, as well as the constant band-wise fits used for all sim-
ulations.

For solar zenith angle (SZA), we explore four different
values: 0, 25, 50, and 70◦. Though shortwave infrared sound-
ings can be made at higher SZAs, experience from OCO-2
post-filtering by the ACOS algorithm shows that soundings
at high SZAs are more often removed (O’Dell et al., 2018),
thus studying a maximum SZA of 70◦ is a reasonable com-
promise.

Concerning coarse aerosol mode layer height (CLH), we
assume possible altitudes of 2, 4 and 6 km and coarse aerosol
mode optical depths (CODs) explore the following values:
0.001, 0.05 and 0.15 at 550 nm reference wavelength. Fine
aerosol mode optical depths (FODs) explore 0.001, 0.12,
0.22 at 550 nm reference wavelength. The aerosol synthetic
setup proposed here aims to represent (1) background aerosol
optical depth, arbitrarily attributed to industrial non-organic
aerosols (as those are expected around and downwind of
strong emission hotspots) with optical depth values consis-
tent for instance with MODIS observed averages over Eu-
rope for 2010 (Palacios-Peña et al., 2019) and (2) transient
coarse mineral desert dust layers that can be observed over
Europe in late spring, summer and early autumn with a vary-
ing altitude (Papayannis et al., 2008).

4.3 Two design scenarios: without and with SPEXone

Two SCARBO satellite design scenarios are studied in this
work. Table 3 summarises the assumptions made for both
scenarios: they are only related to the a priori setups of 5AI
NanoCarb retrievals.

The first one, hereafter referred as “no-SPEX”, simulates
a SCARBO satellite only carrying the NanoCarb instrument.
This scenario is simulated with fixed a priori values for COD
and FOD in the state vector and with a fixed CLH of 2 km, re-
gardless of the atmospheric and observational situation con-
sidered. The random prior uncertainties for COD and FOD
are set to 0.5, a large value also reflecting the limited knowl-
edge of aerosol parameters in this design scenario.

The second design scenario, hereafter referred as “with-
SPEX”, simulates a SCARBO platform carrying both SPEX-
one and NanoCarb instruments at the same time, thus yield-
ing co-located SPEXone and NanoCarb measurements. For
this scenario, we consider a two-step L2 retrieval approach
in which SPEXone measurements are analysed first. These
results are then used to improve the a priori constraints on
aerosol parameters in second-step GHG column retrievals
from NanoCarb measurements. The first step is fulfilled by a
linear error analysis that yields SPEXone posterior uncertain-
ties for COD and FOD, following the method described in
Hasekamp et al. (2019). Figure 6 shows these SPEXone ran-
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Table 3. Summary of no-SPEX and with-SPEX design scenario assumptions.

Parameter Prior no-SPEX with-SPEX scenario
scenario

Coarse aerosol mode optical depth (COD) A priori value 0.05 Synthetic truth

A priori uncertainty 0.5 SPEXone linear error analysis output (see Fig. 6)

Fine aerosol mode optical depth (FOD) A priori value 0.12 Synthetic truth

A priori uncertainty 0.5 SPEXone linear error analysis output (see Fig. 6)

Coarse layer height (not retrieved) A priori value 2 km Synthetic truth

Figure 6. SPEXone linear error analysis results for all the 324 atmospheric and observational situations used in this work. SPEXone COD
and FOD posterior uncertainties are plotted against the situation number: the top five panels detail the ALB (0.7 µm), SZA, CLH, COD and
FOD values defining all 324 situations.

dom errors for the coarse-mode (COD) and fine-mode (FOD)
aerosol optical depths for all the 324 atmospheric and obser-
vational situations considered in this work. Its first five top
panels have a descriptive purpose: they recall the values of
the ALB, SZA, CLH, COD and FOD parameters for all 324
situations. Thus, the first third of the x axis is dedicated to
soil albedo situations, the second third is dedicated to veg-
etation albedo situations, and the final third is dedicated to
desert albedo situations. For all of these ALB cases, all SZA
values are explored, as are all scattering particle cases for all
ALB cases and SZA values, thus sorting all of the 324 con-
sidered situations along one dimension (an identical sorting
is used in Figs. 7, 9, 10, and 11). Regarding SPEXone per-
formance, the posterior uncertainties in optical depth are cor-
related to the optical depth values and are lower for the fine

mode compared to the coarse mode. Uncertainties are higher
for desert albedo situations as the ratio between scattered
photons and surface-reflected photons is lower over desert
compared to soil or vegetation situations. For both modes
they improve with increasing SZA values because the light
path through the aerosol layer increases but also because a
wider scattering angle range, that is also closer to 90◦, is typ-
ically encountered at higher SZA (Hasekamp et al., 2019;
Fougnie et al., 2020). Posterior uncertainties of coarse-mode
optical depths are also decreasing with CLH values as more
photons are scattered when the coarse layer height increases.
For the with-SPEX design scenario considered here, these
COD and FOD posterior uncertainties are used as a priori
uncertainties within the second-step GHG column retrievals
from NanoCarb measurements. In addition, in the absence
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of full SPEXone retrieval results, we also assume that the
first-step SPEXone measurement analyses yield perfectly ac-
curate COD and FOD values, as well as the true synthetic
CLH values (aerosol layer heights are not retrieved from
NanoCarb measurements, as per Table 2, but can be obtained
from SPEXone retrievals).

5 Results and discussion

5.1 Geophysical information content and variable
entanglements in NanoCarb truncated
interferograms

In this work,XCO2 andXCH4 are directly retrieved from trun-
cated interferograms sampled at OPDs optimally sensitive
to CO2, CH4 and possibly interfering geophysical variables.
This peculiar nature of NanoCarb measurements strongly
differs from usual infrared spectra (measured for example by
GOSAT or OCO instruments). A way to evaluate the geo-
physical information content is to examine the optimal esti-
mation degrees of freedom (hereafter denoted “DOFs”) that
provide, for all state vector variables, the amount of useful
independent quantities provided by the measurement, what-
ever its nature (Rodgers, 2000).

Figure 7 shows NanoCarb state vector DOFs, averaged
over the 23 selected FOV pixels, for all 324 atmospheric and
observational situations considered in this work (described
in the top five panels, as in Fig. 6), as well as for both no-
SPEX and with-SPEX design scenarios. Grey-shaded areas
in the no-SPEX design scenario case remove situations for
which the retrievals did not satisfactorily converge. Over-
all, we can notice that CO2 and CH4 DOFs are close to 1.0,
confirming the sensitivity of the retrievals and of NanoCarb
measurements to these two target greenhouse gases. In the
no-SPEX design scenario, COD DOFs have similar values,
thus underlying a significant sensitivity of NanoCarb mea-
surement to the coarse-mode aerosol layer. All albedo bands
have near 1.0 DOFs, and for other variables, comprising wa-
ter vapour profile scaling factor, surface pressure and FOD,
retrievals do not get much information from NanoCarb mea-
surements. This means that the retrievals rely on their a pri-
ori information for these variables, which can result in sys-
tematic XCO2 and XCH4 biases if the a priori data are bi-
ased compared to the true state of the atmosphere. For the
no-SPEX design scenario case, the DOF evolution is mainly
explained by the strong sensitivity of NanoCarb measure-
ments to COD. This COD sensitivity increases for situations
with SZA= 70◦ because spaceborne measurements are more
sensitive to scattering for highly slanted optical paths. Con-
versely, this explains the drop in the other variable DOFs
for which less measurement information is available in sit-
uations with SZA= 70◦. For all geophysical variables but
albedo and surface pressure, the variations of DOFs are cor-
related with COD: the large 0.5 a priori uncertainty for COD

in no-SPEX retrievals brings only a mild constraint that re-
sults in the COD parameter driving the information content
for all the other variables.

The with-SPEX design scenario exhibits much reduced
aerosol parameter DOFs arising from NanoCarb interfero-
grams: this scenario is designed so that SPEXone, with im-
proved a priori constraints in GHG retrievals, brings much
of the information regarding aerosol parameters. Consistent
with the SPEXone performance shown in Fig. 6, FOD DOFs
are nearly equal to 0 thanks to SPEXone performance and
the NanoCarb measurements’ mild sensitivity to fine-mode
aerosols. As for coarse-mode aerosols, the remaining COD
DOFs are the result of the strong sensitivity of NanoCarb
measurements to this mode and of SPEXone’ lower perfor-
mance for coarse mode: with-SPEX COD, DOFs are well
correlated with the SPEX posterior uncertainties for COD
shown in Fig. 6. One can also note that, when viewing
the similar SPEXone performance between fine and coarse
modes at high SZAs in soil and vegetation cases, COD DOFs
are much larger than FOD DOFs, once again underlining the
sensitivity of NanoCarb measurements to the coarse mode.
For low SZAs in desert albedo situations, where SPEX-
one performance for coarse mode is at its lowest and has
large remaining uncertainties, COD DOFs are high, meaning
that NanoCarb measurements can contribute to constraining
coarse-mode aerosols in these situations. Symmetrically to
reducing the amount of NanoCarb measurement information
used to constrain aerosol parameters, the use of SPEXone
posterior results in NanoCarb GHG retrievals helps by using
more of this information to constrain other variables. Conse-
quently, GHG, surface pressure and albedo DOFs increase in
the with-SPEX (with regard to no-SPEX) scenario, as shown
in Fig. 7 (the increase is very small and not distinguishable
for albedo). This underlines the geophysical information en-
tanglement of the latter variables with aerosol parameters in
NanoCarb measurements.

Retrieving a profile scaling factor for CO2 or CH4 instead
of a layered profile has the advantage of setting a 1.0 limit
to the DOFs these gases can have. Given the state vector
used in this work, reaching this 1.0 DOF limit value for all
geophysical variables would mean that all of them could be
retrieved independently of each other. Failing to do so as
shown in Fig. 7 for the with-SPEX scenario means that the
geophysical information is entangled in NanoCarb measure-
ments: variables cannot be retrieved independently of each
other and correlations exist. A way to identify main variable-
to-variable entanglements is to examine similarities (corre-
lation or anticorrelations) between the partial derivatives of
state vector elements. For example, Fig. 4 displays a correla-
tion between albedo and CO2 Jacobians in NanoCarb band 2:
both evolve similarly around different continuous compo-
nents. Though less visible or not visible due to scale, similar
similarities exist between surface pressure and albedo Jaco-
bians in band 1 (anticorrelation), the CH4 profile scaling fac-
tor and H2O or albedo Jacobians in band 3 (correlations), and
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Figure 7. NanoCarb state vector variable degrees of freedom averaged over the 23 FOV pixels used to interpolate L2 results to the whole
FOV. Results are plotted as a function of the situation number: the top five panels detail the ALB (0.7 µm), SZA, CLH, COD and FOD values
defining all 324 situations. Grey-shaded areas denote situations for which retrievals did not satisfactorily converge.

the CO2 profile scaling factor and albedo Jacobians in band 4
(anticorrelation). Thus CO2, albedo and aerosol variables are
entangled in the current OPD optimisation of NanoCarb mea-
surement, and the same is true for CH4 information, which is
also entangled with H2O.

5.2 Vertical sensitivities: column-averaging kernels

Column-averaging kernels (hereafter referred as “AKs”) de-
scribe the vertical sensitivity of retrieved XCO2 and XCH4 .
In other words, they show which atmospheric layers con-
tribute the most to the GHG information contained in the
measurement. NIR and SWIR spectrum measurements are
typically sensitive to the whole atmospheric column, with
AKs that reach their maximum in atmospheric layers close
to the surface and then decrease with altitude above the
mid-troposphere (e.g. for OCO-2, see Boesch et al., 2011).

Figure 8 presents the NanoCarb XCO2 and XCH4 AKs for
all albedo models and SZAs and for the minimum and
maximum total aerosol optical depth (AOD) situations. As
for usual NIR and SWIR concepts such as OCO-2 or S5-
P/TROPOMI, NanoCarb truncated interferograms are sensi-
tive to CO2 and CH4 in all atmospheric layers. In addition, it
can be noticed that NanoCarb AKs with low total AOD sat-
isfactorily compare with those obtained for trace gas profile
scaling factors retrieved from SCIAMACHY low-resolution
measurements by the WFM-DOAS algorithm (Bovensmann
et al., 1999; Buchwitz et al., 2005). Indeed, like WFM-DOAS
XCO2 AKs, NanoCarb XCO2 AKs grossly evolve from 1.2–
1.5 in the boundary layer to only 0.1–0.2 at the top of the at-
mosphere (TOA), and the same comparison stands for XCH4

AKs: both evolve from approximately 1.2 in the boundary
layer to about 0.5 at TOA. SZA dependence of AKs appears
to be quite similar between NanoCarb and SCIAMACHY
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Figure 8. NanoCarb XCO2 (top panels) and XCH4 (bottom panels)
column-averaging kernels averaged over the 23 FOV pixels used to
interpolate L2 results to the whole FOV. We show all three albedo
models, soil (left), vegetation (middle), and desert (right), and four
different SZA values (colour scales). Averaging kernels are shown
for a low total aerosol optical depth (top rows) and a high total
aerosol optical depth (bottom rows).

or WFM-DOAS for XCH4 but is different for XCO2 AKs:
sensitivity in the boundary layer and lower troposphere de-
creases with SZA in the NanoCarb case, whereas it increases
for WFM-DOAS. Regarding NanoCarb AKs for atmospheric
situations with the maximum aerosol optical depth, we can
notice a sensitivity drop in the atmospheric layers contain-
ing aerosols for XCO2 AKs, especially at high SZAs. Even if
comparing AKs shapes remain difficult because a CO2 pro-
file is retrieved (and not a scaling factor) and many other
factors differ, a similar behaviour was noticed during the
ACOS algorithm characterisation (Boesch et al., 2011). As
for NanoCarb XCH4 AKs, they exhibit a slight increase of
sensitivity in the atmospheric layers containing aerosols and
a sensitivity drop comparable to NanoCarb XCO2 AKs for
SZA= 70◦. No similar XCH4 AK sensitivity study for the
presence of aerosol has been found when writing this article.

5.3 Systematic and random errors

The NanoCarb spectral band narrow-band filters exhibit
FOV-dependent effects that impact the L2 performance: their
reference wavelengths shift towards slightly shorter wave-
lengths with the angle of incident light, and thus with the

distance of pixels to the centre of the FOV (Smith, 2008). As
the OPD selection was optimised for the centre of the FOV,
this results in an increased GHG and albedo information en-
tanglement close to the swath border (not shown). This leads
to an increase in XCO2 and XCH4 random errors, which can
become slightly larger than the SCARBO precision objec-
tives of 1 ppm and 6 ppb for few situations and FOV pixels.
In addition, it also challenges the hypothesis of independent
scalar columns that is used to combine the FOV single-pixel
XCO2 andXCH4 results in the along-track direction. As a con-
sequence, we choose here to only consider pixels with θT be-
tween −6 and 6◦ (whereas the full swath spans ±9.3◦ in the
currently considered design used for constellation sizing).

Figure 9 shows, for all 324 atmospheric and observational
situations and for all transversal angle positions between 0
and 6◦, NanoCarb systematic and random errors (definitions
are given in Sect. 3.2) forXCO2 andXCH4 in the no-SPEX de-
sign scenario case. As for Fig. 6, the five top panels describe
ALB, SZA, CLH, COD and FOD values for all situations.
A priori and retrieved values are also shown for COD and
FOD in order to explain where XCO2 and XCH4 systematic
errors come from. The four bottom panels display XCO2 and
XCH4 systematic and random errors. Retrievals converge and
satisfactorily reduce the cost function for most of the situa-
tions. Still, some of them remain challenging depending on
the albedo model and SZA, when COD or CLH are far from
the a priori value. Their results are excluded, as shown with
the grey-shaded areas.

In this no-SPEX case, systematic errors come from the er-
roneous prior knowledge of scattering parameters in the state
vector (Fig. 9). Regarding scattering particles, NanoCarb
measurements are mostly sensitive to the presence of coarse-
mode aerosols in the optical path (as explained in Sect. 5.1),
and the COD can be retrieved to some extent when the syn-
thetic truth is not too far from the a priori state. Retrieved
FOD seldom differ from the a priori value, showing again
that no-SPEX retrievals are not very sensitive to fine-mode
aerosols. Here, XCO2 and XCH4 systematic errors can reach
up to 8 ppm and 30 ppb in absolute value for XCO2 and
XCH4 , respectively. This corresponds to about 10 times and
5 times their average random error, respectively. Thus, no-
SPEX NanoCarb XCO2 retrievals are more sensitive to scat-
tering error than no-SPEX NanoCarb XCH4 retrievals. XCO2

systematic errors are mostly driven by COD retrieval errors
that correlate with CLH a priori misknowledge (CLH a priori
value is here fixed at 2 km, see Table 3) and SZA. This SZA
dependence of systematic errors is particularly important for
XCO2 ; this may be explained by the use of the 2.05 µm CO2
strong band, which includes saturated CO2 lines and is quite
sensitive to aerosols. A similar COD retrieval error depen-
dence is found for XCH4 systematic errors, which also inter-
estingly exhibit a stronger correlation to FOD retrieval error
that is particularly visible in vegetation and desert albedo sit-
uations. XCO2 and XCH4 systematic error swath dependence
are shown by the colour scales. It is most visible when sys-
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Figure 9. NanoCarb systematic and random errors forXCO2 andXCH4 in the no-SPEX design scenario case. Results are plotted as a function
of the situation number: the five top panels detail the ALB (0.7 µm), SZA, CLH, COD and FOD values defining all 324 situations. In addition,
the a priori and averaged retrieved COD and FOD values are also shown in the fourth and fifth top panels. The sixth and seventh panels show
XCO2 systematic and random errors, respectively, and the eighth and ninth panels show XCH4 systematic and random errors, respectively.
The dependence on the transversal angle θT of L2 results is shown with the colour scales: darker colours correspond to lower θT absolute
values. Grey-shaded areas denote situations for which retrievals did not satisfactorily converge.

tematic XCO2 errors are high at the swath centre, and in situ-
ations with COD values far from the a priori for XCH4 .

Random errors in the no-SPEX design scenario (Fig. 9) for
transversal positions below 6◦ in absolute value outperform
the 1 ppm SCARBOXCO2 precision objective for SZA below
50◦ in soil and vegetation situations and for all SZA values in
desert albedo situations. RegardingXCH4 random errors, they
overall meet the 6 ppb precision objective but for soil albedo

situations with SZA values of 25◦ or lower. Within the OE
formalism, random error variations are by definition com-
pletely correlated with DOFs variations (see Fig. 6), meaning
that when more information is available for a given variable,
its random error diminishes. Thus, as for DOFs, random error
variations are mostly driven by COD and ALB values in the
no-SPEX design scenario. It can finally be noted that most
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Figure 10. NanoCarb sensitivities to a priori misknowledge of COD and FOD and random errors for XCO2 and XCH4 in the with-SPEX
design scenario case. Results are plotted as a function of the situation number: the five top panels detail the ALB (0.7 µm), SZA, CLH, COD
and FOD values defining all 324 situations. The sixth and seventh panels show XCO2 sensitivities to a priori misknowledge of COD and
FOD and random errors, respectively, and the eighth and ninth panels show XCH4 sensitivities to a priori misknowledge of COD and FOD
and random errors, respectively. The dependence on the transversal angle θT of random errors results is shown with the colour scales: darker
colours correspond to lower θT absolute values. As for sensitivities, only the minimum and maximum values for all transversal angles are
shown.

of the transversal positions within the swath exhibit similar
random errors, except for those close to 6◦.

As detailed in Table 3, the a priori aerosol profile and a pri-
ori state vector are identical to the true state of the synthetic
atmosphere in the with-SPEX design scenario case. This is
done to simulate a more precise and accurate knowledge of
aerosol parameters that can be brought by the SPEXone in-
strument. Given this strong hypothesis for SPEXone retrieval
accuracy, L2 retrieval results do not exhibit systematic errors.
Consequently, in order to study the sensitivity of XCO2 and

XCH4 systematic errors to this hypothesis, we use the aver-
aging kernel matrix A to propagate a priori misknowledge
of aerosol parameters. Following Rodgers’ (2000) notations,
we have

dx̂ =
∂x̂

∂xtrue
dxtrue = A[0,0,0,0,0,0,0,0,δCOD,δFOD]T, (3)

with x̂ being the retrieved state vector, xtrue being the syn-
thetic true state of the atmosphere, and δCOD and δFOD being
the differential perturbation of COD and FOD parameters,
respectively.
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Figure 10 is similar to Fig. 9, but shows results for the
with-SPEX design scenario (a version that combines Figs. 9
and 10 is included in the Supplement for a better comparison
of systematic errors but less readability of no-SPEX results).
Instead of systematic errors, it presents XCO2 and XCH4 sys-
tematic error sensitivities to synthetic truth perturbations of
COD and FOD corresponding to their respective prior uncer-
tainties σCOD and σFOD: δCOD =±σCOD and δFOD =±σFOD
(provided by SPEXone linear error analysis). This system-
atic error sensitivity test is conservative in different ways.
First, the perturbation by SPEXone random error is at least
a factor of 2 greater than the systematic optical depth er-
rors found in Hasekamp et al. (2019). In addition, the sep-
aration between COD and FOD perturbations does not al-
low for these errors to compensate themselves and possibly
partially cancel out a fraction of XCO2 and XCH4 system-
atic errors. XCO2 and XCH4 systematic error sensitivities to
synthetic truth perturbations of COD and FOD are shown as
the maximum and minimum sensitivities among all transver-
sal positions with |θT|< 6◦. Uncertainties in COD retrieved
by SPEXone can result in up to ±5.5 ppm impact on XCO2

and ±28 ppb impact on XCH4 . It is interesting to note that
despite similar SPEXone precisions for COD and FOD be-
tween SZA= 50◦ and SZA= 70◦ over all albedo models,
COD perturbations have a much more important impact on
XCO2 at SZA= 70◦. This highlights the particular sensitiv-
ity of the NanoCarb measurements to coarse-mode aerosols
at high SZAs. This remains valid for XCH4 to a lesser ex-
tent. Sensitivities to COD imprecisions also impact XCO2

and XCH4 at low SZA over desert albedo situations, where
SPEXone uncertainties are the highest. Regarding fine mode,
uncertainties in FOD retrieved by SPEXone can result in
up to ±0.4 ppm impact on XCO2 and ±2.5 ppb impact on
XCH4 . Those sensitivities to FOD perturbations are greatly
smaller than those to COD, due to the better SPEXone per-
formance for fine-mode aerosols and the lower impact this
mode has on NanoCarb measurements. Compared to the no-
SPEX systematic errors presented in Fig. 9, we can con-
clude here that SPEXone has the potential to significantly
reduce systematic errors originating from fine-mode aerosols
in both XCO2 and XCH4 retrievals from NanoCarb truncated
interferograms. Regarding coarse-mode aerosols, the poten-
tial of SPEXone is more nuanced. SPEXone has COD pos-
terior uncertainties at their best for situations in which no-
SPEX XCO2 retrievals exhibit the largest systematic errors
due to COD, namely for high SZA values, in situations with
large COD. Conversely, no-SPEXXCO2 systematic errors are
lower than the XCO2 impact of SPEXone COD uncertainty
in situations with low SZA. Thus, SPEXone performance for
COD appears to be complementary to the XCO2 COD sen-
sitivity of NanoCarb measurements. Considering a typical
European situation with a vegetation albedo and SZA= 50◦,
the aerosol information brought by SPEXone is thus criti-
cal to reduce systematic errors due to coarse-mode aerosols.
However, some situations where SPEXone is less precise for

Table 4. Heuristically determined parameters to use for L2 perfor-
mance parameterisations.

Parameter Parameter definition for Unit to
name systematic errors (n= 9) use

X1 1/cos(SZA×π/180) ◦

X2 ALB_SWIR-2 –
X3 log(FOD) –
X4 log(COD) –
X5 max(CLH,2) km
X6 1/cos(θT×π/180) ◦

X7 (X5− 2)×X4 –
X8 ALB_NIR –
X9 X6×X4 –

Parameter Parameter definition for Unit to
name random errors (n= 9) use

X1 1/cos(SZA×π/180) ◦

X2 ALB_NIR –
X3 (−ALB_SWIR-2+ 0.2) –
X4 log(FOD) –
X5 log(COD) –
X6 1/cos(θT×π/180) ◦

X7 X6×X6 –
X8 X3/X1 –
X9 X1×X6 –

Parameter Parameter definition for column Unit to
name averaging kernel layer use

values (n= 8)

X1 1/cos(SZA×π/180) ◦

X2 ALB_NIR –
X3 ALB_SWIR-1 –
X4 FOD –
X5 COD –
X6 max(CLH,2) km
X7 ALB_SWIR-2 –
X8 X1×X5 –

COD can remain a challenge: in cases of transient coarse-
aerosol contamination over desert albedo situations and low
SZAs for instance. The sensitivity of XCH4 systematic errors
to SPEXone COD uncertainty is mostly larger than the no-
SPEXXCH4 systematic errors, except for high SZA and COD
values in vegetation and desert albedo situations. This shows
the limitations of SPEXone ability to help reduce the system-
atic errors originating from coarse-mode aerosols in XCH4

NanoCarb retrievals.
Figure 10 also shows XCO2 and XCH4 random errors for

the with-SPEX design scenario, those are lower than in
the no-SPEX design scenario. Indeed, due to the GHG and
aerosol information entanglement shown in Sect. 5.1, the
better a priori constraint of aerosol parameters brought by
SPEXone enables the dedication of more of the NanoCarb
measurement information to the estimation of GHG param-
eters in the with-SPEX scenario. For nearly all the atmo-
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Table 5. Parameterisation approximation errors.

Variable Design Systematic error Random error
scenario

XCO2 no-SPEX 0.00± 0.36 ppm 0.00± 0.11 ppm
with-SPEX – 0.00± 0.05 ppm

XCH4 no-SPEX 0.00± 2.04 ppb 0.00± 0.46 ppb
with-SPEX – 0.00± 0.24 ppb

spheric and observational situations considered in this work,
XCO2 and XCH4 satisfactorily reach the SCARBO precision
objectives of below 1 ppm and 6 ppb, respectively.

6 Level 2 performance parameterisation

6.1 Linear regressions

In order to yield generalised SCARBO L2 performance mod-
els from the 324 situations considered in this work, we adopt
the approach used in Buchwitz et al. (2013) and perform lin-
ear regressions to parameterise L2 performance results. In
other words, we determine the c and ai coefficients so that

Y = c+
∑n

i=1
aiXi, (4)

with Y being an L2 performance result to parameterise as
a function of n heuristically determined (linear and non-
linear) parameters Xi , expressed as combinations of the se-
lected ALB, SZA, CLH, COD and FOD parameters, and
θT being the transversal angle position (absolute value)
within the swath. Considering ALB_NIR, ALB_SWIR-1 and
ALB_SWIR-2, which describe albedo model values at 0.7,
1.6 and 2.0 µm, respectively, Table 4 lists the Xi parameters
used for XCO2 and XCH4 systematic errors, random errors
and AK level value parameterisations.

Figure 11 shows parameterisation results for XCO2 sys-
tematic and random errors and for no-SPEX and with-SPEX
design scenarios. For no-SPEX situations, results are param-
eterised for retrieved COD+FOD< 0.25 in order to emu-
late some sort of sensible filtering that could be performed
in operational processing. For systematic errors, the parame-
terisation captures the combined COD, SZA and CLH trends
of L2 results, as well as some of the transversal angle posi-
tion dependence. Regarding no-SPEX random errors, the pa-
rameterisation captures the combined albedo and SZA trends
(except for soil albedo at SZA= 70◦) but fails to reproduce
the COD trend over vegetation and soil albedo situations due
to the strong influence of this trend in desert situations. The
transversal angle position dependence is well captured. The
parameterisation for the with-SPEX scenario random errors
is quite accurate and satisfactorily reproduces most of the
L2 performance trends (for this scenario, we only filter with
COD< 0.6 and FOD< 0.6). In addition, it can be noted that

vegetation albedo situations, the most representative of Eu-
ropean surface, are those for which parameterisations best
reproduce the computed exact L2 performance. Similar re-
sults are obtained for XCH4 (see the Supplement, where AK
parameterisation results are also shown). Overall, the means
and standard deviations of parameterisation approximation
errors evaluated for all 324 situations and transversal angle
positions that passed filters are given in Table 5.

6.2 Application of L2 performance parameterisations:
1 July 2015 example

SCARBO ground tracks are calculated and auxiliary datasets
are gathered to provide large spatial and temporal scale maps
of the five selected error-critical parameters: ALB (at 0.7, 1.6
and 2.0 µm), SZA, CLH, COD and FOD. We then use those
maps to apply the previously obtained L2 performance pa-
rameterisations and yield systematic and random XCO2 and
XCH4 errors, as well as XCO2 and XCH4 column-averaging
kernels, which can then be used for L4 flux inversion stud-
ies.

The SCARBO constellation considered in this study for
the ground track computation is composed of 28 satellites on
sun-synchronous orbits of 605.498 km height and separated
into two orbital planes: one observing at 10:00 LT and the
second at 14:00 LT. Orbital parameters are adjusted to have
a repeating cycle of 7 d so that the second plane repeats the
ground traces of the first one. As the provided L2 perfor-
mance results already include the contribution of all along-
track NanoCarb measurements, observations are sampled at
the resolving spatial resolution of ∼ 2.3 km in the across-
track direction, producing 85 soundings in a 200 km swath
corresponding to transversal angle positions θT between 0◦

in 9◦ in absolute value.
Only clear-sky land observations are kept: cloud flagging

is performed with the MODIS Atmosphere L2 Cloud Mask
Product (Ackerman and Frey, 2015a, b) and land/sea flag-
ging with the Global Multi-resolution Terrain Elevation Data
(GMTED2010) 30 arcsec product (Danielson and Gesch,
2011). Given the date and time, the derived observation ge-
olocations make it possible to yield the SZA dataset.

Aerosol parameters COD, FOD and CLH are generated
using the T255 Copernicus Atmospheric Monitoring Service
(CAMS) reanalyses for aerosols (Flemming et al., 2017) in-
terpolated at 15 arcsec resolution. The different aerosol types
proposed in this product are separated into two classes, a
fine mode and a coarse mode, according to their overall size.
Coarse-mode and fine-mode optical depths (COD and FOD)
datasets are then generated by summing the optical depths of
the individual types belonging to each class. Finally, CAMS
vertical mixing ratios of aerosol types classified as coarse are
processed to yield the average mass altitude that is used for
the CLH dataset.

In order to create a ground albedo dataset at our three ref-
erence wavelengths, we employ the ESA ADAM (A Surface
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Figure 11. Parameterised (blue colour scale) NanoCarb XCO2 systematic (sixth and eighth panels) and random errors (seventh and ninth
panels) compared to exact L2 error retrieval results (red colour scale). Results are plotted as a function of the situation number: the five top
panels detail the ALB (0.7 µm), SZA, CLH, COD and FOD values defining all 324 situations. Grey-shaded areas denote situations for which
retrievals did not satisfactorily converge or situations that were filtered out according to the retrieved COD and FOD values.

Reflectance Database for ESA’s Earth Observation Missions)
climatology (Bacour et al., 2020) that relies on MODIS sur-
face reflectance data. In order to extrapolate reflectance val-
ues at our three reference wavelengths, the Étude CLIma-
tologique des Propriétés optiques de fonds de Sol (ECLIPS)
French Agence Nationale de la Recherche (ANR) project
data are used (mentioned in Bacour, 2019), finally yield-
ing ALB_NIR, ALB_SWIR-1 and ALB_SWIR-2 parameter
datasets.

In order to illustrate the application of the L2 performance
parameterisations, we use the parameter datasets of 1 July
2015 to compute parameterised XCO2 systematic and ran-
dom errors for the 10:00 LT orbital plane satellites for both

no-SPEX and with-SPEX design scenarios. Figure 12 shows
0.2◦×0.2◦ averaged ALB_NIR, ALB_SWIR-2, SZA, CLH,
COD and FOD cloud-free parameter maps. Unsurprisingly,
albedo values are mostly representative of vegetation mod-
els (see Fig. 5), with rather high reflectance near 0.7 µm
and low reflectance near 2.0 µm. Southern Spain and Italy
and the Maghreb have more desert-like surface albedos. For
1 July 2015, CAMS-simulated aerosols are mostly present
over the Maghreb, eastern Spain, France, the United King-
dom and eastern Europe, with rather high fine-mode opti-
cal depth and low coarse-mode optical depths. These coarse-
mode aerosols have a rather low layer altitude, except over
Germany, where a low COD layer reaches nearly 5 km. Fig-
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Figure 12. ALB_NIR, ALB_SWIR-2, SZA, CLH, FOD and COD cloud-free parameter maps of 1 July 2015, averaged on a 0.2◦×0.2◦ grid.

Figure 13. ParameterisedXCO2 systematic (a, b) and random (c, d) errors for 1 July 2015 for the no-SPEX (a, c) and with-SPEX (b, d) design
scenario cases and averaged on a 0.2◦× 0.2◦ grid.
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4854 M. Dogniaux et al.: SCARBO Level 2 performance assessment

ure 13 shows the corresponding parameterisedXCO2 system-
atic and random errors for both design scenarios (see the
Supplement for XCH4 ). These are computed for transversal
angle positions lower than 6◦ in absolute values, as we do
not consider the full NanoCarb swath in this work. Sound-
ings are filtered with COD+FOD< 0.25 and COD< 0.6
and FOD< 0.6 in no-SPEX and with-SPEX scenario cases,
respectively, which explains the different number of sound-
ings between these two scenarios. No-SPEX systematic er-
rors mostly correlate with COD and CLH as already noted in
Fig. 7., whereas no systematic error is given for with-SPEX
scenario as per its hypotheses. Regarding random errors, they
are lower in the with-SPEX scenario and decrease over more
desert-like albedo situations, as can be seen in southern Spain
and Italy and the Maghreb. Finally, the stripping that can be
noticed on random error maps corresponds to the loss of pre-
cision with the transversal position within the swath, as |θT|

gets closer to 6◦.

7 Conclusions

In this work, we have carried out the Level 2 perfor-
mance assessment of the NanoCarb concept developed in the
SCARBO project. For a set of 324 scattering-error-critical
atmospheric and observational situations, we retrieved XCO2

and XCH4 directly from NanoCarb truncated interferograms
by using the 5AI inverse scheme.

First, as this concept constitutes an original approach to
NIR and SWIR infrared measurements compared to state-of-
the-art GHG satellite missions, we have analysed the vertical
sensitivities and information content of the truncated inter-
ferograms. Retrievals are clearly sensitive to CO2 and CH4
with degrees of freedom close to 1.0, and the retrieved XCO2

andXCH4 are representative of all atmospheric layers as with
usual NIR and SWIR concepts.

In order to establish the merits of coupling NanoCarb with
the SPEXone instrument dedicated to aerosols, we have com-
pared the results for two SCARBO satellite design scenar-
ios: no-SPEX and with-SPEX. Systematic XCO2 and XCH4

retrieval errors originating from the presence of fine-mode
aerosols on the optical path can be significantly reduced
by taking advantage of NanoCarb coupling with SPEXone.
In addition, the performance of SPEXone for coarse-mode
aerosols also enables the reduction of systematic XCO2 er-
rors where they are the largest, e.g. for a typical European
vegetation albedo situation with SZA= 50◦ and high COD.
Desert situations with low SZAs may still remain a challenge
in case of transient desert dust contaminations for instance.

Regarding precision, XCO2 and XCH4 random errors span
0.5–1 ppm and 4–6 ppb, respectively. Thus, for transversal
angle positions lower than 6◦, NanoCarb is compliant with
the 1 ppm and 6 ppb precision objectives forXCO2 andXCH4 ,
respectively, for situations with SZA≤ 50◦.

These systematic and random retrieval column errors, as
well as their vertical sensitivities, have been successfully pa-
rameterised as functions of the five selected scattering-error-
critical parameters. Consequently, large L2 maps can be pro-
duced and distributed for L4 atmospheric GHG flux inversion
performance assessments.

This simulation study sheds light on the Level 2 perfor-
mance of the peculiar NanoCarb truncated interferogram
concept: it exhibits an interesting potential for providing
meaningful information about greenhouse gas atmospheric
concentrations, with a very compact imaging spectrometer.
As for all simulation studies, there are implicit hypotheses
that need to be considered: only scattering-error-critical sit-
uations have been considered, and prior knowledge of the
true synthetic state of the atmosphere and of the surface is
assumed to be perfect but for aerosol parameters in the no-
SPEX scenario. In particular, the number of aerosol types,
their optical properties and their number of layers are consid-
ered to be exactly known. In addition, the instrumental model
is also ideal: it implements the theoretical Fabry–Pérot inter-
ferometer equations without considering any miscalibrated
optical defect. However, as the SCARBO concept (NanoCarb
coupled with SPEXone) reaches and even outperforms its
precision objectives in this work with ideal hypotheses, we
can expect some margins to cover for possible instrumental
parameter imprecisions. This would be a next step towards
an ultimately complete error budget that takes into account
the critical instrumental (L1) and retrieval setup (L2) param-
eters that impact the overall performance of the SCARBO
concept.

This first step in assessing NanoCarb L2 performance has
also enabled us to point out geophysical variable information
entanglements in NanoCarb truncated interferograms when
examining the retrieval degrees of freedom. These include
entanglements between albedo and surface pressure, albedo
and CO2, albedo and CH4, and finally CH4 and H2O that had
not been taken into account for the NanoCarb optimised OPD
selection and model used in this work. Because of the very
nature of NanoCarb measurements, these entanglements also
evolve within the FOV, leading to an increase in XCO2 and
XCH4 random errors on the swath edges. This specificity im-
pacts the achievable swath for a given precision objective.
It is consequently critical for the design of the SCARBO
constellation, which results from a compromise between the
number of satellites, the coverage and the revisit possibilities.
Thus, by identifying the limits to disentangled GHG sensi-
tivity within NanoCarb truncated interferograms, this work
has also paved the way for future improvements of the whole
concept design.
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Appendix A: Combining NanoCarb measurements in
the along-track dimension

With its current design, the NanoCarb instrument can gather
up to n= 102 independent truncated interferograms over the
same exact fixed ground location. It corresponds to a unique
state of the atmosphere that we seek to estimate from all
the available measurements. Algorithmically speaking, us-
ing the Rodgers (2000) notation and following his guid-
ance in Sect. 4.1.1, this can be achieved by including all
n NanoCarb truncated interferograms inside the same mea-
surement vector y =

[
y1, . . .,yn

]
to retrieve one unique pos-

terior state x̂. This posterior state maximises the probability
P
(
x|y1, . . .,yn

)
that can be expressed with Bayes’ theorem

because measurements yi are independent, as shown by the
following equation.

P
(
x |y1, . . .,yn

)
=
P
(
y1, . . .,yn |x

)
P(x)

P (y1, . . .,yn)

= P(x)
∏n

i=1

P
(
yi |x

)
P(yi)

(A1)

Assuming Gaussian statistics for both state and measure-
ments and a linear forward model described by its Jacobian
matrices Ki corresponding to the measurement yi , we can
express the a posteriori covariance matrix Ŝ of the unique
posterior state x̂ as follows:

Ŝ=
[
Sa
−1
+

∑n

i=1
Ki

TSe,i
−1Ki

]−1
, (A2)

where Sa is the a priori covariance matrix of the a priori state
vector xa and Se,i is the a priori covariance matrix of the indi-
vidual measurement yi . At the same time, for all individual a
posteriori states x̂i retrieved from the individual independent
measurements yi , their a posteriori covariance matrix Ŝi can
be expressed as follows:

Ŝi =
[
Sa
−1
+Ki

TSe,i
−1Ki

]−1
. (A3)

Thus, using Eqs. (A2) and (A3) we can express Ŝ as a func-
tion of individual a posteriori covariance matrices Ŝi :

Ŝ−1
= Sa

−1
+

∑n

i=1

(
Ŝ−1
i −Sa

−1
)
. (A4)

Regarding the unique a posteriori state x̂, we have

x̂ = xa+ Ŝ
∑n

i=1
Ki

TSe,i
−1 (yi −Kixa

)
, (A5)

and (at the same time) individual a posteriori states x̂i re-
trieved from the individual independent measurements yi

also verify the following equation:

x̂i = xa + ŜiKi
TSe,i

−1 (yi −Kixa

)
. (A6)

Thus, using Eqs. (A5) and (A6), we can express x̂ as a
function of individual a posteriori states x̂i :

Ŝ−1 (x̂− xa

)
=

∑n

i=1
Ŝ−1
i

(
x̂i − xa

)
. (A7)

In conclusion, assuming all individual a posteriori state
vectors x̂i are obtained with their respective posterior co-
variance matrices Ŝ−1

i , Eqs. (A4) and (A7) explain how to
combine them in order to compute the unique posterior state
x̂ and its covariance matrix Ŝ.

Data availability. Level 2 performance parameter files are
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