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ABSTRACT: Subseasonal forecasts of 100-m wind speed and surface temperature, if skillful, can be beneficial to the
energy sector as they can be used to plan asset availability and maintenance, assess risks of extreme events, and optimally
trade power on the markets. In this study, we evaluate the skill of the European Centre for Medium-Range Weather Fore-
casts’ subseasonal predictions of 100-m wind speed and 2-m temperature. To the authors’ knowledge, this assessment is the
first for the 100-m wind speed, which is an essential variable of practical importance to the energy sector. The assessment is
carried out on both forecasts and reforecasts over European domain gridpoint wise and also by considering several spa-
tially averaged domains, using several metrics to assess different attributes of forecast quality. We propose a novel way of
synthesizing the continuous ranked probability skill score. The results show that the skill of the forecasts and reforecasts
depends on the choice of the climate variable, the period of the year, and the geographical domain. Indeed, the predictions
of temperature are better than those of wind speed, with enhanced skill found for both variables in the winter relative to
other seasons. The results also indicate significant differences between the skill of forecasts and reforecasts, arising mainly
due to the differing ensemble sizes. Overall, depending on the choice of the geographical domain and the forecast attribute,
the results show skillful predictions beyond 2 weeks, and in certain cases, up to 6 weeks for both variables, thereby encour-
aging their implementation in operational decision-making.

KEYWORDS: Europe; Subseasonal variability; Forecast verification/skill; Temperature

1. Introduction

Subseasonal to seasonal (S2S) predictions (Vitart et al.
2017; Robertson and Vitart 2018), which refer to predictions
beyond 2 weeks and up to a season, are influenced by both
atmospheric initial conditions and boundary forcings
(Hoskins 2012). Issuing skillful predictions on S2S time scale
used to be considered difficult as it was thought that this time
scale was both too long for the memory in the initial condi-
tions to persist and too short for the changes in the boundary
conditions to have a significant impact (Molteni et al. 1986;
Robertson and Vitart 2018). However, recent studies (Hoskins
2012; Robertson and Vitart 2018) have shown otherwise by
identifying the key sources of predictability on S2S time scale,
which are the Madden–Julian oscillation (MJO) (e.g., Jones
et al. 2004a,b), soil moisture (e.g., Koster et al. 2011; van den
Hurk et al. 2012), snow cover (e.g., Sobolowski et al. 2010; Lin
and Wu 2011), stratosphere–troposphere interaction (e.g.,
Baldwin et al. 2003), and ocean conditions (e.g., Woolnough
et al. 2007; Fu et al. 2007). Although the predictability of small-
scale phenomena and intraday variations on S2S time scales

remains poor (Robertson and Vitart 2018), predictability may
persist for large scale phenomena. It is thus critical to aggre-
gate/average values on relevant spatiotemporal scales in order
to extract the predictable component of the signal by filtering
out motions that behave like noise (Zhu et al. 2014).

In practice, both weather and seasonal predictions are car-
ried out from imperfect initial conditions using imperfect
numerical models (Robertson and Vitart 2018). S2S predic-
tions fall beyond the theoretical limit of deterministic predict-
ability (i.e., 10 days) (Lorenz 1965; Jifan 1989; Zhang et al.
2019), and hence these forecasts are produced using ensem-
bles of numerical integrations: a future state of the atmo-
sphere is then a range of possibilities. This transition from
deterministic to probabilistic approach has been a major
breakthrough in extending the skill horizon of S2S forecasts
(Palmer 2012).

A continuously growing share of renewable power systems
in the energy mix (International Energy Agency 2020), and
changing frequency and intensity of extreme events in the
form of storms, heat waves, and cold spells (Seneviratne et al.
2012) make the energy sector one of the most prominent
potential end-users of S2S forecasts (White et al. 2017). The
energy industry can greatly benefit from skillful S2S forecasts
of geophysical variables as they can be used to plan asset
availability and maintenance, assess and allocate risks of
extreme events on production and consumption several weeks
in advance in the framework of the “Ready-Set-Go!” approach
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(White et al. 2017), improve grid efficiency, and optimally trade
power on the markets. In the recent years, several studies have
been conducted to assess the skill of S2S forecasts: Lynch et al.
(2014) evaluated the skill of the European Centre for Medium-
Range Weather Forecasts’ (ECMWF) extended-range fore-
casts of 10-m wind speed between 2008 and 2013 for the winter
months at the weekly time scale over Europe, and they found
statistically significant skill beyond 14 days. Lledó and
Doblas-Reyes (2020) assessed the impacts of strong MJO
events on 10-m wind speed over Europe and developed a
hybrid statistical–dynamical model to better predict 10-m wind
speed conditioned on the MJO status. Büeler et al. (2020) stud-
ied windows of opportunity to have enhanced skill for
ECMWF’s S2S predictions of country and month-ahead-
averaged quantities of 10-m wind speed, 2-m temperature, and
precipitation following anomalous stratospheric polar vortex
(SPV) events, and they found enhanced/reduced skill over cer-
tain regions in Europe following strong SPV events. Monhart
et al. (2018) assessed the skill of the ECMWF’s subseasonal
forecasts of surface temperature and precipitation against sev-
eral ground based-station data across Europe and found higher
skill for temperature forecasts as compared with precipitation
forecasts. They also demonstrated that the skill of temperature
across Europe shows a seasonal pattern with higher skill
observed in winter relative to other seasons, and a spatial pat-
tern with improved skill observed in northern Europe. Vigaud
et al. (2019) evaluated the skill of the surface temperature pre-
dictions from several forecasting systems over North America,
and found skillful predictions beyond 2 weeks. Diro and Lin
(2020) assessed the skill of the S2S forecasts of snow water
equivalent and surface temperature from several models within
the subseasonal experiment project. They also built a link
between the two variables concluding that the weak snow–
temperature coupling strength in the models is one of the con-
tributing factors for lower skill of temperature forecasts.
Dorrington et al. (2020) quantified the skill of S2S forecasts of
surface temperature averaged across France from an end-user
perspective, and emphasized basing the assessment of forecasts
keeping potential end-user applications in mind.

For the energy sector, the 100-m wind speed forecasts are
crucial to estimate the energy extracted from the wind (Jourdier
2015). Nevertheless, as per our knowledge, there is no pub-
lished peer-reviewed work on the assessment of S2S 100-m
wind speed forecast skill. Because the 100-m wind speed is both
closer to the turbine hub height and better represented in the
ECMWF model relative to the 10-m wind speed (Alonzo et al.
2018), and since the vertical extrapolation of wind speed from
10 m to the turbine hub height could lead to significant errors
(Jourdier 2015), it is important to assess the skill of S2S fore-
casts of 100-m wind speed and understand their predictability lim-
its. A vast majority of the published peer-reviewed research to
date on the assessment of S2S surface temperature forecast skill
are either limited to some ground based stations (e.g., Monhart
et al. 2018) or a specific geographic domain (e.g., Vigaud et al.
2019) or restricted by a single metric (e.g., Diro and Lin 2020). In
addition, the fast pace of change and improvement of S2S
prediction systems is such that it is necessary to regularly
revisit and update the assessment of their skill (Vitart 2014).

Although we agree with Dorrington et al. (2020) on the need
and value of assessing forecasts based on end-user applica-
tions, it is also useful and complementary to assess the skill of
the S2S forecasts of purely meteorological variables: this pro-
vides a baseline measure of the general skill of the forecasts,
indicative independently of specific applications. This serves
as a reference for further attempts to improve forecasts.

This study examines the skill of the S2S forecasts and refor-
ecasts [note that for brevity “(re)forecasts” will be used here-
inafter to indicate “forecasts and reforecasts” when referring
to both at once] of 100-m wind speed and 2-m temperature at
the weekly time scale in the recent versions of the ECMWF’s
S2S prediction system to understand the differences of skill
that may arise due to differing ensemble sizes between the
forecasts and the reforecasts. The assessment is carried out
systematically across the European domain gridpoint wise
and also by considering several spatially averaged country-
sized domains to identify geographical regions with enhanced/
reduced skill, using several metrics (Coelho et al. 2018) for
providing a comprehensive overview of the forecast quality.
The seasonal cycle of skill is also investigated in the study.
The article is organized as follows: section 2 outlines the data
used, section 3 describes in detail the method employed to
evaluate the skill of (re)forecasts, section 4 explains the
results obtained, and section 5 discusses the key findings and
provides concluding remarks.

2. Data

a. Forecasts and hindcasts

The operational S2S predictions (Vitart et al. 2017) from
the ECMWF model (Vitart et al. 2019) are produced by
extending the medium range forecasts (i.e., up to 2 weeks) to
46 days 2 times per week (at 0000 UTC on Mondays and
Thursdays). These are ensemble predictions resulting from
coupled ocean–atmosphere integrations. The ensemble is
composed of 51 members (50 perturbed 1 control) obtained
using singular vectors (Leutbecher 2005). Model uncertainty
is represented through the stochastically perturbed parame-
terization tendencies scheme (Buizza et al. 1999; Palmer et al.
2009). These predictions are originally produced at a horizon-
tal resolution of Tco639L91 (∼18 km) up to a lead time of
15 days, and Tco319L91 (∼36 km) thereafter (Robertson and
Vitart 2018).

As a result of the imperfect representation of the physical
processes and the inherent atmospheric unpredictability
(Zhang et al. 2019; Žagar and Szunyogh 2020) in the predic-
tion models, these models tend to drift significantly from the
reality after approximately 1 week (or at most 10 days) of
integrations. This drift needs to be corrected to obtain the
maximum value out of forecasts. To do this, ECMWF produ-
ces a set of 20 hindcasts (or reforecasts) with 11 (10 perturbed1

control) ensemble members each. These hindcasts are initial-
ized using ERA5 reanalysis, and are issued for each of the
past 20 years starting from the same date as the operational
forecast. To illustrate, if the operational ensemble forecast
with 51 members is initiated on 14 February 2019, the hindcast
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set consists of 11 ensemble members starting on 14 February
1999, 14 February 2000, … , 14 February 2018 (Fig. 1). This
hindcast set with 220 integrations (20 years 3 11 members)
allows us to evaluate the model climatology, and is used to cal-
ibrate the operational version.

For the purpose of this study, only the perturbed members
(refer data statement to learn about the missing control) of
forecasts and their corresponding hindcasts of temperature at
2 m, zonal and meridional components of 100-m wind are
retrieved between December 2015 and November 2019 at a
temporal resolution of 6 h (i.e., instantaneous values at 0000,
0600, 1200, and 1800 UTC) and a spatial resolution of 0.98
over Europe (348–748N, 138W–408E). The forecasts and hind-
casts data are retrieved from the ECMWF’s Meteorological
Archival and Retrieval System (MARS). The 100-m wind
speed is computed as the square root of the sum of the
squares of the zonal and meridional components. The forecast
model underwent several cycles of improvement during the
same period, and hence, the dataset consists of forecasts and
hindcasts from the versions CY41R1 (1 December 2015–7
March 2016), CY41R2 (8 March 2016–21 November 2016),
CY43R1 (22 November 2016–10 July 2017), CY43R3 (11 July
2017–5 June 2018), CY45R1 (6 June 2018–10 June 2019), and
CY46R1 (11 June 2019–30 November 2019). Only two of
them included important changes: CY41R2 benefited from an
increased atmospheric resolution, whereas CY43R1 included
an increase in the oceanic resolution and the addition of
dynamic sea ice. Nevertheless, the differences in statistics
between the different versions of the model are marginal (see
appendix A).

b. Reference

Ideally, it is preferred to verify the quality of forecasts
against observations. In the absence of a serially complete,
spatially coherent observed dataset, it is a common practice to
verify the forecasts against reanalysis (Kalnay 2003). ECMWF
produces its own fifth-generation high-resolution (1 h; 31 km)
reanalysis named ERA5 using 4D-Var data assimilation and
the CY41R2 cycle of the Integrated Forecast System (Hers-
bach et al. 2020). In this work, ERA5 data of temperature at
2 m and zonal and meridional components of wind at 100 m
are retrieved from January 1979 to 2020 over Europe
(348–748N, 138W–408E) at a spatial resolution of 0.258 and a
temporal resolution of 6 h (i.e., instantaneous values at 0000,
0600, 1200, and 1800 UTC) from the Copernicus Climate
Change Services’ Climate Data Store (Raoult et al. 2017).
The data are then regridded to 0.98 using bilinear interpola-
tion (Cionni et al. 2018, 14–21) to match the resolution of
the forecasts/hindcasts. The choice of the method is moti-
vated by the fact that ECMWF uses bilinear interpolation as
the default method for the interpolation of continuous vari-
ables of ERA5 data (https://tinyurl.com/v3d47mw8). The
100-m wind speed is computed from the wind components as
previously described. Despite the biases, ERA5 reanalysis rep-
resents the surface wind speed (e.g., Ramon et al. 2019; Jourdier
2020; Brune et al. 2021) and surface temperature (e.g., Simmons
et al. 2021) well, with small errors that are acceptable for

verification purposes. Consequently, the ERA5 reanalysis data
of 2-m temperature and 100-m wind speed act as reference/
truth in this study against which the forecasts and hindcasts are
verified.

3. Method

The forecasts data under consideration span and represent
only 4 years of climatic variability, i.e., from December 2015
to November 2019. Although the forecasts, initialized using
operational analysis with ensemble size 5 times as large as the
hindcasts, are expected to better represent uncertainty in ini-
tial conditions and predictions, conclusions obtained from the
verification of forecasts alone may be misleading because the
climate during this period of time may have been more (or
less) favorable for skillful predictions (Jung et al. 2011). In
contrast, hindcasts, spanning 23 years from December 1995
to November 2018, represent climate variability that is
6 times as long as that of the forecasts, and can be used to
perform a robust model skill assessment. However, refore-
casts are likely less reliable because the ensemble size is
smaller by a factor of 5 relative to forecasts and because of
the way they are initialized. Hence, both forecasts and refor-
ecasts are assessed in this study so as to understand the skill
differences.

In the absence of reliable forecasts, for end-users or for dif-
ferent applications, a common practice is to use observed cli-
matology, a long term average estimated from available
historical observed data for the area and time period of the
year concerned, as the expected weather. Therefore, it is often
encouraged to not just assess the quality of forecasts, but also
their relative value with respect to observed climatology. In
this work, the observed climatology for each of the evaluated
forecasts in any given time of the year is constructed from
ERA5 reanalysis by taking the values of each of the past
35 years for the same time period of the year under consider-
ation. To illustrate, for the forecasts issued on 14 February 2019,
the observed climatology consists of weekly averaged ERA5
data starting on 14 February 1984, 14 February 1985, … ,
14 February 2018. This also implies that the forecasts issued in
2015 and 2018 have different observed climatology (i.e., rolling
climatology) in order to take into account the climatic trend.
However, because of the limited availability of ERA5 (i.e., from
January 1979 onward at the time of commencement of this
study), each of the reforecasts within a given hindcast set has the

FIG. 1. Illustration of the hindcast set for the operational forecast
issued on 14 Feb 2019. The ensemble size is indicated below the
arrow.
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same observed climatology as the corresponding forecast (e.g.,
all the hindcasts demonstrated in Fig. 1 have the same observed
climatology as that of the forecast of 14 February 2019). The
choice of observed climatology for the reforecasts may have a
consequence on the skill of the reforecasts in a sense that the cli-
matology may be favored over reforecasts while computing the
skill score in the case of an extreme event because the informa-
tion about the event is already present in the observed climatol-
ogy. Nevertheless, the likelihood of witnessing such events is
very low. Anyhow, this problem could be averted by using the
back-extended ERA5 (i.e., from 1950 onward) and constructing
climatology for the reforecasts in the same way as that of the
forecasts.

a. Bias adjustment of (re)forecasts

Calibration is a joint property of forecasts and observations.
A probabilistic forecast is perfectly calibrated, if, when aver-
aged over several forecasts, the forecast probabilities match
the observed frequencies. In addition to the chaotic nature of
the atmosphere, the lack of reliable and calibrated forecasts
may arise due to either one or a combination of initialization
errors, model errors, model parameterizations, truncation
errors, and missing physical processes. The lack of forecast
calibration could be observed in the form of forecast mean
bias, dispersion error, lack of association with reality, lack of
reliability, or imperfect representations of trend and variabil-
ity, to quote a few. If the forecast is well calibrated, the aver-
age error in the ensemble mean should be indicative of the
ensemble spread, and the variance of the forecast model cli-
matology should be equivalent to that of the climatological
truth (Wilks 2019). There exist several methods with varying
levels of sophistication to calibrate forecasts (Manzanas et al.
2019). Manzanas et al. (2019) have shown that simple bias
adjustment methods such as mean and variance adjustment
(MVA) can perform as well as the sophisticated calibration
techniques such as nonhomogeneous Gaussian regression in
correcting model biases. Their study also highlighted that the
additional value gained by using sophisticated calibration
techniques over simple bias adjustment methods are only
marginal and are limited to certain geographical regions (e.g.,
tropics) and/or seasons. In this study, the bias adjustment of
the (re)forecasts is carried out using the MVA method as
described in Leung et al. (1999), Torralba et al. (2017), and
Manzanas et al. (2019). The bias adjusted ensemble member j
of any forecast at any given lead time is given by

x*j � xj 2 xe
( )sref

se
1 oref, (1)

where xj is the member whose bias needs to be adjusted; xe
and se are the mean and the standard deviation, respec-
tively, of all the members of all the hindcasts corresponding
to the forecast; and oref and sref are the mean and the stan-
dard deviation, respectively, of the truth (or observations)
corresponding to the hindcasts. For the bias adjustment of
any given reforecast within a hindcast set, the remaining
19 years of hindcasts are used to adjust the mean and the

spread through a leave-one-out approach to prevent
overfitting.

b. Measures of predictive skill

The predictive skill of a point forecast could be evaluated
by measuring the correspondence between the forecast and
the observation through simple scores such as the mean abso-
lute error, the mean squared error, or the root mean squared
error (Jolliffe and Stephenson 2003). To assess the skill of the
probabilistic forecasts, several scores have been proposed in
the literature, each one assessing a specific attribute of fore-
cast quality (Wilks 2019; Coelho et al. 2019). One of the
important and most widely used scores to evaluate the skill of
the full predictive distribution of the probabilistic forecasts of
continuous predictands is the continuous ranked probability
score (CRPS) (Matheson and Winkler 1976; Unger 1985;
Hersbach 2000). The CRPS is the area under the curve that is
formed by computing the squared difference between the
cumulative distribution functions (CDFs) of the forecast and
the observation. When the observation is a single number, as
is often the case, its CDF is a Heaviside step function centered
on that value. This implies that if the forecast is deterministic,
CRPS simplifies to the absolute error between the forecast
and the observation:

CRPS �
�‘

2‘
F y( ) 2 Fe y( )[ ]2 dy, (2)

where F(y) is the empirical CDF of forecasts/(re)forecasts
computed by taking weekly mean of each of the ensemble
members and

Fe y( ) �
0, if y , e

1, if y$ e

{
(3)

is the CDF of observation for the observed weekly mean e,
denoted as a step function that jumps from 0 to 1 at the point
where the forecast is equal to the observation.

The CRPS is negatively oriented (i.e., smallest values indi-
cate more accurate forecasts), and it rewards those forecasts
whose probabilities are concentrated around the observation.
As the lead time increases, the ability to predict finer-scale
features in time and space quickly diminishes. Consequently,
in this work, the CRPS is computed for weekly averaged
quantities by considering (re)forecasts and observations
depending on the lead time and start date [Eq. (2)]. Spatial
averaging, wherever applicable, is performed by taking the
mean of cosine-latitude weighted gridpoint values in order to
obtain a single scalar time series over the domain, for which
all the metrics are computed (Dorrington et al. 2020). The
CRPS has the same units as the physical quantity being
assessed. The CRPS can also be calculated for the observed
climatology: the CDF is then obtained from the weekly means
of the targeted time period of the year in each of the years
covered.

The relative value of the forecasts/(re)forecasts with respect
to climatology is measured using the continuous ranked prob-
ability skill score (CRPSS) as described in Eq. (4). It can be
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observed from Eq. (4) that skillful (re)forecasts should have a
CRPSS . 0. The CRPSS is bounded above by 1, but negative
values are unbounded;

CRPSS � 1 2
CRPS(re)forecasts
CRPSclimatology

: (4)

The standard practice in forecast verification is to compute
the average CRPS of several reforecasts at each of the lead
times considered and compare it with the average CRPS of
climatology to obtain an average CRPSS. The averaging is
done in order to assess the reliability component of forecasts
(Hersbach 2000), which can only be assessed with multiple
forecast instances. However, as we show in section 4a, averag-
ing ratios (i.e., CRPSS) overemphasizes negative instances,
and can therefore be misleading in evaluating forecast skill.
Besides, within the framework of the S2S forecasts, Coelho
et al. (2019) recommended to use novel verification metrics
that are meaningful to the end-users. Keeping in mind the
S2S end-users in the energy sector, we propose “proportion
of skillful (re)forecasts” as a novel way of synthesizing the
CRPSS to measure skillfulness of the (re)forecasts. As the
name suggests, the proportion of skillful (re)forecasts meas-
ures the proportion of (re)forecasts that have CRPS lower
than that of climatology. To compute the proportion of skill-
ful (re)forecasts [Eq. (5)], we first compute CRPSS of each of
the (re)forecasts separately at each of the specified lead times,
and then compute at each of the specified lead times the ratio
of the number of (re)forecasts with CRPSS greater than zero
to the total number of (re)forecasts. Accordingly, skillful
(re)forecasts should have values . 50%. In general, the pro-
portion of skillful (re)forecasts is consistent with the median
of the CRPSS of (re)forecasts. The proportion of skillful
(re)forecasts is flexible in the sense that the threshold of
“CRPSS greater than zero” can be adjusted (i.e., increased),
in particular in situations where it would be useful to have
CRPSS above a given threshold, not just above zero. The
95% confidence intervals for the proportion of skillful (re)for-
ecasts in this study are computed using the standard paramet-
ric approach by assuming a normal distribution for the
underlying data (Machin et al. 2013):

proportion of skillful (re)forecasts

� no: of (re)forecasts with CRPSS . 0
total no: of (re)forecasts 3 100: (5)

Assessing the skill of probabilistic forecasts generally
involves assessing several forecast attributes (Coelho et al.
2019). Another commonly used score is the anomaly correla-
tion coefficient (ACC), which measures the linear association
between the ensemble mean and the observations. ACC is a
deterministic score that is computed as the usual Pearson’s
correlation between forecast ensemble mean and observed
anomaly pairs of several independent forecasts (Namias
1952). The ACC for weekly averaged quantities of n indepen-
dent (re)forecasts at any given place or across any given
domain is given by

ACC � covariance y′,o′( )
sy′so′

, (6)

where y′ is the (re)forecast anomaly computed by removing
the weekly mean climatology from the bias adjusted (re)fore-
cast weekly ensemble mean, o′ is the observed anomaly com-
puted by removing the weekly mean climatology from the
observed weekly mean, and s is the standard deviation. The
95% confidence intervals for the ACC, wherever applicable,
are computed through a nonparametric bootstrap approach
carried out 1000 times. In general, for positioning of the syn-
optic scale features, the skillful forecasts should have ACC .

60%, below which the value in the forecasts becomes only
marginally useful (Robertson and Vitart 2018). Other impor-
tant attributes of forecast quality such as reliability (i.e., a
measure of calibration of the issued forecast probabilities),
resolution (i.e., a measure of how the frequency of occurrence
of the event varies as the issued forecast probability changes),
and sharpness (i.e., a measure of the ability of the forecasts to
produce concentrated predictive distributions that are differ-
ent from the climatological probabilities) are also assessed for
the weekly mean tercile, quartile, and decile forecasts through
the use of reliability diagrams (Sanders 1963; Jolliffe and Ste-
phenson 2003; Wilks 2019), which are discussed alongside the
results in section 4b.

4. Results

The first part of this section presents the general skill
assessment of 2-m temperature and 100-m wind speed refore-
casts averaged across the European domain (Fig. 2). Subse-
quently, the countrywide assessments of reforecast skill are
also carried out. Moreover, the reforecast skill assessment at
the gridpoint scale is investigated to explore geographical var-
iations of skill. In the second part of this section, we compare
the skill of reforecasts with the skill of forecasts to understand
the skill differences considering different ensemble sizes.

FIG. 2. Illustration of the five countrywide domains and the
European domain considered in this study.
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Last, we assess reliability, resolution, and sharpness of the
forecasts through the aid of reliability diagrams.

a. Reforecast skill assessments

1) GENERAL ASSESSMENT OVER EUROPE

Figure 3 compares the temporal evolution of 2-m tempera-
ture and 100-m wind speed reforecast skill for weekly mean
values averaged across the European domain (Fig. 2).
Figures 3a and 3b show that the mean values (i.e., gray
bars) of CRPSS drop below zero after 18 and 10 days,
respectively, for temperature and wind speed. On the other
hand, the median (i.e., colored bars) largely stays above
zero throughout all the leads, although more significantly
for temperature. By definition, the skill score is bounded by
1 above, but its negative values are unbounded such that
the average can be sensitive to rare, strong negative values.
Hence, instead of calculating the average of the CRPSS, we
compute the proportion of skillful (re)forecasts as a measure
of (re)forecast skill. Figure 3c shows the temporal evolution of
the proportion of skillful reforecasts with increasing lead time.

It is conspicuous that the model performs better in predict-
ing 2-m temperature than 100-m wind speed at all lead
times. While temperature reforecasts are skillful at all lead
times, wind speed reforecasts are skillful until approxi-
mately day 24. Figure 3d displaying the time evolution of
ACC for temperature and wind speed confirms that temper-
ature reforecasts are more skillful than wind speed refore-
casts. The ACC for temperature falls below 0.6 around
day 13, and below 0.25 around day 22, whereas the ACC for
wind speed falls below 0.6 around day 8, and below 0.25
around day 17. Seasonal variations of skill are discussed in
the following section.

2) SEASONAL VARIATIONS OF SKILL

Seasonal variations of temperature and wind speed refore-
cast skill averaged across the European domain are shown in
Fig. 4. It can be noticed that the proportion of skillful refore-
casts is larger in the Northern Hemisphere winter [December–
February (DJF)] and summer [June–August (JJA)] than in the
transition seasons for both temperature (Fig. 4a) and wind
speed (Fig. 4b). The ACC for temperature (Fig. 4c) is larger in

(a) (b)

(c) (d)

FIG. 3. Reforecast quality assessment averaged across the European domain (348–748N, 138W–408E), showing the
temporal evolution of CRPSS for (a) 2-m temperature T and (b) 100-m wind speed U), demonstrated as standard
boxplots with colored bars indicating the median, gray bars indicating the mean, the gray box indicating the first and
the third quartiles, whiskers indicating the end points, and outliers hidden. Values above 0 indicate skillfulness.
Lead time is indicated as central day of the week (as an illustration, day 10 corresponds to the week between days 7
and 13). (c) The temporal evolution of the proportion of skillful reforecasts for the same variables. Values above 50%
(black horizontal line) indicate skillfulness. (d) The temporal evolution of ACC for the same variables. Shaded
regions in (c) and (d) correspond to the 95% confidence intervals.
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the summer relative to other seasons after a lead time of
around 17 days. In contrast, the ACC for wind speed is larger
in the winter relative to other seasons between 18 and 31 days
(Fig. 4d). The improved skill in winter and/or summer may
arise from stronger boundary conditions (e.g., sea surface tem-
perature gradients), reinforced coupling (e.g., troposphere–
stratosphere), enhanced memory of the initial conditions (e.g.,
soil moisture) among others (Robertson and Vitart 2018).
However, addressing the reasons for enhanced skill in certain
seasons is beyond the scope of this study. The seasons of winter
and summer, in addition to demonstrating enhanced skill, also
have a significant impact on the energy sector in the form of
increased demand driven by heating and cooling, respectively.
Therefore, only the results corresponding to winter and sum-
mer will be shown in the following sections.

3) COUNTRYWIDE SKILL ASSESSMENT

The assessment of reforecast skill averaged across the
European domain may have limited application. In contrast,
countrywide average skill of wind speed and temperature
reforecasts may be closer to the scale on which end-users may
need forecasts for decision-making (e.g., transmission system
operators). This section investigates variations in skill over

domains typically a thousand kilometers across, e.g., over a
country like the United Kingdom. Table 1 and Fig. 2 present
the domains considered in this study. The choice of the
domains is not just motivated by their geography (inland ver-
sus coastal, location relative to the climatological storm
tracks) offering different sampling conditions, but also by
their considerable share of wind power in the energy mix
(International Energy Agency 2020). Figures 5 and 6 illustrate
the differences in the temporal evolution of the proportion of
skillful reforecasts for a selection of domains. For tempera-
ture (Fig. 5), in both DJF and JJA, predictions over Germany
(e.g., proportion. 60% up to about 27 days in DJF and about
15 days in JJA) are more skillful than predictions over France
(proportion . 60% up to about 20 days in DJF and about

(a) (b)

(c) (d)

FIG. 4. Seasonal variations of reforecast quality assessment averaged across the European domain (348–748N,
138W–408E), showing the temporal evolution of the proportion of skillful reforecasts for (a) 2-m temperature and
(b) 100-m wind speed. Values above 50% (black horizontal line) indicate skillfulness. Also shown are the temporal
evolution of ACC for (c) 2-m temperature and (d) 100-m wind speed. Shaded regions correspond to the 95% confi-
dence intervals.

TABLE 1. Description of the domains.

Domain region Lower-left bound Upper-right bound

France 43.08N, 5.58W 51.08N, 7.38E
Germany 47.38N, 6.48E 54.68N, 14.98E
Southern Scandinavia 57.68N, 4.58E 63.08N, 19.08E
Spain and Portugal 37.08N, 10.08W 43.58N, 3.78E
United Kingdom 49.08N, 10.08W 60.08N, 4.08E
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14 days in JJA). The reforecasts are more skillful in the winter
as compared with the summer across both domains. The ACC
for temperature also shows similar behavior to that of the pro-
portion of skillful reforecasts (not shown). The skill of winter
temperature reforecasts for Spain and Portugal and the
United Kingdom (not shown) domains are similar to that for
France, and the skill across southern Scandinavia (not shown)
is at least as good as, if not slightly better than Germany.
Overall, in DJF, the skill across the most skillful country-sized
domains (e.g., Germany) is almost as good as the skill across
the European domain (Fig. 4a). Whereas in JJA, the skill
across the European domain is better than the skill of the
most skillful country-sized domains.

The wind speed reforecasts (Fig. 6) across the United King-
dom (e.g., proportion . 60% up to about 17 days) are more
skillful than that of France (proportion .60% up to about
11 days) in DJF. However, in JJA, France demonstrates mar-
ginally larger skill than the United Kingdom after about
10 days. The ACC again displays a similar pattern to that of
the proportion of skillful reforecasts (not shown). In winter,

the skill across Germany and Spain and Portugal (not shown)
are comparable to that of France, and the skill across southern
Scandinavia (not shown) is at least as good as, if not marginally
better than the United Kingdom. In DJF the skill across the
United Kingdom is better than the skill across the European
domain (Fig. 4b), whereas in JJA the opposite is true.

4) GRIDPOINT SKILL ASSESSMENT

Although countrywide domains are useful in predicting
national averages of the variables, gridpoint assessment of
skill are more appropriate to explore the geographical varia-
tions of skill. The spatial resolution of the data used in this
study is about 90 km (i.e., 0.98). This resolution is coarse enough
for the S2S prediction models to still hold prediction skill on the
subseasonal time scales (Buizza and Leutbecher 2015), and fine
enough to be useful for a range of applications.

Figure 7 illustrates the maps of temporal evolution of the
proportion of skillful reforecasts and ACC for temperature
across the European domain. The maps for winter (top row of
Fig. 7a) show the presence of a zonal (i.e., east–west) pattern

(a) (b)

FIG. 5. Comparison of the temporal evolution of proportion of skillful 2-m temperature reforecasts between France
and Germany for (a) DJF and (b) JJA. Shaded region correspond to the 95% confidence intervals. Values above
50% (black horizontal line) indicate skillfulness.

(a) (b)

FIG. 6. Comparison of the temporal evolution of proportion of skillful 100-m wind speed reforecasts between
France and the United Kingdom for (a) DJF and (b) JJA. Shaded regions correspond to the 95% confidence inter-
vals. Values above 50% (black horizontal line) indicate skillfulness.
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between second and fourth weeks indicating that temperature
predictions are generally more skillful over central/eastern
Europe than western Europe. In central and eastern Europe,
the reforecasts are skillful even at a lead time of 6 weeks in

winter, encouraging their use in the decision-making value
chain across sectors. The reforecasts are less skillful in sum-
mer in general with proportion of skillful reforecasts converg-
ing toward climatology beyond 3 weeks. The ACC (Fig. 7b)

(a)

(b)

FIG. 7. Maps of (a) proportion of skillful reforecasts and (b) ACC for 2-m temperature over Europe. In (a) and (b), the top row is for
DJF and the bottom row is for JJA. Columns from left to right show lead times centered on days 3, 10, 17, 24, 31, and 38. Values above
50% in (a) indicate skillfulness.
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drops below 60% beyond 2 weeks showing no noticeable dif-
ferences between seasons.

The maps of the proportion of skillful reforecasts and ACC
for wind speed are shown in Fig. 8. Overall, the reforecasts
are more skillful in winter. In addition, there exists a meridio-
nal (i.e., north–south) pattern of skill in winter (top rows in
Figs. 8a,b) between second and fifth weeks indicating that

wind speed predictions are generally more skillful over north-
ern than southern Europe. Across Scandinavia, the propor-
tion of skillful reforecasts still exceeds 50% after 5 weeks.
However, in summer, the proportion of skillful reforecasts for
wind speed drops below 50% over a large part of the domain
beyond 3 weeks. The ACC drops to significantly lower levels
than that of temperature beyond a week in both winter and

(a)

(b)

FIG. 8. As in Fig. 7, but for 100-m wind speed.
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summer. The reasons for enhanced skill witnessed across cer-
tain regions in Figs. 7 and 8 may be related to the differences
in the regional climate (i.e., maritime vs continental), low-
frequency oscillations (Ardilouze et al. 2021), and to the role
of circulation features, in particular the storm tracks. How-
ever, investigating the reasons for the existence of spatial pat-
tern of skill is beyond the scope of this work.

b. Forecast skill assessments

The operational forecasts with 50 ensemble members each
are expected to better represent uncertainty in the initial con-
ditions and model parameterizations as compared with the
reforecasts with only 10 members (Robertson and Vitart
2018). Figure 9 compares the skill between the winter fore-
casts and reforecasts of temperature for weekly means aver-
aged across France (Table 1 and Fig. 2). Overall, the forecasts
are more skillful than the reforecasts. The proportion of skill-
ful forecasts (e.g., values. 60% up to about 25 days) is essen-
tially greater than the proportion of skillful reforecasts
(values . 60% up to about 19 days). However, the confidence
intervals for the forecasts are 2 times as wide as those of
the reforecasts due to a smaller sample size. The ACC of

forecasts (values . 0.5 up to about 16 days, and . 0.25 up to
about 26 days) has a longer skill horizon when compared with
that of the reforecasts (values . 0.5 up to about 13 days, and
. 0.25 up to about 17 days). A similar pattern can also be
observed with respect to other seasons and domains (not
shown). The differences between the skill of the forecasts and
the reforecasts of wind speed in winter are shown in Fig. 10
for the same domain. The behavior is overall comparable
to that of the temperature. The significant differences
between the skill of the forecasts and the reforecasts are
mainly due to the differing ensemble sizes between the two
(see appendix B). Even though the reforecasts (23 yr) repre-
sent a longer climatic variability than the forecasts (4 yr)
and hence a better estimation of the overall skill of the
model, given that they have an ensemble size that is smaller
by a factor of 5 relative to the forecasts, the skill of the
reforecasts should only be considered as a lower bound for
the skill of the operational forecasts.

The CRPS and its respective skill score give one measure
of the agreement between the forecasts and the observations.
However, a thorough appreciation of the quality of forecasts
requires the use of the full joint distribution of forecasts and

FIG. 9. Comparison of the temporal evolution of 2-m temperature forecast and reforecast skills averaged across
France for DJF, showing (a) proportion of skillful reforecasts (blue) and forecasts (orange) and (b) ACC. Values
above 50% (black horizontal line) indicate skillfulness. Shaded regions correspond to the 95% confidence intervals.

FIG. 10. As in Fig. 9, but for 100-m wind speed.
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observations. The reliability diagram (Sanders 1963; Jolliffe
and Stephenson 2003; Wilks 2019) is a graphical tool to com-
prehend the full joint distribution of forecasts and observa-
tions for probabilistic forecasts of a dichotomous predictand
(i.e., predictand with a binary outcome). Perfectly reliable
(i.e., calibrated) forecasts have observed frequencies essen-
tially equal to forecast probabilities. Since the forecasts con-
sidered in this study have a larger ensemble size and hence a
better representation of uncertainty relative to the refore-
casts, the reliability diagrams are produced only for the fore-
casts. Figure 11 demonstrates the reliability diagrams for
upper and lower terciles of weekly mean temperature and
wind speed forecasts for the week centered on day 17 (i.e.,
days 14–20) and day 31 (i.e., days 28–34) for the France
domain described in Table 1. In the figure, the lines connect-
ing the points show no persistent offset from the 1:1 diagonal
line (458) illustrating the absence of unconditional biases. In a
reliability diagram, the smaller the vertical distance between
the points and the diagonal line, and the larger the vertical
distance between the points and the climatological line (dot-
ted horizontal line in the figure), the higher are the forecast
reliability and resolution, respectively. Conversely, the larger

the vertical distance between the points and the diagonal line,
and the smaller the distance between the points and the hori-
zontal climatological line, the lower are the reliability and
resolution, respectively. The dashed line located midway
between the perfect reliability line and the horizontal climato-
logical line represents the no skill line. Accordingly, the points
located in the gray area contribute positively to the skill of
the forecasts. For the third week of temperature forecasts
(Fig. 11a), the upper-tercile forecasts are more reliable than
the lower counterparts. In contrast, the reliability of the
upper- and the lower-tercile wind speed forecasts are virtually
comparable for both weeks (Fig. 11b). The upper tercile
of temperature forecasts for the third week exhibit under-
forecasting biases associated with low probabilities, and
marginal over-forecasting biases associated with high proba-
bilities. Furthermore, the lower tercile of temperature fore-
casts generally show significant over-forecasting associated
with high probabilities, indicating poor resolution and over-
confidence. For temperature in the third week, the maximum
number of forecasts is located in the bins beside the climato-
logical probability (dotted vertical line) bin (i.e., 0.2–0.4), indi-
cating reasonable sharpness of these forecasts. In contrast, for

(a)

Days 14-20

(b)

Days 14-20

Days 28-34

Days 28-34

FIG. 11. Reliability diagrams for upper and lower terciles of weekly mean forecasts for the weeks centered on (left)
day 17 (i.e., days 14–20) and (right) day 31 (i.e., days 28–34) averaged across France for (a) 2-m temperature and
(b) 100-m wind speed. The forecasts are stratified into five bins of equal width. The size of the points is proportional
to the number of forecasts in the respective bins. The vertical bars refer to the 95% confidence intervals computed
through the standard parametric approach. The vertical and horizontal dotted lines indicate the climatological tercile
probabilities (theoretically, the value is 1=3) in the forecasts and observations, respectively. Perfectly reliable forecasts
fall on the dotted diagonal line connecting the points (0, 0) and (1, 1). The points located within the gray area contrib-
ute positively to the skill.
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wind speed for both weeks, the maximum number of forecasts
are concentrated in the climatological bin suggesting that the
forecasts have low sharpness. For the fifth week of tempera-
ture forecasts, both the upper- and the lower-tercile forecasts
are less reliable, and have a poorer resolution and sharpness
as compared with the third week. While for wind speed fore-
casts in the fifth week, the reliability, resolution, and sharp-
ness are comparable to that of the third week. The number of
events falling within the bins are typically concentrated near
low forecast probabilities. Therefore, the confidence intervals
are generally narrower for lower forecast probabilities as
compared with higher forecast probabilities for both upper
and lower terciles. The fact that the upper-tercile temperature
forecasts for the third week being more reliable and having a
higher resolution than the lower-tercile forecasts, and the
comparable reliability and resolution of the upper- and lower-
tercile wind speed forecasts holds true for the other domains
(not shown). The reliability diagrams for the upper and lower
quartiles and deciles of temperature (see appendix C) and
wind speed (not shown) forecasts are less reliable, and have
significantly lower resolution, especially for larger forecast
probabilities, relative to that of the terciles. Overall, the fore-
casts of temperature and wind speed carry valuable informa-
tion in predicting terciles even beyond 2 weeks, encouraging
their implementation in operational decision-making on this
time horizon.

5. Conclusions

In this study, the skill of the subseasonal forecasts and
reforecasts of 2-m temperature and 100-m wind speed was
evaluated against ERA5 reanalysis across the European
domain. The bias adjustment of the (re)forecasts was carried
out using mean and variance adjustment method. To account
for the different aspects of (re)forecast quality (i.e., accuracy,
association, reliability, resolution, and sharpness), several
metrics were applied, providing evidence that

1) the model generally performs better in predicting 2-m
temperature than 100-m wind speed,

2) the skill over Europe displays a seasonal pattern with win-
ter showing more skillful forecasts, which is followed by
summer for temperature and summer/fall for wind speed,

3) the skill also displays a spatial pattern for temperature
having more skill for eastern than for western Europe
and for wind speed having more skill in northern than
southern Europe,

4) the skill of the reforecasts should only be considered as a
lower bound, and the forecasts due to their larger ensem-
ble size represent uncertainty better and hence perform
better, and

5) depending on the geographical domain, climate vari-
able, and forecast attribute of choice, the weekly mean
forecasts can be skillful even up to 6 weeks, encourag-
ing their implementation in the decision-making value
chain.

This study evaluated the skill of the (re)forecasts of a model
originating from a single weather forecasting center (i.e.,

ECMWF). This choice was motivated by the fact that the
skill of the forecasts of temperature (at 2 m and at 850 hPa)
of the ECMWF model compares to or even outperforms
the skill of a multimodel combination (Hagedorn et al.
2012). Nevertheless, investigation of the skill of a multimo-
del ensemble is an important next step. The reference data
(i.e., ERA5 reanalysis) used in this study also originates
from the ECMWF, produced using one of the same models
(CY41R2) that is used to produce the (re)forecasts. How-
ever, verifying (re)forecasts against reanalysis produced
from the same model may contribute to enhancing the skill
of (re)forecasts. Hence, it is important to assess the skill of
the (re)forecasts against observations or other global/regional
reanalysis datasets produced using a different model. To aid in
the further development of the prediction model, it is essential
to understand the potential sources of predictability and the
origin of model biases. The authors did not assess the skill of
the (re)forecasts of other variables that are critical for the
renewable energy sector such as the solar radiation and the
precipitation. The authors propose to undertake these explo-
rations in a future study.
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APPENDIX A

Comparison of Skill between Different Cycles of the
ECMWF Model

Figure A1 shows the temporal evolution of CRPSS of refore-
casts of 2-m temperature averaged across Germany (Table 1)
between different cycles of the ECMWF model for four seasons
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[DJF, March–May (MAM), JJA, and September–November
(SON)]. The data used in Fig. A1a consist of reforecasts
mostly from the cycles CY41R1 and CY41R2, with only a few
reforecasts from the cycle CY43R1. Whereas, Fig. A1b is

produced from the reforecasts data involving cycles CY45R1
and CY46R1. Although the data consists of a combination of
several cycles, we can compare two versions (CY41R1 and
CY46R1) by isolating DJF (top row in Fig. A1). It is very

(a) (b)

FIG. B1. Comparison of the temporal evolution of 100-m wind speed forecast and reforecast skills averaged across
France for DJF between December 2015 and February 2018 (three winters), showing (a) proportion of skillful refore-
casts (blue) and forecasts (orange) and (b) ACC. Shaded regions correspond to the 95% confidence intervals. In (a),
values above 50% (black horizontal line) indicate skillfulness.

(a) (b)

FIG. A1. Comparison of CRPSS of reforecasts of 2-m temperature averaged across Germany between different cycles of the ECMWFmodel
for four seasons (DJF, MAM, JJA, and SON), demonstrated as standard boxplots with green bars indicating the median, blue bars indicating
the mean, the orange box indicating the first and the third quartiles, whiskers indicating the end points, and outliers hidden. Values above 0 indi-
cate skillfulness. Lead time is indicated as central day of the week (as an illustration, day 10 corresponds to the week between days 7 and 13).
The reforecasts correspond to the forecasts (a) between 1 Dec 2015 and 30 Nov 2016 and (b) between 1 Dec 2018 and 30 Nov 2019.

MONTHLY WEATHER REV I EW VOLUME 1501634

Unauthenticated | Downloaded 03/10/23 07:33 AM UTC



difficult to say that the version CY46R1 is better than
CY41R1, or vice versa. Similar observations were made with
respect to other domains for both 2-m temperature and 100-m
wind speed.

APPENDIX B

Comparison of Skill between Forecasts and Reforecasts

Figures 9 and 10 indicated that the forecasts are more
skillful than the reforecasts. The improved skill of the fore-
casts may be a result of one or a combination of the way
forecasts and reforecasts are initialized (forecasts are initial-
ized using operational analysis, whereas reforecasts are ini-
tialized using ERA5 reanalysis), the difference in ensemble
size (50 for forecasts and 10 for reforecasts), or the period
of the sample considered (December 2015–November 2019
for forecasts and December 1995–November 2018 for refor-
ecasts). Through this section, we try to understand the rea-
sons for improved skill by isolating one or several factors.
Figure B1 compares the temporal evolution of skill between
100-m wind speed forecasts and reforecasts similar to
Figs. 9 and 10, but for the same period (i.e., DJF 2015/16,
2016/17, and 2017/18). Overall, the behavior is comparable
to that of Fig. 10, with forecasts being more skillful than
the reforecasts. In addition, the behavior of the ACC
(Fig. B1b) of the reforecasts is similar to that of the fore-
casts but with lower values, indicating the importance of
the role of ensemble size and the way the (re)forecasts are
initialized on the skill of the (re)forecasts. In this study,
since ERA5 reanalysis is used as reference against which
the (re)forecasts are verified, the (re)forecast skill may not
necessarily be dependent on the way (re)forecasts are ini-
tialized, thereby leaving greater weight on the ensemble
size.

APPENDIX C

Reliability Diagrams for Quartiles and Deciles of Weekly
Mean Temperature Forecasts

Figure C1 shows that the reliability diagrams for the
upper and lower quartiles and deciles of temperature fore-
casts are less reliable and have significantly lower resolu-
tion, especially for larger forecast probabilities, relative to
that of the terciles.
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