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In the relatively unproductive waters of the tropical ocean, islands can enhance 23 

phytoplankton biomass and create hotspots of productivity and biodiversity that sustain 24 

upper trophic levels, including fish that are crucial to the survival of islands’ inhabitants. 25 

This phenomenon, coined the “island mass effect” sixty-five years ago, has been widely 26 

described. However, most studies focused on individual islands, and very few documented 27 

phytoplankton community composition. Consequently, basin-scale impacts on 28 

phytoplankton biomass, primary production, and biodiversity remain largely unknown. 29 

Here we systematically identify enriched waters near islands from satellite chlorophyll 30 

concentration (a proxy for phytoplankton biomass) to analyze the island mass effect for all 31 

tropical Pacific islands on a climatological basis. We find enrichments near 99% of islands, 32 

impacting 3% of the tropical Pacific Ocean. We quantify local and basin-scale increases in 33 

chlorophyll and primary production by contrasting island-enriched waters with nearby 34 

waters. We also unveil, for the first time, a significant impact on phytoplankton community 35 

structure and biodiversity visible in anomalies in the ocean color signal. Our results suggest 36 

that, in addition to strong local biogeochemical impacts, islands may have even stronger 37 

and further reaching ecological impacts. 38 

Phytoplankton, the tiny drifting algae that fix carbon dioxide via photosynthesis, are responsible 39 

for about half of the world’s primary production1 and support essentially all life in the open 40 

ocean. Their community composition and biodiversity have been tied to vertical carbon export, 41 

resource use efficiency, and ecological stability2,3,4. As such, phytoplankton biomass, production, 42 

and biodiversity have far-reaching impacts on marine ecosystems and the global carbon cycle. It 43 

is thus paramount to understand their environmental drivers so as to predict, and potentially 44 

mitigate, how they may change in the future. In most of the tropical ocean, nutrient supply is the 45 
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primary factor limiting phytoplankton growth5. Far from continents, nutrients are brought to the 46 

sunlit surface layer primarily by vertical mixing6, wind- and eddy-driven upwelling7, atmospheric 47 

deposition8, nitrogen fixation9, and horizontal advection10. Phytoplankton biodiversity is difficult 48 

to monitor; its patterns and drivers remain largely unknown even when focusing on the simplest 49 

of biodiversity metrics, richness (number of coexisting species). Several studies found high 50 

richness in warm, stable tropical regions and identified temperature as the primary phytoplankton 51 

richness driver11,12. Others described increased richness in dynamic regions13, highlighting 52 

drivers such as nutrient supply rate and composition, advection, and top-down control14.  53 

Here, we focus on a phenomenon that has paradoxically received little attention at the basin 54 

scale, despite its prevalence and strong local impacts: island-driven increases in phytoplankton 55 

production, resulting in nearly ubiquitous chlorophyll enrichments near tropical Pacific islands 56 

and atolls15. This “island mass effect” (IME)16 can result from various processes such as 57 

upwelling and mixing in lee eddies, island runoff, submarine groundwater discharge, and others 58 

(reviewed by Gove et al.15). These processes supply additional nutrients relative to surrounding 59 

waters, supporting enhanced phytoplankton growth and dramatically increasing local 60 

productivity. The resulting increased fish production is crucial to Pacific island societies that rely 61 

on fishing for food security and protein intake17. By increasing primary production, islands can 62 

also locally create an important oceanic sink for atmospheric CO2 (as observed in the Southern 63 

Ocean18) and have been hypothesized to significantly contribute to the global carbon budget19. 64 

IMEs have been described for a few of the thousands of tropical Pacific islands, notably the 65 

Galapagos20, Hawaii21, the Marquesas22, Kiribati23, Solomon24, New Caledonia25, Tonga26, 66 

Vanuatu, and Fiji27. There are also some rare reports of island impacts on phytoplankton 67 

community composition28,29,30. Only two studies systematically investigated the IME for several 68 
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islands at once: a compilation of in situ chlorophyll concentration in the south tropical Pacific27, 69 

and an analysis of satellite chlorophyll increase near 35 coral reef islands and atolls15. Neither 70 

study considered phytoplankton community composition. A systematic study of the IME for all 71 

islands in the tropical Pacific, particularly addressing impacts on phytoplankton biodiversity, is 72 

unprecedented. 73 

Characterizing island mass effects in the tropical Pacific 74 

We investigated the IME for all tropical Pacific islands and shallow reefs using satellite surface 75 

chlorophyll concentrations (hereafter Chl). A total of 11,449 islands and 4,602 shallow reefs 76 

were identified from high-resolution coastline and bathymetry. Islands and reefs were combined 77 

within land pixels of the 4 km resolution Chl grid (pixels shallower than 30 m were treated as 78 

land, see Methods), resulting in a database of 437 islands and 227 shallow reefs (hereafter 79 

“islands”). An algorithm automatically detecting IMEs from Chl maps was developed and 80 

applied both to the time-averaged Chl and to a monthly climatology. For each island, the 81 

algorithm identified the IME as a Chl contour enclosing the island and surrounding high-Chl 82 

waters, termed IME region. A reference (REF) region of the same size was detected alongside 83 

each IME region, enclosing nearby non-IME waters (Extended Fig. 1). The REF region 84 

represents conditions that would exist if no IME was present. Increases in Chl nearby islands and 85 

within the IME regions were defined relative to REF. 86 

The algorithm detected IMEs for most islands, whether in oligotrophic gyres or in more 87 

productive equatorial regions. Islands with the strongest, most far-reaching impacts on average 88 

Chl include the Marquesas, Fiji/Tonga, Solomon, Kiribati, and the Galapagos (Fig. 1). Most 89 

IMEs are strongly seasonal, such that an average map does not adequately render the IME 90 
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prevalence or strength. When applied to climatological maps (Fig. 1 inserts), the method detected 91 

an IME near 99% of islands (Table 1). Some of these IMEs only represent weak Chl increases 92 

because climatological averages smooth the IME signal, but their presence indicates that an IME 93 

likely occurred during the satellite time period. A more conservative approach still identified 94 

IMEs near 90% of islands (right column). If anything, the IME prevalence may be 95 

underestimated as small IMEs may not be detected using a 4-km resolution product (see Table 96 

S1). This confirms that the IME is nearly ubiquitous in the tropical Pacific15. Overall, our results 97 

indicate that the IME impacts 3% of the tropical Pacific area although islands and reefs together 98 

only represent 0.4%. 99 

Island impacts on phytoplankton biomass and production 100 

Local IME impacts were assessed by comparing the paired IME and REF regions, and total 101 

impacts calculated by summing the results over the entire tropical Pacific for each climatological 102 

month and averaging over time. The results reveal a strong impact of islands on surface 103 

phytoplankton biomass (using Chl as a proxy) and on satellite-derived primary production31 104 

(Table 1). Chl increases by 9% and primary production by 3% on average within IME regions. 105 

Next to the islands, impacts are even more dramatic with a Chl increase of 26% on average. The 106 

apparent higher impact on Chl than primary production is partially due to the lower spatial 107 

resolution of the primary production product (9 km vs 4 km for Chl), combined with the fact that 108 

pixels closest to islands, where impacts are greatest, must be removed (see Methods).  109 

While local impacts are very high, islands seem to increase Chl and primary production by less 110 

than 1% over the tropical Pacific (Table 1). These numbers may be underestimated because of 111 

removing shallow pixels near islands where impacts are greatest, and because our algorithm 112 
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misses delayed IMEs occurring offshore26 by assuming that the IME region is connected to the 113 

island. Although Chl measured by satellites is only representative of approximately a fifth of the 114 

euphotic zone, the relative impact on total vertically integrated phytoplankton biomass may be 115 

expected to be of the same order of magnitude as the impact on Chl since IME enrichments 116 

typically occur over the full euphotic zone15.  117 

The overall primary production increase around 0.05 PgC/yr (Table 1) can be compared to other 118 

processes, for which regional estimates of the nitrate supply carbon-equivalent (potential new 119 

production) are available. Potential new production represents an upper bound for new 120 

production, itself representing less than half of primary production in the region32, which 121 

provides a basis for rough comparisons with the IME even though island-induced nutrient supply 122 

is unknown. These other processes include wind-driven upwelling (1.8 to 3.9 PgC/yr including 123 

equatorial upwelling when adapting past results to the region33), turbulent vertical mixing at the 124 

nitracline (0.4 PgC/yr for the region6), nitrogen fixation (around 0.2 PgC/yr for the Pacific34, 125 

noting that nitrogen fixation may be partly supported by IMEs28,26), and the Peru upwelling 126 

system (0.1 PgC/yr35). Consequently, despite strong local impacts, islands are unlikely to 127 

represent a major source of nutrients for phytoplankton in the tropical Pacific and to play an 128 

important role in the global carbon budget. 129 

Island impacts on phytoplankton taxonomy 130 

Assessing island impacts on phytoplankton species composition is a challenging proposition. 131 

There is at present no in situ dataset with the taxonomic and spatiotemporal coverage needed to 132 

describe phytoplankton community structure and biodiversity throughout the tropical Pacific. 133 

Significant progress has been made towards identifying phytoplankton taxonomy from space36, 134 
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but published methods only identify a small number of broad taxonomic groups or size classes. 135 

To circumvent the lack of taxonomic resolution in satellite products, we used PHYSAT37, a 136 

method clustering anomalies in the ocean color signal into 61 phenological bio-optical classes38 137 

(hereafter phenoclasses, see Methods). Because phytoplankton characteristics such as cell size, 138 

composition, intracellular structure, cell arrangement, and absorption impact the ocean color 139 

signal, phenoclasses are representative of various phytoplankton communities39. We applied 140 

classical ecological metrics to phenoclasses, capturing changes in phenoclass composition and 141 

diversity between IME and REF regions. These ecological metrics describe island-driven 142 

changes in phenoclasses, themselves revealing changes in phytoplankton taxonomy. 143 

Island impacts on phytoplankton community composition were studied using the Bray-Curtis 144 

dissimilarity index applied to phenoclasses (Fig. 2a). High phenoclass dissimilarity was 145 

identified between IME and REF regions for most islands, particularly at low latitudes, 146 

suggesting a strong island impact on phytoplankton community composition. These differences 147 

are considerably higher than between random sets of pixels encompassing the IME and REF 148 

regions (Fig. 3a left), confirming that they are significant and not due to random spatial 149 

heterogeneity in PHYSAT phenoclasses. We looked more closely at the most common 150 

phenoclasses found in the tropical Pacific. These are part of “labeled” phenoclasses that were 151 

matched to dominant broad taxonomic groups thanks to coincident in situ data. The 152 

corresponding phytoplankton groups are mostly Prochlorococcus, followed by nanoplankton and 153 

Synechococcus, consistent with known phytoplankton composition in the region40. 154 

Prochlorococcus-labeled phenoclasses significantly decreased in proportion within the IME 155 

region relative to REF, while Synechococcus- and nanoplankton-labeled phenoclasses both 156 
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increased, albeit non-significantly for nanoplankton (Fig. 3a right). This is coherent with reports 157 

of Synechococcus and nanoplankton outcompeting Prochlorococcus at higher nutrient levels41,42. 158 

Island impacts on phytoplankton biodiversity were investigated using several dimensions of 159 

phenoclass diversity: richness (number of distinct phenoclasses), evenness (phenoclass 160 

proportion homogeneity), and the Shannon index, a widely used biodiversity metric that accounts 161 

for both richness and evenness (Table 1). On average, phenoclass richness strongly increases 162 

near islands, more than Chl and primary production. The island-driven phenoclass richness 163 

increase is spatially variable (Fig. 2b), highest poleward of 10° latitude in both hemispheres. 164 

There is no impact on evenness, and a smaller impact on Shannon diversity. Part of the richness 165 

increase simply arises because, by definition, Chl is higher in IME than REF regions (Fig. 3b, 166 

left). Indeed, phenoclass richness is strongly correlated with Chl (r = 0.72 across REF regions, 167 

Extended Fig. 3), consistent with in situ phytoplankton richness patterns in low productivity 168 

waters43. However, the island-driven increase in phenoclass richness is only weakly correlated to 169 

the Chl increase (r = 0.22), suggesting that this Chl signal only explains part of the phenoclass 170 

richness increase. We randomly selected two thirds of the IME and REF regions with similar Chl 171 

characteristics, effectively removing the Chl signal (Extended Fig. 4). A total of 1,000 random 172 

permutations were selected, and 33% of permutations still displayed significantly higher 173 

phenoclass richness within the IME subset (Fig. 3b, right). Taken together, these results suggest 174 

that the observed island-driven increase in phenoclass richness is not only linked to increased 175 

Chl, but also partly due to some island-specific phenomenon. We hypothesize that some islands 176 

release nutrients with ratios different from the ones of ambient waters, depending on soil 177 

composition and human activities, which could favor different species and increase 178 

phytoplankton richness14. By contrast, weaker taxonomic impacts would be expected near 179 
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seamounts44, because seamount-driven enrichments result from upwelling and mixing45 of water 180 

masses close to Redfield ratios.  181 

Our satellite-based findings provide compelling evidence for a strong IME impact on 182 

phytoplankton community composition and biodiversity. While PHYSAT is only a proxy for 183 

phytoplankton taxonomy, our results match previous reports from the Marquesas islands, 184 

including a shift from Prochlorococcus to Synechococcus and an increase in phytoplankton 185 

biodiversity leeward of the islands29,30. This island-driven increase in phytoplankton biodiversity 186 

may be a crucial piece contributing to islands being biodiversity hotspots in the world oceans46. 187 

Island effects could also contribute to the observed latitudinal maximum phytoplankton richness 188 

in the tropics11,12, since islands can export biodiversity to surrounding waters46. Observations of 189 

phytoplankton taxonomy around other islands are needed to confirm PHYSAT-inferred island 190 

impacts on phytoplankton community composition and biodiversity.  191 

Regardless of impacts on phytoplankton taxonomy, local impacts on biomass and productivity 192 

are so high that regions enriched by IMEs represent oases in an otherwise largely unproductive 193 

environment (Fig. 1). There is strong evidence that they attract fish and marine predators47,48, and 194 

represent important stopovers along marine migration corridors49. While fishery data would be 195 

biased for islands (due to confounding effects of higher fish biomass and proximity), a recent 196 

study of seamounts found a more than doubled fish catch at seamounts with Chl enhancements 197 

relative to seamounts without45. Some islands such as Hawaii and the Galapagos also represent 198 

key conservation sites deemed irreplaceable because of the presence of endemic marine 199 

species50. This suggests that islands have profound ecological consequences both at the local and 200 

basin scale, even though large-scale impacts on primary production appear to be small.  201 

  202 
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Tables 220 

 All IMEs 
IMEs with Chl 
increase nearby 
islands ≥ 10% 

 IME prevalence 
Percentage of islands with IME detected at least one month a year 98.9% 90.1% 
… at least 6 months a year 93.2% 55.1% 
… year-long 44.3% 23.9% 
Percentage of IME detections over all possible cases (664 islands, 
12 months) 83.7% 54.2% 

 IME spatial impact 
Average IME area 8,001 km² 13,558 km² 
Total IME area within the tropical Pacific 
(in percentage) 

3,179,873 km² 
(3.2%) 

3,033,672 km² 
(3.1%) 

 IME impact on surface chlorophyll concentration (Chl) 
Average nearby percentage Chl increase (pixels closest to island) 25.6% 40.8% 
Average percentage Chl increase per IME 9.3% 13.1% 
Average total Chl increase per IME (summed over the IME area)  0.21 tons/m 0.37 tons/m 
Total IME-induced Chl increase in the tropical Pacific 
(in percentage) 

83 tons/m 
(0.68%) 

82 tons/m 
(0.67%) 

 IME impact on primary production (PP) 
Average percentage PP increase per IME 2.8% 4.2% 
Average total PP increase per IME (summed over the IME area) 0.14 TgC/yr 0.23 TgC/yr 
Total IME-induced PP increase in the tropical Pacific 
(in percentage) 

50.4 TgC/yr 
(0.51%) 

50.2 TgC/yr 
(0.51%) 

 IME impact on PHYSAT phenoclass diversity 
Average percentage richness increase per IME 12.1% 13.2% 
Average percentage evenness increase per IME -0.1% 0.0% 
Average percentage Shannon index increase per IME 4.1% 4.5% 

Table 1: IME impacts in the tropical Pacific. IME prevalence is defined based on islands 221 

belonging to an IME region (there can be several islands associated with one IME region). 222 

“Average” impact refers to impact for a single IME, averaged over all detected IMEs. They 223 

include both change in ambient conditions in IME vs REF regions, and total island-driven 224 

increase summed over the IME area. “Total” impact refers to impacts summed over the entire 225 

study region and averaged over a climatological year. Phenoclass diversity impacts were 226 

computed for IME/REF regions of at least 100 PHYSAT data points, and richness was 227 
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normalized to 100 data points to correct for the strong dependence of richness on area sampled 228 

(see Methods). Statistics are given for all IMEs, and for a more conservative subset excluding 229 

those where the island nearby Chl increase was below 10%. Additional metrics (median and 230 

interquartile range) are provided in Extended Table 1.  231 
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Figure legends 232 

Figure 1: Map of IME detection in the tropical Pacific. The main map represents the 2002-233 

2018 average satellite chlorophyll concentration (MODIS data) in the study region (30°S - 234 

30°N). IME regions are contoured in different shades of red depending on Chl increase nearby 235 

islands relative to a reference region (maximum value in mean conditions: 558% observed for the 236 

Galapagos Islands). Inserts display the climatological month with the highest IME chlorophyll 237 

enrichment in selected regions with a custom color bar: A- Kiribati in May, B- Hawaii in 238 

September, C- Galapagos in January, D- Solomon in July, E- New Caledonia, Vanuatu, Fiji, and 239 

Tonga in February, and F- Marquesas in May. Extended Fig. 2 provides full maps of 240 

climatological months. 241 

Figure 2: Maps of island impacts on PHYSAT phenoclasses, indicative of impacts on 242 

phytoplankton community composition and biodiversity. For each island, the maximum value 243 

observed over the seasonal cycle is displayed (only computed for IME regions containing at least 244 

100 PHYSAT data points). a) Phenoclass Bray-Curtis dissimilarity between IME and REF 245 

regions, indicative of differences in phenoclass composition. b) Phenoclass richness increases in 246 

the IME region relative to REF (richness was normalized to 100 data points). c) Summary of 247 

island impacts on phenoclasses, defined according to the median value for phenoclass Bray-248 

Curtis dissimilarity (composition, pink) and for richness increase (richness, blue), where 249 

“impacts” are defined as above the median. Phenoclass richness increase is correlated with 250 

absolute latitude (r = 0.18) while phenoclass Bray-Curtis dissimilarity is anticorrelated (r = -251 

0.24). Despite their opposite relation to latitude, phenoclass richness increase and Bray-Curtis 252 

dissimilarity are actually weakly correlated (r = 0.30).   253 
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Figure 3: Island impacts on phytoplankton community structure as depicted by PHYSAT. 254 

Statistics are based on paired climatological IME/REF regions with 100 PHYSAT data points 255 

minimum. Box plots report the median (center line), 95% confidence interval around the median 256 

(notches equal to ±1.58 times interquartile range divided by square root of the sample size), 257 

interquartile range (box), and 1.5 times the interquartile range (whiskers). Data points are 258 

displayed as crosses (outliers beyond whiskers as dots). Symbols show whether distributions are 259 

statistically different according to a Mann-Whitney U-test (= is non-significant, +/- indicate how 260 

IME medians relate to REF). 261 

a) Left: Phenoclass Bray-Curtis dissimilarity between IME and REF regions, compared to data 262 

points randomly taken across IME/REF regions. Right: Occurrence frequency of dominant 263 

phenoclasses (frequency >0.02) in the IME and REF regions, sorted by label: Prochlorococcus 264 

(Pros), Synechococcus (Syn), and nanoplankton (Nano).  265 

b) Left 2 panels: Phenoclass richness is significantly higher in IME than in REF regions (9.6% 266 

difference in median) partly linked to higher Chl (12.4% difference in median). Right: summary 267 

of Chl and phenoclass richness characteristics for 1000 random permutations independently 268 

taken within IME and REF regions (N=712) such that their Chl distribution is equivalent 269 

(p>0.05). Chl may be insignificantly higher within IME or REF subsets (as described by the 270 

difference in median) because IME/REF pairs are decoupled (example in Extended Fig. 4). 271 

  272 
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Methods 432 

IME detection data sets. The IME was detected from a climatology of MODIS satellite surface 433 

chlorophyll-a concentrations (Chl, 4 km, monthly from July 2002 to December 2018, 434 

erdMH1chlamday product downloaded from 435 

https://coastwatch.pfeg.noaa.gov/erddap/info/index.html). The study was based on the 4 km 436 

MODIS Chl grid in the tropical Pacific (30°N/30°S; east/west borders are roughly delimited by 437 

the Americas, Australia, Indonesia, Philippines, and Taiwan, see Fig. 1). Islands were detected 438 

from the Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) 439 

version 2.3.7 full resolution coastline (https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html) 440 

loaded using functions from the m_map toolbox (https://www.eoas.ubc.ca/~rich/map.html). 441 

Bathymetry was obtained from the GEBCO global bathymetry 442 

(https://www.gebco.net/data_and_products/gridded_bathymetry_data/) at 1/15’ resolution (< 500 443 

m). A 4 km resolution “shallow mask” was generated for the MODIS grid, including all pixels 444 

containing land shallower than 30 m according to GEBCO or where an island was detected. The 445 

shallow mask was extended by one additional pixel in all directions to ensure that all pixels 446 

containing shallow waters were flagged15. All ocean color data (Chl, primary production, and 447 

PHYSAT, see below) were removed within the shallow mask as they were potentially 448 

contaminated by bottom reflectance15. In practice, pixels within the shallow mask (containing 449 

land, waters shallower than 30 m, and adjacent pixels) were treated as land. 450 

Island database. The island database includes both emerged islands and reefs shallower than 30 451 

m according to the GEBCO bathymetry. The reason is that some atolls can have no consistent 452 

(e.g., tide-dependent) or very little emerged land, and can potentially be missed both by GSHHG 453 

and by the GEBCO bathymetry. Islands and reefs were identified as follows. Islands were 454 
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detected from the GSHHS coastline as closed contours in the 120°E-70°W, 30°S-30°N region. 455 

Because GSHHG was constructed from databases that were built in the 70s and 80s, errors 456 

remained in the location of some islands. Islands being too numerous to all be validated, only 457 

islands from the final database (see below) were checked against GEBCO bathymetry, and where 458 

obvious discrepancies existed, their position was shifted accordingly. The island database was 459 

then reprocessed until no more discrepancy was found (total corrected islands: n=32). The island 460 

database was merged with a published database of 1,779 islands51 by finding, for each island 461 

from the Nunn et al. database51, the closest GSHHS contour. The Nunn et al. database51 provides 462 

more precise information regarding position, elevation, island type, and area. Last, reefs were 463 

detected from GEBCO (at < 500 m resolution) as groups of pixels shallower than 30 m (“shallow 464 

zones”, n=5,972), that include both submerged reefs and emerged islands. Island and reef 465 

databases were merged by finding islands within shallow zones, when they existed. The 466 

combined dataset after removing contours within the east/west mask (e.g., Atlantic, Indonesia) 467 

includes 16,051 islands and reefs (hereafter “islands”). Islands within 100 km of the tropical 468 

Pacific east/west borders were removed to avoid continental influences (n=5,062). The remaining 469 

islands were then combined within the MODIS shallow mask (see section above and Fig. S1). 470 

The term “island” in the paper thus refers to a group of islands/reefs belonging to a set of 471 

connected shallow pixels. The final database includes 664 islands (437 with emerged lands, 472 

including 363 from the Nunn et al. island database51, and 227 shallow reefs). 473 

IME detection. The IME was defined for each island as the smallest possible Chl contour 474 

enclosing the island that fulfills a list of criteria detailed below (see Fig. S2 for a representation 475 

of the algorithm). Beforehand, the maximum (Chl_max) and minimum (Chl_min) nearby Chl 476 

were obtained for each island within a 1-pixel band around the island mask. Islands were ranked 477 
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by Chl_min, and processed from lowest to highest Chl_min. For a given island, the IME Chl 478 

contour (termed cChl) was iteratively lowered by 0.01 mg m-3 starting at Chl_max and the 479 

corresponding IME mask computed. The IME mask includes both pixels above cChl and 480 

adjacent missing data, such that other islands can become part of the same IME, then termed 481 

“shared IME”. When this happened, Chl_max was adjusted to the highest value; Chl_min does 482 

not need adjustment since islands are processed in Chl_min order. The iteration was stopped 483 

when one of the following conditions was met: (1) cChl < Chl_min (the rationale being that 484 

currents displace the nutrient enrichment downstream of the island, so that at least one pixel 485 

surrounding the island should not belong to the IME); (2) the IME mask was too large, either 486 

touching the domain borders, or touching the continent masks or adjacent NaN pixels (this 487 

happens when contours enclose the full oligotrophic gyre); (3) regions of high Chl (> 488 

0.8*Chl_max) were found within the IME mask, further than 32 pixels away from any island 489 

(~ 150 km). In this last case, the goal was to avoid non-island sources of nutrients within the IME 490 

region such as open-ocean eddies or upwelling; the 32-pixel tolerance deals with cases where the 491 

Chl maximum is displaced downstream of the islands52. The IME peak can occur even further 492 

downstream, notably in cases of delayed IME26; 32 pixels thus represents a compromise between 493 

capturing most IMEs and avoiding non-IME local Chl enrichments. While sensitive to the 494 

parameters used, this criterium only concerned 1.3% of cases (for the monthly climatology); in 495 

95% of cases, the algorithm stops due to criterion #2. When one of the 3 criteria was met, a 496 

second iteration was performed at higher resolution (0.001 mg m-3) starting with the last cChl 497 

until meeting the criteria again, such that cChl was determined with a 0.001 mg m-3 accuracy. 498 

This is well beyond measured Chl accuracy, but small changes in cChl can result in large 499 

changes in IME areas on climatological averages, hence the need for high sensitivity. The IME 500 
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was only kept if the IME mask contained at least 2 Chl pixels. The IME detection algorithm is 501 

available at https://bitbucket.org/messiem/toolbox_IME_detection. 502 

Satellite-derived information on phytoplankton biomass and primary production. Island 503 

impacts were assessed using satellite chlorophyll-a (Chl), a common proxy for phytoplankton 504 

biomass53 representative of the top ~ 10-30 m in our region (first optical depth). Subsurface 505 

impacts remain unknown; in some cases, apparent surface enrichments can result from the 506 

passive uplift of the deep chlorophyll maximum without any net biomass increase54. However, in 507 

situ profiles available near islands suggest this is the exception rather than the rule15 (see also 508 

Table S3). Island impacts on primary production were estimated using the MODIS-based 509 

standard Vertically Generalized Production Model31 (VGPM). The VGPM estimates primary 510 

production integrated over the euphotic depth range based on satellite chlorophyll, light 511 

availability, and temperature (a proxy for nutrient availability), and has been widely used for 512 

large-scale studies for which the spatiotemporal coverage of in situ data remains insufficient. 513 

Results are similar when using a more recent primary production algorithm (CAFE model55): 514 

total IME-induced PP increase = 44.9 TgC/yr vs 50.4 TgC/yr for the VGPM (Table 1). Primary 515 

production was downloaded from the Ocean Productivity website 516 

(http://science.oregonstate.edu/ocean.productivity/index.php) at 9 km resolution for the period 517 

July 2002 - December 2018 (see above for Chl data information). Primary production maps were 518 

averaged into a monthly climatology, pixels shallower than 30 m removed, and data interpolated 519 

on the Chl grid (4 km resolution). The lower resolution of the primary production product means 520 

that areas larger than for Chl were impacted by the shallow pixel removal, effectively removing 521 

high values near islands more than for Chl; the corresponding pixels on the Chl grid (i.e. outside 522 

of the Chl shallow mask) were interpolated using a median filter.  523 
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Island-driven impacts on chlorophyll and primary production. Island impacts were assessed 524 

by contrasting data in the IME region to data in a reference region (REF), defined as the closest 525 

N pixels from the island mask that do not belong to any IME region, where N is the number of 526 

pixels within the IME region excluding the shallow mask (Extended Fig. 1). When assessing the 527 

island impact on variables other than chlorophyll (i.e. primary production or PHYSAT), the 528 

region with the largest number of data pixels was adapted. Indeed, different datasets may have 529 

different data gaps, thus changing the number of data points in each region. To ensure that the 530 

number of data points remained identical in both regions, the region with most pixels was 531 

randomly subsampled to match the region with fewer pixels. The REF region was used to define 532 

the nearby Chl increase for each island (Chl_max relative to average Chl within REF). Detecting 533 

IMEs using a high sensitivity is justified on a climatological basis where spatial variability is 534 

heavily smoothed by a 17-year average; however, weak increases could result from noise. 535 

Statistics in Table 1 are thus presented both for all IMEs (more exhaustive) and after excluding 536 

IMEs with Chl increases near islands below 10% (more conservative). 537 

PHYSAT. The PHYSAT method37 is based on daily, 4-km resolution normalized water-leaving 538 

radiance (primary variable measured by a satellite ocean color radiometer after atmospheric 539 

correction, for several wavelengths). First, spectral radiance anomalies (Ra) are computed by 540 

removing a reference spectrum function of Chl for the same pixel, ensuring that the first order 541 

chlorophyll signal is removed. Then, these anomalies are clustered using an automatic 542 

unsupervised classification approach (self-organizing maps), classifying daily Ra into 100 543 

“neuron groups” corresponding to a specific Ra spectral frequency shape and amplitude56. The 544 

number of neuron groups is reduced using phenological metrics to identify signals linked to 545 

specific phytoplankton assemblages38, termed “phenoclasses” (61 for PHYSAT applied to 546 
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MODIS-Aqua). A previous version of PHYSAT was applied to the SeaWiFS satellite and 547 

matched with coincident in situ phytoplankton data, which enabled SeaWiFS phenoclasses to be 548 

labeled with six broad phytoplankton groups57. Phytoplankton labels are also available for 549 

MODIS phenoclasses, through SeaWiFS/MODIS matchups during their overlapping period. 550 

Around half of MODIS phenoclasses remain unlabeled, but could be matched to phytoplankton 551 

groups as more samples become available. The most common phenoclasses present in the 552 

tropical Pacific were labeled and found to be dominated by Prochlorococcus, Synechococcus, 553 

and nanoplankton. Daily MODIS phenoclasses (4 km resolution, July 2002 - April 2018) were 554 

averaged as a monthly climatology of phenoclass occurrence frequency at each pixel; pixels 555 

shallower than 30 m were removed. The corresponding product was used to calculate the 556 

phenoclass composition (percentage of occurrence for each phenoclass) within each IME and 557 

REF region detected previously. Ecological metrics were only computed in IME and REF 558 

regions including at least 100 PHYSAT data pixels, to ensure adequate PHYSAT coverage. This 559 

represents around half of the detected IMEs. 560 

PHYSAT ecological metrics. Classical ecological metrics were computed from phenoclass 561 

proportions averaged in each IME and REF region, by regarding each phenoclass as a “species” 562 

in mathematical equations for each index. In practice, each phenoclass can contain varying 563 

numbers of species. However, phytoplankton richness is relatively stable in the tropics11, so that 564 

the number of phytoplankton species belonging to each phenoclass should be relatively constant. 565 

Island impacts on phenoclass composition were assessed using the Bray-Curtis dissimilarity 566 

index58 between each pair of IME and REF regions. The Bray-Curtis index can vary between 0 567 

and 1, where 0 would indicate that IME and REF have the same phenoclass composition, and 1 568 

that they do not share any phenoclasses. Island impacts on phenoclass diversity were assessed 569 
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using various biodiversity metrics: richness, Pielou’s evenness59, and the Shannon index60. These 570 

metrics were computed in each IME and REF regions separately, and contrasted (similar to 571 

chlorophyll and primary production). Just like true species richness strongly depends on 572 

sampling effort, phenoclass richness increases with the number of pixels over which it is 573 

computed (see Fig. S3). Phenoclass richness was corrected by rarefaction to 100 pixels to enable 574 

direct statistical comparisons of richness across regions61. Computing biodiversity indices from 575 

satellite products of phytoplankton taxonomy is not new. A previous study computed global 576 

Shannon diversity metrics from PHYSAT six broad phytoplankton groups, identifying regional 577 

hotspots matching known biodiversity hotspots62. While precise biodiversity estimates require an 578 

extensive knowledge of the community, the De Monte index worked by capturing spatial 579 

heterogeneity in dominant phytoplankton groups, which was shown to be highly correlated to 580 

phytoplankton biodiversity in a model63. Here, by applying a similar method but using all 61 581 

phenoclasses, we are exploiting the full power of the PHYSAT algorithm and capturing a more 582 

precise picture of changes in phytoplankton taxonomy and biodiversity. This is a very powerful 583 

approach because it bypasses the need to identify phytoplankton taxonomy from space. While 584 

PHYSAT is only a proxy for phytoplankton taxonomy, broad phenoclass diversity patterns match 585 

published phytoplankton biodiversity patterns such as increasing richness with phytoplankton 586 

biomass in unproductive waters43 (Extended Fig. 3).   587 
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Data availability statement 588 

The main outputs of this study, including the island database, IME and REF masks, and IME 589 

impacts on chlorophyll, primary production, and PHYSAT, are available as a dataset hosted on 590 

Zenodo64. The PHYSAT climatology calculated for this paper is available there as well; 591 

PHYSAT is now being processed by ACRI (https://www.acri-st.fr/) and PHYSAT data will soon 592 

be publicly available from their website. Other data that support the findings of this study are 593 

available in various public repositories: https://coastwatch.pfeg.noaa.gov/erddap/info/index.html 594 

(MODIS chlorophyll concentration), http://science.oregonstate.edu/ocean.productivity/index.php 595 

(MODIS primary production), https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html (GSHHG 596 

coastline), https://www.gebco.net/data_and_products/gridded_bathymetry_data/ (GEBCO 597 

bathymetry). The Nunn et al. (2016) island database is available as an additional file 598 

accompanying their paper (https://doi.org/10.1186/s40562-016-0041-8).  599 

Code availability statement 600 

The IME detection algorithm, along with datasets and example code to reproduce Fig. 1, 601 

Extended Fig. 1, and parts of Table 1, is available at 602 

https://github.com/messiem/toolbox_IME_detection and the corresponding release published on 603 

Zenodo65.    604 
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 649 

Extended Data Fig. 1: Example maps of IME and reference (REF) region detection. Two 650 

contrasting months are shown for the Fiji/Tonga region: a) August (small IMEs but higher 651 

climatological enrichment across the region), and b) December (strong IMEs, with IMEs from 652 

the Fiji and Tonga island groups merging). Reference regions (blue) exclude IME regions from 653 

any island. 654 
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 656 

Extended Data Fig. 2: IME maps for different climatological months. For each month, IME 657 

regions are contoured in different shades of red depending on Chl increase near islands relative 658 

to a reference region (similar to Fig. 1). 659 
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 661 

Extended Data Fig. 3: PHYSAT phenoclass richness vs Chl across IME and REF regions. 662 

Phenoclass richness was normalized to 100 data points, and only regions with at least 100 663 

PHYSAT data points were included. 664 

  665 
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 666 

Extended Data Fig. 4: Example of random permutation used to remove the Chl signal on 667 

the phenoclass richness increase observed in IME regions. Top panel: identical to Fig. 3b left 668 

panels (that is, including all IME and REF regions); both Chl (left) and phenoclass richness 669 

(right) are significantly higher in IME than in REF regions (Mann-Whitney U-test). Bottom 670 

panel: example of a random permutation where 2/3 of the IME and REF regions were retained 671 

such that the Chl distributions do not significantly differ anymore. In this permutation, 672 

phenoclass richness remains significantly higher within the IME subset (right) even though Chl 673 

is (non-significantly) lower (left). 674 
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 All IMEs 
IMEs with Chl 

increase nearby 
islands ≥ 10% 

 IME spatial impact 
 IME area (in km²) 559 [172 ‒ 2,051] 1,333 [430 ‒ 3,965] 
 IME impact on Chl 
 Nearby percentage Chl increase (in %) 11.4 [6.5 ‒ 22.3] 19.9 [13.8 ‒ 36.4] 
 Percentage Chl increase per IME (in %) 6.8 [4.4 ‒ 10.8] 10.0 [7.3 ‒ 14.2] 
 Total Chl increase per IME (in tons/m) 0.00 [0.00 ‒ 0.01] 0.01 [0.00 ‒ 0.04] 
 IME impact on primary production (PP) 
 Percentage PP increase per IME (in %) 1.5 [0.3 ‒ 3.5] 2.6 [0.9 ‒ 5.3] 
 Total PP increase per IME (in TgC /yr) 0.00 [0.00 ‒ 0.00] 0.00 [0.00 ‒ 0.01] 
 IME impact on PHYSAT phenoclass diversity 
 Percentage richness increase per IME (in %) 7.7 [-0.1 ‒ 18.9] 8.9 [0.0 ‒ 20.8] 
 Percentage evenness increase per IME (in %) -0.3 [-6.4 ‒ 6.0] -0.3 [-6.6 ‒ 6.2] 
 Percentage Shannon index increase per IME (in %) 2.9 [-1.7 ‒ 8.7] 3.3 [-1.5 ‒ 9.4] 

Extended Data Table 1: Additional metrics for IME impacts in the tropical Pacific (see 676 

Table 1). Values are given as median [25th percentile ‒ 75th percentile]. The extremely low 677 

values for total Chl and total primary production (intentionally kept in the same unit as in Table 678 

1) highlight how a few major IMEs (visible in Fig. 1) are responsible for most of the large-scale 679 

impact on Chl and primary production. 680 


