

The 18.6-year lunar nodal cycle may affect ecosystems on the Northwest Atlantic continental shelves

Pierre Poitevin, Pascal Lazure, Virginie Roy, Sébastien Donnet, Laurent

Chauvaud

► To cite this version:

Pierre Poitevin, Pascal Lazure, Virginie Roy, Sébastien Donnet, Laurent Chauvaud. The 18.6-year lunar nodal cycle may affect ecosystems on the Northwest Atlantic continental shelves. Journal of Marine Systems, 2022, 235, 10.1016/j.jmarsys.2022.103783. insu-03779801

HAL Id: insu-03779801 https://insu.hal.science/insu-03779801

Submitted on 5 Sep 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The 18.6-year lunar nodal cycle may affect ecosystems on the Northwest Atlantic continental shelves

Poitevin Pierre ^{1, 2, *}, Lazure Pascal ^{3, *}, Roy Virginie ², Donnet Sébastien ⁴, Chauvaud Laurent ¹

¹ Université de Bretagne Occidentale, Laboratoire des Sciences de l'Environnement Marin (UMR6539 UBO/CNRS/IRD/Ifremer), 29280 Plouzané, France

² Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, Canada
 ³ IFREMER, Laboratoire d'Océanographie Physique et Spatiale (UMR6523 CNRS/IFREMER/IRD/UBO),
 29280 Plouzané, France

⁴ Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, Saint-John's, NL, Canada

* Corresponding authors : Pierre Poitevin, email address : <u>poitevin.pierre@gmail.com</u>; Pascal Lazure, email address : <u>pascal.lazure@ifremer.fr</u>

Abstract :

As one of the foremost global forcings, tidal circulation exerts a pervasive influence on biological and physical processes occurring in the world's oceans on hourly to decadal time scales. This research identified the 18.6-year periodic variation in the lunar orbital plane within an annually resolved 140-year (1875 to 2015) shell growth master chronology measured from 21 live collected Arctica islandica, a bivalve known to be one of the longest lived non-colonial animals. The potential ecological implications of this result warranted detailed inventory of underlying physical processes. The absence of long-term in situ hydrological data for the bivalve's habitat was circumvented by the use of satellite data and numerical modeling which show that coastal regions of the Northwest Atlantic shelf clearly record diurnal tidal currents influenced by the 18.6-year nodal lunar cycle. The approach described here demonstrates that combining physical and biological data can help to identify subtle ecological processes over long time-scales for accurately disentangling the latter from variation introduced by anthropogenic climate change.

Highlights

► The astronomical 18.6-year nodal tidal cycle (18NTC) influences a bivalve (*A. islandica*) growth variability in Saint-Pierre and Miquelon archipelago (SPM). ► Sea Surface Temperature bidecadal variability in SPM region is partly related to 18NTC. ► 18NTC influences vertical mixing of some regions of the NW Atlantic shelf.

Keywords : Arctica islandica, Tides, Northwestern Atlantic continental shelf, Sclerochronology, Growth

31 **1. Introduction**

- 32 Marine ecosystems experience environmental forcings over temporal scales ranging from a 33 few hours to several decades. A detailed understanding of these environmental variations and their 34 influence on living organisms on multidecadal time scales is critical for understanding and predicting 35 how ecosystems will respond to anthropogenic climate change.
- 36 The marine environment includes parameters that determine benthic invertebrate lifestyles and
- 37 growth trajectories. Parameters such as temperature, nutrient availability and associated primary
- 38 production mainly depend on complex ocean-atmosphere interactions, but also on tides, a highly
- 39 predictable astronomical forcing that particularly influences coastal regions on a synchronized global
- 40 scale. As deterministic processes, tides appear primarily as semi-diurnal and diurnal variations in sea
- 41 level, but also exhibit several long-term oscillations including the 18.61-year nodal tidal cycle

42 (hereafter 18NTC). This cycle arises from the fluctuation of the lunar orbital plane, which on average 43 has a 23.4° angle relative to Earth's equatorial surface, but also varies consistently between 18.3° and 44 28.6° over a period of 18.61 years. This results in semi-diurnal and diurnal modulation of sea levels and 45 currents that vary according to the lunar and solar components of the tide. The major diurnal tidal 46 components, O1 and K1, have respective periods of 25.82 and 23.93 hours that vary between +/- 19% 47 and 14% (respectively) over a period of 18.61 years. The main semi-diurnal tidal component M2 varies 48 by +/- 4% in phase opposition with the diurnal tidal components (Godin, 1972). For a rigorous 49 description of the nodal cycle see Ray (2007), specifically the comprehensive appendix herein. The 50 18NTC modulation of sea levels can reach a maximum of 30 cm across continental shelf environments, 51 a range that will contribute to coastal flooding with the ongoing sea-level rise (Peng et al., 2019). 52 However, outside the coastal strip, sea-level variation of a few tens of centimeters with bidecadal 53 periodicity has not been much studied or detected in pelagic or benthic marine environments (Ray, 54 2007).

55 Nevertheless, the 18NTC modulation of tidal currents has the potential to influence vertical 56 mixing of the water column by the same well-documented physical processes that govern the ~14-day 57 spring-neap tidal cycles, but over a nearly bidecadal period. This implies that the diurnal tidal currents 58 were stronger worldwide during 1969, 1988, 2006-2007 and weaker in 1978-1979, 1997 and 2016 for 59 the last decades. The reverse is true for the semi-diurnal tidal currents but to a lesser extent. Tidal 60 currents contribute to seawater mixing either through friction on the seabed or by the generation of 61 internal waves that produce strong vertical shear and enhance vertical mixing. Thus, an increase in 62 vertical mixing may lead to greater downward transport of solar heat and greater upward transport of 63 nutrients to the euphotic layer in summer. This transport can lower the sea surface temperature (SST), 64 but increase temperature along the sea bottom (i.e., in the benthic environment). The influence of the 65 18NTC may thus appear in regions experiencing pronounced diurnal tidal currents due to the stronger 66 fluctuations. This 18NTC effect was first reported by Loder and Garrett (1978) using coastal seawater 67 temperatures records in British Columbia (southwestern Canada). More generally, the North Pacific is 68 a region where water properties can be influenced by the 18NTC. 18NTC signals have in fact been 69 observed in current and temperature data from the Northeast Pacific region (McKinnell and Crawford, 70 2007), the Bering Sea (Osafune and Yasuda, 2010) and the Northwest Pacific (Osafune and Yasuda, 71 2006). Only a very few studies have documented 18NTC effects in the Atlantic Ocean. Recently, 72 (Agosta, 2014) showed that 18NTC effects appear in SST variability around the Malvinas Islands 73 (Southwest Atlantic) in association with ocean-atmosphere interactions whose variability may affect 74 summer precipitation in the southwestern Andes.

75 To our knowledge, the 18NTC has never been detected from individual living organisms, 76 because such detection would require accurate long-term environmental datasets against which to 77 evaluate the growth record. Long-lived, sessile species that continuously build exoskeletons 78 throughout their lives are ideal candidates for detecting the 18NTC signal. The bivalve Arctica islandica 79 is the longest lived, non-colonial animal forming periodic growth patterns (Butler et al., 2013). Like 80 other mollusks, this species constructs a shell with distinct annual growth increments defined by 81 annual growth lines formed during periods of reduced growth shell (Schöne, 2013). With this periodic 82 banding, each increment can be articulated into an annual, long-term record. Moreover, if the date of 83 a specific growth increment is known (for example the date of death), it is then possible to assign 84 precise calendar dates to an entire shell record. Based on synchronous changes in shell growth rates, 85 time series of increment widths for specimens having overlapping lifespans and collected from the 86 same locality can be combined to build composite or master chronologies (Schöne, 2013; for a review). 87 Annual increment widths generally record the organism's physiological interactions with its 88 environment (Butler et al., 2013). Although genetic factors can influence ontogenetic growth trends 89 and other fitness-related traits (David et al., 1995), year-to-year variability in shell growth arises mainly 90 from environmental factors (Marchitto et al., 2000). 91

92 The site of bivalve sampling is the Saint-Pierre and Miquelon (SPM) archipelago, two small 93 French islands located in Canadian waters located in southwestern Newfoundland (Fig. 1A). Sea level 94 tidal variability is considered semi-diurnal in the region as the M2 and S2 components (0.60 and 0.17 95 m respectively) dominate the diurnal O1 and K1 components (0.07 and 0.06 m respectively) in Saint-96 Pierre harbor. Recent studies have shown new characteristics of SPM coastal waters little studied in 97 the past (Lazure et al., 2018; Poitevin et al., 2019). Lazure et al. (2018) showed the extreme variability 98 of the bottom temperatures (> 11.5 °C at depths of 30-60 m) at a diurnal tidal frequency during the 99 stratified period (i.e., late spring to early fall). Furthermore, previous sampling in shallow coastal 100 waters of the SPM (15 m depth) has shown the sensitivity of A. islandica to high-frequency dynamics 101 (Poitevin et al., 2020), but also to regional circulation at the scale of the NW Atlantic (Poitevin et al., 102 2019).

Following further sampling of *A. islandica* in stratified waters, the first objective of this study was to assess a potential 18NTC footprint in *A. islandica* shells at this site theoretically conducive to producing visible traces of 18NTC through modulations in tidal mixing and thus in growth increments of *A. islandica* shells. The converging evidence for this influence then led us to expand our exploration to a regional scale and hypothesize that 18NTC may act on a larger scale on the NW Atlantic shelf.

109 This paper is organized as follows. In Section 2, we describe A. islandica growth patterns over 110 141 years. Section 3 is dedicated to a spectral analysis of the master chronology and reconstruction of 111 a time series with an 18.6-year period to compare with the astronomical 18NTC. Strong correlations 112 between these two series led us to assess the environmental conditions underlying these long-term modulations. In Section 4, we describe the tidal dynamics around SPM and present its role on 113 114 temperature variability near SPM. Satellite SST is then used to explore the SST bidecadal variability in 115 SPM and look for a relationship with the 18NTC. We then extend the local SPM SST-18NTC relationship 116 analysis to regional-scale coastal areas around the NW Atlantic. In Section 5, we use a numerical model 117 to verify that areas experiencing bidecadal SST variability in phase opposition with the 18NTC broadly 118 correspond to continental shelf areas where diurnal currents predominate, strongly suggesting that 119 the 18NTC influences vertical mixing in those areas. Our results indicate that the 18NTC may influence 120 marine ecosystems on regional scales. In Section 6, we discuss the limitations of this study and note 121 further analyses that can help resolve areas of uncertainty.

122

123 **Fig. 1**. (A) Location of Saint-Pierre and Miquelon (*SPM*) Archipelago (orange rectangle), *NL*:

Newfoundland Island, *MI*: Magdalen Islands, *SI*: Sable Island, GSL: Gulf of Saint Lawrence, FC: Flemish
 Cap, LC: Laurentian Channel, SS: Scotian Shelf, HC: Hermitage Channel, SPB: Saint-Pierre Bank, GB:
 Grand Banks, BF: Bay of Fundy. Isobaths (3000, 1000, 200, 100 m) are displayed. Colored rectangles

Grand Banks, BF: Bay of Fundy. Isobaths (3000, 1000, 200, 100 m) are displayed. Colored rectangles
 indicate locations of SST time series analyzed in section 4. (B) SPM Archipelago. Blue dot: sampling

site (24–25 m depth) for *Arctica islandica* (this study). Green dot: sampling site (14–15 m depth) for

129 A. islandica (Poitevin et al., 2019).

130 2. Construction of Arctica islandica master chronology

131 2.1. Arctica islandica sclerochronological preparation

132 A total of 21 A. islandica shells were cut, polished and etched in Mutvei's solution using the 133 sclerochronological procedures described in (Poitevin et al., 2019). Shell sections were then photographed under reflected light (Carl Zeiss, KL 2500 LCD) using an AxioCam MRC 5 installed on a 134 135 Carl Zeiss SteREO Lumar.V12 stereomicroscope equipped with a motorized stage and adjusted to 25× 136 magnification. Photomosaics were constructed using AxioVision 4.9.1 software (Carl Zeiss) and 137 resulting images were processed with Image J software (NIH Image) to identify and measure the 138 growth increment widths. Increments were measured perpendicular to increment boundaries at a 139 consistent distance, halfway between the outer and inner boundaries of the outer shell layer on the 140 margin (Mette et al., 2016; Poitevin et al., 2019; Schöne, 2013). To obtain a robust annually-resolved chronology, the growth increment series of live-collected specimens were cross-dated since the year 141 142 of death (2016) of these specimens was known. Cross-dating describes the process of matching 143 temporally overlapping time series based on synchronous growth increment patterns induced by 144 common external drivers. Individual growth increment measurements were initially compiled and 145 statistically analyzed using the dpIR program (Bunn, 2008) to aid in intershell year-to-year growth 146 comparisons. The statistical crossdating program COFECHA (Grissino-Mayer, 2001) was also used to 147 further verify the first crossdating results. Errors in the chronology identified by dpIR and COFECHA 148 were manually reinvestigated and corrected. This yielded a time series of increment width for each 149 individual (available online: https://doi.org/10.5281/zenodo.6823144).

To develop a master chronology, time series of individual increment widths were detrended using
 negative exponential functions. This deterministic detrending method was chosen as it largely
 preserves environmental signals that fluctuate over long time periods (Marali and Schöne, 2015;
 Peharda et al., 2021; Schöne, 2013).

154 Growth indices (GIs) were then calculated for each year and each individual by dividing the measured 155 increment width by the predicted increment width (Schöne, 2013) as follows:

156
$$GI_t = \frac{L_{t+1} - L_t}{L(p)_{t+1} - L(p)_t}$$

157 Where GI_t is the growth index at time t (in years), $L_{t+1} - L_t$ is the measured shell increment at t and $L(p)_{t+1}$ 158 $-L(p)_t$ is the predicted shell increment length at the same time t.

159 Individual time series of the GI were then standardized as follows (Schöne, 2013):

160
$$SGI_t = \frac{GI_t - \mu}{\sigma}$$

161 where μ is the average of all GI values and σ the standard deviation. The standardized GI (SGI) is a 162 dimensionless measure of how growth deviates from the predicted trend. Positive values represent 163 greater than expected growth, whereas negative values represent less than expected growth.

164 The quality of the chronology was quantified using the expressed population signal (EPS) statistic 165 (Wigley et al., 1984):

166
$$EPS = \frac{n * R_{bar}}{\left(n * R_{bar} + (1 - R_{bar})\right)}$$

167 where R_{bar} is the average of all correlations between pairs of SGI chronologies and *n* is the number of 168 specimens used to construct the stacked chronology.

- 169 Although there is no analytical threshold for this statistic, EPS values higher than 0.85 are interpreted
- to indicate that the variance of a single SGI chronology sufficiently expresses the common variance of
- all SGI series. All these analyses were carried out using the R package dplR (Bunn, 2008).

172 **2.2. Growth chronology construction**

Twenty-one live A. islandica specimens were collected by scuba divers in September 2016 in circalittoral zone (water depths of 24–25 m) along the southeastern shore of the sandy Miquelon-Langlade isthmus (Fig. 1B). The sampling area consisted of homogenous, compacted, stable and wellgraded fine-grained sand (85% of its mass between 100 and 200 μm).

177 The shell-based growth record covers the time period from 1875 to 2015. The shortest and longest

individual time series records used to build the master chronology were 32 and 141 years, respectively.
The average length of the 21-time series was 78.24 years (1σ = 20.27). Based on the individual growth
indices (GI), shells present a strong and synchronous growth pattern among individuals (Fig. 2A).
Individual growth records were combined to calculate SGI values (Fig. 2B). These dimensionless

181 matwaddingrowth records were combined to calculate Soft values (rig. 2b). These dimensionless 182 measures document how average annual growth deviates from the predicted trend. Positive SGI values

- 183 represent greater than expected growth, whereas negative SGI values represent less than expected
 - growth. Since the 1980s, even when SGI time series follow a zigzag pattern alternating between high and low values, the SGI values have remained mainly negative, similar to shallower *A. islandica*
 - specimens from SPM (14–15 m depth; (Poitevin et al., 2019)). The running EPS calculated over a 15-
 - 187 year window with 8-year overlap indicates that the variance in individual growth chronology
 - sufficiently expresses the common variance of all GI series after 1905. Synchronous shell growth was

also noted prior to this period. The overall series exhibited an intercorrelation of 0.526 and an average

mean sensitivity calculated according to Eq. 2 in (Biondi and Qeadan, 2008) of 0.239.

For the sake of comparison, we also interpreted a shell growth master chronology described in (Poitevin et al., 2019) from a nearby *A. Islandica* locality (green circle in Fig. 1B) sampled in infralittoral zone (water depths of 14-15 m) and where the water column is nearly vertically homogeneous. This

194 chronology extends over 166 years (1850-2015) and will be referred to hereafter as the infralittoral

195 SGI.

205 3. Analysis of Arctica Islandica master chronology

206 3.1. Spectral analysis

207 <u>3.1.1. Methods</u>

Three spectral methods were used to detect frequencies: a Fourier transform, the maximum entropy method (MEM, sometimes called maximum entropy spectral analysis (MESA) (Padmanabhan and Rao, 1988)) and the multi-taper method (MTM) (Thomson, 1982). The fast Fourier transform (FFT) simply considered the entire SGI time series (N=141) for the spectrum shown in Fig. 3A.

The second method (MEM) is an autoregressive model proposed by (Burg, 1967) that allows a better resolution than Fourier transform, but is parametric in the sense that the order of the model must be specified. As model order increases, spurious peaks may appear and results must be interpreted with caution. A wide range of methods can be used to determine model order. This study estimated orders using the panel of frequencies we targeted and assuming a bidecadal period to test for robustness.

The MTM technique (Ghil et al., 2002) uses a set of orthogonal tapers that are designed to reduce spectral leakage. This method can also detect harmonic frequencies and oscillations with constant phase over the entire series. We used the freely available SSA-MTM Toolkit for spectral analysis (http://research.atmos.ucla.edu/tcd//ssa/).

222

3.1.2 Spectral analysis of the standardized growth index (SGI) and the infralittoral SGI

223 Figure 3A shows results of the FFT, MEM with different model orders (40 and 50) and the MTM spectral 224 methods for the low frequency (< 1/6.6 year) component of the spectra. The three different methods 225 gave similar results, with three spectral peaks indicating periods of ~18 years, ~13 years and ~10 years 226 for frequencies lower than 0.15 cycles per year (cpy). The infralittoral SGI master chronology (Fig. 3B) 227 shared a common 10-year spectral peak and a 28-year spectral peak detected only by MEM. 228 Interestingly, the ~18 year frequency is not detected in this latter time series. These results led us to 229 continue with the recomposition of the SGI series at periods close to 18 years to compare it with the 230 astronomical nodal cycle.

Fig. 3. (A) Power spectra from the standardized growth index (SGI) time series, (B) Power spectra from the infralittoral SGI time series (Poitevin et al., 2019). Fast Fourier Transform (FFT): magenta; Maximum Entropy Method (MEM) with filter length=40: blue, length=50: green; Multi-Taper Method (MTM): yellow. Vertical red line shows the frequency of the nodal tidal cycle (0.0537 cycles per year (cpy) corresponding to a period of 18.6 years).

237 **3.2.** Reconstruction of the Arctica islandica growth index with an 18.6-year period

238 <u>3.2.1 Methods</u>

239 The FFT reconstructions were based on the same series, but truncated of the 11 most recent 240 or oldest years to obtain an integer value for the number of 18.6-year cycles (130/18.6≈7). This 241 truncation allowed to evaluate the spectral density at the frequency of (18.6 yr)⁻¹ and to reconstruct 242 the signal at this specific frequency. The two truncated time series gave similar reconstructions for this 243 period. These were averaged over the shared period and then the entire record was assembled by 244 completing the 11-year beginning and end intervals with each reconstruction. MTM series were 245 reconstructed at the frequency of the detected harmonic line. Two additional methods were used to 246 decompose the SGI time series in sequence of varying frequencies: the empirical mode decomposition 247 (EMD) and the singular spectrum analysis (SSA).

248 The A. islandica SGI and SST time series (see below) were analyzed using EMD (Flandrin et al., 249 2004; Huang et al., 1998). EMD is a non-parametric and adaptive method that converts time series into 250 a limited number of intrinsic mode functions (IMF) with decreasing frequencies. It does not assume 251 any decomposition basis as trigonometric functions do for the Fourier transformation or as mother 252 wavelets do for wavelet transformation. This method is used in many fields outside of the geosciences, 253 including biomedicine and economics. It uses an iterative approach for which the last series, referred 254 to as the residue, represents the trend of the original series. The main drawback of EMD is the mixing 255 mode, which may cause different IMFs to diverge from an orthogonal orientation, thereby causing 256 overlap of spectral content between neighboring IMFs.

257 SSA is a non-parametric method (Vautard and Ghil, 1989) that decomposes an original series 258 into a small number of statistically independent components. It uses singular value decomposition of 259 the correlation matrix estimated after embedding the signal into its delayed coordinates. SSA 260 calculates a covariance matrix using the Toeplitz approach and then determines eigenvalues and 261 eigenvectors. The principal components (PCs) are given as scalar products of the eigenvectors and 262 time-delayed embedding belonging to the original series. Reconstructed components (RCs) are 263 calculated by inverting the PCs and calculating the averaged anti-diagonals. The method completely 264 reconstructs original time series by summing all of the reconstructed components. Pairs of equal or 265 nearly equal SSA eigenvalues in approximate phase quadrature (Ghil et al., 2002) define oscillatory 266 modes. We used an adapted version of MATLAB 2016 with the signal processing toolbox program 267 (https://fr.mathworks.com/matlabcentral/fileexchange/58967-singular-spectrum-analysis-beginners-268 guide) to perform the analysis. The embedding dimension was set to 50 and the reconstruction was 269 done with RCs 5 and 6.

270 <u>3.2.2 Reconstruction with an 18.6-year period</u>

We extracted the 18.6-year period from the FFT and MTM SGI time series to compare it with a known, idealized 18NTC time series (Fig. 4). We used the formula provided in the appendix (Ray, 2007) to calculate the 18NTC signal with an arbitrarily defined amplitude (+1 to -1). The EMD methods generated six IMFs. The third IMF highlights several nearly bidecadal cycles with eight maxima over 141 years. SSA generated several RCs from which the sum of a pair of RC 5 and RC 6 revealed an oscillation approaching a period of 18 years.

278

Fig. 4. Master chronology time series reconstructions at an 18.6-year period over time. Yellow line:
Multi-taper method (MTM) reconstruction from harmonic components significant at the 95%
confidence interval. Blue line: third intrinsic mode function (IMF) from an empirical decomposition
method (EMD) analysis. Magenta line: inverse fast Fourier transform (FFT) reconstruction of the 18.6year period. Green line: singular spectrum analysis (SSA) (M = 45) reconstruction from the sum of
reconstructed components (RCs) 5 and 6. Red line: astronomical 18.6-year nodal tidal cycle (18NTC)
(arbitrary amplitude). Black dotted line: standardized growth index (SGI) 5-year running average.

286 All methods (Fig. 4) gave roughly similar results and show that the phases remained constant 287 and consistent with the 18NTC phase until at least the ~1980s/90s. The shell growth anomalies are all 288 in phase with the 18NTC for the eight periods covered by the 1875-2015 timeframe of the SGI. Before 289 the 1990s, phase shifts between reconstructions and 18NTC generally did not exceed two years. 290 Correlation estimates between the reconstructed periodicities and the 18NTC signal varied from 0.66 291 for EMD to 0.99 for FFT (p < 0.001; N = 141) and variance ratios between the reconstructed signals and 292 the SGI (= 1) ranged from 3.8 to 9.7%. These variance ratios increased to 7.3-18.3% when compared 293 with the 5-year smoothed SGI series.

4. Physical background and temperature observations and analysis

295 4.1. Tidal dynamics and hydrology in the Saint-Pierre and Miquelon archipelago

296 A recent study (Lazure et al., 2018) based on observations of coastal water temperature at 30 and 60 297 m depth around SPM detected strong diurnal tidal currents and diurnal bottom water temperature 298 oscillations exceeding 10°C during times of maximum summer stratification. These observations were 299 interpreted as an expression of a coastal trapped wave resonant with the diurnal frequency of the tide 300 rotating clockwise around the archipelago within two periods. On the eastern side of the archipelago, 301 the main semi-diurnal component M2 was of the same order of magnitude as the diurnal components, 302 but it was much weaker on the western side. In this study, only the temporal evolution of the bottom 303 temperatures was measured and we lacked observations in the water column except the currents 304 measured by Acoustic Doppler Current Profiler (ADCP). This absence of measurement was 305 supplemented with a SPM2017 oceanographic cruise, which consisted in measuring the temperature 306 profiles around the archipelago for one month.

307 4.2. Hydrology

308

331

4.2.1. Seawater temperature measurements around Saint-Pierre and Miquelon

309 Moored thermistor chains with various numbers of probes were deployed during the SPM2017 310 cruise from 13/08/2017 to 10/09/2017. At each mooring, two temperatures probes were set at the surface and the bottom and the rest of the probes were evenly distributed along the line (total of 3, 5 311 312 and 9 probes at 15, 30, 80 m depth, respectively). Each probe measured temperature and pressure 313 and was packed in a small plastic bag filled with Marcol 82 insulating oil. The acquisition time step was 314 2 minutes. Vertical temperature profiles result from linear interpolation every 2 m from the bottom 315 between two probes by taking into account the vertical location of each probe measured by the 316 pressure sensor.

317 <u>4.2.2. Variation in temperature vertical profiles over time</u>

318 The SPM 2017 cruise extended the dataset of observations at three locations (Fig. 5). 319 Stratification varied from nearly homogenous in shallow waters (Fig. 5C) to a maximum of 16.5°C 320 difference between surface and bottom temperatures (Fig. 5A). In shallow waters, vertical mixing was 321 almost permanent (Fig. 5C). Note that this site is very close to the infralittoral SGI sampling site, but 322 the years of observation differ. Temperatures were measured near the A. islandica sampling site (Fig. 323 3B) in Summer 2017 and show strong stratification and enhanced temperature variability near the 324 bottom, confirming previous observations (Lazure et al., 2018). A diurnal signal clearly appeared with 325 the superposition of a 2-day period, probably related to the wind effect as described in (Bezaud et al., 326 2020). The last station (Fig. 3A) is located on the north side of St. Pierre Bank and is the first known 327 measurement of the temporal evolution of the temperature profile at the confluence of the Laurentian 328 and Hermitage channels. The measurements show a clear diurnal signal, which consists of an internal 329 wave of ~20-60 m range once a day. A tidal harmonic analysis (not shown) indicates that the main 330 period corresponds to the O1 (25.8 h period) tidal component.

Fig. 5. *In situ* measurements of seawater temperature in °C (color scale displayed in the figure's bottom) over time and depth at 3 mooring sites near the Saint-Pierre and Miquelon archipelago (graphs A, B, C) from 2017/08/13 to 2017/09/08. The corresponding mooring locations (A, B, C) are represented by blue dots on the right panel. Blue dot (A) is located at the northern edge of the Saint-Pierre Bank (80 m depth) while (B) and (C) are situated to the east of Miquelon Island (30 m and 15 m depth).

These measurements confirm the dominant nature of the diurnal tides in SPM area extended to Saint-Pierre Bank. However, on longer time scales, we lack observations taken on a regular basis during the 20th century to evaluate the potential presence of a nearly bidecadal cycle in environmental parameters. The only available multidecadal observations for SPM waters were SST satellite data extending back to September 1981.

343 **4.3** Analysis of SST in Saint-Pierre and Miquelon and the Northwest Atlantic

344 <u>4.3.1. SST data set</u>

345 Long-term temperature analysis used the Pathfinder V5.3 dataset (Saha et al., 2018) with a 346 squared grid cell resolution of about 4 km. Data were rendered homogeneous with respect to the 347 different satellites, which allowed data aggregation on a daily basis with the quality levels provided. 348 Given the volume of missing or low-quality data for the study area, we aggregated data into 349 rectangular grid boxes spanning 33' in latitude and 30' in longitude (i.e., 61x38 km), an area roughly 350 the size of the SPM archipelago and its coastal waters. SST data with quality indices between 5 and 7 351 (the maximum quality) were extracted and spatially averaged. Given the significant cloud cover in this 352 region, the month offering the minimal amount of missing data was August and the ratio of clear pixels 353 to total available did not exceed 0.20 (Fig. A1). All analyses were thus performed using August-354 averaged SSTs over the 37-year time series (August 1982-August 2018). The reliability of the dataset 355 was tested by comparing it with the only long-term in situ measurement series available (Station 27, 356 e.g., Drinkwater et al., 2013). The results were found to be sufficiently convincing (Fig. A2) for further 357 analysis of this spatially aggregated dataset.

358

359 <u>4.3.2. Extraction of the nodal cycle in the sea surface temperature time series at Saint-Pierre</u> 360 <u>and Miquelon</u>

361 An SST time series from the grid box including SPM (location on Fig. 1) was extracted and 362 analyzed using EMD methods and a simple least square method (LSM) to highlight a potential nearly bidecadal cycle from SST. This analysis was challenging due to the limited length of the time series, 363 364 which could only represent two cycles at best. Unlike LSM, which consists in fitting a sine function of 365 18.6-year period on the time series, EMD does not make any a priori assumption on the periods of the 366 different IMFs. The results of the two methods (Fig. 6) show similar amplitudes (~1°C) and variances of 367 ~10% relative to total SST variance. A slight and varying phase shift occurs between the two methods, but does not exceed 2 years. Pearson's correlation coefficients calculated for the 18NTC and SST series 368 369 at 18.6-year period were significant (p < 0.002; N = 37) and ranged from -0.94 for LSM to -0.54 for EMD. Negative correlations indicate that years with high 18NTC (i.e., stronger diurnal tidal currents) 370 371 correspond to greater vertical mixing and therefore lower SST around SPM during August when 372 thermal stratification of the water column is most pronounced.

373

Fig. 6. Intrinsic mode function (IMF) time series from empirical decomposition (EMD) (blue lines) of August satellite sea surface temperature (SST) data from Saint-Pierre and Miquelon (orange rectangle in Fig. 1) over time. Bottom panel: SST time series (heavy black line) and residue (in blue). Panel IMF4 (second from bottom panel): 18.6-year nodal tidal cycle (18NTC) (green line), least square means (LSM) reconstruction minus the time average (red line) and fourth IMF (blue line). The number in the upper left corner indicates the ratio of the IMF variance to the sum of each IMF variances.

380 <u>4.3.3 Extension to the Scotian-Newfoundland shelves</u>

381 Taking advantage of the availability of a spatialized SST dataset and the apparent influence of 382 the 18NTC around SPM, we extended our exploratory SST analysis to the regional level with LSM. 383 Selective tests were carried out on the phase value of the fitted SST time series by comparing the phase of the LSM series with the 18NTC phase (i.e., 67° GMT). We tested whether the LSM with 384 385 phase opposition to the 18NTC within a range of +/- 1 year (corresponding to +/-19°, i.e., 360°/18.6 386 yr) may be due to the 18NTC influence. Outside this range, LSM results are considered to result from 387 causes other than tidal mixing. As an example, several time series of August SST and the result of 388 their LSM compared with the 18NTC are shown in Figure 7. As expected, higher temperatures were 389 found south of the Scotian shelf, whereas lowest temperatures were found north of Newfoundland. 390 By fitting an 18.6-year period sine to these time series, the upper range of temperature variabilities 391 (~1°C) satisfied the phase test criterion.

392

Fig. 7. Upper panel: August satellite sea surface temperature (SST) time series extracted from the corresponding color boxes displayed in Fig. 1. Acronyms are defined in Fig. 1 except NNL (North Newfoundland) and SSs (South Scotian shelf). Lower panel, green curve corresponds to the 18.6-year nodal tidal cycle (18NTC) (arbitrary amplitude of 0.5). Other curves correspond to the result of the August SST least squares mean (LSM) minus the mean of each series. Dotted lines represent time series which do not satisfy the phase test criterion (see text), whereas continuous lines (SPM and SS) do.

LSM was applied to the whole area and SST variance of grid boxes whose phase was not between -132° and -94° (18NTC phase +- 1 year) was set to zero. Figure 8 displays the ratio of the variance of the boxes satisfying the phase criterion to the variance of the SST time series. This analysis highlights areas located near SPM to the west such as Saint-Pierre Bank, south of Magdalen Islands, and eastern and offshore parts of the Scotian Shelf and the entrance to the Bay of Fundy.

Fig. 8. Ratio of satellite SST variance (color scale on the right) for Least Square Method fitted SST series
extracted from each 33' latitude and 30' longitude boxes whose phases are in opposition to the 18.6year nodal tidal cycle (18NTC series) by +/- 1 year. Gray lines represent 3000, 1000, 200 and 100 m
isobaths.

In the vicinity of the outer Laurentian Channel, part of the long-term variability of the SST is in phase opposition with the nodal cycle. To verify that tidal mixing may be the explanatory factor, we used a numerical model to verify the nature and magnitude of tidal currents and their contribution to vertical mixing.

413 5 Numerical modeling of tidal currents

414 **5.1 The model**

404

The MARS2D model was used to calculate barotropic tidal currents over the study area. The model used a 2 km square grid size and was forced along open boundaries by tides extracted from the FES 2004 database (Lyard et al., 2006). Simulations ran from 2014/01/01 to 2014/03/16 with a spin-up of 0.5 months and have been shown to accurately reproduce tidal sea levels and currents (Bezaud et al., 2020). The barotropic tidal currents were passband filtered (5th order Butterworth filter) to extract semi-diurnal (3-15 h) and diurnal components (18-30 h).

421 **5.2** Tidal mixing with emphasis on the diurnal tidal current contribution

422 As first demonstrated by (Simpson and Hunter, 1974), tidal mixing by barotropic currents 423 depends on the action of frictional forces on the bottom, which can be quantified by the ratio of water 424 depth to the cube of velocity, an estimate known as the Simpson-Hunter parameter. The lower the 425 value of this parameter, the greater the vertical mixing. As shown by (Garrett et al., 1978), the transition from well mixed to stratified conditions occurs when $H/U^3 = 70 \text{ m}^{-2} \text{ s}^{-3}$ (4.2 in log scale) with 426 427 H the total depth (m), U the tidal current (m.s⁻¹). We calculated the time-averaged value of the 428 Simpson-Hunter parameter from hourly simulation results over the duration of a month for both 429 diurnal and semi-diurnal currents. Figure 9 shows Simpson-Hunter parameters (log scale) for diurnal 430 currents where these do not exceed semi-diurnal ones. The calculation highlights areas where diurnal 431 currents predominantly generate vertical mixing, i.e. those likely to experience the most pronounced 432 18NTC modulation. These areas include SPM, north of the Saint-Pierre Bank, the southeastern edge of the Magdalen Islands and some locations along the Scotian Shelf off Sidney Bight and along theoffshore edge of the Scotian Shelf near Sable Island.

435 These areas share a number of spatial similarities with those showing a phase opposition 436 between the bidecadal variability in SSTs and the 18NTC (Fig. 8). These similarities suggest that the 437 lunar nodal cycle influences SST and tidally driven vertical mixing in these areas. Along the continental 438 shelf, vertical mixing affects not only temperatures, but also nutrient concentrations and primary 439 production at the surface and throughout the water column. Although measurements below the 440 surface and from near-bottom areas are not available over the duration necessary to validate this 441 assertion, we hypothesize that increased vertical mixing (during 18NTC+) would decrease SST, increase 442 bottom temperatures and thus promote the growth of A. islandica. These effects could provide an explanation for the strong positive correlation between low-frequency variability in growth and the 443 444 18NTC (Fig. 4).

445

Fig. 9. Simpson-Hunter parameter (colored logarithmic scale displayed on the right) calculated over a duration of a month from diurnal currents obtained from Bezaud et al. (2020) model simulations ran from 2014/01/01 to 2014/03/16 with a spin-up of 0.5 months and shaded when its value is lower than the Simpson-Hunter parameter calculated for semi-diurnal currents obtained from the same model simulations. Gray lines represent 3000, 1000, 200 and 100 m isobaths.

451 6 Discussion

452 The results interpreted here derive from three different and independent datasets. These 453 include a combined 141-year growth record from a bivalve species living in SPM coastal waters, 454 monthly SST measurements over a 37-year period and simulations of barotropic tidal currents on a 455 monthly time scale. The two sets of observational data allowed us to identify positive correlations 456 between the 18NTC and A. islandica growth chronology (Fig. 4) and negative correlations between the 457 18NTC and SST (Fig. 8). The schematic modeling step helped reveal a link between SST and diurnal 458 mixing. The remarkable spatial concordance in areas showing a phase opposition between SST and 459 18NTC and those where strong tidal diurnal mixing prevails (Fig. 9) offers strong arguments to infer the 460 physical process involved.

461 Hydrodynamic and ecosystem variability in the NW Atlantic has been studied intensively for 462 decades, but to our knowledge this is the first time that the influence of 18NTC has been explored 463 (with the exception of sea level, for which the nodal cycle has long been known). Below, we discuss 464 the limitations of our results. Our arguments in support of a significant influence of 18NTC on local and 465 regional hydrodynamics and ecosystems can be addressed in four questions: How reliable is the 466 detection of 18NTC in bivalve shells? How does mixing impact shell growth? Is our SST analysis 467 relevant for estimating bottom temperature variability and can other factors explain the bidecadal 468 variability? Is this mixing really a result of the diurnal component of the tide?

469 **6.1** Evaluation of the reliability of the nodal tidal footprint in the growth of *Arctica islandica*

470 The question of whether individual organisms respond uniformly to common environmental 471 influences can be addressed by evaluating the consistency of growth signals within a population (e.g., 472 Douglas, 1920; Mette et al., 2016). The expressed population signal (EPS) established from 473 contemporaneous specimens of A. islandica collected around SPM (ca. 25 m depth, in a ca. 400 m² 474 area), showed highly synchronized growth patterns. In our study, EPS values exceeded 0.85, the 475 assumed analytical threshold (Wigley et al., 1984), from 1905 to 2015 (Fig. 1D). The series inter-476 correlation (0.526) and mean sensitivity (0.239) were comparable to those interpreted from other 477 bivalve, fish and tree records (e.g., Black et al., 2005; Helama et al., 2007; Poitevin et al., 2019). Growth 478 patterns in the different shells analyzed showed good agreement. The detrending method used to 479 remove ontological trends may however have influenced the detection of low frequency spectra from 480 the SGI master series. We tried to limit this uncertainty by analyzing individuals of different ontological 481 age and by using a deterministic detrending method that preserves long-term environmental signals 482 (Marali and Schöne, 2015; Peharda et al., 2021; Schöne, 2013). Details of the general approach to 483 detrending and potential associated biases are fully described in previous studies (Butler et al., 2010; 484 Schöne, 2013). Thus, the inclusion of shorter series in the chronology and the preservation of medium-485 and low-frequency variability by any detrending method (including negative exponential) is limited in 486 practice to wavelengths of about one-third of the average length of the time series (Butler et al., 2010). 487 In our case this allows us to confidently investigate wavelengths shorter than ca. 25 years (as the 488 18NTC). The present study also highlights that removal of age trends from A. islandica (and other 489 bivalves) increment width chronologies remains a major challenge to fully exploit their growth records 490 as no detrending technique is currently specifically developed for bivalve sclerochronologies (Schöne, 491 2013). The population sampled for this study was dense (> 10 individuals.m⁻²), living buried in sediment 492 (> 1 cm bellow the sediment surface), not heavily preyed on and not harvested or otherwise disturbed 493 by human activity. Thus, our master chronology was interpreted to offer consistent coverage of A. 494 islandica growth conditions in the study area.

495 The spectral methods used in this study gave similar results and each detected a subtle, but significant 496 spectral peak with a period of about 18.6 years (Fig. 3A). Extractions of the 18.6-year period from the 497 master series using different methods showed that A. islandica experiences increased growth during 498 18NTC maxima and reduced growth during 18NTC minima (Fig. 4). However, importantly, the influence 499 of 18NTC on A. islandica growth appears to have decreased since the 1990s. This decline in the 500 influence of 18NTC can be attributed to a decrease in increment size during the last years of life of the 501 studied animals or to the enhanced influence of other environmental forcings exacerbated by global 502 climate change over the past 30 years. Nevertheless, evidence of an 18NTC signal in A. islandica shells 503 raises the question of the ecological mechanisms involved in the link between growth and the 18NTC 504 signal.

505 **6.2 Impact of tidal mixing on** *A. islandica* growth

506 Studies have shown that *A. islandica* growth depends primarily and by varying degrees on 507 temperature and food quantity, quality and availability (Ballesta-Artero et al., 2017; Butler et al., 2010; 508 Marali and Schöne, 2015; Mette et al., 2016). Schöne (2013), in his review, suggested that *A. islandica* 509 through endogenous rhythms can anticipate environmental changes such as ebb or neap tides and 510 associated changes in food availability and temperature. At the ecosystem level, Witbaard et al. (2001) 511 demonstrated the effect of tidal resuspension on benthic food quality by studying growth of three 512 macro-benthic organisms (including A. islandica) from two sites from the Southern North Sea. Recent 513 studies of infralittoral water (15 m depth) A. islandica paleoenvironmental records for SPM have shown 514 that growth depends most strongly on coastal water temperature and primary production (Doré et al., 515 2020; Poitevin et al., 2019). These studies however analyzed shells that developed in a practically 516 homogeneous vertical (Fig. 5C) water column and noteworthily these shells did not experience 517 variability with an 18.6-year period (Fig. 3B). At the circalittoral sampling site in the present study, 518 temperature data from the end of summer showed strong vertical temperature stratification and 519 considerable variation on time scales of a few hours (Fig. 5B). Variation in vertical temperature 520 structure can strongly affect primary production. Although in situ measurements on primary 521 production in the water column or near bottom are not available, the general dynamics described 522 above have been observed and likely operate in comparable environments. Tides represent one of the 523 dominant physical processes causing vertical mixing on continental shelves (e.g.Sharples, 2008). A 524 recent study of a mid-latitude area with seasonal stratification and moderate tidal currents similar to 525 those observed around SPM (Zhao et al., 2019) found that tidal forcing replenishes nutrients in the 526 upper part of stratified water columns during the summer and thereby both sustains and increases 527 primary production in the surface layer and within the pycnocline. This study and others like it have 528 revealed consistent patterns of variability between primary production and spring-neap tidal cycles 529 (with periods of ~14 days). Spring tides increase mixing and thus cause an increase in primary 530 production and bivalve food availability during stratified period, as long as the turbidity induced by 531 sediment resuspension does not constrain productivity by limiting light transmission (e.g., McSweeney 532 et al., 2017). These tidally driven ecological mechanisms occurring in summer are very likely to 533 influence A. islandica growth as, although we have not conducted specific intra-annual growth studies 534 in SPM (given the limited access to this study site), Schöne et al. (2005) demonstrated that A. islandica 535 shell collected from the southern and central North Sea reach maximum daily growth rates in August.

536 Other mechanisms could also explain the 18NTC effect on A. islandica growth. Those lie on sediment 537 water interface circulation and the effect of tidal currents on the sorting of sediment and/or food 538 particles, which could possibly influence their quality and bio-availability for A. islandica. These tidally 539 driven mechanisms have previously been suggested by Witbaard et al. (2001) which demonstrated 540 their interacting effects on food quality, resuspension, aggregate formation and sediment type to 541 explain A. islandica growth variability in the southern North Sea. However, the absence of such 542 sediment water interface environmental measurements in SPM does not allow us to further 543 investigate these aspects in the present study.

544 Tidal mixing in regions like SPM where diurnal components dominate tidal currents can influence 545 primary production and primary consumer growth due to the ecosystem's sensitivity to changes in 546 tidal current speeds. Moreover, sediment characteristics limit resuspension around SPM (Robin, 2007). 547 Thus, the subtle changes induced by the 18NTC may contribute to the strong positive correlations 548 observed between reconstructed A. islandica growth patterns and the nodal tidal cycle. The observed 549 patterns are also very consistent with the infralittoral SGI analysis, which does not display a spectral 550 peak at the 18NTC period, because the spring-neap tide cycle has only a weak influence on ecosystems 551 in almost vertically homogeneous shallow waters.

552 6.3. Are other processes at play?

553 <u>6.3.1 Temperature analysis</u>

554 In this region of the Atlantic Ocean, the only reliable and continuous coastal data available over 555 several decades (in addition to sea level records at tide gauges) are the satellite SST. We are aware 556 that this parameter is a poor descriptor of the bottom temperatures because it also incorporates 557 advection due to general circulation and variability of ocean-atmosphere exchanges that can mask the 558 effects of vertical mixing. We chose to use only best quality gridded products. This choice strongly 559 constrained the spatial and the temporal resolution of the analysis because we had to perform spatial 560 averaging and only the month of August proved to be usable. Fortunately, this month corresponds to 561 the month when the stratification is maximal and the effect of 18NTC is potentially the most visible. 562 Note that we did not employ the OISST database (Reynolds et al., 2007), which consists of filling the 563 gap by assimilating in situ data. The results of the assimilation process vary according to the available 564 data, which are very variable in time and space. It is therefore difficult to estimate their reliability at 565 fine spatial scales. Analyses with this dataset nevertheless yielded roughly the same results (not 566 shown).

567 It was tempting to use other datasets that have direct measures of bottom temperature, rather 568 than inferring it from the SST. However, we rejected these datasets for several reasons. Databases 569 such as EN4 (Good et al., 2013) were excluded due to their low spatial resolution and their poor 570 consideration of continental shelves. Another alternative would have been to analyze hindcasts, i.e. 571 model results with assimilation of observations (satellite SST, SSH, in situ observations), the main 572 problem is that the models considered do not explicitly treat tides. For example, Simple Ocean Data 573 Assimilation 3 (SODA3) (Carton et al., 2018) parameterizes tidal mixing over shelves, but ignores its 574 diurnal components and the nodal cycle. GLORYS (Lellouche et al., 2018), based on the NEMO model, 575 does not take tides on the continental shelves into account. The ability of the assimilation process to 576 correct this bias depends on the density of observations, which is highly variable in space and time. 577 Moreover, in the case of bottom temperatures, only in situ measurements (the rarest) are likely to 578 correct these biases. As an example, GLORYS data in the Mid-Atlantic Bight (south of our study area), 579 although very close to reality in general, show the largest errors over Georges Bank (Chen et al., 2021), 580 an iconic area known for its frontal dynamics related to tidal mixing (semi-diurnal in this case) (e.g., 581 Guida et al., 2013). The hindcast shows (Chen et al., 2021, their Figure S2) surface temperatures that 582 are too warm and, conversely, bottom temperatures that are too cold at monthly and at interannual 583 time scales. These discrepancies clearly indicate an underestimation of mixing that data assimilation 584 - although numerous in this well-studied area - fails to correct. Therefore, our SST analysis is based 585 solely on observations, because using any of the datasets described above would not have led to a 586 robust conclusion whatever the outcome, given their biases.

587 However, to draw robust conclusions on bottom temperature variability, we must show that 588 other physical processes are unlikely to be involved on bidecadal time scales.

589

6.3.2 Have bidecadal cycles ever been suspected or observed in the study area?

590 Considerable scientific literature is devoted to describing circulation and hydrology on the NW 591 Atlantic shelf and slope on seasonal to multidecadal time scales. The hydrology and dynamics of this 592 region are particularly complex given that it is the meeting site of the Labrador Current and the Gulf 593 Stream. For example, (Nigam et al., 2018) showed the importance of decadal variability, which results 594 from low frequency variability of the atmospheric North Atlantic Oscillation (NAO). (Wolfe et al., 2019) 595 reviewed the time scales involved in Gulf Stream fluctuations. They range from 7.5 to 13 years. It 596 appears that the north-south migration of the Gulf Stream has a dominant period of 9 years, which could partly explain the peaks observed with a 10-year period on the growth of A. islandica in the 597 598 spectra of the two series (Fig. 3). This study is very consistent with the results of (Poitevin et al., 2019) 599 that show a strong correlation between A. islandica growth and the latitudinal position of the shelf-600 slope front. Moreover, (Halfar et al., 2011) also found decadal periods in coralline algae growth records 601 along the eastern side of Newfoundland, which reflect the Labrador Current influence.

From the literature on the variability of hydrology in the region, we did not note any observations on a bidecadal scale. Nevertheless, bidecadal sea-level cycles in the entire Atlantic Ocean (North and South) have been detected (Vianna and Menezes, 2013) in the SODA model and these oscillations may be a fingerprint of the Atlantic meridional overturning circulation (AMOC) sea-level variations, which may affect shelf dynamics. The Vianna and Menezes (2013) study reported a regime shift since the beginning of the 1970s that includes all of our SST time series. If confirmed, an AMOCinfluenced cycle precludes attributing the observed bidecadal cycle to tidal dynamics. However, no influence of these cycles on coastal surface temperatures has ever been reported since the Vianna and Menezes (2013) study, and it is unlikely that the phase of these oscillations varies across the regional scale (from the Scotian shelf to Labrador shelf) due to the basin-wide scale considered in this study.

612 6.4 Diurnal tidal mixing on the Northwest Atlantic shelf

The role of diurnal tidal currents in this region has not been extensively studied, probably 613 614 because the semi-diurnal tidal range dominates throughout the region (with the exception of the Gulf 615 of St. Lawrence, in which an M2 amphidromic point occurs). These currents can potentially be more 616 important than the ratio of semi-diurnal tidal amplitudes to diurnal components would suggest. The 617 diurnal waves are subinertial (periods (24-26 h) > inertial period \approx 17 h) and the diurnal waves take on 618 features of a coastal trapped wave that results in local current amplifications generally near steep 619 slopes. Indeed, some strong diurnal tidal currents have been described at the edge of the Scotian and 620 Newfoundland shelves (Ohashi et al., 2009; Xu and Loder, 2004, respectively) and more locally near 621 Sable Island (Greenan et al., 2014) or SPM (Lazure et al., 2018).

622 A recent study (Wang et al., 2020) investigated the impact of tidal mixing in the NW Atlantic 623 shelf using 3D numerical modeling. This study consisted in simulating circulation and hydrology with 624 realistic forcing by comparing the results with or without taking into account the tides represented by 625 the five major constituents (M2, N2, S2, K1 and O1). As expected, the non-tidal simulations showed 626 higher SSTs and lower surface salinities for the month of August due to lower vertical mixing. 627 Examination of the different terms that are at stake in temperature variability, including horizontal 628 advection, showed that bottom temperatures depend locally on vertical diffusion (their Figure 17I). 629 Interestingly, the areas where this mixing had the most impact broadly coincided with the areas we 630 highlight in Figure 9. Unfortunately, the authors considered the tide as a whole and did not attempt to 631 distinguish the effects of the semi-diurnal and diurnal components. However, the earlier work of (Han 632 and Loder, 2003) had already noted that the diurnal K1 currents in the NW Scotian shelf were amplified 633 by the resonance of the first-mode continental shelf wave. They suggested that vertical mixing in this 634 area is probably mainly influenced by diurnal currents, because the O1 wave (of the same amplitude 635 as K1 in this area) had not been considered in their study.

636 However, a barotropic model has its own limitations, because it does not take into account 637 stratification and associated baroclinic currents. Barotropic tidal interaction with steep bathymetry in 638 a stratified environment during the summer results in internal waves. Waves having diurnal periods 639 are subinertial and therefore trapped by bathymetry (e.g., Huthnance, 1978). They propagate 640 alongshore leaving the coast on their right in the northern hemisphere. The temperature 641 measurements shown for Saint-Pierre Bank (Fig 5A) suggest strong internal dynamics, which most 642 likely indicate a coastal trapped wave. This coastal trapped wave strengthens the near-bottom 643 currents, causing significant shear in the cross-shore direction and contributes to increased vertical 644 mixing in the alongshore direction. These limitations could explain why the barotropic model does not 645 show strong mixing in the middle of the outer Laurentian Channel (depth range: 200-400 m), while the 646 SST analysis shows strong bi-decadal variability at 46-47°N latitude.

647 As a result, the areas that we designate as being under the dominant influence of diurnal 648 mixing are in good agreement with the above-cited papers and their extent is probably underestimated 649 due to the limitations of the barotropic approach. The transfer of time scale from diurnal tide to nodal 650 cycle is based on the stronger theoretical modulation of the diurnal vs. semi-diurnal components (see 651 above). Noteworthily, this modulation is globally verified by observations (Cherniawsky et al., 2010), 652 even though there are small observed deviations from the theory that are not yet fully understood.

653 6.5 Concluding remarks

Based on the annual growth lines of a large and consistent sample of *A. islandica* shells (21 individuals) at SPM, we highlighted here the footprint of an 18.6-year cycle that accounts for about 10% of the interannual variance in growth. We showed that this oscillation is in phase with the lunar nodal cycle (18NTC). From this observation, which is to our knowledge the first one made based on hard parts of animals, we developed an argument to explain the chain of interactions between tidal potential and bivalve growth on the sea bottom.

Based on previous studies of 18NTC, we hypothesized that diurnal tide-induced mixing is also the process underlying these observations on the NW Atlantic shelf. Examination of the August SSTs over 37 years and the use of a numerical tidal model led us to suggest that beyond the SPM archipelago, the Laurentian Channel environment may be partly affected by 18NTC. We also point out several caveats in our arguments that result mainly from the lack of observations spanning several decades. However, the explanatory elements that we provide seem coherent and convincing.

666 To confirm (or invalidate) our results, several avenues must be explored:

- Since our oceanographic analysis hinges on relationships with diurnal tide-induced mixing
 and SST, future sclerochronological work should naturally include the second most commonly used
 proxy in *A. islandica* - oxygen isotope values– which more directly relate to temperature and
 hydrography if salinity variations are absent, as in SPM.

An analysis of spatially averaged CTD (conductivity, temperature, and depth) casts on grid
boxes of reduced surface area corresponding to the sectors presumed to be affected by the 18NTC.
This approach is not feasible in SPM due to the paucity of available measurements, but could be
attempted on the Scotian Shelf, which has been the subject of much more work over the past several
decades.

- 3D numerical modeling, provided by a model that has already proven its ability to accurately
reproduce diurnal tides and associated coastal trapped waves. Short simulations for different phases
of the diurnal nodal cycle and for different summer stratifications can help quantify the modulation of
diurnal mixing.

Examination of other environmental archives using sclerochronology in the target areas is a
 natural extension of this study. Although this approach cannot provide an explanation of the chain of
 interactions leading to the 18NTC footprint, it may validate (or invalidate) the relatively regional nature
 of the influence of 18NTC on the benthic ecosystem that we describe here.

684 Acknowledgments

We thank the "Direction des Territoires de l'Alimentation et de la Mer (DTAM)" divers' crew 685 686 (Yoann Busnot, Luc Thillais, and Jean-Marc Derouet) for their help during A. islandica sampling off 687 Miquelon Island. We also thank the LEMAR (UMR 6539) Secretariat team (Anne-Sophie Podeur, 688 Geneviève Cohat, and Yves Larsonneur) for their invaluable assistance during the administrative 689 preparation of the field trip associated with this publication. We are sincerely grateful to the crew of 690 the R/V Antea during the "SPM2017" survey, to the Club Nautique Saint-Pierrais for renting their boat and especially to its president, Stephane Salvat, for his incredible availability and kindness. In 691 692 addition, we express our sincere gratitude to Herlé Goraguer, IFREMER delegate in SPM, for his help 693 with local authorisations and logistics. We thank Valentin Siebert for his technical assistance during 694 sclerochronological sample preparation. We also thank Claude Nozère, Dr. Pauline Chauvet and Dr 695 Julien Thébault for their advice on this manuscript. We thank two anonymous reviewers and the 696 managing editor, Prof. Alberto Piola, for significant and helpful comments which improved the 697 manuscript quality.

698 Fundings

This work was supported by the EC2CO program MATISSE of the CNRS INSU, the Cluster of Excellence
 LabexMER, and the LIA BeBEST CNRS INEE. This research was carried out as part of the Ph.D. thesis of
 PP at the University of Western Brittany with a French Ministry of Higher Education and Research
 grant.

703 APPENDIX

704

Fig. A1. Map displaying average ratio (theoretical maximum=1) of clear pixels (quality >=5) used in
each grid box (33' latitude and 30' longitude including 13x12=156 pixels) for Fig. 8 August satellite
SST spatial analysis (Pathfinder V5.3 dataset from Saha et al. (2018)). White boxes included at least
one missing year over the 37-year time series. The green-sided rectangle circles the box used to
extract August satellite SST time series from around station 27 (Fig. A2). The red-sided rectangle
circles the box used to extract August satellite SST time series from Saint-Pierre and Miquelon coastal
water used in Fig. 6 and 7 analyses. Due to a stroboscopic effect, 4 boxes lines contain 14x12=168

712 pixels. The entire domain spans 60x23 boxes.

713

714

Fig. A2. Comparison of *in situ* sea surface temperatures (SST) at Station 27 and spatially averaged

satellite SST from the August Pathfinder V5.3 dataset (green circled box in Fig. A1). At Station 27 (47°

33'N, 52° 35'W), monthly temperatures from surface to bottom (175 m) have been measured since
the late 1940s.

719

720 References

- Agosta, E.A., 2014. The 18.6-year nodal tidal cycle and the bi-decadal precipitation oscillation over
 the plains to the east of subtropical Andes, South America. Int. J. Climatol. 34, 1606–1614.
 https://doi.org/10.1002/joc.3787
- Ballesta-Artero, I., Witbaard, R., Carroll, M.L., Meer, J., 2017. Environmental factors regulating gaping
 activity of the bivalve *Arctica islandica* in Northern Norway. Mar. Biol. 164, 116.
 https://doi.org/10.1007/s00227-017-3144-7.
- Bezaud, M., Lazure, P., Le Cann, B., 2020. Wind-induced barotropic oscillations around the Saint
 Pierre and Miquelon archipelago (North-West Atlantic). Cont. Shelf Res. 195, 104062.
 https://doi.org/10.1016/j.csr.2020.104062
- Biondi, F., Qeadan, F., 2008. Inequality in paleorecords. Ecology 89, 1056–1067.
 https://doi.org/10.1890/07-0783.1.
- Black, B.A., Boehlert, G.W., Yoklavich, M.M., 2005. Using tree-ring crossdating techniques to validate
 annual growth increments in long-lived fishes. Can. J. Fish. Aquat. Sci. 62, 2277–2284.
 https://doi.org/10.1139/f05-142
- Bunn, A.G., 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124.
 https://doi.org/10.1016/j.dendro.2008.01.002.
- Burg, J.P., 1967. Maximum entropy spectral analysis: Presented at the 37th Annual International SEC
 Meeting, November I. in Oklahoma City.
- Butler, P.G., Richardson, C.A., Scourse, J.D., Witbaard, R., Schöne, B.R., Fraser, N.M., Wanamaker,
 A.D., Bryant, C.L., Harris, I., Robertson, I., 2009. Accurate increment identification and the
 spatial extent of the common signal in five *Arctica islandica* chronologies from the Fladen
 Ground, northern North Sea. Paleoceanography 24, 2210.
 https://doi.org/10.1029/2008PA001715
- Butler, P.G., Richardson, C.A., Scourse, J.D., Wanamaker, A.D., Shammon, T.M., Bennell, J.D., 2010.
 Marine climate in the Irish Sea: analysis of a 489-year marine master chronology derived
 from growth increments in the shell of the clam *Arctica islandica*. Quat. Sci. Rev. 29, 1614–
 1632. https://doi.org/10.1016/j.quascirev.2009.07.010
- Butler, P.G., Wanamaker, A.D., Scourse, J.D., Richardson, C.A., Reynolds, D.J., 2013. Variability of
 marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth
 increments in the bivalve *Arctica islandica*. Palaeogeogr. Palaeoclimatol. Palaeoecol. 373, pp.
 141-151, https://doi.org/10.1016/j.palaeo.2012.01.016
- Carton, J.A., Chepurin, G.A., Chen, L., 2018. SODA3: A New Ocean Climate Reanalysis. J. Clim. 31,
 6967–6983. https://doi.org/10.1175/JCLI-D-18-0149.1
- Chen, Z., Kwon, Y.-O., Chen, K., Fratantoni, P., Gawarkiewicz, G., Joyce, T.M., Miller, T.J., Nye, J.A.,
 Saba, V.S., Stock, B.C., 2021. Seasonal Prediction of Bottom Temperature on the Northeast
 US Continental Shelf. J. Geophys. Res.-Oceans 126, e2021JC017187.
 https://doi.org/10.1029/2021JC017187
- Cherniawsky, J.Y., Foreman, M.G.G., Kang, S.K., Scharroo, R., Eert, A.J., 2010. 18.6-year lunar nodal
 tides from altimeter data. Cont. Shelf Res. 30, 575–587.
 https://doi.org/10.1016/j.csr.2009.10.002
- David, P., Delay, B., Berthou, P., Jarne, P., 1995. Alternative models for allozyme-associated heterosis
 in the marine bivalve *Spisula ovalis*. Genetics 139, 1719–1726.
- Doré, J., Chaillou, G., Poitevin, P., Lazure, P., Poirier, A., Chauvaud, L., Archambault, P., Thébault, J.,
 2020. Assessment of Ba/Ca in *Arctica islandica* shells as a proxy for phytoplankton dynamics
 in the Northwestern Atlantic Ocean. Estuar. Coast. Shelf Sci. 237, 106628.
 https://doi.org/10.1016/j.ecss.2020.106628.
- 767 Douglas, A.E., 1920. Evidence of climatic effects in the annual rings of trees. Ecology 1, 24–27.
- 768 Drinkwater, K., Colbourne, E., Loeng, H., Sundby, S., Kristiansen, T., 2013. Comparison of the
- 769 atmospheric forcing and oceanographic responses between the Labrador Sea and the

770 Norwegian and Barents seas. Prog. Oceanogr., 114, 11–25. 771 https://doi.org/10.1016/j.pocean.2013.03.007 Flandrin, P., Rilling, G., Goncalves, P., 2004. Empirical mode decomposition as a filter bank. IEEE 772 773 Signal Process. Lett. 11, 112–114. https://doi.org/10.1109/LSP.2003.821662 774 Garrett, C.J.R., Keeley, J.R., Greenberg, D.A., 1978. Tidal mixing versus thermal stratification in the 775 Bay of Fundy and gulf of Maine. Atmos.-Ocean 16, 403–423. 776 https://doi.org/10.1080/07055900.1978.9649046 777 Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P., 2002. Advanced spectral methods for climatic time 778 779 series. Rev. Geophys. 40, 1003. https://doi.org/10.1029/2000RG000092 780 Godin, G., 1972. The Analysis of Tides. University of Toronto Press, Toronto, Ont. 781 Good, S.A., Martin, M.J., Rayner, N.A., 2013. EN4: Quality controlled ocean temperature and salinity 782 profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res.-Oceans 783 118, 6704–6716. https://doi.org/10.1002/2013JC009067 784 Greenan, B.J.W., Petrie, B.D., Cardoso, D.A., 2014. Mean circulation and high-frequency flow 785 amplification in the Sable Gully. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 104, 20–34. 786 https://doi.org/10.1016/j.dsr2.2013.07.011 787 Grissino-Mayer, H.D., 2001. Evaluating crossdating accuracy: a manual and tutorial for the computer 788 program COFECHA. Tree-Ring Res. 57, 205–221. 789 Guida, V.G., Valentine, P.C., Gallea, L.B., 2013. Semidiurnal Temperature Changes Caused by Tidal 790 Front Movements in the Warm Season in Seabed Habitats on the Georges Bank Northern 791 Margin and Their Ecological Implications. Plos One 8, (2):e55273. 792 https://doi.org/10.1371/journal.pone.0055273 793 Halfar, J., Hetzinger, S., Adey, W., Zack, T., Gamboa, G., Kunz, B., Williams, B., Jacob, D.E., 2011. 794 Coralline algal growth-increment widths archive North Atlantic climate variability. 795 Paleogeogr. Paleoclimatol. Paleoecol. 302, 71-80. 796 https://doi.org/10.1016/j.palaeo.2010.04.009 797 Han, G., Loder, J., 2003. Three-dimensional seasonal-mean circulation and hydrography on the 798 eastern Scotian Shelf. J. Geophys. Res.-Oceans 108. https://doi.org/10.1029/2002JC001463 799 Helama, S., Schöne, B.R., Kirchhefer, A.J., Nielsen, K., Rodland, D.L., Janssen, R., 2007. Compound 800 response of marine and terrestrial ecosystems to varying climate: pre-anthropogenic 801 perspective from bivalve shell growth increments and tree-rings. Mar. Environ. Res. 63, 185-802 199. https://doi.org/10.1016/jmarenvres.2006.08.003. 803 Huang, N.E., Shen, Z., Long, S.R., Wu, M.L.C., Shih, H.H., Zheng, Q.N., Yen, N.C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-804 805 stationary time series analysis. Proc. R. Soc. A-Math. Phys. Eng. Sci. 454, 903–995. 806 https://doi.org/10.1098/rspa.1998.0193 807 Huthnance, J., 1978. Coastal trapped waves - analysis and numerical-calculation by inverse iteration. 808 J. Phys. Oceanogr. 8, 74-92. https://doi.org/10.1175/1520-809 0485(1978)008<0074:OCTWAA>2.0.CO;2 810 Lazure, P., Le Cann, B., Bezaud, M., 2018. Large diurnal bottom temperature oscillations around the 811 Saint Pierre and Miquelon archipelago. Sci. Rep. 8, 13882. https://doi.org/10.1038/s41598-812 018-31857-w 813 Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., 814 Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., 815 Le Traon, P.-Y., 2018. Recent updates to the Copernicus Marine Service global ocean 816 monitoring and forecasting real-time 1/12° high-resolution system. Ocean Sci. 14, 1093– 1126. https://doi.org/10.5194/os-14-1093-2018 817 818 Loder, J.W., Garrett, C., 1978. The 18.6-year cycle of sea surface temperature in shallow seas due to 819 variations in tidal mixing. J. Geophys. Res 83, 1967–1970. 820 https://doi.org/10.1029/JC083iC04p01967.

821 Lyard, F., Lefevre, F., Letellier, T., Francis, O., 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn. 56, 394-415. https://doi.org/10.1007/s10236-006-0086-x 822 823 Marali, S., Schöne, B.R., 2015. Oceanographic control on shell growth of Arctica islandica (Bivalvia) in 824 surface waters of Northeast Iceland implications for paleoclimate reconstructions. 825 Palaeogeogr. Palaeoclimatol. Palaeoecol 420, 138–149. 826 https://doi.org/10.1016/j.palaeo.2014.12.016. 827 Marchitto, T.M., Jones, G.A., Goodfriend, G.A., Weidman, C.R., 2000. Precise temporal correlation of Holocene mollusk shells using sclerochronology. Quat. Res. 53, 236–246. 828 829 https://doi.org/10.1006/gres.1999.2107. 830 McKinnell, S.M., Crawford, W.R., 2007. The 18.6-year lunar nodal cycle and surface temperature 831 variability in the northeast Pacific. J. Geophys. Res.-Oceans 112, C02002. 832 https://doi.org/10.1029/2006JC003671 833 McSweeney, J.M., Chant, R.J., Wilkin, J.L., 2017. Suspended-Sediment Impacts on Light-Limited 834 Productivity in the Delaware Estuary. Estuar. Coast 40, 977–993. 835 https://doi.org/10.1007/s12237-016-0200-3 836 Mette, M.J., Wanamaker, A.D., Carroll, M.L., Ambrose, W.G., Retelle, M.J., 2016. Linking large-scale 837 climate variability with Arctica islandica shell growth and geochemistry in northern Norway. 838 Limnol. Oceanogr. 61, 748–764. https://doi.org/10.1002/lno.10252 839 Nigam, S., Ruiz-Barradas, A., Chafik, L., 2018. Gulf Stream Excursions and Sectional Detachments 840 Generate the Decadal Pulses in the Atlantic Multidecadal Oscillation. J. Clim. 31, 2853–2870. 841 https://doi.org/10.1175/JCLI-D-17-0010.1 842 Ohashi, K., Sheng, J., Thompson, K.R., Hannah, C.G., Ritchie, H., 2009. Effect of stratification on tidal 843 circulation over the Scotian Shelf and Gulf of St. Lawrence: a numerical study using a three-844 dimensional shelf circulation model. Ocean Dyn. 59, 809-825. 845 https://doi.org/10.1007/s10236-009-0212-7 846 Osafune, S., Yasuda, I., 2010. Bidecadal variability in the Bering Sea and the relation with 18.6 year 847 period nodal tidal cycle. J. Geophys. Res.-Oceans 115, C02014. 848 https://doi.org/10.1029/2008JC005110 849 Osafune, S., Yasuda, I., 2006. Bidecadal variability in the intermediate waters of the northwestern 850 subarctic Pacific and the Okhotsk Sea in relation to 18.6-year period nodal tidal cycle. J. 851 Geophys. Res.-Oceans 111, C05007. https://doi.org/10.1029/2005JC003277 852 Padmanabhan, G., Rao, A.R., 1988. Maximum entropy spectral analysis of hydrologic data. Water 853 Resour. Res. 24, 1519-1533. https://doi.org/10.1029/WR024i009p01519 854 Peharda, M., Schöne, B.R., Black, B.A., Corrège, T., 2021. Advances of sclerochronology research in 855 the last decade. Paleogeogr. Paleoclimatol. Paleoecol. 570, 110371. 856 https://doi.org/10.1016/j.palaeo.2021.110371 857 Peng, D., Hill, E.M., Meltzner, A.J., Switzer, A.D., 2019. Tide Gauge Records Show That the 18.61-Year 858 Nodal Tidal Cycle Can Change High Water Levels by up to 30cm. J. Geophys. Res.-Oceans 124, 859 736-749. https://doi.org/10.1029/2018JC014695 860 Poitevin, P., Chauvaud, L., Pecheyran, C., Lazure, P., Jolivet, A., Thebault, J., 2020. Does trace element 861 composition of bivalve shells record utra-high frequency environmental variations? Mar. 862 Environ. Res. 158, 104943. https://doi.org/10.1016/j.marenvres.2020.104943 863 Poitevin, P., Thébault, J., Siebert, V., Donnet, S., Archambault, P., Doré, J., Chauvaud, L., Lazure, P., 2019. Growth Response of Arctica Islandica to North Atlantic Oceanographic Conditions Since 864 865 1850. Front. Mar. Sci 6. https://doi.org/10.3389/fmars.2019.00483. 866 Ray, R.D., 2007. Decadal climate variability: Is there a tidal connection? J. Clim. 20, 3542–3560. 867 https://doi.org/10.1175/JCLI4193.1 Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., Schlax, M.G., 2007. Daily High-868 869 Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 20, 5473–5496. 870 https://doi.org/10.1175/2007JCLI1824.1

embouchures tidales de l'Archipel de St Pierre et Miquelon et de la côte ouest du Cotentin 872 873 (Manche ([PhD dissertation].). Université de Caen / Basse Normandie, Caen (Fr). 874 Saha, K., Zhao, X., Zhang, H.-M., Casey, K.S., Zhang, D., Baker-Yeboah, S., Kilpatrick, K.A., Evans, R.H., 875 Ryan, T., Relph, J.M., 2018. AVHRR Pathfinder version 5.3 level 3 collated (L3C) global 4km 876 sea surface temperature for 1981-Present. [August 1982-August 2018]. NOAA National 877 Centers for Environmental Information. Dataset. https://doi.org/10.7289/v52j68xx. 878 Schöne, B.R., Houk, S.D., Freyre Castro, A.D., Fiebig, J., Kröncke, I., Dreyer, W., Oschmann, W. 2005. 879 Daily growth rates in shells of Arctica islandica: assessing subseasonal environmental 880 controls on a long-lived bivalve mollusk. Palaios 20, 78–92. 881 https://doi.org/10.2110/palo.2003.p03-101 882 Schöne, B.R., 2013. Arctica islandica (Bivalvia): a unique paleoenvironmental archive of the northern 883 North Atlantic Ocean. Glob. Planet. Change 111, 199–225. 884 https://doi.org/10.1016/j.gloplacha.2013.09.013. 885 Sharples, J., 2008. Potential impacts of the spring-neap tidal cycle on shelf sea primary production. J. 886 Plankton Res. 30, 183–197. https://doi.org/10.1093/plankt/fbm088 887 Simpson, J., Hunter, J., 1974. Fronts in Irish Sea. Nature 250, 404–406. 888 https://doi.org/10.1038/250404a0 889 Thomson, D., 1982. Spectrum Estimation and Harmonic-Analysis. Proc. IEEE 70, 1055–1096. 890 https://doi.org/10.1109/PROC.1982.12433 891 Vautard, R., Ghil, M., 1989. Singular Spectrum Analysis in Nonlinear Dynamics, with Applications to 892 Paleoclimatic Time-Series. Physica D 35, 395–424. https://doi.org/10.1016/0167-893 2789(89)90077-8 894 Vianna, M.L., Menezes, V.V., 2013. Bidecadal sea level modes in the North and South Atlantic 895 Oceans. Geophys. Res. Lett. 40, 5926–5931. https://doi.org/10.1002/2013GL058162 896 Wang, Y., Sheng, J., Lu, Y., 2020. Examining tidal impacts on seasonal circulation and hydrography 897 variability over the eastern Canadian shelf using a coupled circulation-ice regional model. 898 Prog. Oceanogr. 189, 102448. https://doi.org/10.1016/j.pocean.2020.102448 899 Wigley, T.M.L., Briffa, K.R., Jones, P.D., 1984. On the average value of correlated time series, with 900 applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Clim 23, 201– 901 213. https://doi.org/10.1175/1520-04501984023 902 Witbaard, R., Duineveld, G.C.A., Bergman, M. 2001. The effect of tidal resuspension on benthic food 903 quality in the southern North Sea. Senckenberg. Marit., 31 (2001), pp. 225-234. 904 https://doi.org/10.1007/BF03043031 905 Wolfe, C.L.P., Hameed, S., Chi, L., 2019. On the Drivers of Decadal Variability of the Gulf Stream North 906 Wall. J. Clim. 32, 1235–1249. https://doi.org/10.1175/JCLI-D-18-0212.1 907 Xu, Z., Loder, J., 2004. Data assimilation and horizontal structure of the barotropic diurnal tides on 908 the Newfoundland and southern Labrador Shelves. Atmos.-Ocean 42, 43-60. 909 https://doi.org/10.3137/ao.420104 910 Zhao, C., Daewel, U., Schrum, C., 2019. Tidal impacts on primary production in the North Sea. Earth 911 Syst. Dynam. 10, 287–317. https://doi.org/10.5194/esd-10-287-2019 912

Robin, N., 2007. Morphodynamique des systèmes de flèches sableuses : Étude entre les

871