%0 Journal Article
%T High-precision chemical abundances of Galactic building blocks. II. Revisiting the chemical distinctness of the Helmi streams
%+ Observatoire astronomique de Strasbourg (ObAS)
%A Matsuno, Tadafumi
%A Dodd, Emma
%A Koppelman, Helmer H.
%A Helmi, Amina
%A Ishigaki, Miho N.
%A Aoki, Wako
%A Zhao, Jingkun
%A Yuan, Zhen
%A Hattori, Kohei
%< avec comité de lecture
%@ 0004-6361
%J Astronomy and Astrophysics - A&A
%I EDP Sciences
%V 665
%8 2022
%D 2022
%Z 2203.11808
%Z 2022A&A...665A..46M
%R 10.1051/0004-6361/202243609
%K Galaxy: abundances
%K Galaxy: halo
%K stars: abundances
%K Galaxy: stellar content
%K Astrophysics - Astrophysics of Galaxies
%K Astrophysics - Solar and Stellar Astrophysics
%Z Sciences of the Universe [physics]
%Z Sciences of the Universe [physics]/Astrophysics [astro-ph]Journal articles
%X Context. The Helmi streams are a kinematic substructure whose progenitor is likely a dwarf galaxy. Although 20 years have passed since their discovery, it is still unclear whether their members are chemically distinguishable from other halo stars in the Milky Way.
Aims: We aim to precisely characterize the chemical properties of the Helmi streams.
Methods: We analyzed high-resolution, high signal-to-noise ratio spectra for 11 Helmi stream stars through a line-by-line abundance analysis. We compared the derived abundances to homogenized literature abundances of the other halo stars, including those belonging to other kinematic substructures, such as Gaia-Enceladus and Sequoia.
Results: Compared to typical halo stars, the Helmi stream members clearly show low values of [X/Fe] in elements produced by massive stars, such as Na and α-elements. This tendency is seen down to metallicities of at least [Fe/H] ∼ − 2.2, suggesting type Ia supernovae already started to contribute to the chemical evolution at this metallicity. We find that the [α/Fe] ratio does not evolve significantly with metallicity, making the Helmi stream stars less distinguishable from Gaia-Enceladus stars at [Fe/H] ≳ − 1.5. The almost constant but low value of [α/Fe] might be indicative of quiescent star formation with low efficiency at the beginning and bursty star formation at later times. We also find extremely low values of [Y/Fe] at low metallicity, providing further support for the claim that light neutron-capture elements are deficient in Helmi streams. While Zn is deficient at low metallicity, it shows a large spread at high metallicity. The origin of the extremely low Y abundances and Zn variations remains unclear.
Conclusions: The Helmi stream stars are distinguishable from the majority of the halo stars if homogeneously derived abundances are compared.