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Horizontally stratified structures are commonly used to represent naturally occurring structures, such as soils. The electromagnetic signature of such a medium illuminated by a radar and the polarization state of the scattered wave are fully determined by the knowledge of the four Stokes parameters. In this paper, we determine the statistics of the four Stokes parameters for the signal scattered by layered structures with an arbitrary number of slightly rough interfaces. The rough interfaces are realizations of second-order stationary centered Gaussian stochastic processes and the layered structure is illuminated by an elliptically polarized monochromatic wave. The zenithal and azimuthal components of the far scattered electric field are derived from the first-order small perturbation method. The derivation leads to a multivariate Gaussian model for the underlying complex scattered amplitudes and we establish the closed-form expressions of the probability density function, the cumulative density function and the first-and second-order moments for the four Stokes parameters.

For an observation direction outside the incidence plane, we establish the condition on the incidence wave parameters for which the zenithal and azimuthal components are uncorrelated. For an air / snow cover / frozen soil / unfrozen soil structure, we analyze the marginal probabilities and validate the theory by comparison with Monte-Carlo simulations. More generally, when the two complex components of the field scattered by the illuminated zone are Gaussian random variables, these statistics offer possibilities for in-depth investigating the polarization of scattering processes from random media.

I. INTRODUCTION

Scattering of electromagnetic waves from layered structures has aroused the interest of physicists and engineers for many years with applications in several fields as remote sensing, civil engineering, geophysics and optics. In the field of the remote sensing, multilayered structures with randomly rough boundaries are relevant for modeling the electromagnetic wave scattering signal from natural scenes, such as, stratified soils [START_REF] Tabatabaeenejad | Inversion of subsurface properties of layered dielectric structures with random slightly rough interfaces using the method of simulated annealing[END_REF]- [START_REF] Rabus | The importance of soil moisture and soil structure for InSAR phase and backscatter, as determined by FDTD modeling[END_REF], snow cover blanket [START_REF] Schwank | Model for microwave emission of a snow-covered ground with focus on L band[END_REF]- [START_REF] Dagurova | Estimation of snow water equivalent from L-band radar interferometry: simulation and experiment[END_REF], snow cover ice [START_REF] Tonboe | Simulation of satellite radar altimeter sea ice thickness retrieval uncertainty[END_REF]- [START_REF] Dusséaux | Scattering properties of a stratified air/snow/sea ice medium. Small slope approximation[END_REF] or oil slick on sea surface [START_REF] Nunziata | On the Mueller scattering matrix for SAR sea oil slick observation[END_REF]- [START_REF] Zheng | Theoretical study on microwave scattering mechanisms of sea surfaces covered with and without oil film for incidence angle smaller than 30°[END_REF]. A number of numerical and analytical models have been proposed to simulate the response of stratified structures [START_REF] Bourlier | Method of moments for 2D scattering problems: basic concepts and applications[END_REF]- [START_REF] Jonard | Modeling of multilayered media Green's functions with rough interfaces[END_REF]. The analytical models cannot be compared in terms of computing cost with the exact ones that are associated with numerical techniques and Monte-Carlo simulations. Within their domains of validity, the analytical models allow a fast analysis of the multilayered structures by means of analytical formulae. The small perturbation method (SPM) is often used for the analysis of these scattering phenomena. This method is based on Taylor series of the complex amplitudes of the scattered field and on Taylor series of the boundary value problem and gives analytical formulae for the coherent and incoherent scattered intensities [START_REF] Tabatabaeenejad | Bistatic scattering from three dimensional layered rough surfaces[END_REF]- [START_REF] Wu | Second-order perturbative solutions for 3-D electromagnetic radiation and propagation in a layered structure with multilayer rough interfaces[END_REF]. The first-order SPM is valid for small height variations compared to the EM wavelength and small gradients of the surface heights compared to 1 [START_REF] Soto-Crespo | Scattering from slightly rough random surfaces: A detailed study on the validity of the small perturbation method[END_REF]- [START_REF] Tabatabaeenejad | Study of validity region of small perturbation method for two-layer rough surfaces[END_REF]. The second-order SPM solution is significant to characterize the crosspolarized backscattering [START_REF] Demir | A study of the fourth-order small perturbation method for scattering from two-layer rough surfaces[END_REF]- [START_REF] Wu | Second-order perturbative solutions for 3-D electromagnetic radiation and propagation in a layered structure with multilayer rough interfaces[END_REF].

In [START_REF] Tabatabaeenejad | Bistatic scattering from three dimensional layered rough surfaces[END_REF]- [START_REF] Tabatabaeenejad | Study of validity region of small perturbation method for two-layer rough surfaces[END_REF], the scattered field is characterized by the scattered intensity, i.e. by its second order moment which is already included in the probability distribution of the scattered field. For stratified structure with randomly rough boundaries under electromagnetic wave illumination, the scattered field in a given observation direction is a random variable and the knowledge of the probability density function (PDF) is of great importance for the characterization of the structure. In [START_REF] Afifi | Scattering by anisotropic rough layered 2D interfaces[END_REF], we established the probability distributions for the modulus, the phase and the intensity of the wave scattered by a stratified medium illuminated by a horizontally (h) or vertically (v) polarized monochromatic plane wave. The interfaces were characterized by Gaussian height distributions with zero mean values. For slightly rough interfaces with a finite extension, we showed that the modulus for the co-and crosspolarized scattering amplitudes follows a Hoyt law and that the phase is not uniformly distributed. For interfaces with infinite surface area, the modulus follows a Rayleigh law and the phase is uniformly distributed. Within the framework of the first-order SPM, we determined in [START_REF] Afifi | On the co-polarized phase difference of rough layered surfaces: Formulae derived from the small perturbation method[END_REF] the PDF of the copolarized phase difference for the field scattered by a multilayered medium. In [START_REF] Dusséaux | Statistical distributions of the co-polarized and cross-polarized phase differences of stratified media[END_REF], we showed that, outside the incidence plane, the cross-polarized phase difference is not uniformly distributed and contains information about the stratified structure. In [START_REF] Afifi | On the co-polarized scattered intensity ratio of rough layered surfaces: The probability law derived from the small perturbation method[END_REF], we derive the closed-form expression of the probability distribution for the scattered intensity ratio and we showed that the co-and cross-polarized intensity ratios follow heavy-tailed distributions. In [START_REF] Afifi | The coand cross-polarized scattered intensity ratios for 3D layered structures with randomly rough interfaces[END_REF], we showed, still within the framework of the first-order SPM, that the statistics of the co-and cross-polarized intensity ratios allow to differentiate an air/clayey soil/rock structure with or without snow cover.

To reduce statistical variations, polarimetric radars use the multilook processing by averaging spatially the randomly scattered signals. In [START_REF] Kong | Identification of terrain cover using the optimum polarimetric classifier[END_REF]- [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF], the statistics of multilook signatures have been investigated under the assumption of multivariate Gaussian for the understudying scattered amplitudes.

In [START_REF] Dusséaux | Multilook intensity ratio distribution for 3-D layered structures with slightly rough interfaces[END_REF], within the framework of SPM, assuming that the n-look intensities are means of n independent identically distributed single look intensities, we derived the statistics for the multilook intensity ratio for a multilayered structure bounded by randomly rough surfaces under a h-or v-polarized plane wave illumination. We obtained a three-parameter probability distribution and we showed that the PDF only depends on the number of looks, on the modulus of the complex correlation coefficient between the scattered amplitudes under study, and on the ratio between the associated average single-look intensities.

In [START_REF] Afifi | Multilook phase difference distribution for slightly rough boundary layered ground[END_REF], the work was extended to the distribution of the phase difference between two multilook scattered signals. We showed that the phase difference PDF is expressed in terms of the Gauss hypergeometric functions and only depends on the number of looks and on the modulus and phase of the complex correlation coefficient between the scattered amplitudes under study [START_REF] Joughin | Probability density functions for multilook polarimetric signatures[END_REF].

The description of the scattering signal from layered structures can be obtained using the Stokes parameters. The Stokes parameters are a set of values that describe the polarization state of the scattered field and depend on two orthogonal complex components of the scattered electric field. Statistics of the Stokes parameters depends on the normalized complex correlation coefficient between the two orthogonal components, the modulus and phase of which define the degree of coherence and the mean effective phase difference [START_REF] Barakat | Statistics of the Stokes parameters[END_REF]- [START_REF] Eliyahu | Vector statistics of correlated Gaussian fields[END_REF]. In [START_REF] Barakat | Statistics of the Stokes parameters[END_REF], the obtained statistics were limited to the case where the mean effective phase difference is equal to 0. In [START_REF] Touzi | Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multilook speckle fields[END_REF], the PDF for the four Stokes parameters was established but for two of the four parameters, the probability law was not given by an analytical expression but in the form of an integral which needed to be numerically evaluated. In [START_REF] Eliyahu | Vector statistics of correlated Gaussian fields[END_REF], the analytical expression for each of the four Stokes parameters was obtained. In [START_REF] Barakat | Statistics of the Stokes parameters[END_REF]- [START_REF] Eliyahu | Vector statistics of correlated Gaussian fields[END_REF], the statistics of the Stokes parameters were investigated under the hypothesis of multivariate Gaussian models for the two underlying orthogonal complex components. The results established in [START_REF] Barakat | Statistics of the Stokes parameters[END_REF]- [START_REF] Eliyahu | Vector statistics of correlated Gaussian fields[END_REF] are still relevant, but the link with an electromagnetic model was not made. For physicists, it is important to derive the probability laws either from an exact electromagnetic model combined with Monte-Carlo simulations [START_REF] Chen | Polarimetric simulations of SAR at Lband over bare soil using scattering matrices of random rough surfaces from numerical threedimensional solutions of Maxwell equations[END_REF] or from an analytical approach [START_REF] Gardashov | Calculation of the statistical characteristics of the light reflected by a rough random cylindrical homogeneous Gaussian surface[END_REF]. Moreover, the results in [START_REF] Barakat | Statistics of the Stokes parameters[END_REF]- [START_REF] Eliyahu | Vector statistics of correlated Gaussian fields[END_REF] did not relate specifically to the scattering of electromagnetic waves by multilayered structures.

In the present study, we focus on the statistical properties of the four Stokes parameters for the single-look signal scattered by layered structures with an arbitrary number of rough interfaces.

Compared to our previous works, we are therefore interested in the polarization state of the scattered electric field. We assume that the rough interfaces are realizations of second-order stationary centred Gaussian stochastic processes and that the layered structure is illuminated by an elliptically polarized monochromatic wave. The zenithal and azimuthal components of the far scattered electric field are derived from the first-order SPM. For a stack of homogeneous layers with randomly rough surfaces, the two components of the scattered field depend on rough interface realizations and for a given direction, they are complex random variables. The derivation leads to a multivariate Gaussian model for the underlying complex scattered amplitudes. The values of the Stokes parameters change from one realization of the multilayer structure to another. For a given direction, they are also random variables.

By using the multivariate Gaussian model for the zenithal and azimuthal complex components, we establish the closed-form expressions of the probability density function, the cumulative density function (CDF) and the first-and second-order moments for the four Stokes parameters. This article is organized as follows. Section II reports the statistical properties of the considered three-dimensional stratified structure and the first-order SPM scattering model applied to an ellipticallypolarized incident plane wave. For infinite slightly rough surfaces described by Gaussian centered stochastic processes, we show that the real and imaginary parts of the zenithal and azimuthal components follow a Gaussian joint distribution and we also derive the analytical expression for the degree of coherence and the mean effective phase difference. In Section III, for each of the Stokes parameters, we establish closed-form expressions for the PDF and CDF and for the first-and second-order moments. In section IV, for air/snow cover/frozen soil/unfrozen soil structures, we study the statistics of the Stokes parameters and we validate the theoretical formulae by comparison with Monte-Carlo simulations.

II. PROBLEM FORMULATION

A. Statistics of randomly rough interfaces

As shown in Fig. 1, the structure we consider is a stack of 1 N  rough two-dimensional interfaces. For the study, the length L along Ox and Oy axes tends to infinity. For
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iN  , the i-th and the (i+1)th interfaces are separated by a non-magnetic, homogeneous and isotropic layer with a thickness
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(with 1 0 u  ). The i-th layer is characterized by a relative permittivity ri  . The top region (medium 1) is assumed to be air (assimilated to vacuum). The bottom region (medium N ) is a halfspace. Rough boundaries are realizations of second order stationary, uncorrelated, centered Gaussian stochastic processes with isotropic Gaussian spectrum ˆ( , )

ii R  :
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Throughout the paper, a function symbol with a superscript '^' stands for the Fourier transform of the function. The quantities  and  are the wave numbers resulting from the 2D Fourier transform of the

Gaussian autocorrelation function ( , )

ii R x y characterizing the i-th interface. The quantity i  is the rms- height and i l , the correlation length. 
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The letter (a) designates the (h) or (v) incident polarization. 
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The symbol  designates the vector product. ( , , )     . Using the stationary phase method [START_REF] Born | Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light[END_REF]- [START_REF] Baudier | Scattering of an E//-polarized plane wave by one-dimensional rough surfaces: Numerical applicability domain of a Rayleigh method in the far-field zone[END_REF], at the observation point ( , , ) r  located in the far-field zone, we obtain from (3) the horizontal and vertical components of the asymptotic scattered electric field, () The polarization of the incident wave is deduced from the complex amplitudes 0( ) h A and 0( )
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AA  , we obtain the left-handed polarization case.

We express the modulus of the complex amplitudes as follows, 0( , ) 0( , )

hv hv a A L  (7) 
in order to obtain an incident power 0 P independent on the LL  surface area:
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For an elliptically polarized incident wave, the direction of the scattered electric field vector in the farfield zone is defined by the vector p , 11
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To describe the polarization state of the scattered wave, we use the Stokes parameters [START_REF] Ishimaru | Electromagnetic wave propagation, radiation and scattering[END_REF],
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where the pairs ( , ) M   and ( , ) M   are the modulus and phase of the complex amplitudes 1( ) A  and 1( ) , A  respectively. We note         the phase difference. For a linearly polarized scattered wave, 3 0 S  . For a RHC-polarized scattered wave, 22 MM   

C. Scattered amplitudes as random processes

We consider slightly rough interfaces. The first-order SPM gives the scattering amplitude 1( ) ba A as follows [START_REF] Tabatabaeenejad | Bistatic scattering from three dimensional layered rough surfaces[END_REF]- [START_REF] Imperatore | Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces[END_REF], [START_REF] Afifi | Scattering by anisotropic rough layered 2D interfaces[END_REF]:
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The superscript (1) refers to the first-order SPM. The function ( , ) ˆi a  is the 2D Fourier transform of the function ( , ) i a x y divided by the length L . The closed-form expressions of first-order SPM kernels
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 were first obtained in [START_REF] Tabatabaeenejad | Bistatic scattering from three dimensional layered rough surfaces[END_REF] for a stratified structure with two rough interfaces. The kernels were first obtained in [START_REF] Imperatore | Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces[END_REF] by a recurrence relation for an arbitrary number of rough interfaces. For a stratified medium with three rough interfaces, the kernels were expressed in [25, appendix A] as functions of the relative permittivity values, the layer thicknesses, and of the incidence and scattering angles.

The interface height distributions are assumed to be centered and Gaussian. As shown by [START_REF] Demir | A study of the fourth-order small perturbation method for scattering from two-layer rough surfaces[END_REF], the scattering amplitude (1) 1( ) ( , ) Let R  and I  be the real and imaginary parts of A  and let R  and I  be those of A  . We find from
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We deduce from ( 16) that the four random variables R  , , I  R  and I  also follow a four-order Gaussian distribution. Insofar as the rough surface height distributions are centered, the four random variables are also centered and the joint PDF is given by
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( ) [START_REF] Zamani | Scattering from layered rough surfaces: Analytical and numerical investigations[END_REF] where Γ is the covariance matrix. The symbol T denotes the transpose. As in [START_REF] Afifi | On the co-polarized phase difference of rough layered surfaces: Formulae derived from the small perturbation method[END_REF], we show from [START_REF] Demir | A study of the fourth-order small perturbation method for scattering from two-layer rough surfaces[END_REF] and ( 16) that when L   , the covariance matrix only depends on four primary parameters: the
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In the appendix A, the four primary parameters are expressed as a function of the amplitudes () Using polar coordinates, we derive from (17) the 4D-joint PDF of the random variables M  ,   ,
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The quantity r is the modulus of the normalized correlation coefficient between the two complex random variables 1 A  and 1 A  . The quantity r is also called the degree of coherence with
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The angle 0  is the argument of the complex correlation coefficient, generally called the mean effective phase difference. This reference angle is defined as follows:

  0 arctan / . R I R R         (22) 
The degree of coherence and the average effective phase difference are involved in the calculation of the inverse of the covariance matrix and its determinant. According to ( 21)-( 22) and (A1)-(A7), the degree of coherence and the average effective phase difference are fully determined by the knowledge of the geometrical and electrical parameters of the multilayered structure and of the radar configuration.

Knowing that in the incidence plane 0 ( ),
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Moreover, the reference angle 0 0 () for which the degree of coherence is zero [START_REF] Gil | A depolarization criterion in Mueller matrices[END_REF], i.e., for which the zenithal and azimuthal components of the far electric field are uncorrelated.
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D. Stokes parameters as random processes

The Stokes parameters are random processes depending on the angles  and  . For a given direction, they are random variables. To establish the Stokes parameter PDF, the joint PDF of M  , M  and   may be derived as done in [START_REF] Barakat | Statistics of the Stokes parameters[END_REF].
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The statistic distribution of each Stoke parameter can then be deduced as a function of the four primary

parameters 2 R   , 2 R   , RR   and RI 
 which depend on the first-order SPM Kernels and the interface spectra. The following section is dedicated to the determination of the closed-form expressions for the PDF, the CDF, the mean and the variance of each Stokes parameter.

III. Statistics of the Stokes parameters

A. Statistics of 0 S and 1 S

Closed-form expression for the PDF of 0 S and 1 S was derived in [START_REF] Barakat | Statistics of the Stokes parameters[END_REF]- [START_REF] Eliyahu | Vector statistics of correlated Gaussian fields[END_REF] from the joint PDF . does not depend on 0  . The first-and second-order moments were evaluated by integration of (26),
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In [START_REF] Barakat | Statistics of the Stokes parameters[END_REF]- [START_REF] Eliyahu | Vector statistics of correlated Gaussian fields[END_REF], the authors did not determine the CDF. The CDF of the random variable 0 S is the integral of its PDF,
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where 0 0 s  and cosh(.) denotes the hyperbolic cosine function.

For the PDF The first-and second-order moments were evaluated by integration of (31) with

11 22 1 1 1 ( ) 2( ) S S R R m s p s ds         (32) 2 1 4 4 2 2 2 8 ( ) (1 ) R R R R S mr               (33) 
The probability law . As previously, the CDF of 1 S is obtained from the integral of its PDF. After some algebraic manipulation, we find 

After some analytical manipulations, we establish the closed-form expression for the first-and secondorder moments of the random variable 2 

                      2 2 0 if 0 in ( ) s                (38)
In a similar way, the PDF 36), ( 37) and [START_REF] Baudier | Scattering of an E//-polarized plane wave by one-dimensional rough surfaces: Numerical applicability domain of a Rayleigh method in the far-field zone[END_REF], respectively.

In particular, we obtain obtained in [START_REF] Eliyahu | Vector statistics of correlated Gaussian fields[END_REF]. To our knowledge, the derivation that we propose has not been published and is useful in terms of analytical calculation for the continuation of [START_REF] Touzi | Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multilook speckle fields[END_REF].

C. Remarks

We deduce from ( 11)-( 14) that the second-order moments of the four Stokes parameters must obey a linear equality

2 2 2 2 0 1 2 3 . S S S S m m m m    (41) 
By substituting the second-order moments into (41), we check the equality for all values of r and 0  . We define the normalized Stokes parameters by

The variance of the Stokes parameter

/ i i R R SS    ( 0,1, 2,3 i 
). The PDF of i S is given by ( ) ( )

i i i R R S R R i S p s p s        
and the CDF by ( ) ( ) 

i i i S R R i S



IV. Validation of the analytical expressions

We consider an air / snow cover / frozen soil / unfrozen soil structure illuminated in L band with Comparison is conclusive and validates the theoretical expressions of the first-and second-order moments in the backscattering direction. Fig. 2 shows the PDF for each normalized Stokes parameter i S in the backscattering direction. The agreement between the theoretical probability laws with the histograms obtained from Monte Carlo simulations is very good. Fig. 3 shows the theoretical and simulated CDFs for the same configuration. Theoretical and Monte-Carlo curves are superimposed. This comparison validates the theory in the backscattering direction.

For the studied configuration, the degree of coherence r given by ( 21) is equal to 0.995 with 

R    .
Therefore, the two complex amplitudes 1 A  and 1 A  are strongly correlated. The reference angle 0  given by ( 22) is equal to 100°.

The normalized correlation coefficient is also estimated from the set of 2 13 realizations of scattered amplitudes. The obtained value for the degree of coherence is 0.997 and for the mean effective phase difference, 99.7°, respectively. We note very small differences between theoretical values and simulation results.

Given the values of r and 0  , the probability law for each of the Stokes parameters is close to a one- , we find the same value of r and 0 280     as predicted by ( 23) and [START_REF] Afifi | On the co-polarized scattered intensity ratio of rough layered surfaces: The probability law derived from the small perturbation method[END_REF]. As a result, for the Stokes parameters 0 S and 1 S , the PDF is unchanged. For the Stokes parameters 2 S and 3 S , the PDF is obtained from the graph shown in fig. 2 by symmetric with respect to the Oy-axis. Table II gives the mean and the standard deviation for each normalized Stokes parameter i S in the observation direction ( , ) (50 , 45 )     . The stratified structure is illuminated by a RHC-polarized plane wave under the incidence angles 0 50   and 0 0   . Comparison between the theoretical values and the simulated ones is conclusive. Fig. 4 shows the associated PDFs and Fig. 5, the CDFs, respectively. The agreement is very good. For the studied configuration, the degree of coherence r

given by ( 21) is equal to 0.987 with 

S

Fs at the origin is equal to 0.921. This means that the modulus 1 M  of the complex amplitude 1 A  is smaller than the modulus 1 M  of 1 A  for 92.1% of the realizations of the stratified medium (7545 cases observed out of 2 13 simulated). The CDF 3

()

S

Fs at the origin is equal to 0.993. The scattered wave is therefore elliptically polarized in the LH sense for 99.3% of the realizations of the stratified medium and for 0.0707% of cases, the scattered wave is elliptically polarized in the RH sense (58 cases observed out of 2 13 simulated). . For a direction of observation outside the incidence plane, the curves of Fig. 7 show that the distribution of each of the normalized Stokes parameters depends closely on the polarization state of the incident wave. The marginal probabilities in Fig. 7 were compared to the normalized histograms obtained by simulations. The comparison was conclusive but not shown here. 

Conclusion

In this paper, we analytically determine the statistics of the four Stokes parameters for the signal scattered by layered structures with an arbitrary number of slightly rough interfaces. The layered structure is illuminated by a monochromatic wave of an arbitrary polarization. The zenithal and azimuthal components of the far scattered electric field are derived from the first-order Small Perturbation Method. For randomly rough interfaces with infinite extensions and centred Gaussian height distributions, we show that the underlying complex scattered amplitudes follow a multivariate Gaussian model. For the Stokes vector coordinates, we establish the analytical expressions of the probability density function given by ( 26), [START_REF] Afifi | Multilook phase difference distribution for slightly rough boundary layered ground[END_REF], and [START_REF] Chen | Polarimetric simulations of SAR at Lband over bare soil using scattering matrices of random rough surfaces from numerical threedimensional solutions of Maxwell equations[END_REF], the cumulative density function [START_REF] Dusséaux | Multilook intensity ratio distribution for 3-D layered structures with slightly rough interfaces[END_REF], [START_REF] Eliyahu | Vector statistics of correlated Gaussian fields[END_REF], and ( 38) and the first-and second-order moments ( 27)-( 28), ( 32)-( 33), ( 36)-( 37) and ( 39)- [START_REF] Gil | A depolarization criterion in Mueller matrices[END_REF]. We also derive the statistics of the normalized Stokes parameters The marginal distribution for 2 S or 3 S is a threeparameter distribution that also depends on the mean effective phase difference 0  (i.e., the argument of the complex correlation coefficient). We also obtain an analytical formula for the degree of coherence, the mean effective phase difference and the ratio 0 p as a function of the first-order SPM kernels, of the interface spectra and of the incidence and observations angles.

/ i i R R SS    ( 0,1, 2,3 i 
Knowing that in the incidence plane, the first-order cross-polarized amplitudes are equal to zero, we show that for a given observation direction, the degree of coherence does not depend on the phase difference and on the amplitudes of the h-and v-polarized components of the incident plane wave. For an observation direction outside the incidence plane, we define the condition on the incidence wave parameters for which the zenithal and azimuthal components are uncorrelated, i.e. for which the degree of coherence is equal to zero.

For an air / snow cover / frozen soil / unfrozen soil structure, we analyze the marginal probabilities of the Stokes parameters and validate the theory by comparison with Monte-Carlo simulations. The stratified medium is studied in the backscattering direction and also in any observation direction. The theory assumes slightly rough surfaces with infinite extent. Nevertheless, we observe from Monte-Carlo simulations that the obtained analytical formulas are still valid for surfaces of a few hundred wavelengths squared. The agreement between simulated data and theory is observed to be very good for the PDF, the CDF, the mean, and the standard deviation. We considered random processes with Gaussian spectra but the marginal probability laws presented in this paper can be used for any finite memory random process and in the case of correlated interfaces: only the parameters of the probability laws change. Under the condition that the real and imaginary parts of the two orthogonal components of the field scattered by the illuminated zone are Gaussian random variables, these statistics of the Stokes parameters offer possibilities for in-depth investigating the polarization of scattering processes from random media.

The case of multilook data is of relevance for applications. The statistics of the Stokes parameters for multilook returns were derived in [START_REF] Touzi | Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multilook speckle fields[END_REF]. An analytical expression of the marginal probability was obtained for the two first Stokes parameters. For the two other multilook Stokes parameters, the probability law was in the form of an integral which needed to be numerically evaluated. In [START_REF] Jin | Statistics of four Stokes parameters in multi-look polarimetric synthetic aperture radar (SAR) imagery[END_REF], under some reasonable approximations validated by real SAR returns, the PDFs were formulated analytically with dependence on the look number and mean values of the Stokes parameters. Rigorous analytical calculation still deserves to be performed and the statistics of multilook signatures for multilayered structures with an arbitrary number of slightly rough interfaces could be studied in this way.

Appendix A: Expressions of the four primary parameters

When L   , the covariance matrix only depends on the four primary parameters : the variances  . We derive from ( 16) the closed-form expressions of these variances and covariances as follows:
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The variances 15) and calculation details are given in [START_REF] Afifi | Scattering by anisotropic rough layered 2D interfaces[END_REF][START_REF] Afifi | On the co-polarized phase difference of rough layered surfaces: Formulae derived from the small perturbation method[END_REF]. We obtain Substituting ( 25) into (C1), after some algebraic manipulations, the following expression is established where  is given by [START_REF] Lee | Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[END_REF]. By using the modified Bessel function 0 K given by the following integral [41, p.183 In a similar way, the PDF 
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In this appendix, we show that the analytical calculation of . Knowing that the integral of a Gaussian distribution over the entire real line is equal to the unity, we show that 

Fig. 1 . 1 k

 11 Fig. 1. Structure with an arbitrary number of rough two-dimensional interfaces Function ( , ) i a x y is a realization of an isotropic Gaussian random process with the rms-height i  and the correlation length i l .

  is the pulsation) is dropped. The vector ( , , ) r x y z is the position vector in the Cartesian coordinate system. The vectors 0 h and 0 v are the incident polarization vectors. For a h-polarized incident plane wave, 0( ) 1 h A  and 0( ) 0 v A  . For a vpolarized incident wave, 0( ) 0 h A  and 0( ) 1 v A  . The (h)-polarized and (v)-polarized components of the scattered electric field in the upper half-space are represented by continuous spectra of upward propagating plane waves [21]:

  are the unit vectors of the spherical coordinate system.



  is expressed as a linear combination of the Fourier transforms of the rough interface height profiles. Since the Fourier Transform is linear and the Gaussian character is preserved by linear operation, the scattering amplitudes(1deduce that for a given direction( , )  , the four random variables ( ) , -order Gaussian distribution.



  h-and v-polarized components of the incident plane wave, of the phase difference vh  and the imaginary part of(1) 1( ' ') ( , ) ba A  with (a), (b), (a') and (b') equal to (h) or (v). As shown in the appendix A, the variances of first-order SPM Kernels and interface spectra. As a result, the four primary parameters are fully determined by the thickness of central layer, the relative permittivity values, the incidence and scattering angles and by the geometrical parameters of the rough boundaries.



  values. The degree of coherence lies between 0 and 1. When 0 r  , the four random variables M  ,   , M  et   are independent and their joint distribution is the product of the four marginal distributions. From[START_REF] Afifi | Scattering by anisotropic rough layered 2D interfaces[END_REF]
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 2 and we deduce the analytical expressions for the PDF, the CDF and the first and second-

  when the degree of coherence r is equal to zero or when the reference angle 0  is equal to 0 or   .Contrary to the PDF of 0 S or 1 S , the probability law for 2 S and 3 S depends on the mean effective phase difference

S or 3 S

 3 is a three-parameter distribution which also depends on the reference angle 0 .

.

  . The rough surfaces are characterized by Gaussian correlation functions with the rms-The three interfaces are uncorrelated. The considered vertical profile is characterized by the mean and the standard deviation for each normalized Stokes parameter The stratified structure is illuminated by a right-handed circularly polarized plane wave with values are obtained for surfaces of infinite extent. The numerical values are, as for them, estimated over the scattered amplitudes (given by (15)) associated with 213 subsurface realizations where 20 L   .
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 2 Fig. 2. Theoretical PDF and normalized histogram for each normalized Stokes parameter with 0
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 3 Fig. 3. Theoretical CDF and CDF estimated from Monte-Carlo simulations for each normalized Stokes parameter with 0 50       ,

1 A  and 1 A 2 S

 112  of the scattered signal are strongly correlated. The reference angle 0  given by (22) is equal to 73.7°. The values estimated from the set of realizations are close to the theoretical ones with 0probability law for each of the normalized Stokes parameters is close to a one-sided decaying exponential function (here, right-sided decaying exponential for the Stokes parameters 0 S and and left-sided decaying exponential for 1 S and 3 S ) and the standard deviation

(Fig. 4 .

 4 Fig. 4. Theoretical PDF and normalized histogram for normalized Stokes parameters with ( , ) (50 , 45 )     , 00 ( , ) (50 , 0 )     and a RHC incident polarization.
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 520 Fig. 5. Theoretical CDF and CDF estimated from Monte-Carlo simulations for each normalized Stokes parameters with ( , ) (50 , 45 )    , 00 ( , ) (50 , 0 )     and a RHC incident polarization.
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 6 Fig. 6. Parameters r , 0  and 0 p versus phase difference
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 73 Fig. 7 shows the PDF for each normalized Stokes parameter for three values of the phase difference
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 7 Fig. 7. Theoretical PDF for each normalized Stokes parameter with ( , ) (50 , 45 )     , 00 ( , ) (50 , 0 )     and ( ) 0( ) 0.500 o h v aa  and three values of the phase difference
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  are the standard deviations of the real part of the zenithal and azimuthal components of the scattered field. The marginal distribution for 0 S and 1 S depends on the degree of coherence r (i.e., the modulus of the normalized complex correlation coefficient between the two orthogonal components) and on the ratio 0

2 S and 3 S

 23 the discriminant  of the quadratic equation is positive and if 2 c    , there are two distinct ratios 01  and 02 for which the degree of coherence r is equal to zero and we find associated with each of the two ratios is deduced from (B1).Appendix C: The marginal PDF for the Stokes parameters as an integral numerically evaluatedCalculation of the marginal PDF for the Stokes parameters 2 S and 3 S requires the derivation of the joint PDF of the product 2

  s . In[START_REF] Touzi | Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multilook speckle fields[END_REF], the integral was numerically evaluated.Appendix D: The closed-form expression of the PDF for the Stokes parameter 2

  . By using the formula (D4) deduced from[41, p.183, (15)] and[41, p. 79, 

  right-handed circularly polarized and the rotation of the electric field and the direction of the wave propagation from a right-handed screw[START_REF] Ishimaru | Electromagnetic wave propagation, radiation and scattering[END_REF]. If
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  that the magnitude of the Jacobian of the bijective transformation from 2 S and 3 S to V and   is equal to v and by substituting (20) into (C4),

	the joint PDF of 2 S and 3 S is obtained
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	the joint probability law	( , pv V   		)	is given by
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	Given that 2 SV  cos(		)	and 3 SV	sin(	)
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