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Abstract -  Horizontally stratified structures are commonly used to represent naturally occurring 

structures, such as soils. The electromagnetic signature of such a medium illuminated by a radar and the 

polarization state of the scattered wave are fully determined by the knowledge of the four Stokes 

parameters. In this paper, we determine the statistics of the four Stokes parameters for the signal 

scattered by layered structures with an arbitrary number of slightly rough interfaces. The rough 

interfaces are realizations of second-order stationary centered Gaussian stochastic processes and the 

layered structure is illuminated by an elliptically polarized monochromatic wave. The zenithal and 

azimuthal components of the far scattered electric field are derived from the first-order small 

perturbation method. The derivation leads to a multivariate Gaussian model for the underlying complex 

scattered amplitudes and we establish the closed-form expressions of the probability density function, 

the cumulative density function and the first- and second-order moments for the four Stokes parameters. 

For an observation direction outside the incidence plane, we establish the condition on the incidence 

wave parameters for which the zenithal and azimuthal components are uncorrelated.  For an air / snow 

cover / frozen soil / unfrozen soil structure, we analyze the marginal probabilities and validate the theory 

by comparison with Monte-Carlo simulations. More generally, when the two complex components of 

the field scattered by the illuminated zone are Gaussian random variables, these statistics offer 

possibilities for in-depth investigating the polarization of scattering processes from random media. 

 

Index Terms - Layered rough surfaces, scattered field, small perturbation method, Stokes parameters, 

statistics. 
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I. INTRODUCTION 

Scattering of electromagnetic waves from layered structures has aroused the interest of 

physicists and engineers for many years with applications in several fields as remote sensing, civil 

engineering, geophysics and optics. In the field of the remote sensing, multilayered structures with 

randomly rough boundaries are relevant for modeling the electromagnetic wave scattering signal from 

natural scenes, such as, stratified soils [1]-[2], snow cover blanket [3]-[4], snow cover ice [5]-[6] or oil 

slick on sea surface [7]-[8]. A number of numerical and analytical models have been proposed to 

simulate the response of stratified structures [9]-[11]. The analytical models cannot be compared in 

terms of computing cost with the exact ones that are associated with numerical techniques and Monte-

Carlo simulations. Within their domains of validity, the analytical models allow a fast analysis of the 

multilayered structures by means of analytical formulae. The small perturbation method (SPM) is often 

used for the analysis of these scattering phenomena. This method is based on Taylor series of the 

complex amplitudes of the scattered field and on Taylor series of the boundary value problem and gives 

analytical formulae for the coherent and incoherent scattered intensities [12]-[18]. The first-order SPM 

is valid for small height variations compared to the EM wavelength and small gradients of the surface 

heights compared to 1 [19]-[20]. The second-order SPM solution is significant to characterize the cross-

polarized backscattering [15]-[18]. 

In [12]-[20], the scattered field is characterized by the scattered intensity, i.e. by its second order 

moment which is already included in the probability distribution of the scattered field. For stratified 

structure with randomly rough boundaries under electromagnetic wave illumination, the scattered field 

in a given observation direction is a random variable and the knowledge of the probability density 

function (PDF) is of great importance for the characterization of the structure. In [21], we established 

the probability distributions for the modulus, the phase and the intensity of the wave scattered by a 

stratified medium illuminated by a horizontally (h) or vertically (v) polarized monochromatic plane 

wave. The interfaces were characterized by Gaussian height distributions with zero mean values. For 

slightly rough interfaces with a finite extension, we showed that the modulus for the co- and cross-

polarized scattering amplitudes follows a Hoyt law and that the phase is not uniformly distributed. For 
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interfaces with infinite surface area, the modulus follows a Rayleigh law and the phase is uniformly 

distributed. Within the framework of the first-order SPM, we determined in [22] the PDF of the co-

polarized phase difference for the field scattered by a multilayered medium. In [23], we showed that, 

outside the incidence plane, the cross-polarized phase difference is not uniformly distributed and 

contains information about the stratified structure. In [24], we derive the closed-form expression of the 

probability distribution for the scattered intensity ratio and we showed that the co- and cross-polarized 

intensity ratios follow heavy-tailed distributions. In [25], we showed, still within the framework of the 

first-order SPM, that the statistics of the co- and cross-polarized intensity ratios allow to differentiate an 

air/clayey soil/rock structure with or without snow cover. 

To reduce statistical variations, polarimetric radars use the multilook processing by averaging 

spatially the randomly scattered signals. In [26]-[29], the statistics of multilook signatures have been 

investigated under the assumption of multivariate Gaussian for the understudying scattered amplitudes. 

In [30], within the framework of SPM, assuming that the n-look intensities are means of n independent 

identically distributed single look intensities, we derived the statistics for the multilook intensity ratio 

for a multilayered structure bounded by randomly rough surfaces under a h- or v-polarized plane wave 

illumination. We obtained a three-parameter probability distribution and we showed that the PDF only 

depends on the number of looks, on the modulus of the complex correlation coefficient between the 

scattered amplitudes under study, and on the ratio between the associated average single-look intensities. 

In [31], the work was extended to the distribution of the phase difference between two multilook 

scattered signals. We showed that the phase difference PDF is expressed in terms of the Gauss 

hypergeometric functions and only depends on the number of looks and on the modulus and phase of 

the complex correlation coefficient between the scattered amplitudes under study [28]. 

The description of the scattering signal from layered structures can be obtained using the Stokes 

parameters. The Stokes parameters are a set of values that describe the polarization state of the scattered 

field and depend on two orthogonal complex components of the scattered electric field. Statistics of the 

Stokes parameters depends on the normalized complex correlation coefficient between the two 

orthogonal components, the modulus and phase of which define the degree of coherence and the mean 

effective phase difference [32]-[34]. In [32], the obtained statistics were limited to the case where the 
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mean effective phase difference is equal to 0. In [33], the PDF for the four Stokes parameters was 

established but for two of the four parameters, the probability law was not given by an analytical 

expression but in the form of an integral which needed to be numerically evaluated. In [34], the analytical 

expression for each of the four Stokes parameters was obtained. In [32]-[34], the statistics of the Stokes 

parameters were investigated under the hypothesis of multivariate Gaussian models for the two 

underlying orthogonal complex components. The results established in [32]-[34] are still relevant, but 

the link with an electromagnetic model was not made. For physicists, it is important to derive the 

probability laws either from an exact electromagnetic model combined with Monte-Carlo simulations 

[35] or from an analytical approach [36]. Moreover, the results in [32]-[34] did not relate specifically to 

the scattering of electromagnetic waves by multilayered structures. 

In the present study, we focus on the statistical properties of the four Stokes parameters for the 

single-look signal scattered by layered structures with an arbitrary number of rough interfaces. 

Compared to our previous works, we are therefore interested in the polarization state of the scattered 

electric field.  We assume that the rough interfaces are realizations of second-order stationary centred 

Gaussian stochastic processes and that the layered structure is illuminated by an elliptically polarized 

monochromatic wave. The zenithal and azimuthal components of the far scattered electric field are 

derived from the first-order SPM. For a stack of homogeneous layers with randomly rough surfaces, the 

two components of the scattered field depend on rough interface realizations and for a given direction, 

they are complex random variables. The derivation leads to a multivariate Gaussian model for the 

underlying complex scattered amplitudes. The values of the Stokes parameters change from one 

realization of the multilayer structure to another. For a given direction, they are also random variables. 

By using the multivariate Gaussian model for the zenithal and azimuthal complex components, we 

establish the closed-form expressions of the probability density function, the cumulative density 

function (CDF) and the first- and second-order moments for the four Stokes parameters.  

This article is organized as follows. Section II reports the statistical properties of the considered 

three-dimensional stratified structure and the first-order SPM scattering model applied to an elliptically-

polarized incident plane wave. For infinite slightly rough surfaces described by Gaussian centered 

stochastic processes, we show that the real and imaginary parts of the zenithal and azimuthal components 
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follow a Gaussian joint distribution and we also derive the analytical expression for the degree of 

coherence and the mean effective phase difference. In Section III, for each of the Stokes parameters, we 

establish closed-form expressions for the PDF and CDF and for the first- and second-order moments. In 

section IV, for air/snow cover/frozen soil/unfrozen soil structures, we study the statistics of the Stokes 

parameters and we validate the theoretical formulae by comparison with Monte-Carlo simulations. 

 

II. PROBLEM FORMULATION 

A. Statistics of randomly rough interfaces 

As shown in Fig. 1, the structure we consider is a stack of 1N   rough two-dimensional interfaces. For 

the study, the length L  along Ox  and Oy  axes tends to infinity. For  1, 1i N  , the i-th and the (i+1)-

th interfaces are separated by a non-magnetic, homogeneous and isotropic layer with a thickness 

1i i id u u   (with 1 0u  ). The i-th layer is characterized by a relative permittivity ri . The top region 

(medium 1) is assumed to be air (assimilated to vacuum). The bottom region (medium N ) is a half-

space. Rough boundaries are realizations of second order stationary, uncorrelated, centered Gaussian 

stochastic processes with isotropic Gaussian spectrum ˆ ( , )iiR   : 

2 2
2 2 2ˆ ( , ) exp .

4
ii i i iR l l

 
   

 
  

 
       (1) 

Throughout the paper, a function symbol with a superscript ‘^’ stands for the Fourier transform of the 

function. The quantities   and   are the wave numbers resulting from the 2D Fourier transform of the 

Gaussian autocorrelation function ( , )iiR x y  characterizing the i-th interface. The quantity i  is the rms-

height and il , the correlation length. 
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Fig. 1. Structure with an arbitrary number of rough two-dimensional interfaces 

Function ( , )ia x y  is a realization of an isotropic Gaussian random process with the rms-height i  and 

the correlation length il . 

 

B. Polarization and Stokes parameters 

Suppose that a horizontally (h) or vertically (v) polarized monochromatic plane wave illuminates the 

structure. The components 0 0 0( , , )    of the incident wave vector 0
k  are defined from the zenith angle 

0  and the azimuth angle 0  with 0 1 0 0sin cosk   , 0 1 0 0sin sink    and 0 1 0cosk  . The quantity 

1k  designates the vacuum wave number. The incident electric field is expressed as follows: 

   0 0( ) 0 0( ) 0 0exp .h vA A j  E h v k .r       (2) 

Note that in (2), the time dependence exp( )j t  (where  is the pulsation) is dropped. The vector 

( , , )r x y z  is the position vector in the Cartesian coordinate system. The vectors 0h  and 0v  are the 

incident polarization vectors. For a h-polarized incident plane wave, 0( ) 1hA   and 0( ) 0vA  . For a v-

polarized incident wave, 0( ) 0hA   and 0( ) 1vA  . The (h)-polarized and (v)-polarized components of the 
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scattered electric field in the upper half-space are represented by continuous spectra of upward 

propagating plane waves [21]: 

 

 

( )

1 1( ) 12

( )

1 1( ) 1 12

1
( , , ) ( , ) ( , ) exp ( , ).

4

1
( , , ) ( , ) ( , ) exp ( , ).

4

ha

ha

va

va

x y z A j d d

x y z A j d d

       


       


 

 

 

 

 

 

 

 

E h k r

E v k r

   (3) 

The letter (a) designates the (h) or (v) incident polarization. The wave vector 1k  of the elementary plane 

wave characterized by the wave function  1exp ( , ).j   k r  is defined by 

1 1x y z   k u u + u       (4) 

with 2

1 1 1kk .k  and 1Im( ) 0  . The polarization vectors 1v  and h  and the wave vector 1k  form a direct 

trihedron, 

2 2

2 2
11

1
2 2

1 11

( )
.

x y

x y

z
k kk

 

 

    

 






  
   



u u
h

u uk
v h u

    (5) 

The symbol   designates the vector product. ( , , )x y zu u u  are the unit vectors in the Cartesian coordinate 

system. The vectors 0h  and 0v  are obtained from (5) replacing 1( , , )    by 0 0 0( , , )   . Using the 

stationary phase method [37]-[38], at the observation point ( , , )r    located in the far-field zone, we 

obtain from (3) the horizontal and vertical components of the asymptotic scattered electric field, 

( )

1,( )

( )

1,( )

exp( )
( , , ) ( , ) cos

exp( )
( , , ) ( , ) cos

ha

far ha

va

far va

jkr
r jA

r

jkr
r jA

r





    


    



 


 

E u

E u

    (6) 

where 1 sin cosk    and 1 sin sink   . ( , , )r  u u u are the unit vectors of the spherical coordinate 

system. 

The polarization of the incident wave is deduced from the complex amplitudes 0( )hA  and 0( )vA  with 

0( , ) 0( , ) ( , )exp( )h v h v o h vA A j  where 0( , )h vA  designates the modulus of 0( , )h vA . We note ( ) ( )vh o v o h     

the phase difference. In general, the incident wave is elliptically polarized. If vh q   where q  is an 
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integer or if ( ) 0o hA   or ( ) 0o vA  , the polarization is linear. If / 2vh    and ( ) ( )o h o vA A , the 

incident wave is right-handed circularly polarized and the rotation of the electric field and the direction 

of the wave propagation from a right-handed screw [39]. If / 2vh   and ( ) ( )o h o vA A , we obtain the 

left-handed polarization case.  

We express the modulus of the complex amplitudes as follows, 

 
0( , )

0( , )

h v

h v

a
A

L
       (7) 

in order to obtain an incident power 0P  independent on the L L  surface area: 

2 2

0( ) 0( )

0 0

1

cos .
2

h va a
P

Z



      (8) 

For an elliptically polarized incident wave, the direction of the scattered electric field vector in the far-

field zone is defined by the vector p , 

1 1A A    p u u      (9) 

with 

1 ( ) ( ) 1( ) ( ) ( ) 1( )

1 ( ) ( ) 1( ) ( ) ( ) 1( )

exp( ) exp( )

exp( ) exp( )

o h o h vh o v o v vv

o h o h hh o v o v hv

A a j A a j A

A a j A a j A





 

 

   

   
    (10)  

where 
1( )

1( )

ba

ba

A
A

L
 . To describe the polarization state of the scattered wave, we use the Stokes 

parameters [39], 

2 2

0S M M          (11) 

2 2

1S M M          (12) 

2 2 cos( )S M M           (13) 

3 2 sin( )S M M           (14) 

where the pairs ( , )M   and ( , )M   are the modulus and phase of the complex amplitudes 1( )A   and 

1( ) ,A   respectively. We note        the phase difference. For a linearly polarized scattered 

wave, 3 0S  . For a RHC-polarized scattered wave, 2 2M M   and / 2   . As a result, 1 2 0S S   



9 

 

and 2

0 3 2S S M  . For a LHC-polarized scattered wave, 2 2M M   and / 2     and consequently, 

1 2 0S S   and 2

0 3 2 .S S M    

 

C. Scattered amplitudes as random processes 

We consider slightly rough interfaces. The first-order SPM gives the scattering amplitude 1( )baA as 

follows [12]-[13], [21]: 

1
(1)

1( ) 1( ) 0 0

1

( , ) ( , ) ( , ).ˆ
N

ba ba i

i

A K a       




       (15) 

The superscript (1) refers to the first‐order SPM. The function ( , )ˆia    is the 2D Fourier transform of 

the function ( , )ia x y  divided by the length L . The closed-form expressions of first-order SPM kernels 

(1)

1( ) ( , )baK    were first obtained in [12] for a stratified structure with two rough interfaces. The kernels 

were first obtained in [13] by a recurrence relation for an arbitrary number of rough interfaces. For a 

stratified medium with three rough interfaces, the kernels were expressed in [25, appendix A] as 

functions of the relative permittivity values, the layer thicknesses, and of the incidence and scattering 

angles. 

The interface height distributions are assumed to be centered and Gaussian. As shown by (15), the 

scattering amplitude 
(1)

1( ) ( , )baA    is expressed  as a linear combination of the Fourier transforms of the 

rough interface height profiles. Since the Fourier Transform is linear and the Gaussian character is 

preserved by linear operation, the scattering amplitudes 
(1)

1( ) ( , )baA    are angular Gaussian processes. Let 

( )baR  and ( )baI  be the real and imaginary parts of 
(1)

1( ) ( , )baA    and let ( ' ')b aR  and ( ' ')b aI  be those of 

(1)

1( ' ') ( , )b aA   . We deduce that for a given direction ( , )  , the four random variables ( ) ,baR ( ) ,baI ( ' ')b aR  

and ( ' ')b aI follow a four‐order Gaussian distribution.  

Let R  and I  be the real and imaginary parts of A  and let R  and I  be those of A . We find from 

(9) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (

cos( ) sin( ) cos( ) sin( )

cos( ) sin( ) cos( ) sin( )

cos( ) sin(

vh o h vh o h o h vv o v vv o v o v

vh o h vh o h o h vv o v vv o v o v

hh o h hh o h

R R I a R I a

I I R a I R a

R R I







   

   

 

         

         

  ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

) cos( ) sin( )

cos( ) )sin( ) I cos( ) sin( )

o h hv o v hv o v o v

hh o h hh o h o h hv o v hv o v o v

a R I a

I I R a R a

 

   

       

         

   (16)  

We deduce from (16) that the four random variables R , ,I  R  and I  also follow a four‐order 

Gaussian distribution. Insofar as the rough surface height distributions are centered, the four random 

variables are also centered and the joint PDF is given by 

  1

2

1 1
( , , , ) exp ( , , , ) ( , , , )

24 ( )

T
R I R Ip a b c d a b c d a b c d

de    

 
  

 
Γ

Γ
   (17) 

where Γ  is the covariance matrix.  The symbol T denotes the transpose. As in [22], we show from (15) 

and (16) that when L , the covariance matrix only depends on four primary parameters: the 

variances 2

R
  and 2

R
  of  random variables R  and R , their covariance R R 

  and the covariance R I 
  

between R  and I . We obtain 

2

2

2

2

0

0
.

0

0

R R R R I

R R I R R

R R R I R

R I R R R

    

    

    

    









  
 

  
  

  
 
  
 

Γ     (18) 

In the appendix A, the four primary parameters are expressed as a function of the amplitudes ( )o ha  

and ( )o va  of the h- and v-polarized components of the incident plane wave, of the phase difference vh  

and of the variance 
( )

2

baR  of the real part of the scattered amplitude 
(1)

1( ) ( , )baA   , the covariance 
( ) ( ' ')ba b aR R  

between the real parts of 
(1)

1( ) ( , )baA    and 
(1)

1( ' ') ( , )b aA    and the covariance 
( ) ( ' ')ba b aR I  between the real part 

of 
(1)

1( ) ( , )baA    and the imaginary part of 
(1)

1( ' ') ( , )b aA    with (a), (b), (a’) and (b’) equal to (h) or (v). As 

shown in the appendix A, the variances 
( )

2

baR  and the covariances 
( ) ( ' ')ba b aR R  and 

( ) ( ' ')ba b aR I  are expressed 

as a function of first-order SPM Kernels and interface spectra. As a result, the four primary parameters 

are fully determined by the thickness of central layer, the relative permittivity values, the incidence and 

scattering angles and by the geometrical parameters of the rough boundaries. 

Using polar coordinates, we derive from (17) the 4D-joint PDF of the random variables M ,  , 
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M  et   and we obtain 

22

2 2 2 2 2 2 22 2

1
( , , , ) exp 2

4 (1 ) 2(1 )
M M

R R R RR R

m m m m mm
p m m

r r   

    

    
     

     
 

  
  

           

 (19) 

with  

0cos( ).r          (20) 

The quantity r  is the modulus of the normalized correlation coefficient between the two complex 

random variables 1A  and 1A  . The quantity r is also called the degree of coherence with 

2 2 2 2( ) / ( ).R R R I R Rr
     

          (21) 

The angle 0  is the argument of the complex correlation coefficient, generally called the mean effective 

phase difference. This reference angle is defined as follows: 

 0 arctan / .R I R R   
         (22) 

The degree of coherence and the average effective phase difference are involved in the calculation of 

the inverse of the covariance matrix and its determinant. According to (21)-(22) and (A1)-(A7), the 

degree of coherence and the average effective phase difference are fully determined by the knowledge 

of the geometrical and electrical parameters of the multilayered structure and of the radar configuration. 

Knowing that in the incidence plane 0( ),  the first-order cross-polarized amplitudes 
(1)

1( )hvA  and 

(1)

1( )vhA are equal to zero, we find from (A1)-(A4) that the degree of coherence 0( )r    depends neither 

on the phase difference vh  nor on the amplitudes ( )o ha  and ( )o va  of the h- and v-polarized components 

of the incident plane wave with 

2 2 2 2

0( ) ( ) / ( ).
vv hh vv hh vv hhR R R I R Rr             (23) 

Moreover, the reference angle 0 0( )    is such that 

 0 0 0( , )( )
2

vv hh vh


             (24) 

with  0( , ) arctan /
vv hh vv hhvv hh R I R R    . 

For an observation direction outside the incidence plane 0( ),   the values of r  and 0  depend  on 
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the ( )o ha , ( )o va   and vh  values. The degree of coherence lies between 0 and 1. When 0r  , the four 

random variables M ,  , M  et   are independent and their joint distribution is the product of the 

four marginal distributions. From (21), the case 0r   occurs when 0R R R I   
    . In the appendix B, 

we show that depending on the covariances 
( ) ( ' ')ba b aR R  and 

( ) ( ' ')
,

ba b aR I  there exist two pairs ( ) 0( )( / , )o h v vha a   

for which the degree of coherence is zero [40], i.e., for which the zenithal and azimuthal components of 

the far electric field are uncorrelated. 

 

D. Stokes parameters as random processes 

The Stokes parameters are random processes depending on the angles   and  . For a given direction, 

they are random variables. To establish the Stokes parameter PDF, the joint PDF of M , M  and 

may be derived as done in [32]. 

22

2 2 2 2 2 22 2

1
( , , ) exp 2 .

2 (1 ) 2(1 )
M M

R R R RR R

m m m m mm
p m m

r r  

    

    
   

    


  
  

           

 (25) 

The statistic distribution of each Stoke parameter can then be deduced as a function of the four primary 

parameters 2

R
 , 2

R
 , R R 

  and R I 
 which depend on the first-order SPM Kernels and the interface 

spectra. The following section is dedicated to the determination of the closed-form expressions for the 

PDF, the CDF, the mean and the variance of each Stokes parameter. 

 

III. Statistics of the Stokes parameters 

A. Statistics of 0S  and 1S  

Closed-form expression for the PDF of 0S  and 1S  was derived in [32]-[34] from the joint PDF 

.M Mp
    For the PDF 

0 0( )Sp s  of the non-negative random variable 0S , the following expression was 

obtained 

0

1 2 21
0 0 00 0 0

0 1/2 2 2
1 2 2

0 0

( ) 4( )1 1
( ) exp sinh

4(1 ) 4 (1 )( ) 4
S

R R R R R R

s p p rp p s
p s

r rp p r     
     





   
  

       

 (26) 
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where 0 0s  ,
0 /R Rp

 
   and sinh(.)  denotes the hyperbolic sine function. The marginal PDF 

0 0( )Sp s  

does not depend on 0 . The first- and second-order moments were evaluated by integration of (26), 

0 0

2 2

0 0 0
0

( ) 2( )S S R Rm s p s ds
 

 


       (27) 

 2
00

2 4 4 2 2 2

0 0 0
0

( ) 8 (1 ) .S R R R RS
m s p s ds r

   
   



        (28) 

In [32]-[34], the authors did not determine the CDF. The CDF of the random variable 0S  is the integral 

of its PDF, 

 
0

0 00 0 0 0 00
( ) Prob ( )

s

S SF s S s p s ds        (29) 

and we obtain 

0

1 2 21
0 00 0

0 0 02 2

1 2 21
0 00 0

021 2 2
0 0

( ) 4( )
( ) 1 exp cosh

4 (1 ) 4 (1 )

( ) 4( )
                         sinh

4 (1 )( ) 4

S

R R R R

R R

p p rp p
F s s s

r r

p p rp p
s

rp p r

   

 

   

 







            
      

     
    

  (30) 

where 0 0s   and cosh(.)  denotes the hyperbolic cosine function.  

For the PDF 
1 1( )Sp s , the following expression was already obtained [32]-[34]:  

1

1

0 0

1 12

1
1

0 0

1 12

( )1
exp       if 0

2 4 (1 )
( )

( )1
exp     if 0

2 4 (1 )

R R R R

S

R R R R

c p p
s s

c r
p s

c p p
s s

c r

   

   

   

   





   
  

    
 

   
  

   

    (31) 

with 
1/2

1 2 2

0 0( ) 4 .c p p r      The first- and second-order moments were evaluated by integration of 

(31) with 

1 1

2 2

1 1 1( ) 2( )S S R Rm s p s ds
 

 



       (32) 

2
1

4 4 2 2 28 ( ) (1 )R R R RS
m r

   
       

      (33) 

The probability law 
1 1( )Sp s  does not depend on 0  and is centered when 2 2

R R 
  . As previously, the 

CDF of 1S  is obtained from the integral of its PDF. After some algebraic manipulation, we find   
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1

12
0 0

1 121
0 0

1
12

0 0
1 121

0 0

( )1 2(1 )
     exp         if  0   

4 (1 )( )
( )

( )2(1 )
1 exp      if  0

4 (1 )( )

R R

S

R R

c p pr
s s

c rc p p
F s

c p pr
s s

rc c p p

 

 

 

 









      
     

   
 

   
   
       

  (34) 

 

B. Statistics of 2S  and 3S  

In [33], the probability law for the random variables 2S  and 3S  derived from the joint PDF 

( , , )M Mp m m
       was given as an integral which needed to be numerically evaluated. The first two 

moments were also obtained by numerical integrations. The calculation steps giving this integral are 

summarized in appendix C. In appendix D, we establish the analytical expression for the PDF 
2 2( )Sp s  

and we obtain 

2

2 2
2 0 2 0

2

2
2 2

0

1 sin ( ) cos( )
exp

2 (1 )
( ) .

4 1 sin ( )

R R

S

R R

s r s r

r
p s

r

 

 

 

 

  

  
 
 
 




   (35)        

After some analytical manipulations, we establish the closed-form expression for the first- and second-

order moments of the random variable 2S , 

2 22 2 2 0( ) 4 cos( )S S R Rm s p s ds r
 

  



       (36) 

2
2

2 2 2 2 2 2

0 08 1 sin ( ) 3 cos ( ) .R RS
m r r

 
            (37) 

The PDF 
2 2( )Sp s  is centered when the degree of coherence r  is equal to zero or when the reference 

angle 0  is 
2


 . The CDF of 2S  is expressed as the integral of 

2 2( )Sp s  and we find 

 
2

2 2
0 02

22

2
2 2 2 2

0 0 0

2
2 2

0 02
22

2 2 2
0 0

1 sin ( ) cos( )
(1 )exp

2 (1 )
           if  0   

2 1 sin ( ) cos( ) 1 sin ( )

( )

1 sin ( ) cos( )
(1 )exp

2 (1 )
1

2 1 sin ( ) cos( ) 1 s

R R

S

R R

r r
r s

r
s

r r r

F s

r r
r s

r

r r r

 

 

 

 

  

 

 

 

  
 
 
 



  


  
  
 
 



   
2

2
0

     if  0

in ( )

s


















  (38) 
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In a similar way, the PDF 
3 3( )Sp s  of 3S  is obtained by integrating 

2 3, 2 3( , )S Sp s s  given by (C5) over 2s  

and we deduce the analytical expressions for the PDF, the CDF and the first and second-order moments 

by substituting 0sin( )  by 0cos( )  and 0cos( )  by 0sin( )  into (35), (36), (37) and (38), respectively. 

In particular, we obtain 

3 04 sin( )S R Rm r
 

         (39) 

2
3

2 2 2 2 2 2

0 08 1 cos ( ) 3 sin ( ) .R RS
m r r

 
           (40) 

The probability law 
3 3( )Sp s  is centered when the degree of coherence r  is equal to zero or when the 

reference angle 0  is equal to 0 or  . 

Contrary to the PDF of 0S  or 1S , the probability law for 2S  and 3S  depends on the mean effective phase 

difference 0 . The marginal probabilities 
2 2( )Sp s  and 

3 3( )Sp s become identified with expressions 

obtained in [34]. To our knowledge, the derivation that we propose has not been published and is useful 

in terms of analytical calculation for the continuation of [33].  

 

C. Remarks 

We deduce from (11)-(14) that the second-order moments of the four Stokes parameters must obey a 

linear equality 

2 2 2 2
0 1 2 3

.
S S S S

m m m m        (41) 

By substituting the second-order moments into (41), we check the equality for all values of r  and 0 .  

The variance of the Stokes parameter iS  is obtained from the values of 
iSm and 2

iS
m with 2

2 2 .
i ii

S SS
m m    

We define the normalized Stokes parameters by /i i R RS S
 

   ( 0,1,2,3i  ). The PDF of iS  is given by 

( ) ( )
ii

i R R S R R iS
p s p s

   
     and the CDF by ( ) ( )

ii
i S R R iS

F s F s
 

  . The first-moment 
iS

m of the random 

variable iS  is equal to  /
iS R Rm

 
   and the second order moment 2

iS
m , to 2

2 2/ ( )
i

R RS
m

 
  , respectively. 

The distribution of 0S  or 1S  depends on the degree of coherence r  and on the ratio 0 / .R Rp
 

   The 

distribution of 2S  or 3S  is a three-parameter distribution which also depends on the reference angle 0 .  
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IV. Validation of the analytical expressions 

We consider an air / snow cover / frozen soil / unfrozen soil structure illuminated in L band with 

30 cm  [3]. The rough surfaces are characterized by Gaussian correlation functions with the rms-

heights 1 0.015 ,  2 0.022   and 3 0.023   and with the correlation lengths 1 / 5l  , 2 / 4l   

and 3 3 /10l  . The three interfaces are uncorrelated. The considered vertical profile is characterized by 

1 1,r 
5

2 1.25 3.3 10 ,r j   
3 5.5 0.5,r j    4 19.3 2.3,r j   2 2d   and 3d   [3]. 

Table I gives the mean and the standard deviation for each normalized Stokes parameter iS  in 

the backscattering direction with 0 50       and 0 0     The stratified structure is illuminated by 

a right-handed circularly polarized plane wave with / 2vh    and ( ) ( )o h o va a . The theoretical values 

are obtained for surfaces of infinite extent. The numerical values are, as for them, estimated over the 

scattered amplitudes (given by (15)) associated with 213 subsurface realizations where 20L  . 

Comparison is conclusive and validates the theoretical expressions of the first- and second- order 

moments in the backscattering direction. Fig. 2 shows the PDF for each normalized Stokes parameter 

iS  in the backscattering direction. The agreement between the theoretical probability laws with the 

histograms obtained from Monte Carlo simulations is very good. Fig. 3 shows the theoretical and 

simulated CDFs for the same configuration. Theoretical and Monte-Carlo curves are superimposed. This 

comparison validates the theory in the backscattering direction.  

For the studied configuration, the degree of coherence r  given by (21) is equal to 0.995 with 

69.27 10 ,R R 

     65.28 10 ,R I 

    2 57.60 10R
    and 2 53.82 10R

   . Therefore, the two complex 

amplitudes 1A  and 1A   are strongly correlated. The reference angle 0  given by (22) is equal to 100°.  

The normalized correlation coefficient is also estimated from the set of 213 realizations of scattered 

amplitudes. The obtained value for the degree of coherence is 0.997 and for the mean effective phase 

difference, 99.7°, respectively. We note very small differences between theoretical values and 

simulation results. 

Given the values of r  and 0 , the probability law for each of the Stokes parameters is close to a one-

sided decaying exponential function (right-sided decaying exponential for 0S  and 1S   and left-sided 
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decaying exponential for 2S  and 3S ). As a result, the standard deviation 
iS  of iS  is close to the mean 

iSm . The CDF 
1

1( )
S

F s at the origin is equal to 0.0162. This means that the modulus 1M   of the complex 

amplitude 1A  is smaller than the modulus 1M   of 1A   for only 1.6% of the realizations of the stratified 

medium (133 cases observed out of 213 simulated). The CDF 
3

3( )
S

F s  at the origin is equal to 0.997. This 

means that the backscattered wave is elliptically polarized in the LH sense for 99.7% of the realizations 

of the stratified medium. Therefore, in 0.0293% of cases, the backscattered wave is elliptically polarized 

in the RH sense (24 cases observed out of 213 simulated). When the stratified medium is illuminated by 

a left-handed circularly polarized plane wave with / 2vh    and ( ) ( )o h o va a , we find the same value 

of r  and 0 280     as predicted by (23) and (24). As a result, for the Stokes parameters 0S  and 1S , 

the PDF is unchanged. For the Stokes parameters 2S  and 3S , the PDF is obtained from the graph shown 

in fig.2 by symmetric with respect to the Oy-axis. 

TABLE I  

MEAN AND STANDARD DEVIATION OF NORMALIZED STOKES PARAMETERS  

FOR 0 50      , 0 0    AND A RHC INCIDENT POLARIZATION 

Parameter 0S  1S  2S  3S  

Theory 
Mean 4.24 1.40    - 0.689    -3.92 

STD 4.23 1.43    0.741  3.93 
      

Monte- 

Carlo 

Mean 4.24 1.41    - 0.686 -3.92 

STD 4.20 1.42     0.743  3.90 
      

 

 
Fig. 2. Theoretical PDF and normalized histogram for each normalized Stokes parameter with 

0 50      , 0 0     and a RHC incident polarization. 
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Fig. 3. Theoretical CDF and CDF estimated from Monte-Carlo simulations for each normalized Stokes parameter 

with 0 50      , 0 0     and a RHC incident polarization. 

 

Table II gives the mean and the standard deviation for each normalized Stokes parameter iS  in 

the observation direction ( , ) (50 , 45 )     . The stratified structure is illuminated by a RHC-polarized 

plane wave under the incidence angles 0 50    and 0 0   . Comparison between the theoretical values 

and the simulated ones is conclusive. Fig. 4 shows the associated PDFs and Fig.5, the CDFs, 

respectively. The agreement is very good. For the studied configuration, the degree of coherence r  

given by (21) is equal to 0.987 with 53.24 10 ,R R 

    41.11 10 ,R I 

   2 59.17 10R
    and 

2 41.50 10 .R
    The two components 1A  and 1A   of the scattered signal are strongly correlated. The 

reference angle 0  given by (22) is equal to 73.7°. The values estimated from the set of realizations are 

close to the theoretical ones with 0.996r   and 0 73.6   . Given the values of r  and 0 , as 

previously, the probability law for each of the normalized Stokes parameters is close to a one-sided 

decaying exponential function (here, right-sided decaying exponential for the Stokes parameters 0S  and 

2S  and left-sided decaying exponential for 1S  and 3S ) and the standard deviation 
iS  of iS  is close to 

the mean 
iSm . The CDF 

1
1( )

S
F s  at the origin is equal to 0.921. This means that the modulus 1M   of the 

complex amplitude 1A  is smaller than the modulus 1M   of 1A   for 92.1% of the realizations of the 

stratified medium (7545 cases observed out of 213 simulated). The CDF 
3

3( )
S

F s  at the origin is equal to 
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0.993. The scattered wave is therefore elliptically polarized in the LH sense for 99.3% of the realizations 

of the stratified medium and for 0.0707% of cases, the scattered wave is elliptically polarized in the RH 

sense (58 cases observed out of 213 simulated). 

TABLE 2 

MEAN AND STANDARD DEVIATION OF NORMALIZED STOKES PARAMETER IN THE OBSERVATION DIRECTION  

( , ) (50 ,45 )      AND AN ILLUMINATION BY A RHC-POLARIZED PLANE WAVE WITH 0 0( , ) (50 ,0 )      

Parameter 0S  1S  2S  3S  

Theory 
Mean 4.12 -0.990    1.11    -3.80 

STD 4.10 1.09    1.20   3.82 

      
Monte-

Carlo 

Mean 4.13 -0.994    1.12 -3.79 

STD 4.04 1.08    1.20  3.76 

      

 

 
Fig. 4. Theoretical PDF and normalized histogram for normalized Stokes parameters with ( , ) (50 , 45 )     , 

0 0( , ) (50 ,0 )      and a RHC incident polarization. 

 
Fig. 5. Theoretical CDF and CDF estimated from Monte-Carlo simulations for each normalized Stokes parameters 

with ( , ) (50 , 45 )     , 0 0( , ) (50 ,0 )      and a RHC incident polarization. 



20 

 

For an observation direction in the incidence plane, the degree of coherence r does not depend on the 

phase difference vh  nor on the ( )o ha  and ( )o va  amplitude values of the h- and v-polarized components 

of the incident plane wave. For an observation direction outside the plane of incidence, the values of r  

and 0  depend on the ( )o ha , ( )o va  and vh  values. For the incidence angles 0 0( , ) (50 ,0 )      and the 

observation angles ( , ) (50 , 45 )     , we derive from expressions established in the appendix B the ratio 

0 ( ) 0( )/o h va a   and the associated phase difference vh  for which the degree of coherence is equal to 

zero. We find two pairs 0 ( )( ; )vh  :  (1.02 ; 184°) and (0.500 ; 359°). Because the phase difference is 

nearly equal to 180° in the first case and 360° in the second case, the incident wave is linearly polarized 

(in first approach). Fig. 6 shows the degree of coherence r , the reference angle 0  and the ratio 

0 /R Rp
 

   (i.e., quantities which define the probability laws of the four Stokes parameters) as a 

function of the phase difference vh  for ( ) 0( )1.02o h va a  (left column) and ( ) 0( )0.500o h va a  (right 

column). When 0 1.02,   the degree of coherence is less than 0.5 over an angular range of 3°. When 

0 0.500,   the angular range is 23°. The variations of 0  are very marked near the phase shift vh  for 

which the degree of polarization is equal to zero. For two values of vh , the parameter 0p  is equal to 1 

and the standard deviations of the zenithal and azimuthal components of the scattering signal are equal. 

 
Fig. 6. Parameters r , 0  and 0p  versus phase difference vh  for ( ) 0( )1.08o h va a (left column) and 

( ) 0( )0.500o h va a (right column) with ( , ) (50 , 45 )      and 0 0( , ) (50 ,0 )     . 
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Fig. 7 shows the PDF for each normalized Stokes parameter for three values of the phase difference 

vh  and  ( ) 0( )0.500o h va a . The values of the degree of coherence r , the reference angle 0  and the 

ratio 
0 /R Rp

 
  are given in Table III. For 0vh   , the degree of coherence is near zero. As a result, 

the means 
2S

m  and 
3S

m  are close to zero and the distributions of 2S  and 3S  are centered. For 120vh  

, the standard deviations of the zenithal and azimuthal components of the scattering signal are almost 

equal to 1 with 0 0.983p   and Fig.7 shows a centered distribution for the normalized Stokes parameter 

1S . For a direction of observation outside the incidence plane, the curves of Fig.7 show that the 

distribution of each of the normalized Stokes parameters depends closely on the polarization state of the 

incident wave. The marginal probabilities in Fig. 7 were compared to the normalized histograms 

obtained by simulations. The comparison was conclusive but not shown here. 

TABLE III  

VALUES OF THE PARAMETERS r , 0  AND 0p  FOR THREE VALUES OF THE PHASE DIFFERENCE  vh  

WITH ( , ) (50 ,45 )     , 0 0( , ) (50 ,0 )     and ( ) 0( )0.500o h va a  

Parameter r  0  0p  

0vh    0.0577 78.9° 0.115 

30vh    0.843 93.2° 0.217 

120vh    0.978 120° 0.983 

     

 

 

Fig. 7. Theoretical PDF for each normalized Stokes parameter with ( , ) (50 , 45 )     , 0 0( , ) (50 ,0 )      and 

( ) 0( )0.500o h va a  and three values of the phase difference vh . 
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Conclusion 

In this paper, we analytically determine the statistics of the four Stokes parameters for the signal 

scattered by layered structures with an arbitrary number of slightly rough interfaces. The layered 

structure is illuminated by a monochromatic wave of an arbitrary polarization. The zenithal and 

azimuthal components of the far scattered electric field are derived from the first-order Small 

Perturbation Method. For randomly rough interfaces with infinite extensions and centred Gaussian 

height distributions, we show that the underlying complex scattered amplitudes follow a multivariate 

Gaussian model. For the Stokes vector coordinates, we establish the analytical expressions of the 

probability density function given by (26), (31), and (35), the cumulative density function (30), (34), 

and (38) and the first- and second-order moments (27)-(28), (32)-(33), (36)-(37) and (39)-(40). We also 

derive the statistics of the normalized Stokes parameters /i i R RS S
 

   ( 0,1,2,3i  ) where the 

quantities R
 and R

 are the standard deviations of the real part of the zenithal and azimuthal 

components of the scattered field. The marginal distribution for 
0S  and 1S  depends on the degree of 

coherence r  (i.e., the modulus of the normalized complex correlation coefficient between the two 

orthogonal components) and on the ratio 0 / .R Rp
 

   The marginal distribution for 2S  or 3S  is a three-

parameter distribution that also depends on the mean effective phase difference 0  (i.e., the argument 

of the complex correlation coefficient). We also obtain an analytical formula for the degree of coherence, 

the mean effective phase difference and the ratio 0p  as a function of the first-order SPM kernels, of the 

interface spectra and of the incidence and observations angles. 

Knowing that in the incidence plane, the first-order cross-polarized amplitudes are equal to zero, we 

show that for a given observation direction, the degree of coherence does not depend on the phase 

difference and on the amplitudes of the h- and v-polarized components of the incident plane wave. For 

an observation direction outside the incidence plane, we define the condition on the incidence wave 

parameters for which the zenithal and azimuthal components are uncorrelated, i.e. for which the degree 

of coherence is equal to zero. 

For an air / snow cover / frozen soil / unfrozen soil structure, we analyze the marginal probabilities of 

the Stokes parameters and validate the theory by comparison with Monte-Carlo simulations. The 
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stratified medium is studied in the backscattering direction and also in any observation direction. The 

theory assumes slightly rough surfaces with infinite extent. Nevertheless, we observe from Monte-Carlo 

simulations that the obtained analytical formulas are still valid for surfaces of a few hundred 

wavelengths squared. The agreement between simulated data and theory is observed to be very good for 

the PDF, the CDF, the mean, and the standard deviation. We considered random processes with 

Gaussian spectra but the marginal probability laws presented in this paper can be used for any finite 

memory random process and in the case of correlated interfaces: only the parameters of the probability 

laws change. Under the condition that the real and imaginary parts of the two orthogonal components 

of the field scattered by the illuminated zone are Gaussian random variables, these statistics of the Stokes 

parameters offer possibilities for in-depth investigating the polarization of scattering processes from 

random media. 

The case of multilook data is of relevance for applications. The statistics of the Stokes parameters for 

multilook returns were derived in [33]. An analytical expression of the marginal probability was 

obtained for the two first Stokes parameters. For the two other multilook Stokes parameters, the 

probability law was in the form of an integral which needed to be numerically evaluated. In [42], under 

some reasonable approximations validated by real SAR returns, the PDFs were formulated analytically 

with dependence on the look number and mean values of the Stokes parameters. Rigorous analytical 

calculation still deserves to be performed and the statistics of multilook signatures for multilayered 

structures with an arbitrary number of slightly rough interfaces could be studied in this way. 

 

Appendix A: Expressions of the four primary parameters 

When L , the covariance matrix only depends on the four primary parameters : the variances 2

R
  

and 2

R
 , and the covariances R R 

  and R I 
 . We derive from (16) the closed-form expressions of these 

variances and covariances as follows: 

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2

( ) ( ) ) ) ( ) ( )2 cos( ) sin( )
vh vv vh vv vv vhR R o h R o v R R vh R I vh o h o va a a a


         

      (A1) 

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2 2

( ) ( ) ( ) ( )2 cos( ) sin( )
hh hv hh hv hh hvR R o h R o v R R vh R I vh o h o va a a a


        

 
+

    (A2) 



24 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

( ) ( ) ( ) ( )( )cos( ) ( )sin( )
vh hh vv hv vv hh vh hv vv hh vh hvR R R R o h R R o v R R R R vh R I R I vh o h o va a a a

 
          

 
+

 (A3) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

( ) ( ) ( ) ( )( )cos( ) ( )sin( )
vh hh vv hv vv hh vh hv vh hv vv hhR I R I o h R I o v R I R I vh R R R R vh o h o va a a a

 
           

   (A4) 

The variances 
( )

2

baR  and the covariances 
( ) ( ' ')ba b aR R  and 

( ) ( ' ')ba b aR I  are established from (15) and  calculation 

details are given in [21-22]. We obtain 

( )

1
22

, 0 0

1

1 ˆ ( , )
2ba

N

R i ba ii

i

K R    




        (A5)  

( ) ( ' ')

1
*

, , ' ' 0 0

1

1 ˆRe[ ( , )]
2ba b a

N

R R i ba i b a ii

i

K K R    




        (A6) 

( ) ( ' ')

1
*

, , ' ' 0 0

1

1 ˆIm[ ( , )]
2ba b a

N

R I i ba i b a ii

i

K K R    




        (A7) 

 

Appendix B: Cases where the degree of coherence is zero 

The case 0r  occurs when 0R R R I   
    . From (21) and (22), we find the following matrix 

equation 

011 12

021 22

cos( )

sin( ) 1/

vh

vh

g g

g g

 

 

    
    
    

     (B1) 

with 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

11 12

21 22

vv hh vh hv vv hh vh hv vh hh vv hv

vv hh vh hv vh hv vv hh vh hh vv hv

R R R R R I R I R R R R

R I R I R R R R R I R I

g g

g g


         

      
             

  (B2) 

and  

0( )

0

0( )

.
h

v

a

a
        (B3) 

Knowing that 
2 2

cos ( ) sin ( ) 1vh vh   , we obtain a quadratic equation 

2 2 2

1 0 2 0 3( ) ( ) 0c c c         (B4) 

with  

2 2

1 11 21

2 11 12 21 22

2 2

3 12 22

2( ) 1

c g g

c g g g g

c g g

 

  

 

     (B5) 



25 

 

If the discriminant   of the quadratic equation is positive and if 2c    , there are two distinct ratios 

01  and 02  for which the degree of coherence r  is equal to zero and we find 

2 2

2 2 1 3 2 2 1 3

01 02

1 12 2

c c c c c c c c

c c
 

     
    ;      (B6) 

The phase difference associated with each of the two ratios is deduced from (B1). 

 

Appendix C: The marginal PDF for the Stokes parameters 2S  and 3S  as an integral numerically 

evaluated 

Calculation of the marginal PDF for the Stokes parameters 2S  and 3S  requires the derivation of the 

joint PDF of the product 2V M M   and the phase difference .  In [33], the joint PDF ( , )Vp v
   

is expressed as an integral of ( , , )M Mp m m
      : 

0
( , ) ( , , )

2 2
V M M

dmv
p v p m

m m   


  

 

 


       (C1)  

Substituting (25) into (C1), after some algebraic manipulations, the following expression is established 

2 2 2 2 2 2

2 2

2 2 2 20

( , ) exp
8 (1 ) 2(1 )

1 1 1
exp

2(1 ) 4

V

R R R R

R R

v
p v v

r r

m v
dm

m r m



   

 






 




   

 





 
 
    

  
    
  

  

                     

   (C2) 

where   is given by (27). By using the modified Bessel function 0K  given by the following integral 

[41, p.183, (15)], 

2

0
0

1 1
( ) exp

2 4

z
K z d 

 

  
   

 
      (C3) 

the joint probability law ( , )Vp v
   is given by 

02 2 2 22 2 2
( , ) exp .

8 (1 ) 2 (1 )2(1 )
V

R R R RR R

v v
p v v K

r rr


    






    


   
   
        

 (C4) 

Given that 2 cos( )S V    and 3 sin( )S V   , knowing that the magnitude of the Jacobian of the 
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bijective transformation from 2S  and 3S  to V  and   is equal to v  and by substituting  (20) into (C4), 

the joint PDF of 2S  and 3S  is obtained 

2 3

2 2
2 32 0 3 0

, 2 3 02 2 2 2 2

cos( ) sin( )1
( , ) exp

8 (1 ) 2 (1 ) 2 (1 )
S S

R R R R R R

s ss r s r
p s s K

r r r
     

 

     

   
  
    

   

  (C5) 

The PDF of 2S  is obtained by integrating 
2 3, 2 3( , )S Sp s s  over 3s with 

2 2 3

2 0
2 , 2 3 3 2 2 2 2

2 2
2 33 0

0 32 2

cos( )1
( ) ( , ) exp

8 (1 ) 2 (1 )

sin( )
exp

2 (1 ) 2 (1 )

S S S

R R R R

R R R R

s r
p s p s s ds

r r

s ss r
K ds

r r

   

   



   



   









 
  
  
 

   
  
   

   



                                 

  (C6) 

In a similar way, the PDF 
3 3( )Sp s  of 3S  is obtained by integrating 

2 3, 2 3( , )S Sp s s  over 2s . In [33], the 

integral was numerically evaluated. 

 

Appendix D: The closed-form expression of the PDF for the Stokes parameter 2S  

In this appendix, we show that the analytical calculation of 
2 2( )Sp s  can be continued by substituting 

(C3) in (C6), 

 
2 2 2 0 02 2 2

2 2 2 2
0 3 0 2

3 0 0 30

1
( ) exp cos( )

8 (1 )

exp sin( ) exp
4 4 2

S

R R

p s s a r
r

a s a s d
s a r ds

 


 


 

  

 






   
        

    
            

   (D1) 

with 0 2

1
0

2 (1 )R R

a
r

 
 

 


. Knowing that the integral of a Gaussian distribution over the entire real 

line is equal to the unity, we show that 

2 2
2 20 3

3 0 0 3 0
0

2
exp sin( ) exp sin ( )

4

a s
s a r ds r

a


  







 
      

  
   (D2) 

and, we deduce the PDF 
2 2( )Sp s  with 
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 
2 2 2 0 02 2 2 2 2

0 0

2 2 2 2
0 0 2

0

1
( ) exp cos( )

8 (1 ) 1 sin ( )

1 sin ( ) '
exp '

4 ' '

S

R R

p s s a r
r a r

a r s d

 




  

 


 




 

  
    

 
 

           

   (D3) 

where 2 2
0' 1 sin ( )r    

 
. By using the formula (D4) deduced from [41, p.183, (15)] and [41, p. 79, 

(8)], 

2

1/2
0

exp 2 ( )
4

z d
z K z




 

  
   
 

     (D4) 

and knowing that [41, p.80, (13)],  

1/2 ( ) e
2

z
z K z

 
      (D5) 

we obtain the closed-form expression for the PDF 
2 2( )Sp s  given by (35). 
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