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Abstract. In David et al. (2021), we introduced a neural
network (NN) approach for estimating the column-averaged
dry-air mole fraction of CO2 (XCO2) and the surface pres-
sure from the reflected solar spectra acquired by the OCO-
2 instrument. The results indicated great potential for the
technique as the comparison against both model estimates
and independent TCCON measurements showed an accu-
racy and precision similar to or better than that of the opera-
tional ACOS (NASA’s Atmospheric CO2 Observations from
Space retrievals – ACOS) algorithm. Yet, subsequent anal-
ysis showed that the neural network estimate often mimics
the training dataset and is unable to retrieve small-scale fea-
tures such as CO2 plumes from industrial sites. Importantly,
we found that, with the same inputs as those used to estimate
XCO2 and surface pressure, the NN technique is able to es-
timate latitude and date with unexpected skill, i.e., with an
error whose standard deviation is only 7◦ and 61 d, respec-
tively. The information about the date mainly comes from
the weak CO2 band, which is influenced by the well-mixed
and increasing concentrations of CO2 in the stratosphere.
The availability of such information in the measured spec-
trum may therefore allow the NN to exploit it rather than the
direct CO2 imprint in the spectrum to estimate XCO2. Thus,
our first version of the NN performed well mostly because
the XCO2 fields used for the training were remarkably accu-
rate, but it did not bring any added value.

Further to this analysis, we designed a second version
of the NN, excluding the weak CO2 band from the input.
This new version has a different behavior as it does retrieve
XCO2 enhancements downwind of emission hotspots, i.e.,
a feature that is not in the training dataset. The comparison
against the reference Total Carbon Column Observing Net-

work (TCCON) and the surface-air-sample-driven inversion
of the Copernicus Atmosphere Monitoring Service (CAMS)
remains very good, as in the first version of the NN. In addi-
tion, the difference with the CAMS model (also called inno-
vation in a data assimilation context) for NASA Atmospheric
CO2 Observations from Space (ACOS) and the NN estimates
is correlated.

These results confirm the potential of the NN approach
for an operational processing of satellite observations aiming
at the monitoring of CO2 concentrations and fluxes. The true
information content of the neural network product remains to
be properly evaluated, in particular regarding the respective
input of the measured spectrum and the training dataset.

1 Introduction

There is a growing interest for the monitoring of CO2 from
space. The aim is not so much the atmospheric concentration,
which is already known with high accuracy, but rather the
CO2 fluxes. Indeed, there is a need to monitor natural fluxes
of CO2 to better understand their driving factors and to im-
prove land and ocean models (Peylin et al., 2013). There is
also a strong societal requirement to monitor the CO2 anthro-
pogenic emissions at national and more detailed scales. For
these objectives, a series of dedicated instruments have been
put in orbit since the Greenhouse Gases Observing Satellite
(GOSAT, Yokota et al., 2009) and the second Orbiting Car-
bon Observatory (OCO-2, Eldering et al., 2017), launched in
2009 and 2014, respectively, and still operated at the time of
writing. This new and evolving constellation is directly sup-
ported by Japanese, US, Chinese, and European space agen-
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cies (CEOS Atmospheric Composition Virtual Constellation
Greenhouse Gas Team, 2018). The OCO-3 instrument was
launched in 2019 and is flying attached to the International
Space Station (ISS) with a focus on the imagery of cities and
industrial sites (Taylor et al., 2020). These targets are also
the main focus of the CO2M mission under development at
ESA.

These missions all use the same general principal to es-
timate the CO2 concentration in the atmosphere. They mea-
sure the reflected solar light at high spectral resolution, which
allows identification of absorption lines whose depth is re-
lated to the total amount of gas along the atmospheric path
(O’Brien and Rayer, 2002). Atmospheric CO2 shows a num-
ber of such lines close to 1.61 and 2.06 µm so that these spec-
tral regions are targeted. Because the absorption is more in-
tense at 2.06 µm, this measurement channel is often referred
to as the strong-CO2 (or sCO2) band, whereas the 1.61 µm
is the weak-CO2 (wCO2) band. The line depth is also af-
fected by the surface pressure and the number of scattering
particles in the atmosphere. To identify and account for their
contribution, an additional measurement is made around the
oxygen absorption band at 0.76 µm (O2 band). The combina-
tion of these measurements makes it possible to estimate the
column-averaged dry-air mole fraction of CO2, referred to as
XCO2 (Crisp et al., 2004). Note that the MicroCarb instru-
ment, to be launched by CNES in 2022, will have a fourth
band at 1.27 µm. This band serves the same purpose as the
O2 band; it has the advantage of being spectrally closer to
the CO2 bands and the disadvantage of being affected by air-
glow (Bertaux et al., 2020).

The interpretation of measured spectra in terms of XCO2
is achieved through full physics algorithms that explicitly ac-
count for the absorption by CO2, O2, and water vapor; for
scattering in the atmosphere; and for non-Lambertian reflec-
tion on the Earth surface. The modeling must also account
for the instrument line shape function and Doppler effects.
The inversion process is iterative and starts from a prior esti-
mate of all atmospheric parameters. It is very computer-time-
consuming. The processing of OCO-2 data has shown sys-
tematic differences between the measured spectra and those
modeled after inversion, which led to the development of em-
pirical corrections to the measured spectra (Crisp et al., 2012;
O’Dell et al., 2018). In addition, raw XCO2 retrievals show
significant biases against reference ground-based retrievals
(Wunch et al., 2011b, 2017). These biases, together with the
comparison against modeling results, led to the development
of empirical corrections to the retrieved XCO2.

The need for empirical corrections to the full-physics al-
gorithms and the considerable computer load motivated us
to develop an alternative approach described in David et
al. (2021). We used an artificial network technique (NN)
which is purely empirical, without the use of any radiative
transfer model. Our hypothesis was that the CAMS (Coper-
nicus Atmosphere Monitoring Service) model constrained by
surface air sample measurements provides a fairly accurate

estimate of the atmospheric CO2 concentration, including
the growth rate over multiple years (Chevallier et al., 2019;
see also Fig. 8). Indeed, the seasonal cycle of CO2 together
with the growth rate generates a set of XCO2 samples with
a well-known variability. The uncertainties on the modeling
(≈ 1 ppm) are small with respect to the range of XCO2 sam-
ples that is available in the multi-year dataset (20 ppm). As
a consequence, although CAMS is not the truth, it may be
used for supervised learning. Note that other 4D descrip-
tions of the atmospheric composition could have been used
for our work. We chose CAMS mostly for practical reasons;
the same procedure may be attempted with another modeling
dataset.

In practice, we used a series of OCO-2 spectra from a 5-
year dataset for the NN training. We then applied the NN to
the observations that were not used in the training and com-
pared their estimates to both the same CAMS model used
for the training and also the fully independent set of To-
tal Carbon Column Observing Network (TCCON, Wunch et
al., 2011a) observations. The results indicated an accuracy
and precision that were similar to, if not better than, that of
the ACOS algorithm.

More recent results challenged our interpretation of the
NN skill. In particular, the XCO2 estimates of the NN did
not show significant enhancement downwind of large power
plants, unlike the product of the NASA Atmospheric CO2
Observations from Space (ACOS) full-physics algorithm.
This is shown in the following together with our interpre-
tation. A new version of the NN resulted from this interpre-
tation and retains the high accuracy of the first version, while
being much more independent from the training dataset.

In the following, Sect. 2 describes the main characteris-
tic of the NN approach and the training procedure. Section 3
presents the limitation of the first version of the NN, as it
shows no innovation with respect to the training dataset. Sec-
tion 4 describes and justifies a new version of the NN ap-
proach. Section 5 discusses the results, suggests directions
for improvements, and concludes.

2 Data and method

The NN described in this paper estimates XCO2 from spectra
measured by the OCO-2 satellite over land. Most of the anal-
ysis is made with the spectra acquired in nadir mode, but we
have also developed a version for glint acquisition that is de-
scribed and commented on at the end of Sect. 4. Conversely
to the analysis in David et al. (2021), we now use all cross-
track footprints. A single NN is used to process all footprints
even though the spectral elements of different footprints cor-
respond to different sampled wavelengths.

We use spectral samples in the three bands of the instru-
ment (around 0.76, 1.61, and 2.06 µm). They have footprints
of ∼ 3 km2 on the ground. In principle, each band is de-
scribed by 1016 samples, but some are marked as bad ei-
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Figure 1. Graphical representation of the NN used in this paper. The
outputs from all neurons feed in all neurons of the next layer. There
is a variable number of hidden layers. Similarly, there is a choice of
the number of neurons in each layer. Not all inputs are used for the
various versions of the NN that are described in this paper.

ther because some of the corresponding detectors died at
some stage or because of known temporary or permanent is-
sues. We systematically remove 15 spectral samples that are
flagged in about 80 % of the spectra and 478 pixels in the
band edges. Conversely, we do not remove the samples that
are affected by the deep solar lines, and we let the NN handle
these specific features. Because the information in the spec-
trum is mostly in the relative depth of the absorption lines,
and not in their overall amplitude, we normalize each spec-
trum by a radiance that is representative of the offline values
(i.e., the mean of the 90 %–95 % range for each spectrum).
This essentially removes the impact of the variations in the
surface albedo and in the solar irradiance linked to the sun
zenith angle.

Figure 1 offers a graphical representation of the NN. As
input, we use the three band spectra (or a subset; see below)
and the observation geometry (sun and view zenith angle:
SZA and VZA, and relative azimuth: AZI). Some versions
also use the surface pressure (Psurf) as input. No explicit in-
formation is provided to the NN regarding the location or
date of the observation. The inputs feed all the neurons of a
first “hidden” layer. We use a fully connected neural network,
which means that all the neurons are connected to the neu-
rons of the previous and next layer. We have attempted NN
versions with a variable number of hidden layers (a single
one was used in David et al., 2021). Each neuron computes a
weighted sum of the inputs and derives a single output on the
basis of either a sigmoid function or a “rectified linear unit”.
The loss is derived from the mean absolute error. The weights
of the input variables to the neurons are adjusted iteratively
with the standard Keras library (Keras Team, 2015) for an
optimal agreement between the NN output and a reference.

The NN training is based on OCO-2 radiance measure-
ments (v10r) acquired between February 2015 and Decem-
ber 2019. We make use of XCO2 estimates and the quality
control filters of the ACOS L2Lite v9r products (Eldering et
al., 2015): only observations with xco2_quality_flag= 0 are
used. For the validation of the NN estimates, we also use ob-

servations with relaxed quality requirements. For versions of
the NN that use the surface pressure as input, we use the esti-
mate that is provided together with the OCO-2 data, and they
are derived from the Goddard Earth Observing System, Ver-
sion 5, Forward Processing for Instrument Teams (GEOS5-
FP-IT) created at Goddard Space Flight Center Global Mod-
eling and Assimilation Office (Suarez et al., 2008; Lucch-
esi, 2013). The weather model pressures have been adjusted
to the sounding surface height.

Our analysis makes use of the CAMS CO2 atmospheric in-
version (Chevallier et al., 2010; version 19r1). This product
was released in July 2020 and contributed, e.g., to the Global
Carbon Budget 2020 (Friedlingstein et al., 2020). It results
from the assimilation of CO2 surface air sample measure-
ments in a global atmospheric transport model run at spatial
resolution of 1.90◦ in latitude and 3.75◦ in longitude over
the period 1979–2019 and using the adjoint of this transport
model. Neither satellite retrievals nor TCCON observations
were used for this modeling. For each OCO-2 observation,
XCO2 is computed from the collocated concentration ver-
tical profile, through a simple integration weighted by the
pressure width of the model layers. Note that the model lay-
ers use “dry” pressure coordinates so that there is no need
for a water vapor correction in the vertical integration. The
XCO2 from CAMS is used for both the training and the eval-
uation, although using independent datasets: the “training”
dataset is a 3 % random sample of the full dataset. The ob-
servations that are used for the training are earmarked and
not used for further evaluation.

3 Initial results and interpretation

David et al. (2021) described a first version of the NN ap-
proach to estimate XCO2. In this first version, the surface
pressure was not used as input, and the training was made on
observations acquired during even months, while the valida-
tion used observations of the odd months. The results were
surprisingly good in that the statistical difference to both the
CAMS modeling and the independent TCCON observations
indicated an accuracy similar to or better than that of the
CAMS product. Further analysis posterior to the publication
was worrisome, however.

First, we found that well-documented local enhancements
of XCO2 in the ACOS product (e.g., Nassar et al., 2017;
Reuter et al., 2019), also referred to as plumes, did not show
up in the NN product. We analyzed in particular a case over
South Africa acquired on 31 August 2016, an illustration of
which is provided in Fig. 2. Over a distance of≈ 100 km, the
ACOS product shows several well-identified enhancements
of ≈ 5 ppm, whereas the NN product does not show any sig-
nificant pattern. The presence of large coal power plants up-
wind of the OCO-2 observations makes the enhancements
trustworthy. We found many similar cases where the NN did
not display an XCO2 plume where ACOS did. We concluded
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that the NN did reproduce the seasonal variation in XCO2 to-
gether with the growth rate but was unable to identify small-
scale features. Since all observations are processed indepen-
dently, we could not interpret this apparent incoherence.

Second, we made an experiment where the training dataset
is biased by 1 ppm for the observations acquired during a
single month (within the full period of 50+ months). When
applied to the validation dataset, the differences to CAMS
show a bias of ≈ 0.5 ppm, but only for the observations that
are within a few weeks of the biased period (Fig. A1). This
is rather surprising as the observation date is not an input of
the NN. Still, these results provide a clear indication that this
version of the NN is somehow sensitive to the observation
date.

To investigate the issue, we developed and trained a new
NN with the same inputs, but aiming at estimating the date,
latitude, and longitude. For the training, we used the true val-
ues of these parameters, and we analyzed how the NN was
able to make an estimate based on the inputs (the spectra and
the observation geometry). Figure 3 shows the histograms of
the errors when applied to the independent dataset.

The results indicate that the NN approach is able to make
a reasonable estimate of the location and date of the obser-
vation based on the spectra and the observation geometry.
The standard deviation of the latitude error is on the order of
7◦, and there is no significant difference with the footprint.
One may expect that this information is largely derived from
the observation geometry that changes with the latitude (both
the SZA and the azimuth do). One argument in favor of this
hypothesis is that the precision of the longitude estimate is
much worse, with a standard deviation on the order of 58◦.
Indeed, for a given day, the observation geometry is nearly
the same for all successive orbits; thus, there is no informa-
tion in the observation geometry to estimate the longitude,
while there is such information for the latitude. As for the
date, the standard deviation is ≈ 61 d, or 2 months. Clearly
then, in the input data of the NN, there is indirect informa-
tion about the observation date and latitude, and this was
a surprise to us. Indeed, when describing the NN approach
in David et al. (2021), we argued that the NN had no infor-
mation on the measurement date, as successive observations
from the same day of year and location, but different years,
were made with the exact same observation geometry.

The various histograms of Fig. 3 were made using a sin-
gle (O2) band, a combination of the O2 band with either CO2
band, and all three bands. The most striking difference be-
tween the various histograms is for the date estimate. Indeed,
the accuracy strongly degrades when the wCO2 band is not
included. The combination of O2+wCO2 bands leads to a
much better accuracy (a factor of more than 3 on the stan-
dard deviation) than that obtained with O2+ sCO2. The other
differences on the histograms are not as large.

How does the NN indirect information on the observation
date, and why is this information somehow contained in the
wCO2 band? Our best interpretation is that the weak CO2

spectrum is sensitive to the upper atmosphere CO2 concen-
tration that is rather well mixed while increasing regularly
in time. The absorption lines in the sCO2 band are much
stronger so that their centers are saturated in the spectra. As a
consequence, the CO2 signal is more in the line wings, which
are more sensitive to the higher pressure (lower altitude) lev-
els. The wCO2 lines are not saturated and the spectrum shape
may provide the information for an estimate of the high-
altitude CO2 concentration. We investigated another hypoth-
esis which the wCO2 detector shows an evolution in time,
that could be used by the NN to infer the observation date.
However, we did not find any indication of such behavior.
Thus, at this point, the stratospheric CO2 hypothesis is phys-
ically plausible and is our best hypothesis because we have
no other. Note however that we have investigated the correla-
tion between the longitudinal anomalies of stratospheric CO2
in the CAMS model and the error on the date estimate by the
NN approach. No such correlation was found. Thus, either
our hypothesis is wrong or the description of the longitudi-
nal variations in stratospheric CO2 in CAMS offers a poor
representation of the reality. Both hypotheses are plausible.

These results clearly demonstrate that the input data to the
NN provide indirect information on the date and latitude. At-
mospheric simulations such as those of CAMS indicate that
XCO2 variations are mostly a function of time and latitude.
Indeed, on average, the deviations of XCO2 along the longi-
tudes are on the order of 0.5 ppm (standard deviation). They
are however larger (≈ 1 ppm) over the Northern Hemisphere
where most of the observations analyzed here are acquired.
We hypothesize that our first version of the NN, as published
in David et al. (2021), obtains a proxy of the latitude and date
and outputs the corresponding CAMS value. Based on the
CAMS simulation, we found that the typical uncertainty on
the position and date (σlat = 7◦, σlon = 58◦ and σdate = 60 d)
leads to a 1σ error of 0.91 ppm on XCO2 (difference between
the values at the true and perturbated location and date). This
value appears consistent with the precision obtained with our
first version of the NN. Note however that this statistical
difference gets larger when considering locations consistent
with the OCO-2 observations that are used here. The impor-
tant point is that the error increases considerably (a factor of
2) for degraded precisions on the location and date with a
different version of the NN that is discussed below.

4 A new version of the neural network

As shown above, the NN appears to use the wCO2 band
to derive a proxy of the observation date, which makes it
possible, together with the proxies of the location, to esti-
mate XCO2 based on the statistical distribution of the CAMS
XCO2. To avoid this feature, an option is to not use the in-
formation from the wCO2 band. We therefore developed a
similar version of the NN but without this band (i.e., only
the O2 and sCO2, together with the observation geometry).
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Figure 2. XCO2 estimated by the ACOS algorithm (red) and the NN approach (blue) as a function of latitude using its initial version
as published in David et al. (2021) (a) and the new version presented in this paper (b). The ACOS product showed a number of XCO2
enhancements that are not shown by the NN estimates. The plumes are observed downwind of large coal power plants, which make these
features trustworthy. The date is 31 August 2016.

Figure 3. Analysis of the ability of the NN to estimate the date, location (latitude, longitude), and surface pressure from the input spectra
and observation geometry. The graphs show the histograms of the differences between the NN estimate and the true value. Several versions
of the NN were analyzed using all three bands (red), only the wCO2 and O2 bands (orange), sCO2 and O2 (green), and only the O2 band
(blue).

With this version, the behavior of the NN changes markedly.
The most important feature is that the NN now reproduces
the XCO2 plumes that are shown by the output of the ACOS
algorithm. Two representative examples are shown in Fig. 4.
These cases demonstrate that the NN does produce XCO2
features that are not in the training database, as we expected.
The NN is trained on the variations in XCO2 caused by the
atmospheric growth rate and the surface flux seasonal cycle.
It identifies signatures in the spectra that relate to the CO2
atmospheric content. These signatures can then be used for
an estimate of XCO2, even for situations that are poorly re-
produced in the training dataset.

In addition to the change in the band selection, and pos-
terior to the result shown in Fig. 4, we made several other
modifications to the NN algorithm.

1. We decided to use the surface pressure from the weather
forecast model as an additional input to the NN. In
David et al. (2021), the surface pressure was an out-
put of the NN model. It was used to demonstrate the
capability of the NN approach to interpret the spectral
shapes in terms of atmospheric parameters. Indeed, the

estimate of the surface pressure could be compared to an
independent estimate from numerical weather analyses
which are known to be precise within ≈ 1 ‰. However,
the surface pressure may alternatively provide useful in-
formation to the NN for the interpretation of the spectra,
as it does in the full-physics algorithms in the form of
a prior estimate and also for the derivation of the bias-
corrected product.

2. We decided to increase the number of NN hidden layers
to five (instead of one in David et al., 2021). Our experi-
ence indicates that, with a larger number of layers, there
is less over-fitting of the training spectra; i.e., there is
a better agreement between the loss of the training and
that of the test dataset. An increased number of hidden
layers also leads to slightly better performance, in par-
ticular for the NN that was designed for the land-glint
observations (see below).

3. We developed a similar approach for the glint cases (still
over land). Our initial fear was that it would be more
difficult for the NN to handle glint observations because
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Figure 4. Two examples of XCO2 plumes that are captured by the ACOS bias-corrected XCO2 estimates. These were not shown by the
first version of the NN algorithm (an example shown in Fig. A1) but are well captured by the second version that does not use the wCO2
band (shown here). The NN estimates are in blue whereas the ACOS estimates are in red. The lines are simple polynomial fits on the XCO2
estimates and do not aim at capturing the plume signature. These cases were identified and discussed in Reuter et al. (2019).

of (i) larger variations in the optical path than for the
nadir mode and (ii) the Doppler effect that may affect
the absorption line positions on the input spectra. This
is why our first attempts focused on the nadir cases, but
there is a need to also exploit the many observations
acquired in glint mode.

Figure 5 shows the inter-comparison of the XCO2 esti-
mated from CAMS, ACOS, and NN. All three datasets are
highly consistent, with a statistical difference around 1 ppm
and little bias. Let us recall that there is no satellite data in-
put to the version of CAMS that is used here, so that it is
fully independent from ACOS. The 1.06 ppm standard devi-
ation of their differences demonstrates that both product pre-
cisions are better than this number. CAMS and the NN are
not as independent because the latter is trained with the for-
mer (but using different space-time locations). Let us stress
that any bias in CAMS may be transferred to the NN prod-
uct. Thus, a high agreement between CAMS and the NN
product is not a demonstration of the latter accuracy. Still,
it has been shown that the NN retrieves features that are not
in CAMS, which indicates some independence between the
satellite product and the model. The standard deviation of
their differences is 0.85 ppm. The quadratic difference be-
tween NN and ACOS is a strong function of the sCO2 albedo
as shown in Fig. 6: it decreases from ≈ 1.5 to ≈ 0.75 ppm as
the sCO2 band albedo increases from 0.10 to 0.45. A better
accuracy of the satellite product with stronger surface albedo
is expected as (i) the measurement signal-to-noise ratio gets
higher and (ii) the relative contribution of atmospheric scat-
tering to the signal decreases. The precision estimate is also a
function of the O2 band albedo, but this effect is not as strong
and the O2 band albedo shows less variability than that of the
sCO2 band.

Figure 5 also shows that the slope of the best fit of the
satellite products against CAMS is close to 1 but with a dif-

ference of opposite sign (0.99 and 1.02). As a consequence,
there is a more significant slope deviation from 1 (0.97) be-
tween the two satellite products.

Figure 7 provides further information on the differences
between the remotely sensed products and the CAMS esti-
mate. The histograms are close to Gaussian and confirm that
NN is closer to CAMS than the ACOS counterpart. An inter-
esting feature is that both the NN-CAMS and ACOS-CAMS
differences depend on the cloud flag (cloud_flag_idp), which
indicates that this flag has some value. The difference be-
tween the cloud contamination histogram remains small
however, and does not deserve to disqualify the observations
with a cloud flag of 2. Here, we only use the “definitely clear”
and “probably clear” cases (flags of 3 and 2). The popula-
tion of the lower value cases (“definitely cloudy” and “prob-
ably cloudy”) is much smaller, and the histograms for these
cases are not shown, while they show further degradation. It
is difficult to elaborate further as the true nature of the cloud
contamination in the cases classified as probably clear is un-
known.

Figure 8 is based on the satellite product innovation, i.e.,
the difference to the model estimates. Indeed, one may con-
sider that the model provides current knowledge on the
XCO2 distribution, constrained by surface air sample mea-
surements and atmospheric transport. The satellite product
has the potential to improve this knowledge, but only as much
as the difference with the model estimate. Typical values are
around 1 ppm. The interesting result shown by Fig. 8 is that
the two satellite estimates are significantly correlated. This
provides further evidence that the NN estimate is not only
a reconstruction of the training dataset (CAMS) with some
noise. Indeed, when NN differs from the model, ACOS, the
independent satellite product tends to agree.

Finally, Fig. 9 shows a comparison of the model and re-
motely sensed estimates of XCO2 against the reference re-
trievals of the TCCON network. Although the OCO-2 satel-

Atmos. Meas. Tech., 15, 5219–5234, 2022 https://doi.org/10.5194/amt-15-5219-2022



F.-M. Bréon et al.: XCO2 estimated by a neural network approach 5225

Figure 5. Inter-comparison of XCO2 estimated from CAMS, ACOS, and the NN. The density histogram is based on nadir observations from
February 2015 to December 2019. A similar figure for the glint cases is shown in Fig. A3.

Figure 6. Standard deviation of the NN–CAMS difference as a
function of the sCO2 band albedo (red, right scale). The compu-
tation is made over 0.02 bins, the population of which is shown by
the blue line (left scale).

lite platform can be oriented so that the instrument field of
view is close to the surface station, we only use nadir data
here. Indeed, the NN was not trained on the target data and
can only be used to process measurements that have been ac-
quired in observation configurations that are similar to those
of the training. We thus have to rely on nadir or glint mea-
surements acquired in the vicinity of TCCON sites. In the
following, we use nadir measurements that are within 5◦ in
longitude and 1.5◦ in latitude to the TCCON site. For the ref-
erence, we average the TCCON estimates of XCO2 within
30 min of the satellite overpass. No attempt was made to cor-
rect for the different weighting functions of the surface and
spaceborne remote sensing estimates. Statistics per station
are provided in Table 1. The biases vary significantly among
stations, although they are generally less than 1 ppm (in am-
plitude). Two stations, Pasadena and Zugspitze, show a large
negative bias for both satellite estimates and the model. For
Pasadena, it may be interpreted as the impact of the city on

the atmosphere sampled by the TCCON measurement, while
the atmosphere at the location of the satellite observation
(which may be several hundred kilometers away) is less af-
fected. Zugspitze is a high-altitude site (2960 m), so that the
atmospheric column sampled by the sun photometer does
not have the same vertical representativeness as that of the
satellite observation (in addition to the spatial distance that is
common with other sites). A large negative bias is also found
at Eureka (80.05◦ N). The fact that the difference with the
CAMS model at this site is much larger than for other sites
could hint at an issue in the sun photometer product there.
Conversely, there are large positive biases at Burgos and Ny-
Ålesund (78.9◦ N, very close to the latitude of Eureka). Since
the model and satellite estimates somewhat agree, one may
also question the TCCON calibration at these sites. For other
stations, which form the large majority, the biases are smaller
than 1 ppm, and there is a fair consistency between the satel-
lite products in the sense that the sign of their bias is the
same in most cases. The range of the difference with TCCON
varies among stations. The best satellite–TCCON agreement
is found at the Lamont station, which, interestingly, is also
the one with the most coincidences. Excellent agreement is
also seen at Darwin, Edwards, Park Falls, and Bremen. The
comparison with TCCON does not allow favoring of one
satellite estimate versus the other. Focusing on the stations
with a large number of observation (25 overpasses or more),
the NN estimates appear slightly better than ACOS at Dar-
win, Edwards, Garmisch, Orléans, and Białystok, while they
are the opposite at Saga, Park Falls, and Sodankylä. The fig-
ure (and table) also clearly shows that the CAMS product
offers a better agreement with the TCCON data than any of
the satellite estimates in most cases. The high quality of the
CAMS modeling used in this paper, at least over the TC-
CON site, provides further justification of its use as a training
dataset.

We have applied a very similar procedure to the OCO-2
observations acquired in glint mode over land. An evaluation
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Figure 7. Histogram of the differences between either one of the two satellite datasets and the CAMS model. We distinguish cases when the
flag cloud_flag_idp is “certainly clear” and “probably clear”. The left figure is for the nadir dataset, whereas the right figure is for the glint.

Figure 8. Density histogram of the innovation, i.e., the difference between the satellite product and the model estimates, differences between
either one of the two satellite datasets and the CAMS model. The red line shows the result of a linear fit through the data points aiming at a
minimization of the distance to the best line. The left figure is for the nadir dataset, whereas the right figure is for the glint.

of the estimate performance is shown in Figs. 7, 8, A2, and
A3. The conclusions are very similar to those obtained for
nadir. The agreement with CAMS is slightly degraded with
respect to the nadir cases (0.92 vs. 0.85 ppm for the certainly
clear observations) but somewhat closer than that of ACOS
(Figs. 7 and A2). The deviations from the model of the two
satellite estimates are significantly correlated, and the cor-
relation coefficient is even larger than that derived for nadir
observations (0.45 vs. 0.39, Fig. 8). The comparison with the
TCCON estimates leads to the same conclusions as those de-
scribed above for the nadir cases.

5 Discussion and conclusion

This paper follows on from David et al. (2021), in which
we described a neural-network-based technique to estimate
XCO2 and the surface pressure from the OCO-2 spectral
measurements. An important message is that our interpreta-
tion of the results in that earlier study was incorrect. The NN
developed in that paper reproduced the statistical variations
of the training dataset (CAMS) and was unable to generate
features, such as plume from emission hot-spots. Thus, con-
trary to our claims, the NN method, as presented in that pa-
per, could not be used to process OCO-2 and generate XCO2
estimates with any real value. We have shown here that a
NN-based procedure is able to estimate the latitude and date
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Figure 9. Statistics of the differences between the NN retrieval (red), the CAMS model (green), or the bias-corrected ACOS retrievals (blue)
and the TCCON retrievals. The boxes indicate the 25 %–75 % percentiles, and the median is shown by the horizontal line within the box.
The whiskers indicate the 5 %–95 % percentiles. Stations are ordered by increasing latitudes. The numbers below the station name indicate
the number of individual observations and coincidence days used for the statistics. The references of the various TCCON observations are
provided in Table 1. Figure A4 provides similar results for the glint case.

of the observation with a reasonable accuracy. This was un-
expected as we wrote in David et al. (2021)

Let us recall that the NN input does not contain
any information on the location or date of the ob-
servation. This is a strong indication that the infor-
mation is derived from the spectra as the NN does
not ’know’ the CAMS value that corresponds to
the observation location.

Our interpretation was wrong. In fact, the NN input can
somehow be used by the NN for a fairly accurate estimate
of the latitude and date. Because most XCO2 variations are a
function of latitude and date, this information could be used
by the NN to generate a reasonable estimate, i.e., one that
mimics the main variations in the training dataset.

A question remains on the indirect information that is
used by the NN to estimate the observation date. The fact
that the precision on the date estimate is much better when
using a combination of the O2+wCO2 rather than of the
O2+sCO2 suggests that the information lies in the wCO2
band. Our best hypothesis is that the wCO2 spectrum con-
tains some information on the stratospheric CO2 whose con-
centration is well-mixed while increasing regularly with time
and implicitly contains, therefore, information on the obser-
vation date. Further testing this hypothesis would require, for
instance, the identification of some anomaly in the strato-
spheric CO2 (linked to a specific atmospheric circulation)
that would show up as a significant error on the date estimate
made by the NN. We have not been able to identify such a
feature.

Despite this initial setback, we have continued our analy-
sis of the potential of the NN to process the OCO-2 spectra.
A strong motivation relied on the results obtained for the es-
timate of the surface pressure. Indeed, David et al. (2021)
showed that the NN could estimate the surface pressure with
an accuracy on the order of 3 hPa. The spatial and temporal
variations in the surface pressure, at the scale of the potential
accuracies on the date and location, are much larger than this
number, so that the NN estimate cannot rely on this kind of

indirect information. This provided a strong indication that
the NN method has the potential to extract meaningful infor-
mation from the spectrum itself.

We have therefore developed a new version of the NN
excluding the wCO2 band from the inputs. In this version,
the behavior of the NN is much different from the earlier
version as it generates features that are not in the training
dataset. This clearly shows that the NN uses the signature
of XCO2 contained in the sCO2 spectra to make an XCO2
estimate. The accuracy of this estimate is similar to the one
obtained with the first version of the NN and similar to that
of the ACOS products. This is confirmed by the comparison
of the XCO2 estimates against the TCCON retrievals. An-
other strong argument that the NN XCO2 estimate contains
true information and is not only a noisy copy of the training
dataset is that the innovations of the two satellite estimates,
i.e., the differences to the model data, are significantly corre-
lated (Fig. 8).

Note that we use here a single neural network for the eight
footprints of the OCO-2 instrument. We analyzed whether
the result performance, assessed as the standard deviation of
the differences with CAMS, is a function of the footprint.
The statistics are very similar for all, except for footprint 2,
which shows slightly higher deviation for both the ACOS and
the NN satellite products (a difference of ≈ 0.1 ppm to the
mean of ≈ 1 ppm).

These results confirm that the NN technique has a strong
potential to process the OCO-2 observations, as well as those
from forthcoming missions aiming at the observation of CO2
from space such as the forthcoming MicroCarb (Pascal et
al., 2017) or the CO2M constellation (Sierk et al., 2019). As
discussed above, the current version does not use the wCO2
band at all, and this may be seen as a loss of useful informa-
tion. There is therefore a need to select appropriate spectral
samples in the wCO2 band rather than discarding them all. It
requires improved understanding of the indirect information
that is used by the NN to estimate the observation date and
location.
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The NN technique has two obvious advantages compared
to the physical methods that are used to process the OCO-2
observations as well as other instruments with similar objec-
tives: (i) a much smaller computational burden and (ii) no
need for a de-bias procedure (O’Dell et al., 2018; Kiel et
al., 2019). Our implementation still faces remaining chal-
lenges, which we discussed in David et al. (2021).

The first challenge is the cloud detection. All the analysis
described in this paper relies on the ACOS cloud detection,
and only the observations identified as clear are processed.
Our analysis demonstrates the potential of the NN approach
but is currently not independent from ACOS. We are cur-
rently evaluating independent approaches for the cloud de-
tection. Although the NN described here aims at an estimate
of XCO2, we have shown earlier that the same tool can be
used for an estimate of the surface pressure with a 1σ pre-
cision on the order of 3 hPa for clear-sky cases. Numeri-
cal weather analyses are actually better than that (Salstein
et al., 2008). Thus, one may use the comparison of the sur-
face pressure estimate from the NN to the numerical weather
data for an easy identification of perturbations to the spectra
that are linked to cloud or large aerosol contamination. This
would allow an easy and rapid quality indicator for the selec-
tion of observations that may be used for XCO2 estimates,
either using a physics-based algorithm or a NN approach.
This idea remains to be evaluated.

The second challenge concerns the absence of a quantita-
tive indication of the amount of information that the NN takes
from its prior information (contained in the training database)
vs. the amount of information that the NN takes from the
measured spectra. For Bayesian full-physics retrievals, these
weights are represented by the averaging kernel (Rodgers,
1990), which allows a clean comparison of each retrieval
with 3D atmospheric models, at least in theory (see the dis-
cussion about the practical difficulties in Chevallier, 2015).
The NN training targets the CO2 column with a homoge-
neous weighting along the vertical, but this can hardly be
achieved without some contribution from the prior informa-
tion. This challenge may be evaluated in the future on the
basis of radiative transfer simulations.

The third challenge concerns the absence of a quality in-
dicator with the XCO2 estimate. With the physical methods,
the spectrum residuals provide an efficient means to iden-
tify cases when no satisfactory agreement can be found be-
tween the measured and modeled spectra. With the NN ap-
proach, there is no uncertainty associated with each retrieval.
Our analysis has shown that the apparent precision (evaluated
against CAMS) is a strong function of the surface albedo.
There may be other geophysical variables that pilot the un-
certainty. To provide precision estimates for each NN-based
XCO2 estimate, ensembles of randomized trainings, where
uncertain parameters or input/output variables are varied ad-
equately (e.g., Chau et al., 2022), or analytical estimates
(Aires et al., 2004) should be explored.

The last challenge concerns the need for a high-quality
training dataset, in the context of increasing XCO2. The com-
parison against the TCCON observations (Fig. 8) demon-
strates that the CAMS inversion product meets this require-
ment. In fact, there are strong indications that CAMS re-
mains better than the satellite products, at the very least in
terms of global precision. However, because of the atmo-
spheric growth rate of CO2, the training must be regularly
updated. Indeed, with a frozen training dataset, the true real-
time XCO2 progressively leaves the training range. The NN
approach requires a training dataset that is representative
of the observation and would then lead to underestimates.
For quasi-near-real-time data assimilation (e.g., Massart et
al., 2016), the training dataset must therefore gradually inte-
grate recent high-quality XCO2 data, but without sacrificing
robustness.

As a final remark, we call for caution. We have been
tricked by the NN ability to generate a consistent descrip-
tion of the atmospheric XCO2 in our first analysis. It is dif-
ficult to ensure that we are not tricked again. The source of
the information that leads to a fairly accurate estimate of the
date, when using the weak CO2 band, remains unclear. As
a consequence, although it is demonstrated that the new ver-
sion of the NN generates structures that are not in the training
dataset, there may be biases in the CAMS modeling that have
a significant influence on the NN product.
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Appendix A

Figure A1. Mean difference, at daily scale, between the NN XCO2 estimate and the CAMS model. The blue dots show the results for the
nominal training. The orange dots show the results when the training was made with a dataset biased by 1 ppm but only the observations of
June 2017, the center of which is indicated by the red vertical line.

Figure A2. Same as Fig. 5, but for the glint observations.

Figure A3. Same as Fig. 9, but for the glint observations.
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Figure A4. Examples of anthropogenic CO2 plumes as seen by the OCO2 instrument processed with the ACOS algorithm (red) and the
neural network described in this paper (blue). The cases have been identified and described in Reuter et al. (2019) and Nassar et al. (2021).
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