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Abstract. Currently available data-assimilation-based re-
constructions of past climate variations have only used sta-
tistical proxy system models to make the link between cli-
mate model outputs and indirect observations from tree rings.
However, the linearity and stationarity assumptions of the
statistical approach may have limitations. In this study, we in-
corporate the process-based dendroclimatic model MAIDEN
into a data assimilation procedure using the reconstruction
of near-surface air temperature, precipitation and winds in
the midlatitudes of the Southern Hemisphere over the past
400 years as a test case. We compare our results with a
data assimilation approach including a linear regression as
a proxy system model for tree-ring width proxies. Overall,
when compared to instrumental data, the reconstructions us-
ing MAIDEN as a proxy system model offer a skill equiv-
alent to the experiment using the regression model. How-
ever, knowing the advantages that a process-based model
can bring and the improvements that can still be made with
MAIDEN, those results are promising.

1 Introduction

Indirect observations of climate from proxies such as tree-
ring width (hereafter TRW) or isotopic content in ice cores
and coral provide information on past climate variability be-
yond the instrumental era (Jones et al., 2009). Those proxy
records have been used in numerous studies devoted to cli-
mate variability over the last millennium. This has been clas-
sically achieved by using the empirical (i.e., statistical) rela-
tionship between climate variables of interest (e.g., surface

air temperature) and proxy observations (e.g., Mann et al.,
1999; Luterbacher et al., 2004; Mann et al., 2008; Bünt-
gen et al., 2011; Neukom et al., 2011; Tingley and Huybers,
2013; Wilson et al., 2016). Tree rings represent one of the
main sources of information for those studies as they are the
most available and spatially distributed proxy to reconstruct
past climates at high temporal resolution (e.g., Fritts, 1976;
Jones et al., 2009; Cook et al., 1999; Esper et al., 2002; Wil-
son et al., 2016; Anchukaitis et al., 2017; Esper et al., 2018).

Although the network of TRW records is well developed,
mostly in the extratropical latitudes of the Northern Hemi-
sphere (PAGES 2k Consortium, 2017), these records only
provide insight about past climates at a specific location. In
order to spread the local information to the large spatial scale,
statistical methods have been developed to provide spatially
gridded climate reconstructions of the past centuries, gener-
ally on the basis of linear regressions between the network
of proxy records and the climate field of interest, calibrated
over the instrumental period (e.g., Fritts et al., 1971; Mann
et al., 1998, 2007; Cook et al., 2010; Wang et al., 2015; An-
chukaitis et al., 2017). In this so-called transfer function ap-
proach (Fritts et al., 1971), the climate field of interest is ex-
pressed as a function of the tree-ring proxy, i.e., in the in-
verse mode (as opposed to the natural direction in which tree
growth responds to climate). However, while this assumes
an invertibility of the relationship between climate and tree
growth, this may not always be the case. Additionally, the use
of linear regression is based on the assumption that the rela-
tionship between climate and tree growth is linear and sta-
tionary over time. However, many studies have highlighted
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the shortcomings associated with these assumptions for TRW
records (Wilmking et al., 2020; Briffa et al., 1998; Wilson
and Elling, 2004; Wilson et al., 2007; D’Arrigo et al., 2008;
Guiot et al., 2014; Babst et al., 2018).

On the other hand, global climate model simulations offer
a complete spatial picture of the past climate variability. Nev-
ertheless, these simulations, if used alone, cannot follow the
observed climate evolution because of the large contribution
of internal climate variability that is unpredictable over those
timescales and thus cannot be reproduced by models, as well
as because of potential biases. Over the last decades, data
assimilation (DA) has been increasingly used in paleoclima-
tology to bring together the information from both indirect
climate records from proxies and climate models to provide a
more complete picture of the climate changes (Goosse et al.,
2010; Widmann et al., 2010; Goosse et al., 2012; Steiger
et al., 2014; Franke et al., 2017; Steiger et al., 2018; Tardif
et al., 2019).

Initially, DA-based reconstructions were developed using
temperature reconstructions derived from the statistical re-
lationship between temperature and proxy observations, not
the proxy time series themselves (e.g., Crespin et al., 2009;
Goosse et al., 2010). More recently, the use of forward proxy
system models (hereafter, PSMs) has emerged in order to di-
rectly assimilate the proxy time series. This gives the oppor-
tunity to consider the relationship between the proxy and the
climate in the natural direction, as opposed to inverse mod-
els, and to take into account the combined influence of mul-
tiple climate variables on the proxy data. Specifically, PSMs
– one specific form of the observation operator in the DA
framework – make the link between the outputs of the cli-
mate model included in the DA procedure and the assim-
ilated proxy observations, for example TRW (Evans et al.,
2013; Dee et al., 2016). To date, reconstructions based on
data assimilation using observed tree-ring data have only
included statistical PSMs (univariate or multivariate regres-
sions; e.g., Franke et al., 2017; Steiger et al., 2018; Tardif
et al., 2019). Contrary to statistical models, process-based
dendroclimatic PSMs are able to account for the complex-
ity of the relationship between climate and tree-ring proxy
data by explicitly simulating the biological processes gov-
erning the climate dependency of tree-ring growth. In this
regard, they may overcome some of the limitations of sta-
tistical models. However, so far, they have never been used
in a DA procedure with actual tree-ring proxy data, but only
with pseudo-proxies (i.e., synthetic proxy data; Dee et al.,
2016; Acevedo et al., 2017; Steiger and Smerdon, 2017).
In these studies, the VS-Lite model (Tolwinski-Ward et al.,
2011) is forced by climate model outputs in order to provide
synthetic tree-ring proxy data. These synthetic proxy data are
then incorporated in a DA framework, providing a controlled
environment to evaluate the DA procedure and resulting re-
construction skill. In those experiments, using the nonlinear
VS-Lite model as a PSM for tree-ring data has the poten-
tial to improve the quality of the reconstruction compared

to the traditional statistical linear approach of tree-ring mod-
els. However, VS-Lite cannot be considered entirely process-
based as it does not include any biological processes to drive
tree growth but is rather based on the implementation of the
principle of limiting factors with threshold growth response
functions (Tolwinski-Ward et al., 2011).

In this study, we introduce for the first time a process-
based dendroclimatic model in a data assimilation procedure
with actual tree-ring width records. Among all the avail-
able mechanistic tree-growth models (e.g., Misson, 2004;
Dufrêne et al., 2005; Vaganov et al., 2006; Drew et al., 2010;
Tolwinski-Ward et al., 2011), we chose to work with the
ecophysiological model MAIDEN (Modelling and Analysis
In DENdroecology; Misson, 2004). MAIDEN includes the
atmospheric CO2 concentration among other inputs, which
represents a major advantage for taking into account the po-
tential effect of the recent exponential increase in CO2 on
tree growth (Myhre et al., 2013; Boucher et al., 2014). In
Rezsöhazy et al. (2021), the MAIDEN model has been suc-
cessfully applied over the last century to the PAGES 2k TRW
database by comparing the simulated annual quantity of car-
bon allocated to the stem with the observed tree-ring widths
(both normalized) using high-resolution climate data as in-
puts of the model. The model has been calibrated over the
second half of the 20th century using the Bayesian proce-
dure with Markov chain Monte Carlo sampling elaborated
in Rezsöhazy et al. (2020) and successfully verified over the
first half of the century at 20 % of the PAGES 2k tree-ring
sites. The studies have highlighted the potential of MAIDEN
to be used as a PSM for DA-based reconstruction of past cli-
mate variability compared to a simple model like VS-Lite
(Tolwinski-Ward et al., 2011).

Here, we perform a comparative analysis on the impact of
using a simple regression model or a process-based dendro-
climatic model as PSMs for TRW records in the DA frame-
work. The goal is to evaluate if and how a complex process-
based model of tree growth like MAIDEN can contribute
to the improvement of large-scale DA-based reconstructions
of past climate variability compared to the regression model
classically used so far. Because MAIDEN has been shown to
be skillful in different regions of the Southern Hemisphere
(SH; Rezsöhazy et al., 2021), we focus on that region and
provide climate reconstructions of near-surface air tempera-
ture, precipitation and winds in the middle to high latitudes
of the SH over the past 400 years. The Southern Hemisphere
also constitutes an interesting study case, as few reconstruc-
tions have been performed in this region so far (Neukom
et al., 2011, 2014). The DA experiments are based on both
TRW and ice core (δ18O and snow accumulation) proxy data
to ensure the consistency of the reconstructed large-scale cir-
culation pattern by assimilating proxy records at middle and
high (i.e., Antarctica) latitudes of the Southern Hemisphere
and thus avoiding only reconstructing small-scale features.
They both represent the best available continental annually
resolved proxies in the SH (PAGES 2k Consortium, 2017).

Clim. Past, 18, 2093–2115, 2022 https://doi.org/10.5194/cp-18-2093-2022



J. Rezsöhazy et al.: A process-based dendroclimatic proxy system model in data assimilation 2095

While the TRW records require the use of a PSM, the ice
core records can be directly compared with the outputs of an
isotope-enabled climate model.

First, DA experiments are performed and evaluated against
state-of-the-art gridded climate datasets over the last century
to evaluate the impact of the assimilation of the tree-ring data
and the associated PSMs on the skill of the reconstruction. In
Sect. 4.1, we compare the performance of the DA-based re-
constructions using a regression- or a process-based dendro-
climatic PSM in our framework over the last century. Sen-
sitivity experiments are then performed in Sect. 4.2 to iden-
tify the contribution of tree-ring width proxies in our data as-
similation framework using a regression- or a process-based
dendroclimatic PSM as well as to quantify the impact of the
uncertainty of the records. Secondly, the DA-based recon-
structions performed with a statistical or process-based den-
droclimatic PSM are compared to each other over the past
4 centuries in Sect. 4.3. To match the seasonality of tree
growth in the Southern Hemisphere, all the analyses in this
study are performed on a July–June year (e.g., the year 1992
corresponds to July 1992–June 1993) instead of the usual
January–December year, which is suited for trees growing
in the Northern Hemisphere.

2 Data assimilation

In paleoclimatology, the objective of data assimilation is to
optimally combine the information from the physics of the
climate system as included in climate models and indirect
observations of climate from proxies (Kalnay, 2003; Goosse
et al., 2010; Widmann et al., 2010; Steiger et al., 2014;
Franke et al., 2017; Hakim et al., 2016). More specifically,
the DA procedure is based on Bayes’ theorem (van Leeuwen,
2009): starting from the prior estimate of the state of the cli-
mate system provided by the model, DA produces a recon-
struction of the climate system that is as accurate as possible
(i.e., the posterior) given the information provided by the cli-
mate observations. The updated estimate of the climate sys-
tem is often called a reanalysis. One of the advantages of DA
is its ability to propagate the information brought by the ob-
servations both in space and between the climate variables
by relying on the spatial covariance of a specific variable and
on the covariance between different variables in the model.
In other words, DA gives the opportunity to reconstruct the
climate at places where there are no proxy sites and for vari-
ables for which we do not have any observations to assimi-
late.

In this study, we use an offline DA approach in opposition
to the online DA approach. The offline approach samples a
pre-existing ensemble of climate model simulations to build
the prior state of the climate system. This has the great ad-
vantage of being considerably computationally time-saving.
In this configuration, the different years of the sampled en-
semble are assumed to be independent of each other. This

assumption is reasonable if the predictability of the variables
of interest is smaller than the temporal resolution of DA (i.e.,
1 year in our study), as is the case for atmospheric variables
(Okazaki et al., 2021). With the online approach, the prior
state of the climate system is sequentially updated. In this
case, the years are not assumed to be independent of each
other. Instead, the update made at the previous time step
is transferred to the next one. When focusing on the atmo-
sphere, as in our study, the online approach is not expected
to outperform the offline approach (Matsikaris et al., 2015;
Okazaki et al., 2021).

Here, the offline approach is based on a particle filter
method described in Sect. 2.1. In addition, the framework of
DA includes three main components: (1) prior climate model
simulations (Sect. 2.2), (2) indirect observations of climate
provided by proxy data (Sect. 2.3), and (3) proxy system
models to make the link between climate model outputs and
indirect observations of climate (Sect. 2.4). The error associ-
ated with the data used in the DA procedure is also consid-
ered and defined in Sect. 2.5. Finally, in Sect. 3, we elaborate
the DA experimental design and diagnostics of this study.

2.1 Particle filter

In this study, the offline DA procedure employs a particle
filter as in Dubinkina et al. (2011). The particle filter (van
Leeuwen, 2009) describes the prior of each climate vari-
able by a probability density function, which is represented
discretely on the basis of independent states of the model
(Sect. 2.2), i.e., the particles (Fig. S1 in the Supplement).
These model states are sampled at a chosen frequency in the
model simulations that determines the number of sampled
particles. For instance, for a chosen frequency of 1 year, we
sample a particle or model state in the model simulation ev-
ery 1 year. It will be characterized later in Sect. 3. The prior
stays the same throughout the DA procedure. As the obser-
vations are annually resolved (see Sect. 2.3), the time step
of the DA is also annual. As a consequence, the particles are
defined as the annual mean of the model state variables.

For each year of the reconstruction period (i.e., the pe-
riod covered by observations), all the particles are com-
pared to the available observations through the use of a PSM
(Sect. 2.4). This allows estimating the likelihood of each par-
ticle knowing the observations at that time. This computa-
tion also takes into account all known sources of errors (see
Sect. 2.5). The likelihood then determines the weight given
to each particle. The weight given to a particle will be higher
if the particle is closer to the observations and lower if fur-
ther from the observations. In this way, starting from a prior
distribution wherein all the particles have the same weight,
the particle filter produces a posterior distribution wherein
the weights of the particles are redistributed according to the
observations for each year of the reconstruction and inde-
pendent of the location (Fig. S1). The method does not make
any assumptions on the prior and posterior distributions of

https://doi.org/10.5194/cp-18-2093-2022 Clim. Past, 18, 2093–2115, 2022



2096 J. Rezsöhazy et al.: A process-based dendroclimatic proxy system model in data assimilation

the state of the climate system, and it can be used without a
priori knowledge of the model, which is a clear advantage of
the particle filter. Additionally, in this framework, the indi-
vidual particles for a given time step are dynamically consis-
tent climate states. However, it is important to keep in mind
that even though atmospheric states are almost independent
on an annual timescale (as in this study), the dynamics of the
ocean and cryosphere components of the climate system in-
volve very long timescales, and their states also influence the
atmospheric variables. At the end of the DA procedure, the
weighted mean of the particles for each year over the assim-
ilation period provides an estimate of the climate variables
(i.e., the ensemble mean). Since dynamical consistency in
space and between variables involves nonlinear equations,
the weighted ensemble mean is therefore not fully dynam-
ically consistent. Finally, the weighted standard deviation of
the particles is used to estimate the range of the reconstruc-
tion (i.e., the ensemble spread).

2.2 Climate model simulations

We use the ensemble of three simulations performed with
the isotope-enabled Community Earth System Model ver-
sion 1 (iCESM1; Brady et al., 2019; Stevenson et al.,
2019; publicly available at https://www.earthsystemgrid.org/
dataset/ucar.cgd.ccsm4.CESM_CAM5_LME.html; last ac-
cess: 12 May 2021) as a basis for building the prior of
our data assimilation experiments. The iCESM1 is a cou-
pled atmosphere–ocean–sea ice model at 1.9◦ latitude and
2.5◦ longitude resolution for the atmosphere component and
around 1◦ for the ocean–sea ice component. The model sim-
ulations include anthropogenic (aerosol emissions and land
use changes) and volcanic aerosol forcings, greenhouse gas
emissions, solar irradiance variations, and Earth’s orbital
changes (Brady et al., 2019; Stevenson et al., 2019). The an-
nually resolved iCESM1 simulations used in this study span
the July 850–June 2005 CE time period. This corresponds to
the time span of the simulations used to sample the particles
during the data assimilation procedure by contrast with the
time span of the reconstructions (i.e., the past 4 centuries).
For our DA experiments (Sect. 3), all the particles are sam-
pled in the three iCESM1 members for a total of 3465 parti-
cles.

2.3 Proxy data

In this study, we make use of three types of proxy data from
two types of archives: the first is tree-ring width (Sect. 2.3.1)
and the second is δ18O (i.e., the ratio of stable isotope oxy-
gen in the ice core) and snow accumulation from ice cores
(Sect. 2.3.2). They represent the best available continen-
tal proxies in the SH continents (South America, Australia,
Tasmania, New Zealand and Antarctica) for reconstructing
the past climate at high resolution (PAGES 2k Consortium,
2017).

2.3.1 Tree-ring width data

The PAGES 2k database (hereafter PAGES2k2017) includes
692 proxy records (PAGES 2k Consortium, 2017) selected
for reconstructing the temperature of the last 2 millennia.
The records are from a variety of archives (tree rings, ice
cores, lake sediments, coral, speleothems, documentary evi-
dence, etc.). TRW records represent a bit more than half of
the database with 354 records, among which 12 are located
below 30◦ S, in New Zealand (four records), Tasmania (four
records) and South America (four records). The previous
version of the PAGES 2k TRW database (PAGES 2k Con-
sortium, 2013; hereafter PAGES2k2013) contains 28 TRW
records below 30◦ S. Nine records have been excluded from
the recent version of the PAGES 2k database because they
were too short (less than 300 years). Those records are also
included in this study and are all located in South America.
The location of the 21 TRW records from the two databases
can be seen on Fig. S2 (blue stars). The location of the 15
TRW records that are actually used in this study can be ob-
served in Fig. 1 (see Sect. 2.4.1 and 2.4.2 for more details on
the included sites).

Here, we use the already standardized tree-ring series di-
rectly derived from the PAGES 2k compilation without any
modification. As the tree-ring series are from different stud-
ies (referred in the PAGES 2k database metadata; PAGES 2k
Consortium, 2017), the standardization technique used can
differ from one tree-ring series to another. Finally, the TRW
records are normalized (i.e., with a null mean and a unity
standard deviation) relative to the 1900–2000 CE time period
for use with the MAIDEN model (Sect. 2.4.1), while for the
regression-based model (Sect. 2.4.2), the anomalies are com-
puted relative to the 1900–2000 CE time period.

2.3.2 Ice core data

In addition to tree-ring proxy records, which are the fo-
cus of this paper through the use of a process-based PSM
(Sect. 2.4.1), we also assimilate other proxy data, i.e., ice
core records, to cover a vast area of the Southern Hemisphere
(i.e., Antarctica) where no tree-ring proxy data can be found
in order to provide a comprehensive reconstruction of the
Southern Hemisphere climate.

The ice core data selected here are the same as in Dalaiden
et al. (2021), a study focusing on the mechanisms behind the
West Antarctic climate changes. This includes the 48 annu-
ally resolved ice core snow accumulation records in Antarc-
tica from the database of Thomas et al. (2017) spanning the
last millennium (Medley and Thomas, 2019). The B40 ice
core snow accumulation record of Medley et al. (2018) has
also been added as this record was published after the pub-
lication of the Thomas et al. (2017) database. Finally, as in
Dalaiden et al. (2021), we use the 29 annually resolved δ18O
records in Antarctica from Stenni et al. (2017). Figure 1
represents the location of the snow accumulation and δ18O
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Figure 1. Location of the 15 tree-ring width (TRW) records (blue stars) from the PAGES 2k databases (PAGES 2k Consortium, 2013, 2017)
used in this study: the 49 ice core snow accumulation records (purple triangles) from Thomas et al. (2017) and Medley et al. (2018) as well
as the 29 δ18O records (green diamonds) from Stenni et al. (2017) (Sect. 2.3). Background map from Hunter (2007).

records (purple triangles and green diamonds, respectively).
They are mostly situated in West Antarctica. The ice core
records are averaged over a 500 km grid in order to reduce
the nonclimatic noise in the observations. This represents a
maximum of 20 snow accumulation and 13 δ18O time series
over the last 4 centuries. The anomalies of the ice core data
are computed relative to 1900–2000 CE.

2.4 Proxy system models

Proxy system models, also referred to as observation oper-
ators, are a crucial component of the DA framework that
makes the link between the climate state variables of the
prior, such as near-surface air temperature and precipitation,
and the assimilated indirect observations from proxies, here
tree-ring width. In this study, we make use of two types of
tree-ring PSMs at opposite ends of the PSM spectrum: the
first is a process-based ecophysiological model, MAIDEN
(Sect. 2.4.1), and the second is a linear regression model
(Sect. 2.4.2). If we neglect potentially important elements
such as post-depositional effects, the ice core records can
be directly compared with the climate model. In particu-
lar, the difference between precipitation and sublimation–
evaporation (P –E) from iCESM1 is compared to the snow
accumulation observations. It has already been shown in dif-
ferent studies that the main contributor to snow accumulation
variability is indeed P –E, especially when working at large
spatial scale (Agosta et al., 2019; Souverijns et al., 2018; van
Wessem et al., 2018). Finally, the ratio of stable isotope oxy-
gen δ18O is simulated in iCESM1 and can be directly com-
pared to δ18O records.

2.4.1 MAIDEN

MAIDEN (Modelling and Analysis In DENdroecology; Mis-
son, 2004; Gea-Izquierdo et al., 2015; Gennaretti et al., 2017)
is a process-based dendroclimatic model which simulates the
course of photosynthesis and the allocation of carbon to dif-
ferent pools (stem, roots, leaves, storage) at a daily time step
as a response to climatic drivers (daily maximum and mini-
mum temperature, precipitation, and atmospheric CO2 con-

centration). The annual quantity of carbon which is allocated
to the stem (hereafter Dstem) is assumed to be proportional
to tree-ring growth and comparable to TRW data after nor-
malization. Therefore, this variable is used for the compar-
ison with the observed TRW. In practice, as previously dis-
cussed in Rezsöhazy et al. (2020, 2021), the comparison of
the tree-growth observations with the forest carbon accumu-
lation simulated by MAIDEN implies some limitations. For
instance, Gennaretti et al. (2018) computed a wood biomass
index directly comparable to what MAIDEN simulates. This
involves using both tree-ring width and density (earlywood
and latewood fractions) data, while the latter is less broadly
available. Finally, we use a combined version of the model
from Gea-Izquierdo et al. (2015) and Gennaretti et al. (2017),
developed by Fabio Gennaretti (unpublished).

We must first determine where the MAIDEN model can
be skillfully applied among the 21 available PAGES 2k sites
(Sect. 2.3.1). MAIDEN was calibrated at the 12 SH sites
from PAGES2k2017 in Rezsöhazy et al. (2021) driven by the
daily maximum and minimum temperature as well as pre-
cipitation from the Global Meteorological Forcing Dataset
for land surface modeling (v2) (http://hydrology.princeton.
edu/data.php, last access: 5 May 2021; Sheffield et al., 2006)
at 0.5◦ resolution (hereafter GMF) over 1950–2000 CE. The
model was validated using the same dataset over the 1901–
1949 CE time period. The calibration method is based on a
Bayesian procedure with Markov chain Monte Carlo sam-
pling using the DREAMzs algorithm (Hartig et al., 2019).
This Bayesian approach is used to calibrate the most sen-
sitive parameters of the model from the photosynthesis and
carbon allocation modules (18 parameters). MAIDEN was
found to be robustly calibrated with significant (95 % confi-
dence level) calibration and verification correlations greater
than 0.3 at five sites south of 30◦ S. The same methodology
was used here to calibrate and validate MAIDEN for the nine
records of PAGES2k2013. One site was found to be well cal-
ibrated and validated. The six sites for which MAIDEN cali-
bration has successfully passed those tests will thus be incor-
porated into the DA procedure with MAIDEN. They can be
seen in Fig. S3 (orange circles). In particular, there is no site
in Tasmania.
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Data assimilation in principle does not require such a se-
lection based on correlation because the confidence we give
to each record during the DA procedure is proportional to the
observation error assigned to each record (Sect. 2.5). The po-
tentially low correlation of some simulated tree growth with
the observations is thus taken into account in the observa-
tion error and in the DA. In the Last Millennium Reanalysis
project (Hakim et al., 2016; Tardif et al., 2019), for instance,
such a selection is not made. In this study, we apply a se-
lection using a low value of the correlation as a threshold,
since tests have shown that including records with a very low
correlation can increase the noise and reduce the skill of the
reconstruction (Franke et al., 2020).

The iCESM1 data used in the DA framework are available
at a monthly resolution. Yet, MAIDEN runs on a daily basis.
To convert monthly data into daily data, we apply the same
methodology to all the particles. We use a reference year of
the daily GMF dataset (1950), which we modified to match
the mean seasonal cycle over 1950–2000 CE, i.e., a climato-
logical seasonal cycle. Then, for a given particle, the monthly
anomalies of the iCESM1 data relative to 1950–2000 CE
are added (near-surface air temperature) or multiplied (pre-
cipitation) to the reference year of the daily GMF data.
Note that the iCESM1 does not include maximum and min-
imum temperature data. We use the anomalies of iCESM1
near-surface air temperature on both maximum and mini-
mum daily GMF temperature. As for atmospheric CO2 data,
the annual data from Rubino et al. (2019a) (154–1996 CE;
publicly available at https://doi.org/10.25919/5bfe29ff807fb,
Rubino et al., 2019b, followed from 1996 by the annual data
used as forcing in the Goddard Institute for Space Studies –
GISS – climate model, 1850–2011 CE; https://data.giss.nasa.
gov/modelforce/ghgases/, last access: 10 January 2021) were
linearly interpolated at a daily time step.

The temporal autocorrelation in the simulated Dstem can
be important through the storage pool (Gea-Izquierdo et al.,
2015; Gennaretti et al., 2017; Guiot et al., 2014) so that
the performance of the model in reproducing the observed
tree growth of 1 year highly depends on the performance
of the previous years. As a consequence, we cannot run
the MAIDEN model independently for each year driven by
the iCESM1 data as is the case with the linear regression
(Sect. 2.4.2). Instead, MAIDEN is sequentially run year by
year using the reconstructed climate for the previous years
and thus accounting for the effect of past climate history on
tree-ring growth. For any particle, we use the CO2 data cor-
responding to the assimilated year.

Dstem is not directly comparable with TRW data. The
observations and simulation results are thus normalized
(Sect. 2.3.1) to produce unitless indexes. The mean and stan-
dard deviation of a reference run of MAIDEN with iCESM1
inputs over 1900–2000 CE are used to normalize the annual
Dstem output throughout the DA procedure.

2.4.2 Linear regression

A regression-based model was developed for each of the 21
TRW records (Sect. 2.3.1), similarly to Dalaiden et al. (2021)
and to the Last Millennium Reanalysis (Tardif et al., 2019).
Different climate variables were considered to model the re-
lationship between climate and tree-ring growth. They are
related to temperature, precipitation or both (univariate or
bivariate model). For temperature, we considered the cur-
rent year July to the next June temperature, the December–
January–February (i.e., austral summer) temperature, and
September to March (i.e., the growth period temperature).
For precipitation, we considered the July to June precipi-
tation, the July–August precipitation and the July–August–
September precipitation. We built the different climate vari-
ables by averaging the monthly near-surface air temperature
and precipitation from the GMF interpolated on the iCESM1
grid (Sect. 2.2) over the period of months of interest. The cli-
mate data were extracted from the continental grid cell clos-
est to each individual TRW record.

Similarly to the MAIDEN calibration, the regression pa-
rameters of each statistical PSM were first calibrated over the
1950–2000 CE time period using the ordinary least squares
method. For each record, we tested all the possible combi-
nations of climatic variables. As in Dalaiden et al. (2021),
the best model was selected for each TRW record using
the Bayesian information criterion (BIC) (Schwarz, 1978),
which has the advantage of penalizing the complexity (i.e.,
the number of explanatory variables) of a model.

The regression models were then run independently over
the 1901–1949 CE verification time period. Among the 21
sites, only two locations satisfied the same selection crite-
rion as MAIDEN (Sect. 2.4.1), i.e., a significant calibration
and verification correlations greater than 0.3 (Table S1). As
a consequence, the validity of the regression models out of
the calibration interval is not ensured for most of them. Al-
ternatively, we decided to use a less strict selection criterion
similar to what is generally done in paleoclimate DA-based
reconstruction using TRW proxies with a statistical model
(e.g., the Last Millennium Reanalysis; Tardif et al., 2019).
The regression parameters are thus calibrated using the same
method over the entire period covered by climate data, i.e.,
1901–2000 CE, in order to have the largest possible sample
and thus the most robust estimate of the relationship between
climate and tree growth. We then excluded nine sites (one
in New Zealand and eight in South America) for which the
explanatory climate variables were not significantly and pos-
itively correlated with observed TRW series. Following Cook
et al. (2013) and as stated in PAGES 2k Consortium (2017),
trees growing better under increasing temperature should be
more reliable recorders of past temperature variability be-
cause they respond to temperature-limiting conditions. The
same assumption can hold for precipitation. The 12 sites in-
cluded in the DA procedure with the regression model (here-
after, selected sites) can be seen in Fig. S4 (blue circles).

Clim. Past, 18, 2093–2115, 2022 https://doi.org/10.5194/cp-18-2093-2022

https://doi.org/10.25919/5bfe29ff807fb
https://data.giss.nasa.gov/modelforce/ghgases/
https://data.giss.nasa.gov/modelforce/ghgases/


J. Rezsöhazy et al.: A process-based dendroclimatic proxy system model in data assimilation 2099

A similar criterion based on the calibration only could not
be used to select the TRW records for MAIDEN. The com-
plexity of the model and the number of calibrated parame-
ters make it more prone to overfitting problems and biolog-
ical inconsistency during the calibration (Rezsöhazy et al.,
2020, 2021). As a consequence, the selection of the TRW
records has to be more restrictive but may also lead to a bet-
ter stability of the model. For comparison with the observed
TRW series, anomalies of the simulated tree-ring indexes are
computed relative to 1900–2000 CE.

2.5 Observation error

In the DA framework, the observation error determines the
confidence that we can have in the climate information re-
trieved from the available proxy records. It directly influ-
ences the magnitude of the weight given to a particle when
compared to an assimilated proxy observation, which in turn
has direct consequences for the resulting reanalysis. We gen-
erally identify three types of observation error (e.g., Badge-
ley et al., 2020).

The first type of error is related to the inaccuracy of the
PSM in reproducing the proxy dependency on climate as the
PSMs cannot fully account for the complexity of the pro-
cesses by which tree growth responds to climate and non-
climatic drivers. The error of MAIDEN is computed using
the standard deviation of the residuals over the verification
period (1901–1949 CE; Sect. 2.4.1). The error of the TRW
regression-based PSM (Sect. 2.4.2) is computed as in Tardif
et al. (2019) using the standard deviation of the residuals over
the calibration period (1901–2000 CE). However, computing
the error over the calibration period can have serious short-
comings. It does not account for the actual skill of the model
to accurately estimate tree growth outside the calibration in-
terval and is biased by possible overfitting problems associ-
ated with any statistical model. This could result in an un-
derestimation of the error associated with the statistical PSM
and, as a consequence, overconfidence in the PSM perfor-
mance and finally in the climate reconstruction. The snow
accumulation and δ18O records can be directly compared to
the model outputs (Sect. 2.4) so that a PSM is not necessary,
and therefore an error related to the performance of the PSM
is not needed for these records.

Second, the representativeness error (e.g., Oke and Sakov,
2008) corresponds to the uncertainty related to the unre-
solved processes at the resolution of the climate model rel-
ative to the smaller scale potentially represented by proxy
observations (tree-ring width, snow accumulation and δ18O
in our study). For the regression-based TRW PSM, we con-
sider the representativeness error to be implicitly taken into
account by computing the error related to the PSM using
observed data at the same resolution as the iCESM1 data
(Sect. 2.4.2). For MAIDEN, the bias correction applied to the
iCESM1 data compared with the high-resolution GMF data
(Sect. 2.4.1) used for the calibration of the model is associ-

ated with an error, but we assume that it is weaker compared
to the error related to the PSM.

Regarding the ice core records (snow accumulation and
δ18O), the representativeness error was computed as in
Dalaiden et al. (2021) on the basis of an Antarctic simulation
performed with the latest version of the polar-oriented Re-
gional Atmospheric Climate MOdel (RACMO2.3p2, here-
after RACMO) at 27 km horizontal resolution (van Wessem
et al., 2018). They computed the standard deviation of the
differences between the annual RACMO time series (1979–
2016 CE) of snow accumulation averaged for all the ice core
sites and the time series averaged over the 500 km grid, fol-
lowing the same approach as in Valler et al. (2020). As
for the δ18O, the same methodology was applied but with
the iCESM1 linearly interpolated on the RACMO grid over
1950–2005 CE, as RACMO does not simulate the water iso-
topes. The error was then corrected to account for the un-
derestimation of spatial variability of snow accumulation and
δ18O in models compared to point measurements as ice cores
by multiplying the resulting standard deviation by a factor
of 3 (see Dalaiden et al., 2021, for more detail). The last
type of error is the instrumental error related to the measure-
ment of the proxy data, which is often negligible compared
to the other sources of error, particularly in paleoclimatology
(Steiger et al., 2018; Tardif et al., 2019).

3 Experiment design and diagnostics

Different DA experiments are run in this study (Table 1),
varying in terms of (1) the records assimilated, (2) the tree-
ring PSM included and its associated period of calibration,
(3) the PSM error, and (4) the period of the reconstruction.

A first set of experiments is conducted over the 1900–
2000 CE time period and compared with gridded climate
datasets in order to evaluate the performance of our DA-
based reconstructions regarding the use of statistical (TIC-
reg) and process-based (TIC-MDN) dendroclimatic models
separately, assimilating both ice core and tree-ring proxies.

A second set of experiments is performed over the 1900–
2000 CE time period to evaluate the contribution of tree-
ring proxies in the data assimilation framework over the last
century. Specifically, we perform an experiment assimilating
tree-ring proxies only with the regression (TREES-reg) and
MAIDEN (TREES-MDN) models and an experiment assimi-
lating ice core proxies only (IC). These experiments are com-
pared with the TIC-reg and TIC-MDN experiments incorpo-
rating both types of proxy data. The impact of the observation
error associated with the tree-growth PSMs (Sect. 2.5) on the
performance of the reconstruction is also evaluated by reduc-
ing the error by a factor of 2 in the experiments constrained
by tree-ring proxies only (TREES-reg-05 and TREES-MDN-
05).

Lastly, we perform a DA-based reconstruction over the pe-
riod covered by a sufficient number of TRW proxy records,
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Table 1. Data assimilation experiments in this study and experimental design: experiment name; types of proxies assimilated; proxy system
model (PSM) used to assimilate the proxy data; error associated with the PSM; calibration period of the PSM; the proxy records assimilated.
The notation n/a stands for not applicable. See Sect. 2.4.1 and 2.4.2 for details on the validated and selected sites, respectively. The number
of tree-ring width records assimilated is in brackets.

Experiment name Proxies PSM PSM error Calibration period Proxy records
of PSM

TIC-reg Ice cores n/a n/a n/a All
Tree-ring width Regression-based Calibration 1901–2000 CE Selected (12)

TIC-MDN Ice cores n/a n/a n/a All
Tree-ring width MAIDEN Validation 1950–2000 CE Validated (6)

TREES-reg Tree-ring width Regression-based Calibration 1901–2000 CE Selected (12)

TREES-MDN Tree-ring width MAIDEN Validation 1950–2000 CE Validated (6)

IC Ice cores n/a n/a n/a All

TREES-reg-05 Tree-ring width Regression-based Calibration error divided by 2 1901–2000 CE Selected (12)

TREES-MDN-05 Tree-ring width MAIDEN Validation error divided by 2 1950–2000 CE Validated (6)

i.e., 1600–2000 CE, with the regression model (TIC-reg) and
the MAIDEN model (TIC-MDN), with both tree-ring and ice
core proxies assimilated.

Our analysis concentrates on four regions or subregions
of the midlatitudes of the SH: South America, defined be-
tween 25 and 56◦ S and between 55 and 85◦W (SA); the
southwestern Andes, where the TRW proxy sites are located,
defined between 35 and 42.5◦ S and between 70 and 85◦W
(SAmSW); New Zealand, defined between 29 and 51◦ S and
between 160 and 179◦ E (NZ); and Tasmania, defined be-
tween 39.5 and 47◦ S and between 140 and 154◦ E (Tas). We
did not include Antarctica in our study as tree-ring records
have not been shown to significantly affect the reconstruc-
tion in this region (see Dalaiden et al., 2021, for more details
on the reconstructions in Antarctica).

We evaluate our reconstructions against the most recent
atmospheric reanalysis from the ECMWF, ERA5 (Hersbach
et al., 2020), over the 1979–2000 CE time period and against
the GMF dataset (see Sect. 2.4.1 for more details on the
dataset) over 1901–2000 CE after linearly interpolating them
on the iCESM1 grid (Sect. 2.2). We focus on the near-surface
air temperature, the cumulative precipitation and the 500 hPa
geopotential height (ERA5 only). In addition to these vari-
ables, we also evaluate the Southern Annular Mode (SAM)
over 1957–2000 CE. The SAM is the principal mode of at-
mospheric variability in the extratropics of the SH (Marshall,
2003). It is associated with the north–south movement of the
westerlies and often defined as the difference between the
normalized monthly zonal mean sea level pressure at 40 and
65◦ S (Gong and Wang, 1999; Marshall, 2003), as chosen
here. The SAM index from Marshall (2003) is used as a ref-
erence for our evaluation.

For each of the experiments, the performance of our recon-
struction is evaluated with the computation of two statistical

indicators: the Pearson correlation coefficient (r; considered
to be significant at the 95 % confidence level) and its associ-
ated p value as well as the coefficient of efficiency (hereafter
CE). The coefficient of efficiency is computed as in Nash and
Sutcliffe (1970):

CE= 1−
n∑
i=1

(xi − yi)
2

(xi − x)2 , (1)

with n being the number of samples, x the observation vec-
tor and y the reconstruction vector. The overbar characterizes
a time-averaged vector of values. The average is made over
1901–2000 CE in all experiments, except for the SAM index
when compared to the observations from Marshall (2003), as
they only cover the 1957–2000 CE period. While the Pear-
son correlation coefficient gives an estimation of the linear
fit between the reconstructed and observed values, the CE
compares the variance of the residuals with the variance of
the predictand. A CE equal to 1 is associated with perfect
predictions, a CE equal to 0 with a residual variance identi-
cal to predicting the observed mean, and a negative CE with
larger residual variance than when predicting the mean. For
regional near-surface air temperature and precipitation, the
metrics are computed between the mean of the reconstruc-
tion and the mean of the ERA5 or GMF data over the conti-
nental mass that lies in the region delimited by the latitudes
and longitudes above.

It is important to note at this stage that the numbers of
proxy records, but also the tree-ring proxy records them-
selves, that are assimilated with the statistical or MAIDEN
PSMs are different. The regression-based PSM experiment
includes twice the number of tree-ring proxy records com-
pared to the one using MAIDEN. This results from the dif-
ferent performance of the PSMs when applied to the same
subset of SH tree-ring sites (Sect. 2.4.1 and 2.4.2). When
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working with actual proxy data, such a situation is difficult to
avoid but we must be aware that this may have consequences
for the skill of the resulting DA-based reconstructions.

4 Results and discussion

4.1 Comparison of the reconstructions using
regression- and process-based dendroclimatic
proxy system models over the last century

The spatial distribution of the correlation coefficients be-
tween different ERA5 and reconstructed climate fields over
the recent period (1979–2000 CE) indicates generally good
agreement of the reconstruction using MAIDEN as a PSM
south of 30◦ S (TIC-MDN; Fig. 2a). When compared with
the DA experiment including the regression model to assim-
ilate 12 TRW records (TIC-reg; Fig. 2b), the hemispheric
500 hPa geopotential height, near-surface air temperature and
precipitation fields are reconstructed with a similar perfor-
mance in both cases.

At the regional scale and over the recent period (1979–
2000 CE), the correlation coefficients of the ERA5 and GMF
near-surface air temperature with the reconstructed near-
surface air temperature in the four regions (Table 2) are
also generally similar for both TIC-reg and TIC-MDN. Ex-
cept in Tasmania (Tas), where the TIC-MDN near-surface
air temperature is highly and significantly correlated with
both ERA5 and GMF, the correlation coefficients are low and
not statistically significant for both experiments. This differs
from the good general pattern previously noted (Fig. 2). Lo-
cally, the correlations can indeed be lower (see Figs. S5–S10
for the regional pattern of the correlations). It is also im-
portant to highlight that these correlations have been com-
puted between the integrated fields and are not the average
of the correlations represented on the map, which may re-
sult in slight differences. Regarding precipitation (Table 2),
the correlation coefficients are particularly high and signifi-
cant in South America (SA) and in the southwestern Andes
(SAmSW) for TIC-reg and TIC-MDN.

Over the whole century (1901–2000 CE), both DA experi-
ments have similar skills (ranging from−0.12 to 0.60 for the
correlation coefficients and from−0.12 to 0.36 for the CE for
the four regions; Fig. 3; Table 3) in reconstructing the near-
surface air temperature when compared to the GMF climate
dataset. Except in the southwestern Andes region (SAmSW
in Table 3), the correlation coefficients and CE between re-
constructed and GMF temperature are close for both experi-
ments and particularly high in New Zealand (NZ). In Tasma-
nia, no TRW records have been assimilated with MAIDEN,
which may explain the lower CE (Table 3) for the TIC-MDN
experiment, while the correlation coefficients are similar be-
tween the two experiments. As for precipitation (Table 3 and
Fig. 4), both TIC-MDN and TIC-reg are more skillful in
the vicinity of the South American TRW proxies (SAmSW),

Table 2. Pearson correlation coefficient between the reconstructed
as well as GMF and ERA5 near-surface air temperature and precip-
itation over 1979–2000 CE for different DA experiments with both
ice core and tree-ring proxies (Table 1) and for different regions
(Sect. 3). SA stands for South America, SAmSW for the southwest-
ern border of South America in the Andes where the TRW proxy
sites are located, NZ for New Zealand and Tas for Tasmania. Aster-
isks stand for significant correlation coefficients at the 95 % confi-
dence level.

ERA5 GMF

TIC-reg TIC-MDN TIC-reg TIC-MDN

Near-surface air temperature

SA −0.07 0.04 0.12 0.20
SAmSW −0.15 0.13 −0.21 0.14
NZ 0.11 0.33 0.14 0.32
Tas 0.05 0.56∗ 0.17 0.52∗

Precipitation

SA 0.72∗ 0.71∗ 0.65∗ 0.64∗

SAmSW 0.54∗ 0.44∗ 0.53∗ 0.44∗

NZ 0.25 0.26 0.28 0.44∗

Tas 0.10 0.00 0.16 0.14

Table 3. Pearson correlation coefficient and coefficient of efficiency
(CE) between the reconstructed and GMF near-surface air temper-
ature and precipitation over 1901–2000 CE for different DA exper-
iments with both ice core and tree-ring proxies (Table 1) and for
different regions (Sect. 3). SA stands for South America, SAmSW
for the southwestern border of South America in the Andes where
the TRW proxy sites are located, NZ for New Zealand and Tas for
Tasmania. Asterisks stand for significant correlation coefficients at
the 95 % confidence level.

Correlation CE

TIC-reg TIC-MDN TIC-reg TIC-MDN

Near-surface air temperature

SA 0.07 −0.12 −0.06 −0.12
SAmSW 0.34∗ 0.00 0.12 −0.07
NZ 0.55∗ 0.54∗ 0.30 0.27
Tas 0.60∗ 0.52∗ 0.36 0.18

Precipitation

SA 0.12 −0.05 0.00 −0.06
SAmSW 0.37∗ 0.35∗ 0.12 0.12
NZ −0.01 0.10 −0.12 −0.02
Tas 0.08 0.04 −0.02 −0.02

with significant correlation coefficients of 0.35 and 0.37, re-
spectively, and positive CE.

Overall, the variance of the ensemble mean reconstruction
is far smaller than the observed variance for both near-surface
temperature and precipitation (Figs. 3 and 4), but observa-
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Figure 2. Pearson correlation coefficient between the reconstructed and ERA5 geopotential height at 500 hPa, near-surface air temperature,
and cumulative precipitation over 1979–2000 CE for the TIC-MDN (a) and TIC-reg (b) experiments (see Sect. 3 and Table 1 for details on
the experiments). The green dots indicate the localization of the assimilated tree-ring width records. The black dots indicate a significant
correlation coefficient at the 95 % confidence level.

tions are generally well in the range of the reconstruction (ex-
cept for extreme years). Since this pattern is apparent in both
experiments, i.e., when using a regression and when using
a process-based model as a PSM, this is likely not predom-
inantly related to the intrinsic characteristics of each PSM.
Our DA experiments only include 6 and 12 TRW proxy sites
in the midlatitudes of the SH for TIC-MDN and TIC-reg, re-
spectively. Comparatively, in the high latitudes, the ice core
records are far more numerous (Sect. 2.3.2). However, the ice
core records can only have an influence on the reconstructed
variance over a limited area. As a consequence, the number
of assimilated TRW proxies in the midlatitudes is probably
not sufficient to effectively constrain the climate model simu-
lations during the DA procedure. In the DA framework, when
no proxy is assimilated, the posterior as defined in Sect. 2.1
is equivalent to the prior, in which all the particles have the
same weight. The posterior and the resulting ensemble mean
are thus the same for each year of the reconstruction. As a
consequence, the reconstruction has, by construction, a vari-
ance equal to zero. For a small number of proxies providing a
weak constraint, many particles receive a similar weight, also
resulting in small variance. By contrast, the uncertainty of the
reconstruction (as measured by the standard deviation of the

posterior or the ensemble spread; Sect. 2.1) remains large.
Additionally, both the MAIDEN and regression models work
on the basis of normalized observed and simulated tree-ring
growth indexes. Consequently, in the DA procedure, the er-
ror in the simulated variance of the climate signal is likely
not properly assessed when using such TRW PSMs to com-
pare the climate model outputs with the proxy observations.
It is in practice possible to transform tree-ring data in order
to directly compare them with the output of the MAIDEN
model without normalization (Gennaretti et al., 2018). This
implies combining both tree-ring width and density measure-
ments that are less widely available (PAGES 2k Consortium,
2017). This could improve the model–data comparison in the
DA procedure and, consequently, the resulting reconstruc-
tion. This is not the case for the regression model.

The DA procedure seeks to identify the climate conditions
(i.e., the inputs of the TRW PSM; near-surface air temper-
ature and precipitation) that gave rise to the observed TRW
through the use of a PSM. As a consequence, we must also
establish whether the reconstruction of near-surface air tem-
perature and precipitation translates into the local ability of
the MAIDEN model to reproduce tree growth at the six as-
similated TRW sites over the 20th century. First, we have
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Figure 3. Reconstructed (in color) and GMF (in black) near-surface air temperature anomalies (in ◦C; relative to 1901–2000 CE) over 1901–
2000 CE for different DA experiments with both ice core and tree-ring proxies (Table 1) in different regions (Sect. 3). The uncertainty (i.e.,
the ensemble spread; Sect. 2.1) associated with each reconstruction is represented by the shaded areas.

Figure 4. Reconstructed (in color) and GMF (in black) precipitation anomalies (in mm yr−1; relative to 1901–2000 CE) over 1901–2000 CE
for different DA experiments with both ice core and tree-ring proxies (Table 1) in different regions (Sect. 3). The uncertainty (i.e., the
ensemble spread; Sect. 2.1) associated with each reconstruction is represented by the shaded areas.
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retrieved the monthly climate fields from the ensemble mean
of the TIC-MDN reconstruction. Then, the monthly climate
inputs have been converted to daily inputs as in Sect. 2.4.1.
For consistency, the tree-growth time series of the MAIDEN
model have been normalized with the mean and the stan-
dard deviation of the reference run used in the DA proce-
dure (Sect. 2.4.1). If we only look at the correlation coeffi-
cients between the observed and simulated tree-growth in-
dexes (Fig. S11), MAIDEN has been successfully run over
1900–2000 CE with the TIC-MDN reanalysis of near-surface
air temperature and precipitation as inputs at most assim-
ilated sites (with a mean correlation of 0.59). The TRW
sites displaying lower correlation coefficients between the
observed and simulated tree-ring indexes are the ones as-
sociated with higher PSM errors (Sect. 2.5), i.e., Aus_002
and SAm_024 (i.e., the name of the tree-ring sites, as in
the PAGES 2k database; Aus_* stands for a Tasmanian or
New Zealand site, while SAm_* stands for a South Ameri-
can site). This result is logical as lower confidence is given
to the latter in the particle filter (Sect. 2.1) so that the climate
reconstructed at the local scale is less influenced by those
records. However, the simulated variance is strongly under-
estimated compared to the observations, as seen in Fig. S11.
This underestimation of the variance of tree growth comes
directly from the underestimation of the variance in the re-
constructed near-surface air temperature and precipitation, as
highlighted above. The same pattern of small simulated vari-
ance is observed with the tree-ring indexes simulated with
the linear regression.

Finally, the reconstructed SAM index is well and signifi-
cantly correlated with the SAM index from Marshall (2003)
for TIC-MDN (0.46) and TIC-reg (0.50) over the 1957–
2000 CE period (Fig. 5). However, the TIC-reg experiment
slightly better captures the significant observed trend of 0.28
standard deviation per decade over 1957–2000 CE, with a
significant reconstructed trend of 0.34 and nonsignificant re-
constructed trend of 0.20 standard deviation per decade for
TIC-reg and TIC-MDN, respectively. However, both recon-
structions display negative values for the CE, which indicates
that they are unable to accurately reproduce the observed am-
plitude of the SAM variations.

Overall, the DA experiment using MAIDEN as a PSM
for assimilating the TRW records does not outperform the
experiment using the regression model. However, its skill
is always as good as the TIC-reg experiment with poten-
tial better stability of MAIDEN through time, since it has
been independently validated at the assimilated sites. It is
also worth noting that the DA experiments with MAIDEN
or the regression model have some characteristics that can
influence their respective skills. Firstly, the DA experiment
with the regression model includes twice the number of
TRW records compared to the experiment with MAIDEN
(12 and 6, respectively). The TRW records can also be lo-
cated at different places, which may result in different local
skills of the DA experiments (e.g., in Tasmania). Secondly,

Figure 5. Z-scored (relative to 1957–2000 CE) Southern Annular
Mode (SAM) index of Marshall (2003) (in black) and reconstructed
SAM index (in color) over 1957–2000 CE for different DA exper-
iments with both ice core and tree-ring proxies (Table 1); Pear-
son correlation coefficient (r), coefficient of efficiency (CE), and
decadal trend of the reconstructed SAM index (trend). Asterisks
stand for a significant correlation coefficient or trend at the 95 %
confidence level. The observed trend of the SAM index is 0.28∗

standard deviation per decade over 1957–2000 CE. The uncertainty
(i.e., the ensemble spread; Sect. 2.1) associated with each recon-
struction is represented by the shaded areas.

the regression model was calibrated over the whole century
(1901–2000 CE), while MAIDEN was calibrated over the
second half of the century. This may confer a comparative
advantage to the regression-based DA experiment, particu-
larly when evaluated against the GMF climate dataset over
1901–2000 CE.

4.2 Contribution of tree-ring proxies to the skill of the
reconstructions over the last century

The experiments discussed in Sect. 4.1 include different
types of proxies. For evaluating the specific contribution of
tree-ring proxies using a regression- or process-based PSM,
we focus on the regions and climate variables for which tree-
ring data could likely provide a strong constraint (Sect. 4.1).
This evaluation is essential to ensure that the few tree-ring
proxies assimilated – compared to the ice core data – are
efficiently taken into account in a realistic framework, in-
cluding proxies in different regions using both MAIDEN
and the regression-based PSM, and whether differences arise
between the experiments with these PSMs. Complementary
information can be obtained by analyzing experiments in
which only a fraction of the proxies is assimilated.

In South America (SA; Table 4 and Fig. 6), the correlations
with observations are low for the experiments with tree-ring
proxies alone, whatever the tree-ring PSM used (TREES-
reg and TREES-MDN). Ice core proxies alone (IC) per-
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Figure 6. Reconstructed (in color) and GMF (in black) temperature (in ◦C; relative to 1901–2000 CE) or precipitation anomalies (in
mm yr−1; relative to 1901–2000 CE) over 1901–2000 CE for different DA experiments (Table 1, with ice core proxies only, with tree-
ring proxies only or with both) in different regions (Sect. 3) and proxy sites (Fig. 1). Aus refers to a site in New Zealand and SAm in South
America. The uncertainty (i.e., the ensemble spread; Sect. 2.1) associated with each reconstruction is represented by the shaded areas.

form better than the tree-ring proxies alone (TREES-reg and
TREES-MDN) or when combined with the tree-ring proxies
(TIC-reg and TIC-MDN) in terms of correlation coefficients,
but not in terms of reconstructed variance (standard devia-
tion for TIC-reg, TIC-MDN, TREES-reg or TREES-MDN
higher than IC). However, as previously noted, it is clear that,
even though the reconstructions with tree-ring proxies dis-
play higher variance, none of the DA experiments accurately
reconstruct the observed variance of precipitation (Fig. 6).

At the more local scale, in the southwestern Andes
(SAmSW), the tree-ring proxies alone provide a better re-
construction skill than for South America (TREES-reg and
TREES-MDN; Table 4). The correlation coefficients are,
however, slightly lower than in the experiments using both
tree-rings and ice core proxies or ice core proxies alone,
in particular for TREES-MDN. Nevertheless, the TREES-

reg and TREES-MDN reconstructions have higher recon-
structed variance compared to IC, in particular for TREES-
reg (Fig. 6). The combination of both tree-ring and ice core
proxies (TIC-reg and TIC-MDN) provides the best recon-
struction in the southwestern Andes in terms of correlation
coefficients and reconstructed variance.

Only one proxy record is used in both TREES-reg and
TREES-MDN in South America (i.e., SAm_11). For this site
(i.e., the grid cell closest to the proxy site), the correlation
coefficients are similar for all the experiments so that the dif-
ferent proxy records all bring some information, but when
tree-ring records are included, an improvement of the recon-
structed variance is obtained. More generally, at all spatial
scales in South America the performance of TREES-reg in
terms of correlation coefficients and reconstructed variance
is slightly better than TREES-MDN.
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Table 4. Pearson correlation coefficient between the reconstructed
and GMF near-surface air temperature and precipitation over 1901–
2000 CE for different DA experiments (Table 1, with ice core prox-
ies only, with tree-ring proxies only or with both) in different re-
gions (Sect. 3) and proxy sites (Fig. 1). Standard deviation of the
reconstruction in degrees Celsius (◦C) (near-surface air tempera-
ture) or in millimeters per year (mm yr−1) (precipitation). SA stands
for South America, SAmSW for the southwestern border of South
America in the Andes where the TRW proxy sites are located and
NZ for New Zealand. Aus refers to a site in New Zealand and SAm
in South America. Asterisks stand for significant correlation coeffi-
cients at the 95 % confidence level.

Correlation

TIC- TIC- IC TREES- TREES-
reg MDN reg MDN

Precipitation

SA 0.12 −0.05 0.28∗ 0.02 −0.20∗

SAmSW 0.37∗ 0.35∗ 0.34∗ 0.33∗ 0.26∗

SAm_11 0.26∗ 0.22∗ 0.22∗ 0.22∗ 0.14

Near-surface air temperature

NZ 0.55∗ 0.54∗ 0.50∗ 0.53∗ 0.52∗

Aus_005 0.20∗ 0.26∗ 0.29∗ 0.19 0.24∗

Aus_030 0.49∗ 0.41∗ 0.30∗ 0.57∗ 0.48∗

Standard deviation

TIC- TIC- IC TREES- TREES-
reg MDN reg MDN

Precipitation

SA 17.82 15.29 8.31 17.22 18.53
SAmSW 63.59 51.79 33.79 52.00 38.50
SAm_11 59.51 41.84 17.63 57.74 41.38

Near-surface air temperature

NZ 0.19 0.15 0.11 0.18 0.13
Aus_005 0.21 0.17 0.11 0.21 0.16
Aus_030 0.17 0.13 0.07 0.18 0.13

In New Zealand, the correlations with observations are
similar in all the experiments (NZ; Table 4). In other words,
tree-ring proxies only are able to provide some skill at the
scale of the New Zealand, even without assimilating ice core
proxies and with slightly higher reconstructed variance (es-
pecially for TREES-reg). The contrast between the recon-
structed variance in IC and TREES-reg or TREES-MDN ex-
periments is stronger at the scale of the proxy site (Aus_005
and Aus_030, the tree-ring proxy sites assimilated with both
MAIDEN and the regression model). At the Aus_030 proxy
site the correlation coefficients are even higher for the exper-
iments assimilating tree-ring proxies only compared to ice
core proxies only. However, the reconstructed variance is still
underestimated compared to observations (Fig. 6).

The underestimation of the variance compared to the ob-
servations could arise from confidence that is too low given
to the assimilated tree-ring records in the data assimilation
procedure, which is directly related to the error associated
with the PSMs (Sect. 2.5). In order to test this hypothesis,
we have reduced this error by 2. This leads to an increase in
the reconstructed variance at all spatial scales in both South
America (precipitation) and New Zealand (near-surface air
temperature; Table 5 and Fig. 7), in particular for TREES-
MDN in New Zealand. This does not translate, however,
into higher correlation coefficients, since they virtually re-
main unchanged (Table 5). In an ideal experiment in which
the relationship between climate and tree-ring growth would
be perfectly reproduced, we could thus expect the observed
variance to be more skillfully reconstructed by the ensemble
mean reconstruction.

More generally, this sensitivity analysis shows that tree-
ring proxies have a positive effect on the reconstructed mid-
latitude climate changes in our framework with both the
regression- and process-based dendroclimatic PSM, espe-
cially at the regional to local scale. The fact that the recon-
structed variance can increase at the more local scale when
assimilating tree-ring proxies alone indicates that the num-
ber of tree-ring proxies assimilated in our experiments likely
has an impact on the reconstructed variance. If more prox-
ies were available, we could expect that this local increase in
the variance would lead to an increase at larger spatial scale.
The definition of the error related to the PSMs likely plays
a role as well. In particular, the computation of the error for
MAIDEN is stricter than for the regression model (i.e., com-
puted on the verification period and on the calibration period,
respectively; Sect. 2.5) and the number of proxy records as-
similated with MAIDEN is lower as well, which may advan-
tage the regression-based PSM.

4.3 Data-assimilation-based reconstruction of the
Southern Hemisphere climate over the last 400
years

In this section, we compare the DA-based reconstructions
with the process- or regression-based PSM over the past
4 centuries to expand the conclusions obtained from the com-
parison of the two methodologies over the 20th century to
longer timescales. If we first look at the regional reconstruc-
tions of near-surface air temperature (Fig. 8) and precipita-
tion (Fig. 9) for the four regions, we observe that the ensem-
ble spread is generally large in contrast to the interannual
variability of the ensemble mean reconstructions, which is
generally small. This could indicate that we overestimate the
error associated with the PSM and therefore underestimate
the confidence of TRW data in the DA procedure. As high-
lighted before, this is at least partly due to the small num-
ber of assimilated TRW proxies in the midlatitudes that pre-
vents the prior distribution given by the climate model from
being effectively constrained by the available observations.
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Figure 7. Reconstructed (in color) and GMF (in black) temperature (in ◦C; relative to 1901–2000 CE) or precipitation anomalies (in
mm yr−1; relative to 1901–2000 CE) over 1901–2000 CE for different DA experiments (Table 1, with tree-ring proxies only, with the full
observation error or half of the observation error; see Sect. 3 for more details) in different regions (Sect. 3) and proxy sites (Fig. 1). Aus
refers to a site in New Zealand and SAm in South America. The uncertainty (i.e., the ensemble spread; Sect. 2.1) associated with each
reconstruction is represented by the shaded areas.

This pattern is stronger when the spatial scale is large (e.g.,
South America) and weaker when the spatial scale is small
(e.g., Tasmania) and closer to the proxy sites. This is partic-
ularly true for MAIDEN, for which we assimilated half the
number of TRW proxy records compared with the regression
model.

In New Zealand, both TIC-reg and TIC-MDN display a
smaller spread and larger variability of the reconstructed
near-surface air temperature compared to the other regions
(Fig. 8), which suggests that the DA has been more effective
in updating the climate model simulations with the available
proxy records. The reconstructed near-surface air tempera-
ture in New Zealand was also well evaluated against GMF
observations over 1901–2000 CE in Sect. 4.1 (Table 3). The
low-frequency variability of the two reconstructions over the

last 400 years is relatively similar overall, with a very small
trend before the industrial era (until around 1850–1900 CE)
followed by an increase in temperature. TIC-reg and TIC-
MDN display a significant trend of 0.047 and 0.023 ◦C per
decade during the 20th century (against 0.062 ◦C per decade
in the GMF observations) as well as a significant trend of
0.001 and nonsignificant trend of 0 ◦C per decade before
1900 CE, respectively. The correlation coefficient between
the two reconstructions is 0.63 (significant at the 95 % con-
fidence level), which indicates that the trend and timing of
the reconstructions are close to each other. However, TIC-
MDN displays higher near-surface air temperature anoma-
lies before 1850 CE than TIC-reg (−0.05 ◦C on average for
TIC-MDN against −0.14 ◦C for TIC-reg relative to 1901–
2000 CE). In Tasmania, there are no assimilated sites for
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Figure 8. Reconstructed TIC-reg (in blue) and TIC-MDN (in orange) near-surface air temperature anomalies (in ◦C; relative to 1901–
2000 CE) over 1600–2000 CE (Table 1) in different regions (Sect. 3). The uncertainty (i.e., the ensemble spread; Sect. 2.1) associated with
each reconstruction is represented by the shaded areas.

Figure 9. Reconstructed TIC-reg (in blue) and TIC-MDN (in orange) precipitation anomalies (in mm yr−1; relative to 1901–2000 CE)
over 1600–2000 CE (Table 1) in different regions (Sect. 3). The uncertainty (i.e., the ensemble spread; Sect. 2.1) associated with each
reconstruction is represented by the shaded areas.
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Table 5. Pearson correlation coefficient between the reconstructed
and GMF near-surface air temperature and precipitation over 1901–
2000 CE for different DA experiments (Table 1, with tree-ring prox-
ies only, with the full observation error or half of the observation
error; see Sect. 3 for more details) in different regions (Sect. 3)
and proxy sites (Fig. 1). Standard deviation of the reconstruction
in degrees Celsius (◦C) (near-surface air temperature) or in mil-
limeters per year (mm yr−1) (precipitation). SA stands for South
America, SAmSW for the southwestern border of South America in
the Andes where the TRW proxy sites are located and NZ for New
Zealand. Aus refers to a site in New Zealand and SAm in South
America. Asterisks stand for significant correlation coefficients at
the 95 % confidence level.

Correlation

TREES- TREES- TREES- TREES-
reg MDN reg-05 MDN-05

Precipitation

SA 0.02 −0.20 −0.05 −0.19
SAmSW 0.33∗ 0.26∗ 0.37∗ 0.24∗

SAm_11 0.22∗ 0.14 0.21∗ 0.16

Near-surface air temperature

NZ 0.53∗ 0.52∗ 0.51∗ 0.50∗

Aus_005 0.19 0.24∗ 0.23∗ 0.25∗

Aus_030 0.57∗ 0.48∗ 0.57∗ 0.48∗

Standard deviation

TREES- TREES- TREES- TREES-
reg MDN reg-05 MDN-05

Precipitation

SA 17.22 18.53 25.12 26.73
SAmSW 52.00 38.50 75.51 60.58
SAm_11 57.74 41.38 79.44 60.13

Near-surface air temperature

NZ 0.18 0.13 0.23 0.21
Aus_005 0.21 0.16 0.27 0.26
Aus_030 0.18 0.13 0.22 0.22

MAIDEN (Figs. S3 and S7) and four assimilated sites for the
regression over a very small area (Figs. S4 and S10), which
may explain the difference between the reconstructed near-
surface air temperature of TIC-reg and TIC-MDN (Fig. 8).
This is consistent with the results obtained over the 20th cen-
tury. Finally, we observe a difference in the reconstructed
low-frequency variability between TIC-reg and TIC-MDN.
Compared with TIC-reg, TIC-MDN tends to reconstruct a
weaker temperature difference between the preindustrial and
industrial era, particularly in South America, the southwest-
ern Andes and Tasmania.

For precipitation (Fig. 9), the southwestern Andes is the
region for which the ensemble spread is the smallest and the
interannual variability the largest for both TIC-reg and TIC-

MDN. Both experiments are also skillful for reconstructing
precipitation in this region when compared with state-of-the-
art climate datasets over the last century (Table 3; Sect. 4.1).
The correlation coefficient between the two reconstructions
is 0.58 and is statistically significant so that the trend and
timing of the reconstructions are close to each other. Both
reconstructions display a very small trend before 1900 CE
(a significant trend of −0.586 and a nonsignificant trend
of −0.042 mm yr−1 per decade for TIC-reg and TIC-MDN,
respectively) and a negative trend after 1900 CE (a signif-
icant trend of −12.79 and −8.89 mm yr−1 per decade for
TIC-reg and TIC-MDN, respectively, against a nonsignifi-
cant trend of −1.26 mm yr−1 per decade in the GMF obser-
vations). However, TIC-MDN displays higher anomalies be-
fore 1900 CE than TIC-reg (28.23 mm yr−1 on average for
TIC-MDN against −5.70 mm yr−1 for TIC-reg relative to
1901–2000 CE).

At the regional scale, we have highlighted from the recon-
structed near-surface air temperature and precipitation that
the experiments with the statistical or process-based PSM
show different amplitudes of climate change over the past
400 years, even if close in terms of correlation (i.e., the trend
and timing of change). It is not possible, of course, to de-
termine which one is the most accurate. This difference in
the reconstructions could be related to the number of prox-
ies included in each of the DA experiments and their asso-
ciated error (Sect. 2.5). This also points out that the com-
monly used linear regression may also not be fully able to
always properly reflect the full spectrum of the climate vari-
ability over the past centuries. Alternatively, MAIDEN may
underestimate low-frequency trends, for instance because it
overestimates the effect of CO2 concentration on tree growth
(Rezsöhazy et al., 2021), which leads to an underestimation
of the near-surface temperature low-frequency variability. It
may also be related to the calibration of MAIDEN that may
not be able to properly capture the low-frequency signal in
tree-ring series.

Finally, we observe an increase in the reconstructed
variability in the precipitation of the southwestern Andes
(Fig. 9), particularly for TIC-MDN, from around 1800–
1850 CE, i.e., when most of the ice core records start to be-
come available (Fig. S12). Before 1830 CE, the standard de-
viation of the reconstruction is 30.7 and 21.0 mm yr−1; after
1830 CE it is 56.3 and 44.2 mm yr−1 for TIC-reg and TIC-
MDN, respectively.

This increase in interannual variability is even more strik-
ing in the reconstructed SAM index for both reconstruc-
tions (Fig. 10). Before around 1830 CE particularly, too few
TRW proxy sites have been assimilated in the midlatitudes to
be able to reconstruct the large-scale variability adequately
(Fig. S12). The standard deviation of the z-scored recon-
structed SAM index is 0.52 and 0.51 before 1830 CE and
1.05 and 1.11 after 1830 CE for TIC-reg and TIC-MDN, re-
spectively. However, the SAM reconstructions are still highly
and significantly correlated with each other (r = 0.91), and
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Figure 10. Z-scored (relative to 1901–2000 CE) TIC-reg (in blue)
and TIC-MDN (in orange) reconstructed SAM index over 1600–
2000 CE (Table 1). The uncertainty (i.e., the ensemble spread;
Sect. 2.1) associated with each reconstruction is represented by the
shaded areas.

they look essentially the same over the whole 1600–2000 CE
period (Fig. 10). Before 1830 CE, when the number of ice
core records is more limited (Fig. S12), the reconstructions
are less correlated (r = 0.77 and r = 0.95 after 1830 CE).

Lastly, over the last 400 years, the MAIDEN model gener-
ally reproduces the observed tree growth well in terms of cor-
relation coefficients at the six assimilated sites (with a mean
correlation of 0.53; Fig. S13). However, as previously high-
lighted in Sect. 4.1, the simulated variance is largely underes-
timated compared to the observations, which is not surprising
regarding the reconstructions of near-surface air temperature
and precipitation of the past 400 years.

5 Conclusions

In this study, we have included for the first time a dendro-
climatic process-based model into a data assimilation proce-
dure to reconstruct the past climate variability of the South-
ern Hemisphere. All the results from our DA experiments
have been compared with the commonly used regression-
based PSM. First, we have shown that including the ecophys-
iological model MAIDEN as a proxy system model in a data
assimilation procedure is technically possible. The assimila-
tion of actual TRW records with a tree-growth mechanistic
model has never been published before. Knowing that it is at
least achievable is promising.

The general pattern of near-surface air temperature, pre-
cipitation and the atmospheric circulation of the middle to
high latitudes of the SH is reproduced well by the DA ex-
periment with MAIDEN over the recent period. Over the last
century, the DA experiment with MAIDEN is also able to
produce reconstructions that are well correlated with differ-
ent climate fields, such as near-surface air temperature, pre-
cipitation and atmospheric circulation in some regions of the
Southern Hemisphere, with only a few TRW proxy records
assimilated. The DA-based reconstructions with the regres-
sion have a similar skill as with MAIDEN.

Over the instrumental era, the skill of MAIDEN as a PSM
in the present DA framework is not better but it is at least
as good as the regression-based PSM. Given the advantages
that a process-based PSM can still bring beyond the instru-
mental period in terms of nonlinearity of the relationship be-
tween climate and tree growth, but also in terms of climate
variables included as inputs of the model (e.g., atmospheric
CO2 concentration), having skill comparable to a regression-
based PSM is encouraging. There are still opportunities for
improvement with the MAIDEN model, while for the re-
gression, the perspectives are more limited. For instance, we
could improve the model–data comparison by using an ob-
served tree-growth index that is closer to the variable simu-
lated by MAIDEN, i.e., forest carbon accumulation, by com-
bining density and ring width measurements. Different short-
comings related to the calibration of the MAIDEN model
have also been addressed in Rezsöhazy et al. (2020, 2021).
If solved, this may likely help to increase the number of
proxy sites where MAIDEN could be validated. It could
also improve the performance of MAIDEN in simulating
the relationship between climate and tree growth and there-
fore enhance the skill of the DA-based reconstruction using
MAIDEN as a PSM. In particular, the calibration procedure
could be more informative in the future, for instance in the
definition of the prior ranges of the calibrated parameters
that could be set by species or biome. Different data sources,
such as satellite data and the associated vegetation indexes,
could also be used to better inform the different biological
processes in the model (e.g., related to photosynthesis or phe-
nology). Moreover, in this study, the criteria for including a
TRW proxy record with the regression had to be less strict
than for MAIDEN. MAIDEN was indeed validated at all the
assimilated sites, while the regression was not. This may pro-
vide better stability of the MAIDEN model.

It appears clearly that our DA framework does not provide
reconstructions that properly reproduce the observed vari-
ance of near-surface air temperature and precipitation with
both TRW PSMs, particularly at larger spatial scale (e.g.,
South America), likely due to the low number of TRW proxy
records assimilated in the midlatitudes. The Southern Hemi-
sphere indeed counts few TRW proxy records (PAGES 2k
Consortium, 2017) but offers an interesting framework as
few reconstructions of the Southern Hemisphere climate ex-
ist to date (Neukom et al., 2011, 2014). The underestimation
of variance is a fundamental issue with the particle filter, but
also potentially with other data assimilation methods (e.g.,
Tardif et al., 2019). In the ideal case, individual members
of ensemble climate simulations have realistic temporal vari-
ability on all spatial scales. Any averaging of random, non-
forced variability will reduce the variability. In other words,
any ensemble mean will always have variability that is too
low, regardless of how it is constructed. However, the ex-
tent of the reduction depends on whether members with more
similar or more different variability are used for calculating
the weighted ensemble mean. In contrast to unweighted en-
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semble means, the particle filter will give high weights to
ensemble members that match the observations. If the empir-
ical information strongly constrains the particle selection, the
particles will be more similar than in a less constrained case,
and there will be less underestimation of variance. In addi-
tion, the similarity measure is determined at the locations of
the proxies, but the weights given to each particle are inde-
pendent of location. Particles that have similar states at the
proxy locations do not necessarily have similar states at other
locations, and the reduction of variance in unconstrained lo-
cations is therefore likely to be larger than in constrained lo-
cations.

In our reconstructions, this pattern of variance becomes
even more striking before 1830 CE, for which we observe
smaller interannual variability of the reconstructed near-
surface air temperature and precipitation in some regions of
the midlatitudes as well as of the reconstructed SAM index
compared to the last 150 years. However, the timing of the
climate changes is well constrained in some localized ar-
eas of the midlatitudes, e.g., the southwestern Andes, New
Zealand and Tasmania, as shown by the significant and rel-
atively high correlations with the observations. As a conse-
quence, the MAIDEN model simulates tree-ring growth se-
ries that are generally well correlated with the observations
over the last 400 years but which display small variance com-
pared to the observations.

Despite this, at the regional scale, we have highlighted a
difference between the two DA experiments in the recon-
structed amplitude of the climate change in the preindustrial
era relative to the 20th century. Using MAIDEN as a PSM
for TRW records tends to reconstruct an average warmer and
wetter climate than the regression-based PSM. This ques-
tions the almost exclusive use of linear statistical PSMs for
tree-ring proxies in data assimilation to reconstruct the past
climate changes. However, this would need an in-depth in-
vestigation with more TRW proxy records in order to be con-
firmed, as well as additional analysis to ensure the validity
and robustness of MAIDEN and its calibration in our frame-
work, with generally more sophisticated tree-growth PSMs.

For now, our framework only offers limited skill for
the reconstructions, and we are far from providing a com-
plete hemispheric reconstruction of atmospheric fields in the
Southern Hemisphere. However, our results are encouraging
for MAIDEN and more generally for the use of dendrocli-
matic process-based models in DA. In the future, mechanis-
tic models like MAIDEN will likely become an important
tool of the DA framework that would help overcome the po-
tential bias associated with regression models. However, this
would require continuing to improve those models, includ-
ing their calibration, so that they could be applied more effi-
ciently and more skillfully at large spatial scale. Calibrating
a model like MAIDEN at large spatial scale remains a chal-
lenge, and incorporating it into a data assimilation procedure
is still more technically time-consuming than the traditional
statistical approach. Finally, more investigation of the perfor-

mance of the MAIDEN model as a PSM in the DA procedure
compared with the commonly used regression model would
also be needed using more TRW proxy records in order to
fully document the added value of using a dendroclimatic
process-based model in the data assimilation framework.
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