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1 1. Introduction 1 2 Volcanic debris-avalanche deposits are often associated with pyroclastic density currents and lahar deposits 3 (i.e. Mount Saint Helens in the USA, Glicken, 1986), suggesting interactions during flow propagation. The 4 stratigraphic relationships between the associated syn-eruptive volcanic deposits are described, implying 5 differential kinematic between the mass flow such as striations and grooves on clast faces related to dome-6 collapse generating avalanche deposits interstratified between pyroclastic units (Mono Craters, CA, Dennen 7 et al., 2014); matrix transformations into lahar deposits (Misti in Peru, Bernard et al., 2017). Block lithofacies 8 are rarely used to characterize the differential movements inside the mass flow during syn-eruptive collapse. 9

A basal frictional regime with striations is differentiated from an upper collisional cataclastic flow for block 10 lithofacies (e.g. Parinacota and Ollagüe in Chile, Clavero et al., 2002;Clavero et al., 2004;El Zaguan, 11 Mexico, Caballero and Capra, 2011). 12 Lava dome extrusion produced block lithofacies may be mixed with matrix-rich debris-avalanche deposits 13 (Mount Saint Helens, Glicken 1986; Parinacota in Chile, Clavero et al., 2002;Tutupaca in Peru, Samaniego 14 et al., 2015;Valderrama et al., 2016). Different avalanche structures are identified with such block 15 lithofacies: (1) torevas that are large blocks (L >100 m), which occur in the proximal zones and could 16 constitute up to ~30% of the debris avalanche deposits (Socompa in Chile, Davies et al., 2010). (2) Type A 17 hummocks that are large cataclased blocks (H <80 m, w <300 m, L <400 m, Mount Saint Helens, Voight et 18 al., 1981;Glicken, 1998;Jocotitlán in Central Mexico, Siebe et al., 1992;Parinacota and Taapaca in Chile, 19 Clavero et al., 2002;Clavero et al., 2004) with steep slopes. (3) Longitudinal or transverse ridges (H = 10-30 20 m, Shea and van Wyk de Vries, 2008;Dufresne and Davies, 2009;Andrade and van Wyk de Vries, 2010), 21 that are attributed to deflection of the mass flow (Valderrama et al., 2018). The alignment of blocks or 22 isolated blocks between 0.01 and 1000 m can be observed in some debris avalanche deposits (Socompa,van 23 Wyk de [START_REF] Van Wyk De Vries | A gravitational spreading origin for the Socompa debris avalanche[END_REF]Shea and van Wyk de Vries, 2008). The frontal lobes thrust the large blocks in 24 distal zones (Jocotitlán, Siebe et al., 1992) showing fluidization with matrix transformations into lahars 25 (Perrier in French Massif Central, Bernard and van Wyk de Vries, 2017). Different mesoscale structures have 26 been described related to specific kinematic context such as gravitational flank collapse with an initial 27 dilation of jigsaw-fit textures (Mount Saint Helens, Glicken, 1986), abrasion and striations along fault planes 28 (Mehl and Schmincke, 1999), collisional textures during transport (El Zaguán in Mexico, Caballero and 29 Capra, 2011), and impact waves with pseudotachylite and gouge along avalanche fault zones (Pichu Pichu in 30 Peru, Legros et al., 2000;Mont Dore in French Massif Central, Bernard and van Wyk de Vries, 2017). 31

Syn-eruptive collapses of a volcanic edifice and volcano-sedimentary processes have been well documented 32 at Las Derrumbadas Volcano, Mexico (Guilbaud et al., 2022), Panum Crater, (Mono Crater, CA, Dennen et 33 al., 2014) and Tutupaca volcano in southern Peru (Samaniego et al., 2015;Valderrama et al., 2016;Mariño et 34 al. 2021). This volcano hosts probably the well-preserved and displayed lava dome related debris avalanche 3 between no-cohesive avalanche lithofacies and PDC: striations of the bedrock in scar (Mount Saint Helens, 71 Glicken, 1986); grooves and striations at the base and the underlying substratum; and parallel grooves and 72 furrow at the base and the upper part of faulted megablocks (Gran Canaria, Spain, Mehl and Schmincke, 73 1999). We differentiate an upper collisional regime with impact marks at the surface of block lithofacies 74 (Parinacota and Ollague in Chile, Clavero et al., 2002;Clavero et al., 2004). Impact marks and linear trends 75 appear concentrated on one side of blocks, showing conchoidal fractures related to collisional interactions 76 between the blocks. 77

We examine how block lithofacies of volcanic debris avalanche deposits interact with PDC to generate block 78 clusters and grooves with striations related ridges structures. We show how semi-quantitative 79 sedimentological analysis of the block lithofacies and mesoscale structures provide information about syn-80 emplacement processes such as the force F of impact of clasts onto block surfaces and the clast velocity for 81 making impact marks (Clavero et al., 2002). 82 83

Analytical methods 84 85

From the field observations on the debris-avalanche units, we have described the textural variations of the 86 block lithofacies assemblages and assessed their relationships to avalanche fault zones. A semi-quantitative 87 sedimentological analysis was conducted to characterize block distributions (Table 2). From these data, we 88 were able to differentiate the block lithofacies in each zone associated with cataclastic gradient between the 89 avalanche units and pyroclastic density current deposits (Samaniego et al., 2015;Valderrama et al., 2016). To 90 facilitate the reading of this study, we provide a list of the acronyms in Table 1. 91 92

Field observations and outcrop analysis 93 94

The lithology of different outcrops were identified from proximal to distal zones to characterize the 95 discontinuous block-rich lithofacies, related to interactions between volcanic avalanche and pyroclastic 96 density current deposits. From field observations and Google Earth imagery, the block-rich avalanche units 97 were described and mapped according to stratigraphic and geomorphological context and avalanche 98 structures (Samaniego et al., 2015;Valderrama et al., 2016). 99

Quantitative morphological data such as area (S), thickness (T) and volume (V = ST; Table 1) on the surface 100 avalanche deposits are calculated from the mapped surfaces and georeferenced Google Earth images 101 (Samaniego et al., 2015;Valderrama et al., 2016). These morphological data are compared to other avalanche 102 deposits worldwide such as those emplaced around Mount Saint Helens and Mount Shasta in the USA 103 (Crandell et al., 1984;Glicken, 1986), Bezymianni in Kamchatka (Siebert et al., 1987), Parinacota in Chile 104 (Clavero et al., 2002), Soufrière in Guadeloupe (Boudon et al., 1984) and Mont Dore in French Massif 4 Central (Bernard and van Wyk de Vries, 2017). From these examples, we correlate the morphological data 106 with the structural units of avalanche deposits, implying interactions between lava dome sector collapse and 107 pyroclastic density currents. The contacts between the block lithofacies and matrix textures of volcanic 108 debris-avalanche deposits with interstratified PDC were analyzed. Lithostratigraphic sections were 109 established and correlated with textural variations. 110

The use of the Shape Preferred Orientation 2003 software (Fig. 1A, SPO, Launeau and Robin, 2005) 111 provided a semi-quantitative description of block avalanche units, allowing us to estimate imbrication of 508 112 blocks and block axial distributions with the inertia and intercepts method. Image analysis of the block 113 lithofacies and mesoscale structures provide relative information because photographs can be affected by 114 perspective. Two-dimensional shape parameters of blocks, such as the a/b ratio (the largest axis / minor axis) 115 and sectional ellipse values from system of linear equations (see Launeau and Robin, 2005 for mathematical 116 definitions), have been calculated, to characterize block fabric related to syn-emplacement structures 117 (Bernard, 2015;Bernard and van Wyk de Vries, 2017;Bernard et al., 2019), together with striations and 118 grooves in blocks. Ellipse/a/b values contribute to establish textural classes of avalanche fault zones (~2.14 119 for the plane collapse, 1.75 to 2 for the crushing, a <1.7 for the thermal effect of fragmentation, Bernard et 120 al., 2019). Mesostructures such as fractures and striations from 2 mm to 20 cm were also analyzed. 121 122

Sedimentary analysis 123 124

From SPO analysis (Launeau and Robin, 2005) of the blocks, the fractal distributions were used to compare 125 transport and cataclastic process acting on each avalanche unit. Each cumulative frequency is plotted versus 126 clast long-axis on double-logarithmic graphs. Fractal dimensions h and D of size distributions were estimated 127 from the power regressions (Table 4; see Supplemental File 1; Suzuki-Kamata et al., 2009). The cumulative 128 curves of the clast-size distributions vs. a/b (Fig. 8) were compared to distinguish the block avalanche units 129 from proximal to distal zones. The calculated block-size distributions estimated from 41 outcrop photographs 130 with the inertia and intercepts methods using the SPO analysis (from metric-size blocks to clasts >10 cm; 131 Fig. 8B; Launeau and Robin, 2005). The longest axis of 404 block outlines were measured and counted per 132 image area from the photographs. The normalized frequency histograms (Launeau and Robin, 2005) were 133 produced by grouping the longest axis of blocks (cm) into 100-cm bins (number of size intervals) and 134 normalizing the number of occurrences in each bin to the total number of measurements from automatic 135 image analysis. The sectional effects have been considered (Launeau and Robin, 2005). These data contribute 136 to differentiate the effect of cataclasis between each fraction correlated with different structural units from 137 proximal to distal zones. The subdued blocks and clasts below 10 cm are not considered related to resolution 138 limits. 139

The shape analysis using the ImageJ Plugin "Gold morph" has been applied to 404 blocks and 635 striations 5 of the avalanche units to compute minor and major axis length, Feret's diameter defined as the longest 141 distance between two parallel tangential lines, perimeter and convex perimeter, radii of the smallest inscribed 142 and largest circumscribed circles (Fig. 1B; Table 3; Crawford and Mortensen, 2009). From these data, we 143 calculate the a/b ratio, the roundness defined as the ratio of the perimeter to convex perimeter, and the Riley's 144 circularity, the square root of the ratio of the diameter of the largest inscribed circle to the diameter of the 145 smallest circumscribed circle of the volcanic clast (Table 3, Blott and Pye, 2008;Bernard, 2015). The values 146 of Riley's circularity are less than 1 for the non-spherical volcanic clasts (Table 5). 147

To characterize the two-dimensional shape of mesoscale structures, we took 5.9 megapixel photographs of 148 abraded flat surfaces of two blocks with a digital camera. A digital camera (6.2-18.6 mm lens, 35-105 mm 149 focal length) image at a camera distance of <20 cm had a standard error for mean distortion around ~10 -3 . All 150 the striations observed in the median zone have been quantified by using high-resolution images (3648 X 151 2736 pixels) of two block faces. Abraded flat surfaces of the two megablocks on these scales contribute to 152 preserve geometries of these grooves and striations with circular depressions (~1-5 cm depth, 2-3 mm wide). 153

These are enough to generate semi-quantitative analysis using the ImageJ Plugin "Gold morph" and SPO 154 (566 mesoscale structures, Launeau and Robin, 2005;Blott and Pye, 2008;Crawford and Mortensen, 2009). 155

The roundness, the Riley's circularity, the a/b ratio, ellipse, fractal D-values of each mesoscale structure have 156 been calculated. The calculated standard errors characterize the shape variations between the blocks rather 157 than the measurements' uncertainty. Moreover, the calculated standard errors for image analysis are between 158 0.03 and 0.3 for a/b ratio and around ± 0.9 for ellipse values (Launeau and Robin, 2005;Table 5). 159

Several statistical regressions (Eqs. 1-21 in Figs. 2 and 8-10) have been established to characterize the 160 evolution of block shape and striations related to cataclastic processes between the volcanic debris-avalanche 161 units and pyroclastic density current deposits. Figure 9 shows the evolution of the roundness with Feret's 162 diameter for block lithofacies and striations. Figure 10 shows the evolution of the roundness with Feret's 163 diameter for block clusters. The intersecting points between few regressions indicate similar values of shape 164 parameters related to the inherited clast shape for lava blocks and co-genetic relationships between block 165 lithofacies. 166

Statistical and shape parameters were compared with those from other avalanche units in the Andean Central 167 Volcanic Zone such as the Pichu Pichu debris avalanche deposit, and the matrix of the ridges from the 168 Tutupaca volcanic debris-avalanche deposits (Bernard, 2015;Valderrama et al., 2016;Bernard et al., 2019). 169

The impact of clasts onto block surfaces (Clavero et al., 2002) can be approximated as r = 0.5a²/h with r, 170 radius of spherical portion of clasts; a, radius of hemispherical damage zone, and h, distance that penetrated 171 into the block. The force F of impact is given by Clavero et al. (2002): 172

F = Πa²ρ0 173
where ρ0 is the hardness of the material. The clast velocity for making impact marks can be estimated by 174 using V = (0.5 Πρ0/Mr) 1/2 a² with M, the mass of the rock (Clavero et al., 2002). The avalanche velocity in the 6 middle zone is considered by using v = (2gH) 1/2 . 176 A combination of several semi-quantitative methods has been used to determine (Table 1): (1) the links 177 between the different block-rich units related to the debris avalanche and the associated pyroclastic density 178 currents; (2) the quantitative sedimentary comparisons of the block lithofacies to define the conditions 179 generating these deposits; (3) the in-motion controls and the dynamic cataclasis during the differential 180 sedimentary emplacement between the volcanic debris-avalanche units and the pyroclastic density current 181 deposits. 182 composed of seven coalescing lava domes (Holocene, domes I to VII, Fig. 3B, Samaniego et al., 2015;191 Valderrama et al., 2016;Marino et al., 2021), constructed on the older hydrothermally-altered basal edifice. 192

The activity of the recent domes is historic (about 218±14 calBP), and little altered by the arid, stable, cold 193 climate, or by human activity, apart from a few small tracks and limited mining exploration excavations. The 194 area is mostly wild, and in its natural state. The lava domes of the Eastern Tutupaca peak are cut by a 195 horseshoe-shaped amphitheater open to the northeast, with an orthogonal direction to the N140° regional 196 faults. From this, debris avalanche and pyroclastic density current deposits extend, are preserved with very 197 little modification from their initial state (there is some limited frost shattering, and ice related solifluxion). 198 Geomorphological parameters on the surface avalanche deposits associated with PDC are calculated and 199 compared to other avalanche deposits worldwide such as those emplaced around Mount Saint Helens and 200 Mount Shasta in the USA (Crandell et al., 1984;Glicken, 1986), Bezymianni in Kamchatka (Siebert et al., 201 1987), Soufrière in Guadeloupe (Boudon et al., 1984). Impact marks of Parinacota debris avalanche in Chile 202 (Clavero et al., 2002) and pseudotachylite impact in French Massif Central (Bernard and van Wyk de Vries, 203 2017) are considered. A relationship between area (A) and volume (V) is calculated for the Tutupaca units 204 with A = 28.07 V 1.01 (Eq. 1 in Fig. 2). These are compared to the power regressions of other volcanic debris-205 avalanche deposits (Eqs. 2-4 in Fig. 2, Glicken, 1986;Clavero et al., 2002;Legros, 2002;Bernard and van 206 Wyk de Vries, 2017). We differentiate an intersecting point A with area around ~140 and 180 km 2 and volume 207 between 5 and 7 km 3 . 208 209 4.2. The Paipatja debris-avalanche deposits 7 211 Samaniego et al. (2015) described the Paipatja debris avalanche, exposed in the northeastern part of the 212 Tutupaca volcano between the amphitheater and the Paipatja plain (L = 6-8 km, S = 12-13 km 2 , T = 25-40 m, 213 Samaniego et al., 2015;Valderrama et al., 2016). Stratigraphic and textural variations are correlated to the 214 syn-emplacement structures. The hydrothermally rich debris avalanche deposit (HA-DAD, L = 6-8 km, V< 1 215 km 3 ; H/L = 0.17-0.23, Samaniego et al., 2015), that involved large quantities of the basal edifice, is 216 characterized by torevas (H = 20-40 m, L = 1.5 km), long lateral levees (L = 1.5 km) and hummocky-217 structures (L = 200-800 m, H = 20-40 m) up to 4-6 km from the scar (Samaniego et al., 2015;Valderrama et 218 al., 2016). 219

Block ridge structures and levees are observed between 2 and 6 km from the amphitheater (Valderrama et al., 220 2016). In the median zone, elongated and sub-parallel ridge structures (w = 5-10 m, H = 2-5 m, L = 150-400 221 m, Fig. 3A), regularly spaced, are related to interstratified pyroclastic density current deposits between two 222 avalanche units, implying a syn-collapse explosive eruption at Tutupaca volcano (Samaniego et al., 2015). 223

The hydrothermally rich debris avalanche deposit is covered by Paipatja pyroclastic density current deposits 224 (P-PDC, ~218 aBP, sections B to E in Fig. 3A). 225

A dome-rich debris-avalanche deposit (DR-DAD of Samaniego et al., 2015) overlain the P-PDC unit in the 226 median zone (section B in Fig. 3). Cross-sections within the ridge structures reveal the dipping and 227 undulating contacts between the P-PDC units and the DR-DAD (section B in Fig. 3A). The P-PDC, on the 228 upper part of HA-DAD, appears thickest between the ridge structures and around the largest blocks 229 (Valderrama et al., 2016). We have observed dome fragments (from centimeters to several meters in size), 230 such as metric-size dacitic blocks and prismatically jointed blocks showing inherited jigsaw-cracks, 231 cataclastic and shearing structures. The abraded and sub-rounded blocks are subdued in the underlying 232 avalanche deposit and PDC. 233

The Tutupaca volcanic debris-avalanche deposits show different units with specific granular assemblages 234 (30% of HA-DAD and 70% of DR-DAD, Valderrama et al., 2016). Dense blocks (3-20 cm in diameter) and 235 bombs from the P-PDC unit (20-40%) have highly similar chemical content (~65-68 wt.% SiO2, Samaniego 236 et al., 2015), similar to the brecciated lava domes. A progressive decrease in block-size is observed with 237 The eastern flank collapse of the Tutupaca volcano shows at the summit two brecciated zones related to lava 244 dome collapse (domes V to VII in Fig. 3B, Fig. 4A). We observe along the East crest (1 in Fig. 4A) angular 8 dome fragments adjacent to the PDC (in red in Figs. 3A and4A) without preferential orientation, and on the 246 west side (2 in Fig. 4A) an impacted and crushed zone showing imbricated block clusters with tabular planar 247 surfaces. The long axis of 56 blocks are tilted N112E. In the median zone, block ridge structures show an 248 isolated polyhedral block (white arrow in Fig. 4B), which exhibits planar surfaces with angular edges. We 249 observe in downstream sigmoid fish of clasts, which appears disaggregated and truncated in N40E, related to 250 the interactions between avalanche and the blast-generated the PDC (Fig. 4B). The isolated distal blocks (>1 251 m in length, Fig. 4C) surrounded by P-PDC unit are transverse with extensional lateral spreading (N176E, 252 Fig. 4C). 253

The textural and sedimentological variations of the block avalanche lithofacies (HA-DAD and DR-DAD) are 254 described with associated volcanic deposits to correlate syn-emplacement process between volcanic debris-255 avalanche units and pyroclastic density current deposits. 256 257 258

Results 259 260

The SPO analysis of the block lithofacies contribute to a semi-quantitative description of block deposits. The 261 comparison of each block lithofacies with cumulative curves and fractal distributions helps to distinguish the 262 deposits. The analysis of the block shapes has enabled us to identify the inherited structures and the 263 relationships between the proximal and distal block clusters. 264 265

Block lithofacies 266 267

In the Paipatja DAD, we have observed block clusters and block avalanche lithofacies with a specific 268 distribution on and between blocks. From proximal to distal zones, the block characteristics were quantified 269 using the software ImageJ and SPO analysis (>400 blocks, Launeau and Robin, 2005). We characterized the 270 localized mesoscale structures observed on few blocks associated with the ridged structures. 271 272

Block clusters lithofacies of DR-DAD 273

Imbricated block clusters are localized under the collapse scar (A in Figs. 3A and4A). The dacitic dome 274 fragments (from centimeters to several meters in size) present similar chemical characteristics (64. 5-65.9 wt. 275 % SiO2, Samaniego et al., 2015). We observed impacted blocks with planar fractures and undulated borders 276 (Fig. 5A), and tilted blocks in imbricated piles. Inherited clasts are observed with jigsaw-fractured breccias 277

showing polymodal distribution of the clasts and ellipse/a/b = 5.1 (Fig. 5B). Block-rich ridge structures of the 278 Paipatja DAD (B in Fig. 3A) contain abraded and sub-rounded blocks, which are also found in the underlying 279 avalanche deposit and P-PDC (ellipse/a/b = 2.3-2.6 in Fig. 5C). There are also impacted blocks (Fig. 5D)
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showing polymodal distribution of the clasts. In the Paipatja plain, abraded and sub-rounded blocks are 281 found isolated at the front of P-PDC (Fig. 3). Along the lateral levee, in the proximal zone, we have observed 282 large blocks with sigmoidal jigsaw-breccias (Fig. 5E) and a bimodal clast distribution. Angular lava blocks 283 (~1 m in length) are impacted between aligned and subdued blocks (Fig. 5F), which exhibit planar surface 284 with conchoidal fractures or abraded surface with striations. We differentiate block clusters and ridged 285 avalanche units (ellipse/a/b = 2.3-2.5, DR-DAD, Fig. 5G) from imbricated block clusters (ellipse/a/b = 1.74) 286 and subdued and tilted blocks in the distal zone (ellipse/a/b ~2.12, PDC, Fig. 5H). 287 288

Block avalanche lithofacies 289

Some transverse blocks appear isolated or aligned in N30° (DR-DAD, Figs. 3B and6A), parallel to the 290 elongated depressions. We observed sub-rounded faces with striations in upstream and planar faces with 291 conchoidal fractures in downstream. Along the lateral levee, we described quenched and cracked surfaces in 292 the upper part with jigsaw-fit texture and imbricated subangular clasts along basal contact of blocks (Fig. 293 6B). A large polyhedral block (~3 m high and ~5 m length, HA-DAD, Fig. 6C) on the ridge crest presents an 294 oriented abrasion: sub-rounded face in the front and planar face in the downstream. In the PDC deposits, a 295 bimodal distribution of the surrounded clasts is quantified. The sub-rounded lava block displays two distinct 296 surfaces: a quenched and cracked surface in the upper part and an altered vitreous phase in the lower part. A 297 distal sub-rounded block, surrounded by the P-PDC deposits, appears isolated (Fig. 6D) with bimodal 298 distribution of the surrounded clasts related to the PDC deposits. Subdued blocks exhibit abraded surfaces 299 with striations. 300 301 5.1.3. Grooves and striations 302 At 5.5 km from the collapse scar, a few blocks associated with the ridge structures (Fig. 7A; Valderrama et 303 al., 2016) exhibit grooves and striations with roughly circular depressions on the upstream, abraded face. 304

These localized mesoscale structures are often irregular and grouped in the lower part of the abraded and 305 striated surfaces. The largest striations (>3 cm wide) are parallel to each other (at 3.19°, Fig. 7) and observed 306 in the upper part of the block face. There are small striations perpendicular to the grooves (Fig. 7B). Grooves 307 or furrows 1-5 cm depth ranged from roughly circular (<5 cm in diameter) to elliptic (~8-15 cm for longest 308 axis) in shape. Fractal D values, calculated from exponent h of power regressions (100 striations, Table 4; 309 Suzuki-Kamata et al., 2009), are 1.09 in the 8.4-46.4 cm mark-size range. 310

The macroscopic characteristics of grooves and striations with circular depressions were used for the shape 311 analysis with the software ImageJ and SPO analysis (566 mesoscale structures, Launeau and Robin, 2005). 312

Grooves and striations show polymodal distributions, with ellipse/a/b around ~5.1-5.9 (Fig. 7A-B). In the 313 lower part of the block face, basal striations (~2-3 mm wide) with perpendicular diaclasis are differentiated. 11 grooves in blocks. This comparison is intended to characterize the cataclastic evolution with co-genetic 351 relationships between volcanic debris-avalanche units and P-PDC, including the inherited clast shape for lava 352 blocks. The mean values of a/b ratio and ellipse (~1.7±0.03 and 3.5±0.15, Table 5) are different from the 353 clasts observed in the matrix of ridged units (DR-DAD, ~1.69±0.05 and 2.72±0.09, 1891 clasts from SPO 354 analysis, Bernard, 2015). The calculated standard errors indicate the measurement errors and the sum of 355 internal variability between the block shape parameters. These values imply distinct evolution between the 356 avalanche block lithofacies and PDC. 357 358

Avalanche block lithofacies 359

We distinguish an inherited clast shape for lava blocks with a/b = 0.9 and ellipse = -3.5 implying textural 360 relationships between the block lithofacies of HA-DAD and DR-DAD. Three regressions characterize the 361 roundness vs. maximum Feret's diameter (Eqs. 13-17 in Fig. 9) for the block lithofacies. Two regressions 362 (Eqs. 14-15 in Fig. 9) characterize the block lithofacies observed in the proximal and median zones. These 363 values are compared to the breccias forming the ridged avalanche matrix (HA-DAD and DR-DAD) and the 364 distal lobe of the Pichu Pichu debris-avalanche deposit (Eqs. 14-15 and 17 in Fig. 9; Bernard, 2015). 365 366

Distal block lithofacies 367

Three points of intersection indicate similar values of roundness for different zones of cataclasis (a-c in Fig. 368 9A). We distinguish an inherited clast shape with roundness around ~0.9 (a, Fig. 9), indicating textural 369 relationships between the tilted distal blocks (PDC) and the blocks from the ridges, close to those of the 370 sheared lava breccias in the distal lobe of the Pichu Pichu debris-avalanche deposit. The intersecting points b 371 and c with roundness between 1.05 and 1.08 imply a co-evolution between the impacted blocks (Eq. 14) 372 observed in the proximal and distal zones and the sheared sigmoid along the lateral levee (Eq. 15 in Fig. 9). 373 374

Grooves and striations 375

The values of a/b = 3.2 and ellipse = 15 are correlated to a co-genetic evolution between the grooves and 376 striations, the blocks from ridges and the distal, impacted blocks (PDC). The mean values increase for 377 roundness from 1 to 1.7 and ellipse/a/b from 0.2 to 2.7 (Table 5), while the values of Riley's circularity 378 decrease. A regression characterizes the roundness vs. maximum Feret's diameter (Eq. 13 in Fig. 9) for the 379 striations. The intersecting point c (Eqs. 13-14 in Fig. 9) with Feret's diameter <0.05 m and roundness around 380 ~1.05 characterizes the inherited clast shape of the proximal block lithofacies generating striations and 381 impact marks in the ridged debris-avalanche unit. We observed decreasing values of Riley's circularity related 382 to Feret's diameter ( More than six cluster structures have been described with the shape analysis using the software ImageJ and 387 SPO analysis from 312 blocks in the unconsolidated avalanche matrix from the HA-DAD (Fig. 10). Lava 388 block clusters (~30-70 vol.%) from 40 cm to 5 m in diameter are impacted and thrust in unconsolidated 389 avalanche matrix. The a/b ratio related to ellipse values show increasing values for the impacted jigsaw-390 clusters; and for the tilted block in the distal zone. Similar characteristics appear for the striated blocks from 391 the ridges and the distal clusters. Similar ellipse values are calculated between proximal jigsaw breccias and 392 the tilted and impacted blocks in the distal zone (ellipse = 0.7); between distal clusters (ellipse = 1-1.8) or 393 between tilted blocks in the distal zone (ellipse = 2.7). Syn-cataclastic emplacement of block clusters with a 394 co-genetic evolution of shape parameters may be envisaged. 395

The roundness is high (>1) for the block clusters, close to those of the experimental crushed stones (Janoo, 396 1998). Four regressions characterize the roundness vs. Feret's diameter (Eqs. 18-21 in Fig. 10) between 0.05 397 and 1 m. The increasing macro-roundness reflects the effects of clast crushing due to the collisional transport 398 and cataclastic sorting between the proximal and distal zones. We have highlighted a power regression for the 399 imbricated block clusters in the proximal zone with roundness >1 (Eq. 18 in Fig. 10). Two categories of 400 regressions are identified for the impacted and tilted block clusters in the distal zone with roundness between 401 0.9 and 1.08 (Eqs. 19-20 in Fig. 10). Three points of intersection (a-c in Fig. 10) indicate similar values of 402 block roundness for cluster structures characterized by different regressions: between impacted and tilted 403 blocks in distal zone (a = 1. 05,; between distal clusters and the striated blocks from the ridges (b 404 ~1, Eqs. 18-20) or proximal breccias with jigsaw features. We distinguish an inherited block shape for lava 405 blocks with roundness around ~0.9 and Feret's diameter = 0.05 m (c in Fig. 10), implying textural 406 relationships between these block clusters and sheared contact of the Pichu Pichu volcanic debris-avalanche 407 deposit. 408

The Riley's circularity of block clusters shows decreasing values from the proximal to distal zones (Table 5, The volcanic debris avalanche deposits are commonly associated with PDC. The area and volume of the 427 volcanic debris avalanche deposits associated with PDC are compared to Bezymianny eruptive sequence 428 (Siebert et al., 1987) showing lava dome collapses with hydrothermally alteration interacted with the blast-429 generated the PDC (Fig. 2): Mount Saint Helens in the USA (Glicken, 1986), Bezymianni in Kamchatka 430 (Siebert et al., 1987), Soufrière in Guadeloupe (Boudon et al., 1984). A relationship between the area (A) and 431 volume (V) for the Tutupaca units is compared to the power regressions of other volcanic debris-avalanche 432 deposits such as Mount Shasta and Mount Saint Helens in the USA (Fig. 2, Glicken, 1986;Siebert et al., 433 1987;Legros, 2002). The fault breccias have recorded the propagation of impact waves. The Tutupaca 434 volcanic debris-avalanche deposits with H/L around ~0.15-0.2 (12-13 km 2 , <1 km 3 , L = 6-8 km, Samaniego 435 et al., 2015;Valderrama et al., 2016) show different units characterized by granular segregation and fingering 436 instabilities (Figs. 3-4, Valderrama et al., 2018). A power regression (Eq. 2 in Fig. 2) characterizes the 437 Tutupaca units compared to the proximal scar of the Mount Saint Helens deposits showing striations of the 438 bedrock and the impacted distal zone in French Massif Central. This co-evolution of geomorphological 439 parameters may be related to digitate shape of the avalanche deposits (Samaniego et al., 2015). The largest 440 volcanic avalanche deposits (Mount Shasta, Legros, 2002) appears different from other volcanic debris-441 avalanche deposits in accordance with field observations, on ridge structures, striations, and block clusters. 442

The geomorphological parameters of the largest avalanche units tend toward similar values (Eqs. 1-4 in Fig. 443 2). We differentiate the intersecting point A (Fig. 2) with an area around ~140 and 180 km 2 and volume 444 between 5 and 7 km 3 , implying a convergent evolution between the largest structural units with run-out 445 distance of over 22 km (Mount Saint Helens in the USA and Parinacota in Chili, Fig. 2; Siebert and Roverato, 446 2020) and the high velocity of volcanic debris avalanche associated with the blast lateral collapse and 447

fluidization. 448

For the Tutupaca volcanic debris-avalanche deposits, the mean values of a/b ratio and ellipse, around ~1.7 449 and ~3.5 respectively (Table 5) are between the Rio Chili, tilted block-rich debris-avalanche deposits in Peru 450 and the lateral levee from the Mont Dore in French Massif Central (Bernard, 2015;Bernard et al., 2017). The 451 mean ellipse/a/b values around 1.88 characterize the crushing effects (Table 5, Bernard et al., 2019). We 452 differentiate the thermal effect of fragmentation in proximal zone with ellipse/a/b between 0.23 and 1.7 and 453 the transfer of the plane collapse in the median zone showing ridge structures (ellipse/a/b = 2.04-2.78). For 14 a lateral spreading over ~1 km (Fig. 3). These statistical comparisons with other volcanic debris-avalanche 456 units contribute to establish a geomorphological classification of the volcanic debris-avalanche deposits 457 related to kinematic process. Secondary reworking of the Paipatja volcanic debris-avalanche deposits with 458 impact waves and fingering instabilities during flow propagation of the pyroclastic density current must be 459 considered. Successive collapses of the volcanic edifice contribute to the discontinuous units of the debris-460 avalanche deposits. 461 462

Granular flow regime between the debris avalanche and pyroclastic density currents 463 464

Field observations show a reverse grading of the lithofacies assemblage (Socompa, van Wyk de Vries et al., 465 2001;Davies et al., 2010): the HA-DAD is overlain by the DR-DAD interstratified with pyroclastic density 466 current deposits (Samaniego et al., 2015). A similar block-size distribution of the avalanche deposits and the 467 regressions (Eqs. 5-12 in Fig. 8) indicate a similar cataclastic origin with a co-genetic evolution of block 468 lithofacies linked with a sequential syn-cataclastic emplacement (Samaniego et al., 2015;Valderrama et al., 469 2016). 470

The comparison of each block size-fractions with cumulative curves and histograms (Figs. 8-10) help to 471 identify the block lithofacies from proximal impact and cataclastic gradient with granular segregation in 472 flowing mass (Valderrama et al., 2016). Sedimentary parameters show a co-genetic brecciation of block 473 lithofacies (Eqs. 5-12, Fig. 8), which are compared to the impact breccia in French Massif Central. The lava 474 dome brecciations have recorded the propagation of impact waves. The roundness vs. Feret's diameter 475 suggests a co-genetic evolution between the proximal clusters, the abraded and striated blocks in the ridges 476 and the distal block clusters (Eqs. 19-22 in Fig. 10A) due to differentiated breakage during collisional 477 transport. 478 479

Cyclic impact waves and block clusters 480

The dome collapse with explosion is associated with a specific granular flow regime between avalanche and 481 pyroclastic density currents with secondary reworking. The succession of slide blocks is associated to frontal 482 propagation of cyclic impact wave in an extensional context during primary shear propagation generating a 483 clastic matrix (PDC, Mount Saint Helens, Glicken, 1986). Inherited jigsaw-fit textures have recorded the 484 initial dilation of the collapsed edifice (Mount Saint Helens, Glicken, 1986). The inherited shapes of the 485 block lithofacies (a/b = 1.2-2, ellipse = 0.2-2.5) indicate the reworking by impact waves. Imbricated block 486 clusters with jigsaw-fit texture and planar fractures are impacted under the collapse scar (A in Figs. 3A and 487 4A). Proximal imbricated block clusters may be generated during impact waves (Cox et al., 2019). Cyclic 488 impact waves and initial dilation contribute to block cluster growth with jigsaw-fit texture during the first 489 stage of avalanche emplacement. Clusters are disaggregated during shock propagation (Fig. 4A). The rock 15 fragmentation during the proximal impact wave increases the roundness (>1, Fig. 10; Szabo et al., 2015). The 491 propagation of the impact wave with granular oscillatory stress (Bernard and van Wyk de Vries, 2017;Cox et 492 al., 2019) may contribute to produce the imbricated block clusters. Waves during cyclic impact may be 493 considered to cause block cluster growth. 494

Blocks are split into clusters of smaller aggregates during transport (Palmer et al., 1991). Stick-slip 495 oscillations (Sandnes et al., 2011) and an oscillatory relative speed may be considered during impact waves 496 and dilation, which change the apparent coefficient of friction in the proximal zone. The isolated sub-rounded 497 blocks and impacted blocks (D ~1.64-2.83 and ellipse/a/b =1.7-1.8, Tables 4 and5) may be related to cluster 498 disaggregation (Fig. 8B) during shock propagation generating the polymodal clast distributions with a thinner 499 clastic matrix related to polymodal striations of the blocks from the ridges (ellipse/a/b =1.7-1.8, Eqs. 9-12, 500 Fig. 8, Table 5). The cataclastic finer fractions increase the particle-to-particle interactions during flow 501 propagation (Dennen et al., 2014) generating grooves and striations on the abraded surface of the impacted 502 blocks. Textural relationships appear between proximal blocks and the striated blocks from the ridges (Table 503 5) with decreasing values of Riley's circularity. 504 505

An upper collisional regime 506

Differentiated velocities related to transitional regime must be considered between the matrix-rich facies and 507 the block facies (v1 <v2; Glicken, 1998;Caballero and Capra, 2011). Formation of the elongated ridges is 508 attributed to granular segregation and differential block velocities in the flowing mass (Dufresne and Davies, 509 2009). The bimodal clast distributions in the medial zone (ellipse/a/b ~1.7) differentiate the transverse 510 blocks, the elongated ridges and lateral levee with sigmoidal jigsaw-breccias (Fig. 6B-D). The DR-DAD 511 lithofacies contribute to decreasing run-out velocity with localized secondary flow (Socompa, Kelfoun et al., 512 2008;Mont Dore in French Massif Central, Bernard and van Wyk de Vries, 2017) and segregation waves to 513 the flow front (Gray, 2013). 514

A multidirectional switch of mass spreading may be considered, with segregation waves to the flow front 515 (Glicken, 1998). Transverse orientations of blocks in the medial zone implicate a quick stop attributed to a 516 compressive context. The lack of propagation of the proximal conditions contribute to plug flow and granular 517 segregation, generating lateral levees and ridges in the upper collisional flow regime for the median zone 518 (Shea and van Wyk de Vries, 2008;Valderrama et al., 2016). Along lateral levee, rafted blocks with sigmoidal 519 jigsaw-breccias are related to transport by traction in shearing context, generating secondary fractures. 520

We differentiate the parent dome volcanic processes from the breakage due to collisional transport, which 521 increases the roundness from 1 to 1.7, related to the frontal reworking by impact wave (Table 5). An upper 522 collisional regime for block lithofacies generating impact marks is differentiated from basal frictional regime 523 with striations (e.g. Parinacota and Ollagüe in Chile, Clavero et al., 2002, Clavero et al., 2004;El Zaguan, 524 16 generated by the subsequent pyroclastic density current. Shock and brecciation of blocks limit the mixture of 526 lithofacies (e.g. Pichu Pichu in Peru, Legros et al., 2000;El Zaguan, Mexico, Caballero and Capra, 2011). 527

Stick-slip motion at the front of lobe and high-speed of blocks may also be considered (Bartali et al., 2015). 528

Each of the block avalanche deposits and striations present a specific regression for the roundness vs. Feret's 529 diameter diagram (Eqs. 13-17 with R 2 >0.5 in Fig. 9), implying a differentiated evolution of the breakage 530 during collisional transport and granular segregation. Inherited clast shapes with roundness between 0.9 and 531 1.2 are related to a same cataclastic origin. The impact of clasts onto block surfaces (r = 0.5a²/h, Clavero et 532 al., 2002) can be approximated with a <5 cm radius of hemispherical damage zone, and h ~1-5 cm distance 533 that penetrated into the block. Calculated r values between 2.5 and 12.5 cm is in accordance with the 534 surrounded clasts. The impact force F has a value of about 15.7 X 10 10 N by using F = Πa²ρ0 with a typical 535 ρ0 value around ~2.10 9 Pa (Clavero et al., 2002). The clast velocity for making impact marks can be 536 estimated around ~8.86 m.s -1 by using V = (0.5 Πρ0/Mr) 1/2 a² with M ~10 3 kg, a <5 cm and r values between 537 2.5 and 12.5 cm (Clavero et al., 2002), in accordance with impact marks analysis on clast faces of Panum 538 block lithofacies (Mono Craters, CA, Dennen et al., 2014). The avalanche velocity in the middle zone 539 (around ~3 and 6 km from source, Clavero et al., 2002) is considered between 15.5 and 39.6 m.s -1 by using v 540 = (2gH) 1/2 . Localized striations and grooves can be attributed to the peak velocity at the flow front. The 541 inherited shapes of the lava blocks and the co-genetic evolution between the blocks from the ridges and 542 striations may be associated to secondary fracturing with partial decompression during run-out propagation 543 (Bernard et al., 2019). 544

The dome collapse is associated with a specific granular flow regime between avalanche and pyroclastic 545 density currents: cyclic impact waves with disaggregation during shock propagation, and secondary flow 546 with segregation waves. Basal frictional regime with striations is differentiated from higher collisional and 547 cataclastic flow regime generating clast breakage and impact marks (e.g. Parinacota and Ollagüe in Chile, 548 Clavero et al., 2002, Clavero et al., 2004;El Zaguan, Mexico, Caballero and Capra, 2011). 549 550

The frontal reworking 551 552

Logarithmic regressions of the abraded and sub-rounded block lithofacies in the median and distal zones (d 553 ~1.64-1.83; ellipse/a/b ~2.7, Eqs. 7-11 in Fig. 8A) are close to those of the impact breccias along avalanche 554 fault zone in French Massif Central (Eq. 12 in Fig. 8A, Bernard and van Wyk de Vries, 2017). The Riley's 555 circularity (Table 5, see Supplemental File 2) shows that the polyhedral blocks with conchoidal fractures and 556 striations of the ridge structures differentiated from sub-rounded blocks in the distal zone. These may be 557 associated to an oriented abrasion and thermal shock generating tilted blocks with cracked surface. The clast 558 breakage with striations due to collisional transport decreases the Riley's circularity (Table 5). These block 559 lithofacies may be associated to crushing impact with frictional temperature during oscillatory stress 17 (Bernard and van Wyk de Vries, 2017) related to decompression in rotational shearing, and matrix 561 segregation. 562

The inherited shapes of the blocks (a/b = 1.2-2; ellipse = 0.2-2.5; Riley's circularity ~0.6 in Table 5; Eq. 14 563 and a ~0.9 in Fig. 9) implied the reworking by impact wave (Cox et al., 2019) and similar processes of 564 abrasion between the imbricated block clusters in the proximal zone, the striated blocks from ridges and the 565 tilted distal blocks. These are close to those of the sheared lava breccias observed along the Pichu Pichu 566 debris-avalanche deposit. Flow traction may contribute to block piles (Cox et al., 2019) up to a point where 567 flows are not competent. Fractal D-values of the surrounded matrix between 0.6 and 2.8 are associated to an 568 extensional disaggregation and granular transport (Table 4, Blekinsop and Fernandes, 2000). A syn-569 cataclastic emplacement of the blocks with a co-genetic evolution is differentiated between the proximal and 570 median zones and between the striated blocks from ridges and the distal, impacted blocks. 571 572

Conclusions 573 574

Field observations together with quantitative sedimentological analyses help to characterize textural 575 variations of the Paipatja avalanche deposits and the associated pyroclastic density current deposits from 576 Tutupaca volcano in southern Peru. A typical lithofacies assemblage with a reverse grading shows jigsaw 577 breccias, impacted block clusters and striations associated with the interaction between the debris avalanche 578 and the subsequent pyroclastic density currents. 579

Cyclic impact waves and initial dilation of the Tutupaca lava dome have contributed to produce jigsaw 580 breccias and imbricated block clusters during the first stage of avalanche emplacement. Cluster 581 disaggregation during shock propagation contribute to an upper collisional regime, generating isolated blocks 582 with striations. Transverse blocks, lateral levee and ridges are associated to a switch of mass spreading with 583 granular segregation. The frontal reworking by impact wave with extensional disaggregation contributes to 584 generate impacted block clusters in distal zone. From the statistical dataset, a few regressions have been 585

established indicating the same cataclastic origin with a co-genetic evolution of block lithofacies. 586 Sequential events of syn-emplacement processes during impact waves have been established related to 587 volcanic debris-avalanche units and pyroclastic density current deposits. These observations help to constrain 588 the collisional shearing contact between avalanche units and associated pyroclastic density currents, and help 589 to explain the block cluster growth and the block disaggregation correlated to sequential syn-emplacement 590 processes of debris avalanche units with associated pyroclastic deposits. 591

The deposits at Tutupaca are exceptional for their freshness and clarity, and lack of disturbance. This area is 592 an important record of lava dome collapse and debris avalanche and pyroclastic flow interaction. 708 712 713 Fig. 2. Area (km 2 ) vs. volume (km 3 ) of volcanic debris avalanche deposits on double log graph: Mount 714 Shasta and Mount Saint Helens in the USA (Glicken, 1986;Siebert et al., 1987); Bezymianni in Kamchatka 715 (Siebert et al., 1987); Parinacota in Chile (Clavero et al., 2002;Legros, 2002); Tutupaca in Peru (Samaniego 716 et al., 2015;Valderrama et al., 2016); Soufrière in Guadeloupe (Boudon et al., 1984) Roundness (R, Blott and Pye, 2008;Crawford and Mortensen, 2009;Bernard, 2015). 842 843Feret's Diameter (FD)
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The longest distance between two parallel tangential lines 5. Mean values of block shape parameters and striations from SPO and shape analysis 875 using the software ImageJ (404 blocks, see Supplemental File 2; Launeau and Robin, 2005;Blott and 876 Pye, 2008;Crawford and Mortensen, 2009;Bernard, 2015) Cumulative % vs. long clast-axis on double log graph. The exponent h of size distributions were 885 estimated from the power regressions (a-k) by the methods of the least squares (R 2 >0.9 in Table 4, Eq. 6 886

in Suzuki-Kamata et al., 2009). The h values obtained for each structural unit ranged from 6.7 to 537.9 887 cm for block lithofacies and from 5.94 to 44.68 cm for striations. From following equation 2h + D = 3 888 (Eq. 7 in Suzuki-Kamata et al., 2009) 
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The negative values of fractal dimension have been removed in Table 4 (See Supplemental file 1) and the standard errors (<10 -3 ) related to photographic shot geometries have been considered (lines 138-140).

Introduction

Volcanic debris-avalanche deposits are often associated with pyroclastic density currents and lahar deposits (i.e. Mount Saint Helens in the USA, Glicken, 1986), suggesting interactions during flow propagation. The stratigraphic relationships between the associated syn-eruptive volcanic deposits are described, implying differential kinematic between the mass flow such as striations and grooves on clast faces related to domecollapse generating avalanche deposits interstratified between pyroclastic units (Mono Craters, CA, Dennen et al., 2014); matrix transformations into lahar deposits (Misti in Peru, Bernard et al., 2017). Block lithofacies are rarely used to characterize the differential movements inside the mass flow during syn-eruptive collapse.

A basal frictional regime with striations is differentiated from an upper collisional cataclastic flow for block lithofacies (e.g. Parinacota and Ollagüe in Chile, Clavero et al., 2002;Clavero et al., 2004;El Zaguan, Mexico, Caballero and Capra, 2011).

Lava dome extrusion produced block lithofacies may be mixed with matrix-rich debris-avalanche deposits (Mount Saint Helens, Glicken 1986; Parinacota in Chile, Clavero et al., 2002;Tutupaca in Peru, Samaniego et al., 2015;Valderrama et al., 2016). Different avalanche structures are identified with such block lithofacies: (1) torevas that are large blocks (L >100 m), which occur in the proximal zones and could constitute up to ~30% of the debris avalanche deposits (Socompa in Chile, Davies et al., 2010). ( 2 Syn-eruptive collapses of a volcanic edifice and volcano-sedimentary processes have been well documented at Las Derrumbadas Volcano, Mexico (Guilbaud et al., 2022), Panum Crater, (Mono Crater, CA, Dennen et al., 2014) and Tutupaca volcano in southern Peru (Samaniego et al., 2015;Valderrama et al., 2016;Mariño et al. 2021). This volcano hosts probably the well-preserved and displayed lava dome related debris avalanche
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Click here to view linked References 2 and pyroclastic density current features that are young and little altered by the climate or human interference.

Two volcanic avalanche units exposed in the northeastern part of the Tutupaca collapsed edifice are interstratified with the pyroclastic density current deposits (Samaniego et al., 2015). Block-rich ridge structures have been attributed to granular segregation and differential block velocities in the flowing mass, suggesting the interactions between debris-avalanche units and the associated PDC deposits.

In this study, we show how semi-quantitative sedimentological analysis of the block lithofacies and mesoscale structures associated to these exceptionally well-preserved volcanic deposits provide information about syn-emplacement processes during a collapsing dome generating pyroclastic density currents. To facilitate the reading of this study, we provide a list of the acronyms in Table 1.

Collisional interactions between volcanic-debris avalanche and pyroclastic density currents: a Stateof-the-Art

The volcanic debris avalanche deposits are commonly associated with PDC. Mount Saint Helens in the USA (Crandell et al., 1984;Glicken, 1986), Bezymianni in Kamchatka (Siebert et al., 1987), Soufrière in Guadeloupe (Boudon et al., 1984) show several sequences of lava dome collapses associated with decompression to the co-magmatic deposits in syn-eruptive sequences. The hot volcanic debris-avalanche deposits, gravitational mass spreading (v = 50-70 m.s -1 ) of the collapsed edifice, interacted with the blastgenerated the PDC, transport of the fluidized mixture of clasts and gas (v ≥100 m.s -1 , Soufrière, Boudon et al., 1984;Mount Saint Helens 1980, Glicken, 1986;Bezyamanni 1956, Saint Augustine, Siebert et al., 1987).

The PDCs are interstratified between the debris avalanche units, related to cyclic volcanoclastic sedimentation. Cyclic phases can be differentiated: precursor stages with seismes and localized collapses with hydrothermal alteration, large collapse of alterated lava-dome edifice with explosion and the blastgenerated the PDC including an open conduit, and different post-collapse eruption. Volcanic lateral blast is associated to the successive shock waves during collapse, with ballistic clasts and sliding blocks generating internal shock structures. Transformations of the debris-avalanche deposits into lahars (v = 30-40 m.s -1 ) by dewatering have been observed during initiation of pyroclastic flow such as Mount Saint Helens (Glicken, 1986).

Deposit structures have been formed by interactions between the moving avalanche and the superposed PDC, implicating a strong frictional contact. We observed aggregation of lava block clusters (Taranaki, [START_REF] Zernack | Sedimentary signatures of cyclic growth and destruction of stratovolcanoes: a case study from Mt Taranaki, New Zealand[END_REF] with brechification and curviplanar surfaces related to blocky morphology interactions, pyroclastic slump blocks with progressive disaggregation of blocks, fingering segregation related to ridge structures (Tutupaca, Samaniego et al., 2015;Valderrama et al., 2016), striations and flow bands (Lastaria in Chile, Naranjo and Francis, 1987) with distal digitations related to weak pyroclastic material.

Different generations of striations have been described related to sliding mode transport during interactions between no-cohesive avalanche lithofacies and PDC: striations of the bedrock in scar (Mount Saint Helens, Glicken, 1986); grooves and striations at the base and the underlying substratum; and parallel grooves and furrow at the base and the upper part of faulted megablocks (Gran Canaria, Spain, Mehl and Schmincke, 1999). We differentiate an upper collisional regime with impact marks at the surface of block lithofacies (Parinacota and Ollague in Chile, Clavero et al., 2002;Clavero et al., 2004). Impact marks and linear trends appear concentrated on one side of blocks, showing conchoidal fractures related to collisional interactions between the blocks.

We examine how block lithofacies of volcanic debris avalanche deposits interact with PDC to generate block clusters and grooves with striations related ridges structures. We show how semi-quantitative sedimentological analysis of the block lithofacies and mesoscale structures provide information about synemplacement processes such as the force F of impact of clasts onto block surfaces and the clast velocity for making impact marks (Clavero et al., 2002).

Analytical methods

From the field observations on the debris-avalanche units, we have described the textural variations of the block lithofacies assemblages and assessed their relationships to avalanche fault zones. A semi-quantitative sedimentological analysis was conducted to characterize block distributions (Table 2). From these data, we were able to differentiate the block lithofacies in each zone associated with cataclastic gradient between the avalanche units and pyroclastic density current deposits (Samaniego et al., 2015;Valderrama et al., 2016). To facilitate the reading of this study, we provide a list of the acronyms in Table 1.

Field observations and outcrop analysis

The lithology of different outcrops were identified from proximal to distal zones to characterize the discontinuous block-rich lithofacies, related to interactions between volcanic avalanche and pyroclastic density current deposits. From field observations and Google Earth imagery, the block-rich avalanche units were described and mapped according to stratigraphic and geomorphological context and avalanche structures (Samaniego et al., 2015;Valderrama et al., 2016).

Quantitative morphological data such as area (S), thickness (T) and volume (V = ST; Table 1) on the surface avalanche deposits are calculated from the mapped surfaces and georeferenced Google Earth images (Samaniego et al., 2015;Valderrama et al., 2016). These morphological data are compared to other avalanche deposits worldwide such as those emplaced around Mount Saint Helens and Mount Shasta in the USA (Crandell et al., 1984;Glicken, 1986), Bezymianni in Kamchatka (Siebert et al., 1987), Parinacota in Chile (Clavero et al., 2002), Soufrière in Guadeloupe (Boudon et al., 1984) and Mont Dore in French Massif

Central (Bernard and van Wyk de Vries, 2017). From these examples, we correlate the morphological data with the structural units of avalanche deposits, implying interactions between lava dome sector collapse and pyroclastic density currents. The contacts between the block lithofacies and matrix textures of volcanic debris-avalanche deposits with interstratified PDC were analyzed. Lithostratigraphic sections were established and correlated with textural variations.

The use of the Shape Preferred Orientation 2003 software (Fig. 1A, SPO, Launeau and Robin, 2005) provided a semi-quantitative description of block avalanche units, allowing us to estimate imbrication of 508 blocks and block axial distributions with the inertia and intercepts method. Image analysis of the block lithofacies and mesoscale structures provide relative information because photographs can be affected by perspective. Two-dimensional shape parameters of blocks, such as the a/b ratio (the largest axis / minor axis)

and sectional ellipse values from system of linear equations (see Launeau and Robin, 2005 for mathematical definitions), have been calculated, to characterize block fabric related to syn-emplacement structures (Bernard, 2015;Bernard and van Wyk de Vries, 2017;Bernard et al., 2019), together with striations and grooves in blocks. Ellipse/a/b values contribute to establish textural classes of avalanche fault zones (~2.14 for the plane collapse, 1.75 to 2 for the crushing, a <1.7 for the thermal effect of fragmentation, Bernard et al., 2019). Mesostructures such as fractures and striations from 2 mm to 20 cm were also analyzed.

Sedimentary analysis

From SPO analysis (Launeau and Robin, 2005) of the blocks, the fractal distributions were used to compare transport and cataclastic process acting on each avalanche unit. Each cumulative frequency is plotted versus clast long-axis on double-logarithmic graphs. Fractal dimensions h and D of size distributions were estimated from the power regressions (Table 4; see Supplemental File 1; Suzuki-Kamata et al., 2009). The cumulative curves of the clast-size distributions vs. a/b (Fig. 8) were compared to distinguish the block avalanche units from proximal to distal zones. The calculated block-size distributions estimated from 41 outcrop photographs with the inertia and intercepts methods using the SPO analysis (from metric-size blocks to clasts >10 cm; Fig. 8B; Launeau and Robin, 2005). The longest axis of 404 block outlines were measured and counted per image area from the photographs. The normalized frequency histograms (Launeau and Robin, 2005) were produced by grouping the longest axis of blocks (cm) into 100-cm bins (number of size intervals) and normalizing the number of occurrences in each bin to the total number of measurements from automatic image analysis. The sectional effects have been considered (Launeau and Robin, 2005). These data contribute to differentiate the effect of cataclasis between each fraction correlated with different structural units from proximal to distal zones. The subdued blocks and clasts below 10 cm are not considered related to resolution limits.

The shape analysis using the ImageJ Plugin "Gold morph" has been applied to 404 blocks and 635 striations of the avalanche units to compute minor and major axis length, Feret's diameter defined as the longest distance between two parallel tangential lines, perimeter and convex perimeter, radii of the smallest inscribed and largest circumscribed circles (Fig. 1B; Table 3; Crawford and Mortensen, 2009). From these data, we calculate the a/b ratio, the roundness defined as the ratio of the perimeter to convex perimeter, and the Riley's circularity, the square root of the ratio of the diameter of the largest inscribed circle to the diameter of the smallest circumscribed circle of the volcanic clast (Table 3, Blott and Pye, 2008;Bernard, 2015). The values of Riley's circularity are less than 1 for the non-spherical volcanic clasts (Table 5).

To characterize the two-dimensional shape of mesoscale structures, we took 5.9 megapixel photographs of abraded flat surfaces of two blocks with a digital camera. A digital camera (6.2-18.6 mm lens, 35-105 mm focal length) image at a camera distance of <20 cm had a standard error for mean distortion around ~10 -3 . All the striations observed in the median zone have been quantified by using high-resolution images (3648 X 2736 pixels) of two block faces. Abraded flat surfaces of the two megablocks on these scales contribute to preserve geometries of these grooves and striations with circular depressions (~1-5 cm depth, 2-3 mm wide).

These are enough to generate semi-quantitative analysis using the ImageJ Plugin "Gold morph" and SPO (566 mesoscale structures, Launeau and Robin, 2005;Blott and Pye, 2008;Crawford and Mortensen, 2009).

The roundness, the Riley's circularity, the a/b ratio, ellipse, fractal D-values of each mesoscale structure have been calculated. The calculated standard errors characterize the shape variations between the blocks rather than the measurements' uncertainty. Moreover, the calculated standard errors for image analysis are between 0.03 and 0.3 for a/b ratio and around ± 0.9 for ellipse values (Launeau and Robin, 2005; Table 5).

Several statistical regressions (Eqs. 1-21 in Figs. 2 and 8-10) have been established to characterize the evolution of block shape and striations related to cataclastic processes between the volcanic debris-avalanche units and pyroclastic density current deposits. Figure 9 shows the evolution of the roundness with Feret's diameter for block lithofacies and striations. Figure 10 shows the evolution of the roundness with Feret's diameter for block clusters. The intersecting points between few regressions indicate similar values of shape parameters related to the inherited clast shape for lava blocks and co-genetic relationships between block lithofacies.

Statistical and shape parameters were compared with those from other avalanche units in the Andean Central Volcanic Zone such as the Pichu Pichu debris avalanche deposit, and the matrix of the ridges from the Tutupaca volcanic debris-avalanche deposits (Bernard, 2015;Valderrama et al., 2016;Bernard et al., 2019).

The impact of clasts onto block surfaces (Clavero et al., 2002) can be approximated as r = 0.5a²/h with r, radius of spherical portion of clasts; a, radius of hemispherical damage zone, and h, distance that penetrated into the block. The force F of impact is given by Clavero et al. (2002):

F = Πa²ρ0
where ρ0 is the hardness of the material. The clast velocity for making impact marks can be estimated by using V = (0.5 Πρ0/Mr) 1/2 a² with M, the mass of the rock (Clavero et al., 2002). The avalanche velocity in the middle zone is considered by using v = (2gH) 1/2 .

A combination of several semi-quantitative methods has been used to determine (Table 1): (1) the links between the different block-rich units related to the debris avalanche and the associated pyroclastic density currents;

(2) the quantitative sedimentary comparisons of the block lithofacies to define the conditions generating these deposits;

(3) the in-motion controls and the dynamic cataclasis during the differential sedimentary emplacement between the volcanic debris-avalanche units and the pyroclastic density current deposits.

Geological and geomorphological context of the study area

Tutupaca volcanic complex and the geomorphological context

The Tutupaca volcanic complex (~5815 m on above sea level, Fig. 3) is composed by three edifices: an eroded basal edifice (Lower to Middle Pleistocene, Marino et al., 2021) with strong hydrothermal alteration;

the Western Tutupaca peak, which was eroded by the late Pleistocene glaciers, and the Holocene Eastern peak composed of seven coalescing lava domes (Holocene, domes I to VII, Fig. 3B, Samaniego et al., 2015;Valderrama et al., 2016;Marino et al., 2021), constructed on the older hydrothermally-altered basal edifice.

The activity of the recent domes is historic (about 218±14 calBP), and little altered by the arid, stable, cold climate, or by human activity, apart from a few small tracks and limited mining exploration excavations. The area is mostly wild, and in its natural state. The lava domes of the Eastern Tutupaca peak are cut by a horseshoe-shaped amphitheater open to the northeast, with an orthogonal direction to the N140° regional faults. From this, debris avalanche and pyroclastic density current deposits extend, are preserved with very little modification from their initial state (there is some limited frost shattering, and ice related solifluxion).

Geomorphological parameters on the surface avalanche deposits associated with PDC are calculated and compared to other avalanche deposits worldwide such as those emplaced around Mount Saint Helens and Mount Shasta in the USA (Crandell et al., 1984;Glicken, 1986), Bezymianni in Kamchatka (Siebert et al., 1987), Soufrière in Guadeloupe (Boudon et al., 1984). Impact marks of Parinacota debris avalanche in Chile (Clavero et al., 2002) and pseudotachylite impact in French Massif Central (Bernard and van Wyk de Vries, 2017) are considered. A relationship between area (A) and volume (V) is calculated for the Tutupaca units with A = 28.07 V 1.01 (Eq. 1 in Fig. 2). These are compared to the power regressions of other volcanic debrisavalanche deposits (Eqs. 2-4 in Fig. 2, Glicken, 1986;Clavero et al., 2002;Legros, 2002;Bernard and van Wyk de Vries, 2017). We differentiate an intersecting point A with area around ~140 and 180 km 2 and volume between 5 and 7 km 3 . Samaniego et al., 2015;Valderrama et al., 2016). Stratigraphic and textural variations are correlated to the syn-emplacement structures. The hydrothermally rich debris avalanche deposit (HA-DAD, L = 6-8 km, V <1 km 3 ; H/L = 0.17-0.23, Samaniego et al., 2015), that involved large quantities of the basal edifice, is characterized by torevas (H = 20-40 m, L = 1.5 km), long lateral levees (L = 1.5 km) and hummockystructures (L = 200-800 m, H = 20-40 m) up to 4-6 km from the scar (Samaniego et al., 2015;Valderrama et al., 2016).

The Paipatja debris-avalanche deposits

Block ridge structures and levees are observed between 2 and 6 km from the amphitheater (Valderrama et al., 2016). In the median zone, elongated and sub-parallel ridge structures (w = 5-10 m, H = 2-5 m, L = 150-400 m, Fig. 3A), regularly spaced, are related to interstratified pyroclastic density current deposits between two avalanche units, implying a syn-collapse explosive eruption at Tutupaca volcano (Samaniego et al., 2015).

The hydrothermally rich debris avalanche deposit is covered by Paipatja pyroclastic density current deposits (P-PDC, ~218 aBP, sections B to E in Fig. 3A).

A dome-rich debris-avalanche deposit (DR-DAD of Samaniego et al., 2015) overlain the P-PDC unit in the median zone (section B in Fig. 3). Cross-sections within the ridge structures reveal the dipping and undulating contacts between the P-PDC units and the DR-DAD (section B in Fig. 3A). The P-PDC, on the upper part of HA-DAD, appears thickest between the ridge structures and around the largest blocks (Valderrama et al., 2016). We have observed dome fragments (from centimeters to several meters in size), such as metric-size dacitic blocks and prismatically jointed blocks showing inherited jigsaw-cracks, cataclastic and shearing structures. The abraded and sub-rounded blocks are subdued in the underlying avalanche deposit and PDC.

The Tutupaca volcanic debris-avalanche deposits show different units with specific granular assemblages (30% of HA-DAD and 70% of DR-DAD, Valderrama et al., 2016). Dense blocks (3-20 cm in diameter) and bombs from the P-PDC unit (20-40%) have highly similar chemical content (~65-68 wt.% SiO2, Samaniego et al., 2015), similar to the brecciated lava domes. A progressive decrease in block-size is observed with distance. Large blocks (~0.5-1 m in diameter) are occasional. The few distal blocks (>1 m in length)

surrounded by P-PDC unit are associated to the underlying avalanche deposit.

The syn-emplacement block lithofacies

Using the Google Earth imagery, we differentiate different block lithofacies from proximal to distal zones.

The eastern flank collapse of the Tutupaca volcano shows at the summit two brecciated zones related to lava dome collapse (domes V to VII in Fig. 3B, Fig. 4A). We observe along the East crest (1 in Fig. 4A) angular dome fragments adjacent to the PDC (in red in Figs. 3A and4A) without preferential orientation, and on the west side (2 in Fig. 4A) an impacted and crushed zone showing imbricated block clusters with tabular planar surfaces. The long axis of 56 blocks are tilted N112E. In the median zone, block ridge structures show an isolated polyhedral block (white arrow in Fig. 4B), which exhibits planar surfaces with angular edges. We observe in downstream sigmoid fish of clasts, which appears disaggregated and truncated in N40E, related to the interactions between avalanche and the blast-generated the PDC (Fig. 4B). The isolated distal blocks (>1 m in length, Fig. 4C) surrounded by P-PDC unit are transverse with extensional lateral spreading (N176E, Fig. 4C).

The textural and sedimentological variations of the block avalanche lithofacies (HA-DAD and DR-DAD) are described with associated volcanic deposits to correlate syn-emplacement process between volcanic debrisavalanche units and pyroclastic density current deposits.

Results

The SPO analysis of the block lithofacies contribute to a semi-quantitative description of block deposits. The comparison of each block lithofacies with cumulative curves and fractal distributions helps to distinguish the deposits. The analysis of the block shapes has enabled us to identify the inherited structures and the relationships between the proximal and distal block clusters.

Block lithofacies

In the Paipatja DAD, we have observed block clusters and block avalanche lithofacies with a specific distribution on and between blocks. From proximal to distal zones, the block characteristics were quantified using the software ImageJ and SPO analysis (>400 blocks, Launeau and Robin, 2005). We characterized the localized mesoscale structures observed on few blocks associated with the ridged structures.

Block clusters lithofacies of DR-DAD

Imbricated block clusters are localized under the collapse scar (A in Figs. 3A and4A). The dacitic dome fragments (from centimeters to several meters in size) present similar chemical characteristics (64.5-65.9 wt. % SiO2, Samaniego et al., 2015). We observed impacted blocks with planar fractures and undulated borders (Fig. 5A), and tilted blocks in imbricated piles. Inherited clasts are observed with jigsaw-fractured breccias showing polymodal distribution of the clasts and ellipse/a/b = 5.1 (Fig. 5B). Block-rich ridge structures of the Paipatja DAD (B in Fig. 3A) contain abraded and sub-rounded blocks, which are also found in the underlying avalanche deposit and P-PDC (ellipse/a/b = 2.3-2.6 in Fig. 5C). There are also impacted blocks (Fig. 5D)

showing polymodal distribution of the clasts. In the Paipatja plain, abraded and sub-rounded blocks are found isolated at the front of P-PDC (Fig. 3). Along the lateral levee, in the proximal zone, we have observed large blocks with sigmoidal jigsaw-breccias (Fig. 5E) and a bimodal clast distribution. Angular lava blocks (~1 m in length) are impacted between aligned and subdued blocks (Fig. 5F), which exhibit planar surface with conchoidal fractures or abraded surface with striations. We differentiate block clusters and ridged avalanche units (ellipse/a/b = 2.3-2.5, DR-DAD, Fig. 5G) from imbricated block clusters (ellipse/a/b = 1.74) and subdued and tilted blocks in the distal zone (ellipse/a/b ~2.12, PDC, Fig. 5H).

Block avalanche lithofacies

Some transverse blocks appear isolated or aligned in N30° (DR-DAD, Figs. 3B and6A), parallel to the elongated depressions. We observed sub-rounded faces with striations in upstream and planar faces with conchoidal fractures in downstream. Along the lateral levee, we described quenched and cracked surfaces in the upper part with jigsaw-fit texture and imbricated subangular clasts along basal contact of blocks (Fig. 6B). A large polyhedral block (~3 m high and ~5 m length, HA-DAD, Fig. 6C) on the ridge crest presents an oriented abrasion: sub-rounded face in the front and planar face in the downstream. In the PDC deposits, a bimodal distribution of the surrounded clasts is quantified. The sub-rounded lava block displays two distinct surfaces: a quenched and cracked surface in the upper part and an altered vitreous phase in the lower part. A distal sub-rounded block, surrounded by the P-PDC deposits, appears isolated (Fig. 6D) with bimodal distribution of the surrounded clasts related to the PDC deposits. Subdued blocks exhibit abraded surfaces with striations.

Grooves and striations

At 5.5 km from the collapse scar, a few blocks associated with the ridge structures (Fig. 7A; Valderrama et al., 2016) exhibit grooves and striations with roughly circular depressions on the upstream, abraded face.

These localized mesoscale structures are often irregular and grouped in the lower part of the abraded and striated surfaces. The largest striations (>3 cm wide) are parallel to each other (at 3.19°, Fig. 7) and observed in the upper part of the block face. There are small striations perpendicular to the grooves (Fig. 7B). Grooves or furrows 1-5 cm depth ranged from roughly circular (<5 cm in diameter) to elliptic (~8-15 cm for longest axis) in shape. Fractal D values, calculated from exponent h of power regressions (100 striations, Table 4; Suzuki-Kamata et al., 2009), are 1.09 in the 8.4-46.4 cm mark-size range.

The macroscopic characteristics of grooves and striations with circular depressions were used for the shape analysis with the software ImageJ and SPO analysis (566 mesoscale structures, Launeau and Robin, 2005).

Grooves and striations show polymodal distributions, with ellipse/a/b around ~5.1-5.9 (Fig. 7A-B). In the lower part of the block face, basal striations (~2-3 mm wide) with perpendicular diaclasis are differentiated.

Fractal D values, calculated from exponent h of power regressions (90 striations, Table 4, Suzuki-Kamata et grooves in blocks. This comparison is intended to characterize the cataclastic evolution with co-genetic relationships between volcanic debris-avalanche units and P-PDC, including the inherited clast shape for lava blocks. The mean values of a/b ratio and ellipse (~1.7±0.03 and 3.5±0.15, Table 5) are different from the clasts observed in the matrix of ridged units (DR-DAD, ~1.69±0.05 and 2.72±0.09, 1891 clasts from SPO analysis, Bernard, 2015). The calculated standard errors indicate the measurement errors and the sum of internal variability between the block shape parameters. These values imply distinct evolution between the avalanche block lithofacies and PDC.

Avalanche block lithofacies

We distinguish an inherited clast shape for lava blocks with a/b = 0.9 and ellipse = -3.5 implying textural relationships between the block lithofacies of HA-DAD and DR-DAD. Three regressions characterize the roundness vs. maximum Feret's diameter (Eqs. 13-17 in Fig. 9) for the block lithofacies. Two regressions (Eqs. 14-15 in Fig. 9) characterize the block lithofacies observed in the proximal and median zones. These values are compared to the breccias forming the ridged avalanche matrix (HA-DAD and DR-DAD) and the distal lobe of the Pichu Pichu debris-avalanche deposit (Eqs. 14-15 and 17 in Fig. 9; Bernard, 2015).

Distal block lithofacies

Three points of intersection indicate similar values of roundness for different zones of cataclasis (a-c in Fig. 9A). We distinguish an inherited clast shape with roundness around ~0.9 (a, Fig. 9), indicating textural relationships between the tilted distal blocks (PDC) and the blocks from the ridges, close to those of the sheared lava breccias in the distal lobe of the Pichu Pichu debris-avalanche deposit. The intersecting points b and c with roundness between 1.05 and 1.08 imply a co-evolution between the impacted blocks (Eq. 14)

observed in the proximal and distal zones and the sheared sigmoid along the lateral levee (Eq. 15 in Fig. 9).

Grooves and striations

The values of a/b = 3.2 and ellipse = 15 are correlated to a co-genetic evolution between the grooves and striations, the blocks from ridges and the distal, impacted blocks (PDC). The mean values increase for roundness from 1 to 1.7 and ellipse/a/b from 0.2 to 2.7 (Table 5), while the values of Riley's circularity decrease. A regression characterizes the roundness vs. maximum Feret's diameter (Eq. 13 in Fig. 9) for the striations. The intersecting point c (Eqs. 13-14 in Fig. 9) with Feret's diameter <0.05 m and roundness around ~1.05 characterizes the inherited clast shape of the proximal block lithofacies generating striations and impact marks in the ridged debris-avalanche unit. We observed decreasing values of Riley's circularity related to Feret's diameter (Table 5).

5.4. Block clusters and shape variations More than six cluster structures have been described with the shape analysis using the software ImageJ and SPO analysis from 312 blocks in the unconsolidated avalanche matrix from the HA-DAD (Fig. 10). Lava between tilted blocks in the distal zone (ellipse = 2.7). Syn-cataclastic emplacement of block clusters with a co-genetic evolution of shape parameters may be envisaged.

The roundness is high (>1) for the block clusters, close to those of the experimental crushed stones (Janoo, 1998). Four regressions characterize the roundness vs. Feret's diameter (Eqs. 18-21 in Fig. 10) between 0.05 and 1 m. The increasing macro-roundness reflects the effects of clast crushing due to the collisional transport and cataclastic sorting between the proximal and distal zones. We have highlighted a power regression for the imbricated block clusters in the proximal zone with roundness >1 (Eq. 18 in Fig. 10). Two categories of regressions are identified for the impacted and tilted block clusters in the distal zone with roundness between 0.9 and 1.08 (Eqs. 19-20 in Fig. 10). Three points of intersection (a-c in Fig. 10) indicate similar values of block roundness for cluster structures characterized by different regressions: between impacted and tilted blocks in distal zone (a = 1. 05,; between distal clusters and the striated blocks from the ridges (b ~1, Eqs. 18-20) or proximal breccias with jigsaw features. We distinguish an inherited block shape for lava blocks with roundness around ~0.9 and Feret's diameter = 0.05 m (c in Fig. 10), implying textural relationships between these block clusters and sheared contact of the Pichu Pichu volcanic debris-avalanche deposit.

The Riley's circularity of block clusters shows decreasing values from the proximal to distal zones (Table 5, see Supplemental File 2) related to Feret's diameter, implying textural relationships between the block clusters with the run-out distance.

Discussion

From field observations, we used complementary methods to describe surface and internal structures of the Paipatja volcanic debris-avalanche deposits of the Tutupaca volcano and the associated pyroclastic density currents. The quantitative sedimentary analysis contributes to correlate the block clusters, the block avalanche lithofacies and mesoscale structures with different stages of cataclastic flow regime between the DR-DAD and the associated pyroclastic density currents from proximal to distal zones. Quantitative morphological and sedimentological parameters are correlated and compared to other avalanche deposits worldwide, showing that the brecciation have recorded the collisional interactions between lava dome sector collapse and pyroclastic density currents.

Classification of volcanic debris-avalanche deposits

The volcanic debris avalanche deposits are commonly associated with PDC. The area and volume of the volcanic debris avalanche deposits associated with PDC are compared to Bezymianny eruptive sequence (Siebert et al., 1987) showing lava dome collapses with hydrothermally alteration interacted with the blastgenerated the PDC (Fig. 2): Mount Saint Helens in the USA (Glicken, 1986), Bezymianni in Kamchatka (Siebert et al., 1987), Soufrière in Guadeloupe (Boudon et al., 1984). A relationship between the area (A) and volume (V) for the Tutupaca units is compared to the power regressions of other volcanic debris-avalanche deposits such as Mount Shasta and Mount Saint Helens in the USA (Fig. 2, Glicken, 1986;Siebert et al., 1987;Legros, 2002). The fault breccias have recorded the propagation of impact waves. The Tutupaca volcanic debris-avalanche deposits with H/L around ~0.15-0.2 (12-13 km 2 , <1 km 3 , L = 6-8 km, Samaniego et al., 2015;Valderrama et al., 2016) show different units characterized by granular segregation and fingering instabilities (Figs. 3-4, Valderrama et al., 2018). A power regression (Eq. 2 in Fig. 2) characterizes the Tutupaca units compared to the proximal scar of the Mount Saint Helens deposits showing striations of the bedrock and the impacted distal zone in French Massif Central. This co-evolution of geomorphological parameters may be related to digitate shape of the avalanche deposits (Samaniego et al., 2015). The largest volcanic avalanche deposits (Mount Shasta, Legros, 2002) appears different from other volcanic debrisavalanche deposits in accordance with field observations, on ridge structures, striations, and block clusters.

The geomorphological parameters of the largest avalanche units tend toward similar values (Eqs. 1-4 in Fig. 2). We differentiate the intersecting point A (Fig. 2) with an area around ~140 and 180 km 2 and volume between 5 and 7 km 3 , implying a convergent evolution between the largest structural units with run-out distance of over 22 km (Mount Saint Helens in the USA and Parinacota in Chili, Fig. 2; Siebert and Roverato, 2020) and the high velocity of volcanic debris avalanche associated with the blast lateral collapse and fluidization.

For the Tutupaca volcanic debris-avalanche deposits, the mean values of a/b ratio and ellipse, around ~1.7 and ~3.5 respectively (Table 5) are between the Rio Chili, tilted block-rich debris-avalanche deposits in Peru and the lateral levee from the Mont Dore in French Massif Central (Bernard, 2015;Bernard et al., 2017). The mean ellipse/a/b values around 1.88 characterize the crushing effects (Table 5, Bernard et al., 2019). We differentiate the thermal effect of fragmentation in proximal zone with ellipse/a/b between 0.23 and 1.7 and the transfer of the plane collapse in the median zone showing ridge structures (ellipse/a/b = 2.04-2.78). For the Tutupaca example, we have a dome collapse with a cataclastic gradient and a granular segregation during a lateral spreading over ~1 km (Fig. 3). These statistical comparisons with other volcanic debris-avalanche units contribute to establish a geomorphological classification of the volcanic debris-avalanche deposits related to kinematic process. Secondary reworking of the Paipatja volcanic debris-avalanche deposits with impact waves and fingering instabilities during flow propagation of the pyroclastic density current must be considered. Successive collapses of the volcanic edifice contribute to the discontinuous units of the debrisavalanche deposits.

Granular flow regime between the debris avalanche and pyroclastic density currents

Field observations show a reverse grading of the lithofacies assemblage (Socompa, van Wyk de [START_REF] Van Wyk De Vries | A gravitational spreading origin for the Socompa debris avalanche[END_REF]Davies et al., 2010): the HA-DAD is overlain by the DR-DAD interstratified with pyroclastic density current deposits (Samaniego et al., 2015). A similar block-size distribution of the avalanche deposits and the regressions (Eqs. 5-12 in Fig. 8) indicate a similar cataclastic origin with a co-genetic evolution of block lithofacies linked with a sequential syn-cataclastic emplacement (Samaniego et al., 2015;Valderrama et al., 2016).

The comparison of each block size-fractions with cumulative curves and histograms (Figs. 8-10) help to identify the block lithofacies from proximal impact and cataclastic gradient with granular segregation in flowing mass (Valderrama et al., 2016). Sedimentary parameters show a co-genetic brecciation of block lithofacies (Eqs. 5-12, Fig. 8), which are compared to the impact breccia in French Massif Central. The lava dome brecciations have recorded the propagation of impact waves. The roundness vs. Feret's diameter suggests a co-genetic evolution between the proximal clusters, the abraded and striated blocks in the ridges and the distal block clusters (Eqs. 19-22 in Fig. 10A) due to differentiated breakage during collisional transport.

Cyclic impact waves and block clusters

The dome collapse with explosion is associated with a specific granular flow regime between avalanche and pyroclastic density currents with secondary reworking. The succession of slide blocks is associated to frontal propagation of cyclic impact wave in an extensional context during primary shear propagation generating a clastic matrix (PDC, Mount Saint Helens, Glicken, 1986). Inherited jigsaw-fit textures have recorded the initial dilation of the collapsed edifice (Mount Saint Helens, Glicken, 1986). The inherited shapes of the block lithofacies (a/b = 1.2-2, ellipse = 0.2-2.5) indicate the reworking by impact waves. Imbricated block clusters with jigsaw-fit texture and planar fractures are impacted under the collapse scar (A in Figs. 3A and4A). Proximal imbricated block clusters may be generated during impact waves (Cox et al., 2019). Cyclic impact waves and initial dilation contribute to block cluster growth with jigsaw-fit texture during the first stage of avalanche emplacement. Clusters are disaggregated during shock propagation (Fig. 4A). The rock fragmentation during the proximal impact wave increases the roundness (>1, Fig. 10; Szabo et al., 2015). The propagation of the impact wave with granular oscillatory stress (Bernard and van Wyk de Vries, 2017;Cox et al., 2019) may contribute to produce the imbricated block clusters. Waves during cyclic impact may be considered to cause block cluster growth.

Blocks are split into clusters of smaller aggregates during transport (Palmer et al., 1991). Stick-slip oscillations (Sandnes et al., 2011) and an oscillatory relative speed may be considered during impact waves and dilation, which change the apparent coefficient of friction in the proximal zone. The isolated sub-rounded blocks and impacted blocks (D ~1.64-2.83 and ellipse/a/b =1.7-1.8, Tables 4 and5) may be related to cluster disaggregation (Fig. 8B) during shock propagation generating the polymodal clast distributions with a thinner clastic matrix related to polymodal striations of the blocks from the ridges (ellipse/a/b =1.7-1.8, Eqs. 9-12, Fig. 8, Table 5). The cataclastic finer fractions increase the particle-to-particle interactions during flow propagation (Dennen et al., 2014) generating grooves and striations on the abraded surface of the impacted blocks. Textural relationships appear between proximal blocks and the striated blocks from the ridges (Table 5) with decreasing values of Riley's circularity.

An upper collisional regime

Differentiated velocities related to transitional regime must be considered between the matrix-rich facies and the block facies (v1 <v2; Glicken, 1998;Caballero and Capra, 2011). Formation of the elongated ridges is attributed to granular segregation and differential block velocities in the flowing mass (Dufresne and Davies, 2009). The bimodal clast distributions in the medial zone (ellipse/a/b ~1.7) differentiate the transverse blocks, the elongated ridges and lateral levee with sigmoidal jigsaw-breccias (Fig. 6B-D). The DR-DAD lithofacies contribute to decreasing run-out velocity with localized secondary flow (Socompa, Kelfoun et al., 2008;Mont Dore in French Massif Central, Bernard and van Wyk de Vries, 2017) and segregation waves to the flow front (Gray, 2013).

A multidirectional switch of mass spreading may be considered, with segregation waves to the flow front (Glicken, 1998). Transverse orientations of blocks in the medial zone implicate a quick stop attributed to a compressive context. The lack of propagation of the proximal conditions contribute to plug flow and granular segregation, generating lateral levees and ridges in the upper collisional flow regime for the median zone (Shea and van Wyk de Vries, 2008;Valderrama et al., 2016). Along lateral levee, rafted blocks with sigmoidal jigsaw-breccias are related to transport by traction in shearing context, generating secondary fractures.

We differentiate the parent dome volcanic processes from the breakage due to collisional transport, which increases the roundness from 1 to 1.7, related to the frontal reworking by impact wave (Table 5). An upper collisional regime for block lithofacies generating impact marks is differentiated from basal frictional regime with striations (e.g. Parinacota and Ollagüe in Chile, Clavero et al., 2002, Clavero et al., 2004;El Zaguan, Mexico, Caballero and Capra, 2011). Collisional abrasion may be associated with the dispersive pressure generated by the subsequent pyroclastic density current. Shock and brecciation of blocks limit the mixture of lithofacies (e.g. Pichu Pichu in Peru, Legros et al., 2000;El Zaguan, Mexico, Caballero and Capra, 2011).

Stick-slip motion at the front of lobe and high-speed of blocks may also be considered (Bartali et al., 2015).

Each of the block avalanche deposits and striations present a specific regression for the roundness vs. Feret's diameter diagram (Eqs. 13-17 with R 2 >0.5 in Fig. 9), implying a differentiated evolution of the breakage during collisional transport and granular segregation. Inherited clast shapes with roundness between 0.9 and 1.2 are related to a same cataclastic origin. The impact of clasts onto block surfaces (r = 0.5a²/h, Clavero et al., 2002) can be approximated with a <5 cm radius of hemispherical damage zone, and h ~1-5 cm distance that penetrated into the block. Calculated r values between 2.5 and 12.5 cm is in accordance with the surrounded clasts. The impact force F has a value of about 15.7 X 10 10 N by using F = Πa²ρ0 with a typical ρ0 value around ~2.10 9 Pa (Clavero et al., 2002). The clast velocity for making impact marks can be estimated around ~8.86 m.s -1 by using V = (0.5 Πρ0/Mr) 1/2 a² with M ~10 3 kg, a <5 cm and r values between 2.5 and 12.5 cm (Clavero et al., 2002), in accordance with impact marks analysis on clast faces of Panum block lithofacies (Mono Craters, CA, Dennen et al., 2014). The avalanche velocity in the middle zone (around ~3 and 6 km from source, Clavero et al., 2002) is considered between 15.5 and 39.6 m.s -1 by using v = (2gH) 1/2 . Localized striations and grooves can be attributed to the peak velocity at the flow front. The inherited shapes of the lava blocks and the co-genetic evolution between the blocks from the ridges and striations may be associated to secondary fracturing with partial decompression during run-out propagation (Bernard et al., 2019).

The dome collapse is associated with a specific granular flow regime between avalanche and pyroclastic density currents: cyclic impact waves with disaggregation during shock propagation, and secondary flow with segregation waves. Basal frictional regime with striations is differentiated from higher collisional and cataclastic flow regime generating clast breakage and impact marks (e.g. Parinacota and Ollagüe in Chile, Clavero et al., 2002, Clavero et al., 2004;El Zaguan, Mexico, Caballero and Capra, 2011).

The frontal reworking

Logarithmic regressions of the abraded and sub-rounded block lithofacies in the median and distal zones (d ~1.64-1.83; ellipse/a/b ~2.7, Eqs. 7-11 in Fig. 8A) are close to those of the impact breccias along avalanche fault zone in French Massif Central (Eq. 12 in Fig. 8A, Bernard and van Wyk de Vries, 2017). The Riley's circularity (Table 5, see Supplemental File 2) shows that the polyhedral blocks with conchoidal fractures and striations of the ridge structures differentiated from sub-rounded blocks in the distal zone. These may be associated to an oriented abrasion and thermal shock generating tilted blocks with cracked surface. The clast breakage with striations due to collisional transport decreases the Riley's circularity (Table 5). These block lithofacies may be associated to crushing impact with frictional temperature during oscillatory stress (Bernard and van Wyk de Vries, 2017) related to decompression in rotational shearing, and matrix segregation.

The inherited shapes of the blocks (a/b = 1.2-2; ellipse = 0.2-2.5; Riley's circularity ~0.6 in Table 5; Eq. 14 and a ~0.9 in Fig. 9) implied the reworking by impact wave (Cox et al., 2019) and similar processes of abrasion between the imbricated block clusters in the proximal zone, the striated blocks from ridges and the tilted distal blocks. These are close to those of the sheared lava breccias observed along the Pichu Pichu debris-avalanche deposit. Flow traction may contribute to block piles (Cox et al., 2019) up to a point where flows are not competent. Fractal D-values of the surrounded matrix between 0.6 and 2.8 are associated to an extensional disaggregation and granular transport (Table 4, Blekinsop and Fernandes, 2000). A syncataclastic emplacement of the blocks with a co-genetic evolution is differentiated between the proximal and median zones and between the striated blocks from ridges and the distal, impacted blocks.

Conclusions

Field observations together with quantitative sedimentological analyses help to characterize textural variations of the Paipatja avalanche deposits and the associated pyroclastic density current deposits from Tutupaca volcano in southern Peru. A typical lithofacies assemblage with a reverse grading shows jigsaw breccias, impacted block clusters and striations associated with the interaction between the debris avalanche and the subsequent pyroclastic density currents. Sequential events of syn-emplacement processes during impact waves have been established related to volcanic debris-avalanche units and pyroclastic density current deposits. These observations help to constrain the collisional shearing contact between avalanche units and associated pyroclastic density currents, and help to explain the block cluster growth and the block disaggregation correlated to sequential syn-emplacement processes of debris avalanche units with associated pyroclastic deposits.

The deposits at Tutupaca are exceptional for their freshness and clarity, and lack of disturbance. This area is an important record of lava dome collapse and debris avalanche and pyroclastic flow interaction. Shasta and Mount Saint Helens in the USA (Glicken, 1986;Siebert et al., 1987); Bezymianni in Kamchatka (Siebert et al., 1987); Parinacota in Chile (Clavero et al., 2002;Legros, 2002); Tutupaca in Peru (Samaniego et al., 2015;Valderrama et al., 2016); Soufrière in Guadeloupe (Boudon et al., 1984) Table 1. List of acronyms and their definitions. Shape analysis Shape analysis with texture of blocks, preferred orientation of block largest axis and shape parameters. Table 3. Clast shape parameters with Feret's Diameter (FD), Riley's circularity (Rc) and Roundness (R, Blott and Pye, 2008;Crawford and Mortensen, 2009;Bernard, 2015).

Feret's Diameter (FD)

The longest distance between two parallel tangential lines 

  Tutupaca volcanic complex and the geomorphological context 186 187 The Tutupaca volcanic complex (~5815 m on above sea level, Fig. 3) is composed by three edifices: an 188 eroded basal edifice (Lower to Middle Pleistocene, Marino et al., 2021) with strong hydrothermal alteration; 189 the Western Tutupaca peak, which was eroded by the late Pleistocene glaciers, and the Holocene Eastern peak 190

  distance. Large blocks (~0.5-1 m in diameter) are occasional. The few distal blocks (>1 m in length) 238 surrounded by P-PDC unit are associated to the underlying avalanche deposit. 239 240 4.3. The syn-emplacement block lithofacies 241 242 Using the Google Earth imagery, we differentiate different block lithofacies from proximal to distal zones. 243

  409see Supplemental File 2) related to Feret's diameter, implying textural relationships between the block 410 clusters with the run-out distance. , we used complementary methods to describe surface and internal structures of the 416 Paipatja volcanic debris-avalanche deposits of the Tutupaca volcano and the associated pyroclastic density 417 currents. The quantitative sedimentary analysis contributes to correlate the block clusters, the block 418 avalanche lithofacies and mesoscale structures with different stages of cataclastic flow regime between the 419 13 morphological and sedimentological parameters are correlated and compared to other avalanche deposits 421 worldwide, showing that the brecciation have recorded the collisional interactions between lava dome sector 422 collapse and pyroclastic density currents. 423 424 6.1. Classification of volcanic debris-avalanche deposits 425 426

Fig. 4 .Fig. 5 .

 45 Fig. 4. The syn-emplacement block lithofacies and block orientations (SPO, Launeau and Robin, 2005) from 741 proximal to distal zones using georeferenced Google Earth imagery. A. Proximal brecciated zones under the 742 scar between domes V to VII: 1. An impacted and crushed zone showing imbricated block clusters without 743 preferential orientation; 2. A tilted zone with N112E angular dome fragments adjacent to the PDC in red; B. 744 Isolated polyhedral block (white arrow) of ridge structures in the median zone showing in downstream N40E 745 disaggregated clasts; C. The transverse and isolated blocks (>1 m in length, N176E) surrounded by P-PDC 746 unit in distal zone. 747

Riley

  

  Figures 9B and 10B with no clear correlations (with R 2 ≤0.5) that we attributed to the shape variations of block lithofacies and striations based on textural parameters have been removed according to reviewers 1 and 2. Supplementary files 1 and 2 focus on the original data used to calculate the fractal dimension, the mean values and standard errors of the shape parameters. We have checked the format of revised manuscript.

  ) Type A hummocks that are large cataclased blocks (H <80 m, w <300 m, L <400 m, Mount Saint Helens,[START_REF] Voight | Catastrophic rockslide-avalanche of May 18[END_REF] Glicken, 1998; Jocotitlán in Central Mexico, Siebe et al., 1992; Parinacota and Taapaca in Chile, Clavero et al., 2002; Clavero et al., 2004) with steep slopes. (3) Longitudinal or transverse ridges (H = 10-30 m, Shea and van Wyk de Vries, 2008; Dufresne and Davies, 2009; Andrade and van Wyk de Vries, 2010),that are attributed to deflection of the mass flow(Valderrama et al., 2018). The alignment of blocks or isolated blocks between 0.01 and 1000 m can be observed in some debris avalanche deposits (Socompa, van Wyk de[START_REF] Van Wyk De Vries | A gravitational spreading origin for the Socompa debris avalanche[END_REF] Shea and van Wyk de Vries, 2008). The frontal lobes thrust the large blocks in distal zones (Jocotitlán,Siebe et al., 1992) showing fluidization with matrix transformations into lahars (Perrier in French Massif Central, Bernard and van Wyk de Vries, 2017). Different mesoscale structures have been described related to specific kinematic context such as gravitational flank collapse with an initial dilation of jigsaw-fit textures (Mount Saint Helens,Glicken, 1986), abrasion and striations along fault planes(Mehl and Schmincke, 1999), collisional textures during transport (El Zaguán in Mexico,Caballero and Capra, 2011), and impact waves with pseudotachylite and gouge along avalanche fault zones (Pichu Pichu in Peru,Legros et al., 2000; Mont Dore in French Massif Central, Bernard and van Wyk de Vries, 2017).

  Samaniego et al. (2015) described the Paipatja debris avalanche, exposed in the northeastern part of the Tutupaca volcano between the amphitheater and the Paipatja plain (L = 6-8 km, S = 12-13 km 2 , T = 25-40 m,

  block clusters (~30-70 vol.%) from 40 cm to 5 m in diameter are impacted and thrust in unconsolidated avalanche matrix. The a/b ratio related to ellipse values show increasing values for the impacted jigsawclusters; and for the tilted block in the distal zone. Similar characteristics appear for the striated blocks from the ridges and the distal clusters. Similar ellipse values are calculated between proximal jigsaw breccias and the tilted and impacted blocks in the distal zone (ellipse = 0.7); between distal clusters (ellipse = 1-1.8) or

  Cyclic impact waves and initial dilation of the Tutupaca lava dome have contributed to produce jigsaw breccias and imbricated block clusters during the first stage of avalanche emplacement. Cluster disaggregation during shock propagation contribute to an upper collisional regime, generating isolated blocks with striations. Transverse blocks, lateral levee and ridges are associated to a switch of mass spreading with granular segregation. The frontal reworking by impact wave with extensional disaggregation contributes to generate impacted block clusters in distal zone. From the statistical dataset, a few regressions have been established indicating the same cataclastic origin with a co-genetic evolution of block lithofacies.

Fig. 1 .

 1 Figures and Tables

Fig. 2 .

 2 Fig. 2. Area (km 2 ) vs. volume (km 3 ) of volcanic debris avalanche deposits on double log graph: Mount

Fig. 4 .

 4 Fig.3. Geological setting of the Paipatja avalanche deposits exposed in the northeastern part of Tutupaca volcanic complex (Southern Peru, modified fromSamaniego et al., 2015; Valderrama et al., 2016). A.Landforms of the avalanche deposits and structures at the North East of the brecciated lava domes from Google Earth with stratigraphic sections. We differentiate the hydrothermal rich avalanche deposit (HA-

Fig. 5 .

 5 Fig. 5. Block clusters of DR-DAD from SPO analysis (Launeau and Robin, 2005). A. Vertical impact of blocks with abraded surface and undulated fractured borders under the erosional amphitheater of collapse scar; B. Impacted jigsaw-clusters with polymodal clast distribution; C. Subdued blocks in transverse ridges; D. Impacted blocks in distal zone with polymodal distribution of the clasts; E. Block along lateral levee with sigmoidal jigsaw-breccias showing a bimodal clast distribution; F. Angular and impacted block between aligned and subdued blocks; G. Block cluster in distal zone; H. Subdued and tilted blocks.

Fig. 6 .

 6 Fig. 6. Textural gradient of block lithofacies of the Paipatja avalanche deposits. A. Transverse blocks with an oriented abrasion: white arrows show striations on upstream sub-rounded faces and planar faces with conchoidal fractures in downstream; B. Large polyhedral block (~3 m high and ~5 m length) with an oriented abrasion, quenched and cracked surface in upper part and sub-rounded lava in altered vitreous phase in lower part; C. Transversal alignment of abraded blocks with bimodal clast distribution from SPO analysis (Launeau and Robin, 2005) related to pyroclastic density current deposits; D. Polymodal clast distribution (SPO analysis, Launeau and Robin, 2005) of pyroclastic density current deposits around a distal sub-rounded block.

Fig. 9 .

 9 Fig. 9. Roundness vs. Feret's diameter (m) of block lithofacies and striations in different zones from shape analysis using the software ImageJ (404 blocks, 635 striations and impact marks; Blott and Pye, 2008; Crawford and Mortensen, 2009). The horizontal lines indicate the Feret's diameter at which roundness stopped increasing. Error bars are smaller than the symbols.

Fig. 10 .

 10 Fig. 10. Roundness vs. Feret's diameter (m) of block clusters from shape analysis using the software ImageJ (Blott and Pye, 2008; Crawford and Mortensen, 2009). The horizontal lines indicate the Feret's diameter at which roundness stopped increasing. Error bars are smaller than the symbols (see Supplemental File 2).

  Dome-rich debris-avalanche deposit HA-DAD Hydrothermally-rich debris avalanche deposit P-PDC Paipatja pyroclastic density current depositTable 2. Methodology for block laboratory analysis. Outcrop map and observations Google Earth imagery, landforms, faults, orientations, lateral and vertical variations in block lithofacies and lithostratigraphy, textures. Grain size analysis Image analysis and Feret's diameter measurement. Clast size distribution: cumulative curves, fractal distributions, statistical parameters.
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		5.4. Block clusters and shape variations

  Peru trip has been funded by the "Institut de la Recherche pour le Développement" support 596 (O. Roche and P. Samaniego, IRD) for Tutupaca volcano. The geoheritage context is provided through the 597 UNESCO International Geosciences Program project 692, Geoheritage for Resilience. 598 599 21 Van Wyk de Vries, B., Self, S., Francis, P.W., Keszthelyi, L., 2001. A gravitational spreading origin for the 701 Socompa debris avalanche. J. Volcanol. Geotherm. Res. 105, 225-247. 702 Voight, B., Glicken, H., Janda, R.J., Douglass, P.M., 1981. Catastrophic rockslide-avalanche of May 18. 703 In: Lipman, P. W., Mullineaux, D.R. (Eds.), The 1980 eruptions of Mount St. Helens, Washington. 704 U.S.Geol. Surv. Prof. Pap. vol. 1250, pp. 347-371. 705 Zernack, A., Procter, J., Cronin S., 2009. Sedimentary signatures of cyclic growth and destruction of 706 stratovolcanoes: a case study from Mt Taranaki, New Zealand.Sediment. Geol. 220,[288][289][290][291][292][293][294][295][296][297][298][299][300][301][302][303][304][305] 
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 4 Fractal results of block lithofacies in different zones and striations compared to the 868 surrounded matrix of the Paipatja avalanche deposits and P-PDC (see Supplemental File 1; Suzuki-869

	870	Kamata et al., 2009).			
	871					
	872					
					Correlatio	
			h	D	n coefficien	Range of the clast size (cm)	Number of clasts
					t	
		A	1,37	0,26	0,9	6.7-22.1	14
		B	0,67	1,66	0,9	13.2-47.5	18
		C	1,7	-	0,9	10.4-22.9	78
		D	2,29	-	0.95	233.4-539.5	7
		E	1,92	-	0.93	30.3-68.7	9
		F	0,58	1,83	0,9	10.7-96.5	120
		All zones	0,86	1,28	0,9	11.4-40.3	137
		Surrounded matrix	0.07-1.16 0.67-2.84 0.91-0.98	0.001-6.4	-
		Striations	1.18	0.6	0.9	5.94-44.68	265
	873					
	874					
		Revised Table				

  , we translate the h-values into fractal D values in Table4. The h-889 values for the block lithofacies and striations range from 0.58 to 2.29 (Table4). Substitution of these 890 values into the previous equation (Eq. 7 inSuzuki-Kamata et al., 2009), gives corresponding fractal D-891 values of 0.26 to 1.83. The negative values of fractal dimension have not been considered in Table4.Thank you for submitting your manuscript to Journal of Volcanology and Geothermal Research. I have received comments on your manuscript from two reviewers (accept and minor). Both reviewers found that you have significantly improved your manuscript. One of them asked for a minor revision and provided an edited file and some comments listed in the review. Both reviewers, though, mentioned some issues with figures 7 and 9.When revising your manuscript, please provide a 'response to the reviewers' that outlines every change made point-bypoint in response to the reviewers' comments, stating clearly exactly what has been changed in the manuscript and providing line numbers wherever possible. Please also provide suitable rebuttals for any comments not addressed. Upon submitting your revised manuscript, please upload the source files for your article. We cannot accommodate PDF manuscript files for production purposes. We also ask that when submitting your revision, you follow the journal formatting guidelines. For additional details regarding acceptable file formats, please refer to the Guide for Authors at: https://www.elsevier.com/journals/journal-of-volcanology-and-geothermal-research/0377-0273/guide-for-authors Journal of Volcanology and Geothermal Research values your contribution and I look forward to receiving your revised manuscript. This journal encourages you to share research objects -including your raw data, methods, protocols, software, hardware and morewhich support your original research article in a Research Elements journal. Research Elements are open access, multidisciplinary, peer-reviewed journals which make the objects associated with your research more discoverable, trustworthy and promote replicability and reproducibility. As open access journals, there may be an Article Publishing Charge if your paper is accepted for publication. Find out more about the Research Elements journals at https://www.elsevier.com/authors/tools-and-resources/research-elementsjournals?dgcid=ec_em_research_elements_email.
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 4 Fractal results of block lithofacies in different zones and striations compared to the surrounded matrix of the Paipatja avalanche deposits and P-PDC (see Supplemental File 1; Suzuki-Kamata et al.,

	2009).					
		h	D	Correlation coefficient	Range of the clast size (cm)	Number of clasts
	A	1,37	0,26	0,9	6.7-22.1	14
	B	0,67	1,66	0,9	13.2-47.5	18
	C	1,7	-	0,9	10.4-22.9	78
	D	2,29	-	0.95	233.4-539.5	7
	E	1,92	-	0.93	30.3-68.7	9
	F	0,58	1,83	0,9	10.7-96.5	120
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 5 Mean values of block shape parameters and striations from SPO and shape analysis using the software ImageJ (404 blocks, see Supplemental File 2;Launeau and Robin, 2005; Blott and Pye, 2008; Crawford and Mortensen, 2009; Bernard, 2015). These shape data have been associated with the correspondent standard errors.

		Roundness	Riley's circularity	a/b	Ellipse	Ellipse/a/b
	A	1.07±0.01	0.73±0.03	1.68±0.14	3.61±0.74	2.29±0.54
	B	1±0.02	0.69±0.02	1.88±0.38	3.2±0.65	1.7±0.24
	C	1.02±0.001 0.68±0.006	1.63±0.3	3.34±0.25	2.04±0.15
	D	1.13±0.07	0.64±0.05	1.91±0.26	5.15±2.18	2.7±0.59
	E	1±0.02	0.64±0.02	1.8±0.2	5.01±1.25	2.78±0.33
	F	1.05±0.03	0.63±0.01	2.1±0.06	3.95±0.24	1.88±0.35
	Mean	1.23±0.009 0.66±0.005	1.7±0.03	3.5±0.15	2.05±0.1
	Striations	0.9±0.01	0.3±0.007	3.69±0.1	21.9±1.57	5.82±0.5

Fractal D values, calculated from exponent h of power regressions (90 striations, Table4, Suzuki-Kamata et

Revised Fig.1. The flow chart for image analysis. A. The SPO analysis(Launeau and Robin, 2005) of block clusters with the inertia and intercepts

method; B. The shape analysis of striations using the ImageJ Plugin "Gold morph"(Crawford and Mortensen, 2009).

Google Earth with stratigraphic sections. We differentiate the hydrothermal rich avalanche deposit (HA-
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Revised Fig. 10. Roundness vs. Feret's diameter (m) of block clusters from shape analysis using the 813 software ImageJ (Blott and Pye, 2008;Crawford and Mortensen, 2009). The horizontal lines indicate the 814 Cumulative % vs. long clast-axis on double log graph. The exponent h of size distributions were estimated from the power regressions (a-k) by the methods of the least squares (R 2 >0.9 in Table 4, Eq. 6 in Suzuki-Kamata et al., 2009). The h values obtained for each structural unit ranged from 6.7 to 537.9 cm for block lithofacies and from 5.94 to 44.68 cm for striations. From following equation 2h + D = 3 (Eq. 7 in Suzuki-Kamata et al., 2009), we translate the h-values into fractal D values in Table 4. The hvalues for the block lithofacies and striations range from 0.58 to 2.29 (Table 4). Substitution of these values into the previous equation (Eq. 7 in Suzuki-Kamata et al., 2009), gives corresponding fractal Dvalues of 0.26 to 1.83. The negative values of fractal dimension have not been considered in Table 4. Where can these curves be found? are those the curves of figure 8? But they are only three curves. It is very important that all granulometries can be consulted, at least in supplementary material. The granulometries are those of figure 8? It should be noted that the curves are not complete, they have a bias towards the coarse clasts, completely missing the component of clasts below 10 cm for resolution limits.

Explain somewhere how the granulometry was obtained. Are the percentages obtained by volumetric data (stereological method)? or are they just counts? Lines 127-139. Fractal dimensions h and D of size distributions were estimated from the power regressions (Table 4, see Supplemental File 1, Suzuki-Kamata et al., 2009). The cumulative curves of the clast-size distributions vs. a/b (Fig. 8) were compared to distinguish the block avalanche units from proximal to distal zones. The calculated block-size distributions estimated from 41 outcrop photographs with the inertia and intercepts methods using the SPO analysis (from metric-size blocks to clasts >10 cm; Fig. 8B; Launeau and Robin, 2005). The longest axis of 404 block outlines were measured and counted per image area from the photographs. The normalized frequency histograms (Launeau and Robin, 2005) were produced by grouping the longest axis of blocks (cm) into 100-cm bins (number of sizeintervals) and normalizing the number of occurrences in each bin to the total number of measurements from automatic image analysis. The sectional effects have been considered (Launeau and Robin, 2005). These data contribute to differentiate the effect of cataclasis between each fraction correlated with different structural units from proximal to distal zones. The subdued blocks and clasts below 10 cm are not considered related to resolution limits.

Line 136 : Are refering to Riley's value? This sentence is not clear Line 146-147: The values of Riley's circularity are less than 1 for the non-spherical volcanic clasts (Table 5).

Lines 137-138. In this case, the resolution of the camera is not so important, what is rather important is how the photographs were taken, distance, geometry of the shot, objective used (the distortions in the image depend on this).

Lines 148-152. To characterize the two-dimensional shape of mesoscale structures, we took 5.9 megapixel photographs of abraded flat surfaces of two blocks with a digital camera. A digital camera (6.2-18.6 mm lens, 35-105 mm focal length) image at a camera distance of <20 cm had a standard error for mean distortion around ~10 -3 . All the striations observed in the median zone have been quantified by using high-resolution images (3648 X 2736 pixels) of two block faces.

Lines 150-152

If the Feret ratio is a measure of the general form, as it appears in the definition given in table 2, and the Riley circularity is also a form factor related to the general form of the clasts, the graph does not make much sense, and data in this case would be autocorrelated. The Feret's diameter (m), defined as the longest distance between two parallel tangential lines (Table 3, Figs. 9-10) have been considered.

Lines 162-164. Figure 9 shows the evolution of the roundness with Feret diameter for block lithofacies and striations. Figure 10 shows the evolution of the roundness with Feret diameter for block clusters.

Line 205. This symbol has already been used twice, for the depth of the grooves and to define one of the (Samaniego et al., 2015;Valderrama et al., 2016).

Lines 326-331. : It would be important to be able to consult the log-log graphs with "cumulative mass of fragments" vs "particle size" used to calculate the fractal dimension, as well as the original granulometries and known the number of clasts used to obtain the distributions. Maybe in the supplementary material.

About the methodology used to obtain the granulometric distributions, see specific comment.

Supplementary file 1 focus on the original data used to calculate the fractal dimension. The number of clasts used to obtain the distributions have been considered in Table 4. The negative values of fractal dimension have been removed in table 3 (See Supplemental file 2) and the standard errors (<10 -3 ) related to photographic shot geometries have been considered (lines 138-140).

Lines 338-340. A specific clast-size fractal distribution is calculated in the range between 6.7 and 539 cm.

The mean fractal D value, calculated from exponent h of power regressions, is around ~1.28 in the 11.4-40.3 cm clast-size range (Table 4; see Supplemental File 1; Suzuki-Kamata et al., 2009).

Lines 342-343. I think it is the sum of internal variability and measurement errors.

Lines 354-356. The calculated standard errors indicate the measurement errors and the sum of internal variability between the block shape parameters. These values imply distinct evolution between the avalanche block lithofacies and PDC. Line 371. It is necessary to fully understand which is the parameter on the abscissa. Is it a coarse-shape parameter, or the clast's diameter? You need to clarify this better, if it is a scatter-plot with two parameters describing a coarse shape in both axes. It makes no sense, it doesn't provide useful information.

Lines 376-382. The mean values increase for roundness from 1 to 1.7 and ellipse/a/b from 0.2 to 2.7 (Table 5), while the values of Riley's circularity decrease. A regression characterizes the roundness vs. maximum Feret's diameter (Eq. 13 in Fig. 9) for the striations. The intersecting point c (Eqs. 13-14 in Fig. 9) with Feret's diameter <0.05 m and roundness around ~1.05 characterizes the inherited clast shape of the proximal block lithofacies generating striations and impact marks in the ridged debris-avalanche unit.

We observed decreasing values of Riley's circularity related to Feret's diameter (Table 5). revised Fig. 1. Eliminate Fourier Shape Analysis from the figure! This term has been removed. Revised Fig. 3. These metric references, highlighted in pink, are not clear. Is it about blocks of 7-8 meters?? Based on this reference it would seem that they are 7-8 meters large. Anyway, if I'm not mistaken, in the foreground there is a 1.5 liter bottle of water, near a block. So the block would be no more than 2 m in diameter. These metric references have been considered in Figure 3. revised Fig. 10: If the Feret ratio is a measure of the general form as it appears in table 2, and the Riley circularity is also a factor of the general form, the graph does not make much sense and the data in this case would be autocorrelated. The graph would make more sense if it was actually the Feret diameter. Or also the relationship between the Feret diameter of each particle and the Feret diameter i.e. of the largest particle present in the whole set (normalization), indicators of grain size. Revise this point or delete the figure. The Feret's diameter (m) have been considered. Figures 9B and10B with no clear correlations (with R 2 ≤0.5) that we attributed to the shape variations of block lithofacies and striations based on textural parameters have been removed according to reviewers 1 and 2.

It would be interesting to be able to consult the original data used to calculate the mean values and standard errors in supplementary material. See Supplemental file 2 revised Table 1. It seems to me that the same symbol has also been used for the depth of the grooves and also the height of the blocks! . In this case change symbols. These acronyms have been defined. The depth (d) of the grooves and striations are differentiated from the Height (H) of the blocks in Table 1.

revised Table 2. According to the definition of Feret Ratio in Tab.2, it is not a granulometry measurement, but rather a shape factor similar to elongation. The Feret diameter has been considered.

Revised Table 3. : The definition of Feret or

Feret ratio, is one of the most important problems remaining in the paper. Observing the original figure, it is clear that it was a measurement of length in meters (m).

Which makes much more sense than using a parameter in the x similar to the one in the y. See other comments and clarify this very important doubt. Fm. From the figure, it appears that Fm is half the Feret diameter at 90° of the Feret max. The Feret's Diameter (FD), defined as the longest distance between two parallel tangential lines, has been considered in the figure of table 3.

Perimeter roughness. This measure, determined by the relationship between the real perimeter and the convex hull perimeter, is not so sensitive to roughness and rather reflects irregularities in the order of roundness. The Feret's Diameter (FD), defined as the longest distance between two parallel tangential lines, has been considered in the figure of table 3. The roundness parameter has been considered.

Revised Table 4 D. IMPORTANT!

Based on the methodology of Suzuki-Kamata et al. 2009, analyzing realistic granulometries, negative values of fractal dimension cannot come out. One possibility is that the distribution is inverted by mistake. Very abnormal granulometries for methodological reasons could also determine this type of results. Please check this very important point! It would be recommendable that at some point in the paper or in complementary material, details about the methodology used to construct the granulometric curves, would be given. Realistic and rigouros grain size, cannot be obtained from a photograph simply by measuring the apparent length of the major axis. It is necessary to use correct photographic shot geometries and a stereological method, such as Rosiwall intersection analysis, point Supplementary file 1 focus on the original data used to calculate the fractal dimension. The number of clasts used to obtain the distributions have been considered in Table 4. The negative values of fractal dimension have been removed in table 3 (See Supplemental file 1) and the standard errors (<10 -3 ) related to photographic shot geometries have been considered (lines 138-140). revised Table 5. No Fourier analysis was performed in this work. Extraordinarily low values for being dimensionless shape parameters! Excellent! This term has been removed. The standard errors of the scale and shape parameters have been considered. Supplementary file 2 focus on the original data used to calculate the mean values and standard errors of the shape parameters.

My coauthors and I feel the revised manuscript is now ready for publication in JVGR. K. Bernard,21 You can also talk 24/7 to our customer support team by phone and 24/7 by live chat and email.
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Highlights

A combined approach helps to correlate the block clusters of avalanche deposits.

Striations are associated with the subsequent pyroclastic density currents.

Highlights

Abstract

We describe sedimentological variations of the block-rich debris avalanche deposits and associated pyroclastic density current deposits emplaced around AD 1802 from Tutupaca volcano in southern Peru. We use these exceptionally well-preserved features to document the collisional shearing contact between the avalanche and coeval pyroclastic density currents. Furthermore, we show how the first stages of the edifice collapse and syn-cataclastic emplacement process affect the block-size distributions.

With field observations, we describe imbricated block clusters, jigsaw cracks and striations related to elongated ridge structures on the deposit surface. Sedimentological and statistical methods (Fourier Shape analysis and Shape Preferred Orientation measured on 208 blocks and 566 mesoscale structures) help us to characterize the cataclastic gradient and establish the collisional relationships between different units. We determine that the proximal impacted deposits and block lithofacies from ridges may be related to distal block units around ~10 km run-out distance. Different block clusters indicate a kinematic transition between avalanche units to pyroclastic density currents. Block shape parameters help to differentiate rounded blocks resulting from matrix abrasion with and striated blocks from ridges related to proximal imbricated block clusters. From the statistical dataset, a few equations have been developed indicating a common cataclastic origin with a co-genetic evolution of block lithofacies during sequential syn-cataclastic emplacement.

The dome collapse is associated with a specific granular flow regime between avalanche and pyroclastic density currents with secondary reworking. Cyclic impact waves contribute to block cluster growth. Clusters are disaggregated during shock propagation. The inherited shapes of the block lithofacies with a/b = 1.2-2 and ellipse = 0.2-2.5 indicate the reworking by impact waves. A multidirectional switch to mass spreading in the median zone between 2 and 6 km may be considered with secondary flow and segregation waves. A basal frictional regime with striations is differentiated from collisional cataclastic flow, generating polymodal grooves during peak velocity at the flow front.

Impact forces around ~15.7 X 10 10 N are implied by suggested clast velocities around 8.86 m.s -1 and the transitional regime between avalanche units and pyroclastic density currents between 15.5 and 39.6 m.s -1 . An extensional disaggregation with the fractal dimensions (D) of the surrounded matrix between 0.6 and 2.8 characterizes the granular transport. A collisional shearing contact probably operated between avalanche units and pyroclastic density currents, which contribute to co-genetic evolution of block clusters from median to frontal distal zones. In the distal zone, abraded block clusters and tilted blocks are related to frontal reworking by impact wave.

The cataclastic gradient of avalanche units is correlated with the pyroclastic flow regime. Semiquantitative analysis of block clusters provides information about syn-emplacement processes during Click here to access/download Supplementary Material shape parameters block clusters supplemental file 2.xls al., 2009), are 0.67 in the 5.2-20.96 cm mark-size range.

Sedimentary characteristics of block lithofacies

Sedimentary characteristics of block lithofacies were compared with fractal D values to distinguish textures in the block avalanche units (HA-DAD, DR-DAD) and PDC deposits from proximal to distal zones. Block lithofacies of HA-DAD are hydrothermalized and cataclased with jigsaw-cracks. These are angular to subangular in PDC (20-30% of HA-DAD, Samaniego et al., 2015). We differentiate imbricated blocks with jigsaw structures in zones A and C (Fig. 3A), the abraded and subdued blocks observed in ridges structures and the distal zone (F in Fig. 3A), and the dacitic block lithofacies in zones D and E. The cumulative curves of block-size distributions vs. a/b are compared to distinguish block lithofacies in different zones, which are characterized by five logarithmic regressions (Eqs. 5-9 with R 2 >0.9 in Fig. 8A). These are compared to the logarithmic regressions of the impact breccias in French Massif Central (Eq. 12 in Fig. 8A; Mont Dore, Bernard and van Wyk de Vries, 2017). The intersecting points a to d with a/b between 2.5 and 4.7 imply a coevolution between the grooves and striations (Eqs. 10-11 with R 2 >0.9 in Fig. 8A) and the ridged debrisavalanche unit (Eq. 6), in accordance with the field observations. We differentiated the hydrothermalized matrix (HA-DAD) from the breccia matrix (DR-DAD) showing sandy-gravel lithofacies of the red matrix with few angular clasts (< cm, Bernard, 2015;Valderrama et al., 2016).

The effect of cataclasis is shown by a decrease in the content of the smallest fractions (<100 cm, Fig. 8B) of block lithofacies (<18%), an increase in the striation ratio (25 to 45%), together with a concomitant high ratio in amount of block clusters (~20 to 40%). The variations of these data are correlated with different structural units from proximal to distal zones. The basal striations appear differentiated (Table 4). A specific clast-size fractal distribution is calculated in the range between 6.7 and 539 cm. The mean fractal D value, calculated from exponent h of power regressions, is around ~1.28 in the 11.4-40.3 cm clast-size range (Table 4; see Supplemental File 1; Suzuki-Kamata et al., 2009). The distal block lithofacies present the highest D values around ~1.83 compared to the proximal ridged deposits around ~1.64. These are differentiated from the surrounded matrix between 0.64 and 2.84 in the 0.0016-6.4 clast-size range. The mean fractal D value of striations is around ~0.62 in a range from 5.9 to 44.6 cm.

Block shape parameters

Shape analysis using the software ImageJ and SPO analysis (404 blocks from the HA-DAD and DR-DAD, 635 striations; Launeau and Robin, 2005;Blott and Pye, 2008;Crawford and Mortensen, 2009) has been applied to compare shape parameters of blocks from proximal to distal zones, together with striations and DAD, L = 6-8 km, V <1 km 3 ; H/L = 0.23-0.17, Samaniego et al., 2015); a dome rich debris-avalanche deposit (Samaniego et al., 2015;Valderrama et al., 2016).

Supplemental File 1

Cumulative % vs. long clast-axis on double log graph. The exponent h of size distributions were estimated from the power regressions (a-k) by the methods of the least squares (R 2 >0.9 in Table 4, Eq. 6 in Suzuki-Kamata et al., 2009). The h values obtained for each structural unit ranged from 6.7 to 537.9 cm for block lithofacies and from 5.94 to 44.68 cm for striations. From following equation 2h + D = 3 (Eq. 7 in Suzuki-Kamata et al., 2009), we translate the h-values into fractal D values in Table 4. The hvalues for the block lithofacies and striations range from 0.58 to 2.29 (Table 4). Substitution of these values into the previous equation (Eq. 7 in Suzuki-Kamata et al., 2009), gives corresponding fractal Dvalues of 0.26 to 1.83. The negative values of fractal dimension have not been considered in Table 4.