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ABSTRACT

We present a Bayesian velocity field reconstruction algorithm that performs the reconstruction of the mass density field using
only peculiar velocity data. Our method consistently accounts for the inhomogeneous Malmquist (IHM) bias using analytical
integration along the line of sight. By testing our method on a simulation, we show that our method gives an unbiased
reconstruction of the velocity field. We show that not accounting for the IHM bias can lead to significant biases in the Bayesian
reconstructions. We applied our method to a peculiar velocity data set consisting of the SFI++ and 2MTF Tully-Fisher
catalogues and the A2 supernovae compilation, thus obtaining a novel velocity reconstruction in the local Universe. Our velocity
reconstructions have a cosmological power spectrum consistent with the theoretical expectation. Furthermore, we obtain a
full description of the uncertainties on reconstruction through samples of the posterior distribution. We validate our velocity
reconstruction of the local Universe by comparing it to an independent reconstruction using the 2M-++ galaxy catalogue,
obtaining good agreement between the two reconstructions. Using Bayesian model comparison, we find that our velocity model
performs better than the adaptive kernel smoothed velocity with the same peculiar velocity data. However, our velocity model
does not perform as well as the velocity reconstruction from the 2M++ galaxy catalogue, due to the sparse and noisy nature
of the peculiar velocity tracer samples. The method presented here provides a way to include peculiar velocity data in initial

condition reconstruction frameworks.

Key words: galaxies: kinematics and dynamics —large-scale structure of Universe —cosmology: observations.

1 INTRODUCTION

The large-scale structure of the Universe sources the peculiar velocity
of the galaxies. The study of the peculiar velocity of galaxies in the
local Universe is important in cosmological applications for two
reasons: (i) peculiar velocities are the only probe of the growth
of large-scale structure in the low-redshift (z < 0.1) Universe, (ii)
peculiar velocities are a nuisance parameter in the measurement
of the Hubble parameter H, and thus need to be corrected for
in such measurements (Boruah, Hudson & Lavaux 2021; Peterson
et al. 2022). Correcting for the peculiar velocity contributions to the
redshifts in the measurement of the expansion history relies on using
a reconstruction of the peculiar velocity field in the local Universe.
Given the current tension in the measurement of the Hubble constant,
H, (Verde, Treu & Riess 2019), we need to account for all sources
of uncertainties. In order to obtain unbiased estimates of the peculiar
velocity corrections for the local Hy measurement, we need accurate
models of the local peculiar velocity field.

Therefore the reconstruction of the velocity field of the local
Universe is important for these cosmological applications. Many
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methods of reconstruction of the peculiar velocity field have been
proposed in the literature. We can categorize the different methods
according to two criteria: (i) the data used for the reconstruction,
i.e. whether galaxy catalogues or peculiar velocity tracers are used
in the reconstruction and (ii) whether the method involves forward-
modelling or a direct inversion from the data.

Most common reconstructions of the local velocity field use galaxy
catalogues to reconstruct the galaxy density field (e.g. Carrick et al.
2015; Lilow & Nusser 2021). Following the reconstruction of the
galaxy density field, the velocity field is calculated using linear
perturbation theory. However, since galaxies are biased tracers of
the matter field, we need to fit for the parameter § = f/b to get
the velocity field, where f is the logarithmic growth parameter
and b is the linear galaxy bias. This is done by comparing the
reconstructed velocity field to the peculiar velocity data. On the
other hand, reconstruction methods relying directly on peculiar
velocity data are not affected by galaxy bias, thus providing a
complementary method for reconstructing the velocity field. On
the flip side, the peculiar velocity catalogues are sparse and the
velocity estimates obtained from peculiar velocity tracers are very
noisy. Therefore reconstructing the density field is usually easier
than reconstructing the velocity field. One well-known example of
a reconstruction method relying on velocity data is the POTENT
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method (Bertschinger & Dekel 1989; Bertschinger et al. 1990) which
uses peculiar velocity data directly to reconstruct the velocity field,
assuming that the velocity field is proportional to the gradient of the
gravitational potential field. Another such widely used method is the
adaptive kernel-smoothed velocity reconstruction method (Springob
et al. 2014, 2016) that smooths the peculiar velocity data to obtain
the velocity reconstruction.

The other criteria that we can use to categorize the reconstruction
methods is whether the reconstruction is performed using forward-
modelling or uses a direct inversion from the data. Inverting non-
linear problems from partial, noisy, observations is an ill-posed
inverse problem, which makes forward-modelled Bayesian meth-
ods particularly suitable for the task of reconstruction of high-
dimensional fields. Bayesian reconstruction methods have become
increasingly popular in cosmology and have been applied in a range
of different applications such as initial conditions reconstruction
(Jasche & Wandelt 2013; Modi, Feng & Seljak 2018; Jasche &
Lavaux 2019), weak lensing (Fiedorowicz et al. 2022; Porqueres et al.
2021, 2022; Boruah, Rozo & Fiedorowicz 2022), and CMB lensing
(Millea et al. 2021; Millea, Anderes & Wandelt 2020). Such methods
have also been used for the local velocity field reconstruction.
The simplest of such methods uses a Wiener filtering technique
(Zaroubi, Hoffman & Dekel 1999). This approach assumes that the
density/velocity field is described as a Gaussian random field and the
Wiener filtered reconstruction is the maximum-a-posteriori (MAP)
solution for the problem. The Wiener filtering approach has been
extended to account for uncertainties and biases in the reconstruction
using a constrained realization approach (Hoffman & Ribak 1991;
Hoffman, Courtois & Tully 2015; Hoffman et al. 2018; Lilow &
Nusser 2021) An alternative way to account for the biases in the
reconstruction in Wiener filtering is using the unbiased minimal
variance approach (Zaroubi 2002). Another similar approach is the
Bayesian hierarchical method, VIRBIUS (Lavaux 2016), which is
based on the constrained realization approach but accounts for many
different systematic effects in its analysis. This approach has been
been applied to the Cosmicflows-3 (Tully, Courtois & Sorce 2016)
data set by Graziani et al. (2019). A similar reconstruction code,
HAMLET, was introduced in Valade et al. (2022). However, these
methods fail to account for the inhomogeneous Malmquist (IHM)
bias which is an important source of systematic error in peculiar
velocity analysis. The IHM bias arises from an incorrect assumption
on the distribution of peculiar velocity tracers due to neglecting the
line-of-sight inhomogeneities.

In this paper, we introduce a Bayesian reconstruction method that
uses peculiar velocity data in its reconstruction while consistently
accounting for the [HM bias in the analysis. As we show in this paper,
not accounting for the IHM bias in the reconstruction may lead to
substantial biases in the reconstruction. One approach to correct for
the IHM bias is by marginalizing over an accurate model of galaxy
distribution (e.g. Hudson 1994). We use such an approach to deal with
the IHM bias within our peculiar velocity reconstruction method. Our
method results in samples of reconstruction that are compatible with
the data from a given peculiar velocity catalogue, and sampled from
a posterior assuming a ACDM Gaussian prior. Furthermore, the full
correlated uncertainties in the reconstruction can be estimated from
the posterior samples. Our method presented here can be extended
in a straightforward manner to include more complex gravity models
such as initial condition reconstruction methods like BORG (Jasche &
Wandelt 2013; Jasche & Lavaux 2019).

The paper is structured as follows: in Section 2, we describe the
simulations and data used in this paper. In Section 3, we describe
our reconstruction method in detail. Our method is validated with

MNRAS 517, 4529-4543 (2022)

mock simulated catalogues in Section 4 followed by an application
of our method to reconstruct the velocity field of the local Universe in
Section 5. Finally, after a brief discussion in Section 6, we summarize
our results in Section 7. In Appendix A, we investigate in further
detail the various sources contributing to the reconstruction error.

2 SIMULATIONS AND DATA

In this section, we describe the simulations and the peculiar velocity
surveys used in this work.

2.1 VELMASS simulation

In order to validate our method, we use an N-body simulation from
the VELMASS suite of simulations.! The simulation was performed
in a cubic box of size (2 h~! Gpc)? with 20483 particles with mass
9.387 x 10'9 h=! M. The cosmological parameters used are: Q,,, =
0.315, , = 0.049, Hy = 68 km s~! Mpc~!, oy = 0.81, n, =
0.97, and Yy, = 0.248. The ROCKSTAR (Behroozi, Wechsler & Wu
2013) halo finding software was used to identify the dark matter
haloes in the simulation. We only consider the haloes with mass M
>3 x 102 h~! Mg,

In order to create a mock peculiar velocity survey, we populate
the haloes with mass M > 3 x 10'2 7~ M, with a standard candle
with different levels of intrinsic scatter. That is, we assign it an
absolute magnitude M = M + €, where M is the standard candle
absolute magnitude and e is the intrinsic scatter drawn from a normal
distribution, € ~ N(0, Uif“). Here, oj, is the standard deviation of the
intrinsic scatter. We can calculate the apparent magnitude from this
absolute magnitude and the distance to the haloes. In this paper, we
report the results with three different intrinsic scatters, corresponding
to distance uncertainties of 7, 15, and 20 per cent. Finally, we make
an apparent magnitude cut to create a magnitude limited catalogue.
From this magnitude limited sample, we randomly select 7000
haloes. The non-linear velocity of the haloes is calculated from the
simulation output, which in turn is used to calculate the observed
redshift, z,ps, of these haloes. While running the forward likelihood
method described in Section 3.3, the method requires the estimated
galaxy density field as an input.

2.2 Peculiar velocity surveys

In this work, we use peculiar velocity data from various surveys in
our algorithm to reconstruct the velocity field of the local Universe.
The three peculiar velocity data sets that we use in this work are
the A2 supernovae compilation, SFI4++ and 2MTF Tully—Fisher
(TF) catalogues. Compared to our treatment of these data sets in
Boruah, Hudson & Lavaux (2020), we do not fit the TF or the SNe
light curve fitting parameters during the reconstruction. Instead we
use the distances as provided in the catalogues. We however fit for
a scaling factor that may arise due to miscalibration in the fitting
of the zero-points of the TF relations as detailed in Section 3.3.
We use a different scaling factor for each peculiar velocity survey.
We use the galaxy density reconstruction of Carrick et al. (2015)
to correct for the IHM bias. Since this reconstruction is limited to
125 h~! Mpc in certain sky directions, we only consider peculiar
velocity tracers within estimated distances d < 100h~' Mpc in
this work, thus limiting the edge effects in our reconstruction. Note

I'For more details on the simulation which we used, see Kodi Ramanah,
Charnock & Lavaux (2019).

€202 UoIBN L€ U0 Josn SHYND Ad 90929/9/6251/€/L1G/oI01HE/SEIUW /WO dNO"dlWwapede//:sdiy woly papeojumod



2MTF

SFI++ field galaxies
SFI++ groups

A2

200 A

il

150

20MB)

=100 4

50

0.00 0.01 0.02 0.03 0.04 0.05 0.06
CMB frame redshift, zcap

Figure 1. Redshift distribution of the tracers in the different peculiar velocity
catalogues used in this work. We have imposed a distance cut of d < 1007~!
Mpc on all catalogues.

that imposing such a distance cut does not introduce a selection
bias in the forward peculiar velocity analysis methods (Strauss &
Willick 1995). The redshift distribution of peculiar velocity tracers
is shown in Fig. 1. In the following, we provide a brief description
of the data used in this work. We refer readers to Boruah et al.
(2020, 2021) for more details on the selection and the treatment
of outliers, choosing only to highlight some main features of the
data sets.

(i) A2 Supernovae: In Boruah et al. (2020), we compiled the
second amendment (A2) data set of nearby supernovae from publicly
available supernovae from the CfA supernovae sample (Hicken et al.
2009), Carnegie Supernovae Project-Data Release 3 (CSP-DR3;
Krisciunas et al. 2017), the Lick observatory Supernova Survey
(LOSS; Ganeshalingam, Li & Filippenko 2013), and the Foundation
sample (Foley et al. 2018; Jones et al. 2019) of supernovae. We
only consider the supernovae with estimated distance d < 100 h~!
Mpc. The median distance uncertainty, A,, of the A2 supernovae
is around 7 per cent, with the 16 and 84 percentile range of this
uncertainty being 5 and 8 per cent, respectively.

(ii) SFI++: We use peculiar velocity data from the SFI4+ (Mas-
ters et al. 2006; Springob et al. 2007) TF catalogue, which is an
I-band TF survey. We follow the treatment of Boruah et al. (2020)
to remove outliers. For galaxies in groups, we use the peculiar
velocity data for the groups to suppress non-linear contributions
to the peculiar velocity data. We only consider the galaxies/groups
with estimated distance d < 100 A~' Mpc. The median distance
uncertainty, Ay, of the SFI++ galaxies is 20 per cent, with the 16
and 84 percentile range of this uncertainty being 18 and 24 per cent,
respectively.

(iii) 2MTF: The 2MTF survey (Masters, Springob & Huchra 2008;
Hong et al. 2019) is an all sky TF galaxy catalogue in the near-
infrared J, H, and K bands. The survey is limited to ¢z < 10000 km
s~!, approximately corresponding to d < 100 2~! Mpc. The median
distance uncertainty, Ay, of the 2MTF galaxies is 22 per cent, with
the 16 and 84 percentile range of this uncertainty being 19 and
25 per cent, respectively.

With the given distance cuts, we select 345, 1682, 556, 1225
objects from the A2 catalogue, SFI++ field galaxy catalogue,
SFI++ group catalogue, and 2MTF catalogue, respectively.
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3 METHODOLOGY

We introduce a novel method for Bayesian velocity reconstruction
which can consistently account for [HM bias in the reconstruction in
this paper. In this section, we describe the theory and the methodology
behind our method for reconstructing the velocity field with the
peculiar velocity data.

3.1 Peculiar velocity theory

In the ACDM model, under linear perturbation theory, the present
day peculiar velocity field can be expressed in terms of the density
field as (Peebles 1980),

if Hok

K2

where f &~ Q% is the logarithmic growth rate in the ACDM model,
i> = —1. Since a factor of k appears in the denominator, the peculiar
velocity field is sensitive to the large-scale density modes. Since
these modes are well described with linear perturbation theory, linear
theory predictions of peculiar velocity provide a fairly accurate result
for the true velocity field. The peculiar velocity estimated using linear
theory has been calibrated with simulations (Carrick et al. 2015;
Hollinger & Hudson 2021) and the uncertainty in the linear theory
velocity estimates due to the non-linearities was found to be o N, &
150 km s~'. In this work, we use linear perturbation theory to predict
the velocity field. In the future, this can be extended to include non-
linear differentiable velocity field models such as the Lagrangian
perturbation theory (LPT; Bouchet et al. 1995) full particle mesh
or COLA (Tassev, Zaldarriaga & Eisenstein 2013) simulations that
have previously been used for Bayesian density reconstruction (e.g.
Jasche & Lavaux 2019).

Vp = (Sk, (1)

3.2 Inhomogeneous Malmquist bias

Peculiar velocity analyses are impacted by a number of different
statistical biases, including the homogeneous and IHM biases. The
homogeneous Malmquist bias arises due to the fact that the number of
galaxies grows along the line of sight (LOS) according to the volume
factor. In this paper, we mainly discuss the impact of IHM bias in
Bayesian reconstruction with peculiar velocity data. Therefore, we
discuss the basics of [HM bias in some detail in this section.

The IHM bias arises due to neglecting inhomogeneity in the
radial distribution of the peculiar velocity tracers. Neglecting the
overdensities along the LOS leads to a bias in the inferred distance,
dest, compared to the true distance, di.. The magnitude of the bias
is given as (Lynden-Bell et al. 1988; Strauss & Willick 1995),

All-lM = <dtruc> - <dcsl> ~ dcsty Afla (2)

where, A, is the fractional uncertainty in the distance estimates and

y is the logarithmic slope in the galaxy overdensity along the LOS

given by
__dlnn(r)
~ dlnr

Since the slope changes sign in front of and behind an overdensity, the
distance of the galaxies in front of the overdensity is underestimated
and those at the back are overestimated. This may be interpreted as
a spurious flow towards the overdensity if the IHM bias correction
is neglected, and thus biases the magnitude of the velocity field to
a higher value compared to the true value. Therefore, the inferred
value of g is biased high when the IHM bias is not accounted for in
velocity—velocity comparison methods (e.g. Boruah et al. 2020). As

3
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we will show in Section 4, in Bayesian reconstruction from peculiar
velocity data, this effect shows up as an increase in the inferred
power spectrum of the reconstructed density field if the IHM bias is
not corrected for.

3.3 Probability model

The method we present in this paper is a Bayesian method to recon-
struct the velocity field using the data from a peculiar velocity survey.
One such reconstruction method is the VIRBIUS algorithm (Lavaux
2016) which has previously been applied to the Cosmicflows-3 (Tully
et al. 2016) data set in Graziani et al. (2019). In their method, the true
distance of the peculiar velocity tracers are used as latent parameters
and the value of the distance is inferred in each Markov Chain Monte
Carlo (MCMC) step. The homogeneous Malmquist bias is dealt with
by using a skewed prior on these distances. However, the IHM bias
is not explicitly accounted for in their analysis. In this work, we
account for the IHM bias by using analytic integration over the LOS
uncertainty. Marginalizing over the true distance also reduces the
complexity since we do not have to infer their value in each MCMC
step. Furthermore, the posterior distribution of the peculiar velocity
tracer distances can potentially be highly multimodal due to the
LOS inhomogeneities, which makes the analytical marginalization
preferable to sampling based methods.

In Bayesian reconstructions, we want to infer the velocity field,
{v}, given the peculiar velocity data. The peculiar velocity data set
consists of the observed redshift, {zos}, and the estimate of its
distance modulus, {xt}, for a set of peculiar velocity tracers. The
uncertainty associated with the distance modulus is denoted by o,.
In linear perturbation theory, the velocity field is calculated from the
density field, {8}, using equation (1). Therefore, we can equivalently
think about the process described here as a density reconstruction
algorithm. Furthermore, we need an estimate of the galaxy density
field to correct for the IHM bias. For this work, we provide the
estimate of the galaxy density field, {Sg}, as an input to our method.

In this work, we use a variant of the forward VELMOD method
(Willick et al. 1997), which was introduced in Pike & Hudson (2005)
to model the likelihood. For simplicity, we call this likelihood the
Forward Likelihood. The forward likelihood method corrects for the
IHM bias by accounting for the density dependent LOS distribution
of peculiar velocity tracers. In the forward likelihood method, the
observed redshift is predicted as a function of the distance estimates.
That is, we model the likelihood using the conditional probability,
P{czopsHim}, {v}, {Sg}). We show the dependency of the various
variables and the observables in a probabilistic graph in Fig. 2. Using
Bayes theorem, the posterior for the density field § can be written
as

P {czons), (11}, {8¢)) o Pl{ezons i, (8}, (8 HPUS). “

In our runs, we use a 128% cubic box where the density is inferred.
That leads to a total of 128 density parameters. In order to
sample from such high-dimensional parameter space, we used the
Hamiltonian Monte Carlo (HMC; Neal 1993, 1996) algorithm. HMC
can be used to sample from very high dimensional parameter space
by using the gradient information of the log-posterior. In this paper,
we implement our code by relying on the JAX package (Bradbury et al.
2018) which includes the gradients of the requisite function by using
automatic differentiation. Sampling with HMC is highly sensitive to
the choice of mass matrix. The optimal choice is to use the Hessian
of the negative log-posterior as the mass matrix (Taylor, Ashdown &
Hobson 2008). We create a number of Gaussian realizations of the
density field and then calculate the second derivative of the log-
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Figure 2. A probabilistic graph showing the dependency of the different
observables and the underlying variables. The observables (redshift, czops,
and the distance modulus, ) are shown with a double circle. In the forward
methods of peculiar velocity analysis (see Section 3.3), the redshift of the
peculiar velocity tracers are predicted as a function of the distance estimates.
This is reflected in the relationship between the observables. Note that, we
use an external estimate of the galaxy density field, § ¢~ in order to correct for
the IHM bias.

posterior for 20 such fields. We use automatic differentiation to
calculate the second derivative of the posterior. The mean of the
Hessian calculated from these mocks is then used as our mass matrix.

The RHS of equation (4) consists of two terms, (i) the prior on the
density field, P({8}) and (ii) the likelihood, P({czobs}{1t}, {8}, {Sg}).
We will first discuss the prior we use in this work. In this work, we
assume a Gaussian prior on the density field. In the Fourier space,

we can write it as

1 |8k |

P({s}) = ex {_7 , )]
oo | o

where a,f = V, P(k) is the variance in 8. Here, P(k) is the ACDM
power spectrum and V; is the volume of the simulation box. In
this work, we fix our cosmological parameters to the fiducial
cosmological parameters used in the VELMASS simulation. We note
that the present day density field is significantly non-Gaussian. Thus
it cannot be well-described using a Gaussian prior. In the future, we
can incorporate the method presented here with the BORG framework
which uses a non-linear, differentiable gravity model to forward
model the present day velocity field from the density field at an
initial time when the field is well-described as a Gaussian field.
Nevertheless, due to the sensitivity of the velocity field to the large-
scale density modes, the Gaussian prior still proves to be a useful
approximation.

Assuming that the random components of the radial velocity for
the various peculiar velocity tracers are independent, we can write

Npy

P ({ezandli 61, 6,)) = [T P (el 1. 8,1) . (©)
i=1

Given the large uncertainties on the distance estimates, we marginal-
ize over the true LOS distance, r, for the peculiar velocity tracer.
The likelihood for the individual peculiar velocity tracers can be
expressed as

P (czimlun®. (61, (8,)
_ / arP (e, HPCI?, (5,)) ™
0

In the above, {v} is the linear velocity field calculated from the density
field {3} using equation (1). The first term inside the integral is
modelled as a Gaussian with the uncertainty in the observed redshift
given by oL, which is the uncertainty in the velocity induced by the
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non-linearities in the density field. This term is given as

. . 2
(et~ eztr. )

i 1
7) sz)')g r,\v = ex _ , 8
(csinlrs 1) = e T ®)
where
v, (r)
1 + Zpred(r, v) = [1 + Zcos(r)] (1 —+ T) . (9)

In the above equation, z., denotes the ‘cosmological’ recessional
redshift. Also note that in equation (7) § and Sg are assumed to be
independent of each other (see end of this section for more details).

Choice of smoothing length: We use the velocity field calculated
using linear theory, equation (1), to model the non-linear velocity of
the haloes. Since the velocity field predicted by linear theory breaks
down on small scales, we need to take care to make sure that the
obtained velocity is unbiased. Therefore, we calculate a low-pass
filtered velocity field, vX ., by smoothing the linear velocity field
with a Gaussian filter of smoothing scale R. The relationship between
this smoothed velocity field and the velocity of the haloes, v, can
be modelled as:

R
Vhalo = M+ Voo T €u- (10)

Here, €, is the uncertainty in the velocity predicted using linear
theory. €, is modelled as a Gaussian with standard deviation, o . It
was shown in Berlind, Narayanan & Weinberg (2000) using N-body
simulations that the slope, m, obtained by regressing the smoothed
velocity with the ‘true’ halo velocity depends on the smoothing scale
and is not always equal to 1, thus showing that the predicted velocity
can be biased depending on the smoothing scale. In Carrick et al.
(2015) and Hollinger & Hudson (2021), it was found that the velocity
field smoothed with a Gaussian filter of scale Rynoon = 4 /17! Mpc
results in the slope of regression m & 1.2 Since our forward model
for the velocity field is the similar to that of Carrick et al. (2015)
and Hollinger & Hudson (2021), we use the same smoothing scale
of Rymooth = 4 h~' Mpc for all subsequently reported velocity fields.
At this smoothing scale, the noise in the velocity estimate is on.
~ 150 km s~! (Carrick et al. 2015; Hollinger & Hudson 2021). We
fix the value of oy to this value in our inference. We note that the
choice of smoothing scales can potentially be a source of systematic
uncertainty. However, we defer a detailed study of this effect to a
future work.

The ‘forward’ method for peculiar velocity analysis is susceptible
to homogeneous and IHM biases (Hudson 1994; Strauss & Willick
1995). As mentioned earlier, the homogeneous Malmquist bias arises
if we do not account for the fact that there are more galaxies at
large radius. Moreover, galaxies are not uniformly distributed in
the Universe, instead are clustered at regions of large overdensities.
Neglecting these overdensities along the LOS leads to the IHM bias
as discussed in Section 3.2. We use an estimate of the LOS galaxy

2We note that Lilow & Nusser (2021) found that a smoothing scale of ~7 h!
Mpc results in unbiased velocities. However, the two approaches determine
the unbiased smoothing scale in different ways. Lilow & Nusser (2021)
reconstruct the linear velocity from mock Two-Micron All-Sky Redshift
Survey (2MRS) galaxy catalogue Huchra et al. (2012) and compares it
with mock Cosmicflows-3 peculiar velocity catalogue to determine the value
of the smoothing scale for unbiased reconstruction. On the other hand, in
the approach used here (Carrick et al. 2015; Hollinger & Hudson 2021),
halo velocities are compared against the smoothed N-body velocity field to
determine the smoothing scale for unbiased velocity reconstruction. These
differences makes the direct comparison between the two approaches difficult.

Bayesian peculiar velocity reconstruction — 4533

Table 1. Depth of the three mock peculiar velocity surveys used in this
work. Ay is the fractional uncertainty of the peculiar velocity tracers. ros is
the radius of 95 per cent completeness for the mock survey and rpeak is the
radius of peak number density of the peculiar velocity tracers.

Ag ro5 (h~! Mpc) Tpeak (h~! Mpc)
Mockl1 0.07 135 120
Mock2 0.15 143 117
Mock3 0.20 176 113

density, Sg(r), to account for the IHM bias in the radial distribution.
Using the galaxy density field, the expected number of peculiar
velocity tracers along the LOS can be estimated as

n (rl{8e}) ocr? [148,(r)]. (11)

Accounting for this dependence on the LOS density, we can write
the distribution,

0 _ 2
[ = p(r)] ) ’ (12)

20,(f 2

P (rlu®, {8,}) ocn (rl{8,}) exp (—

where ju(r) = 5log;o(+/10 pc) and o is the uncertainty on the
estimate of the distance modulus. Note that we assume a Gaussian
uncertainty on the distance modulus. One of the main sources of
systematic uncertainty in estimating the distances to the peculiar
velocity tracers is the calibration of the zero-point of the distance—
luminosity relation. In order to take care of this uncertainty, we
introduce a scale factor, A, so that all the distance estimates in a
given catalogue are scaled by the same factor, © — © + 5log;pA (or
equivalently d — Ad). We then fit and marginalize over this factor
during the reconstruction in a block sampling scheme. When using
multiple catalogues, we fit a separate scaling factor for different
catalogues.

In this work, the estimated galaxy density field, {Sg}, is an
additional input to our reconstruction code and is assumed to be
independent of the density field that is inferred. This is not fully
self-consistent and needs to be improved in the future. We note
that we do not use any cross-correlation information between the
estimated galaxy density field and the inferred velocity field. The
estimated galaxy density field simply provides an estimate for the
radial distance of tracer. For the test with the mock catalogues, we use
the true underlying particle density to account for the IHM correction.
For our run with the real data, we use an iteratively reconstructed
density field from Carrick et al. (2015).

4 VALIDATION WITH SIMULATIONS

Having introduced our method in the previous section, we now
present the results of running our code on a mock peculiar velocity
survey. We validate our code by running the code on mock surveys
described in Section 2.1 and comparing the density and velocity
reconstructions with the ground truth.

In Table 1, we show the depth of the three mock surveys
(corresponding to three different levels of distance uncertainty)
we used in our reconstruction, showing the radius of 95 per cent
completeness of the mock surveys and the peak of the tracer number
density. As mentioned previously, our method requires an estimate
of the galaxy density field to correct for the IHM bias. In our runs
with the simulations, we use the halo density field of the simulation
(smoothed with a Gaussian filter of scale 4 h~! Mpc) as the estimate
of the galaxy density field.
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To compare the impact of the IHM bias correction, we also
ran our method without any IHM correction by setting Sg =0.
As we will see, neglecting the IHM bias correction impacts our
reconstruction significantly. A visual comparison of the impact of
the IHM correction in the velocity reconstruction is shown in Fig. 3,
where we plot the reconstructed velocity field and the associated
uncertainty with our algorithm in the Z = 0 plane. By comparing the
reconstructed mean field to the true velocity field in the figure, we can
see that our algorithm reconstructs the coherent large-scale velocities
well. To estimate the mean and the variance of the reconstructions,
we use a total of 250 reconstruction samples from our chain. The
reconstructions samples from HMC-based reconstructions can be
highly correlated. Therefore, we thin our MCMC samples by a
factor of 30, roughly corresponding to the autocorrelation length
of our MCMC chains. However, we see that without the IHM bias
correction, the reconstructed velocity field has a higher amplitude
compared to the true velocity field. This is due to the fact that the [HM
bias leads to a spurious velocity in the reconstruction as discussed
in Section 3.2. As expected from equation (2), this effect is most
pronounced for a distance uncertainty of A, = 0.20. Finally, note
that outside the data region, the mean velocity field is suppressed to
a smaller value of the velocity. The impact of the IHM bias is most
readily seen in the power spectrum of the reconstructed density field.
We show the power spectrum of our reconstruction (with and without
the IHM bias correction) in the top panel of Fig. 4. We can see that
the reconstructed power spectrum without the IHM bias correction
is biased high. This can be seen more clearly in the middle panel
of Fig. 4 where we plot the ratio of the mean of the inferred power
spectrum to the theoretical expectation. As we can see from the figure,
the power spectrum of the reconstruction with IHM bias correction
is consistent with the true power spectrum of the simulation. On the
other hand, if we do not account for the IHM bias, we see excess
power in the reconstructions. This is due to the fact that the IHM
bias pushes the velocity to a larger value, which in turn increases
the variance in the density field. In order to quantify the bias in the
power spectrum, we calculate the quantity

AP _ Nkizbm <Psample(ki)) - Plheory(ki)’ (13)
- o[ P(k:)]

where o[P(k;)] is the standard deviation in the power spectrum
assuming a Gaussian covariance. For an unbiased reconstruction,
we expect this quantity to have a value of zero. We compare the bias
in the reconstruction by computing the bias in the power spectrum
measured in 15 bins in k. For the reconstruction with the IHM
bias correction, we obtain values of Ap = +0.46, —0.25, 4+0.55
for the mock surveys with A, = 0.07, 0.15, 0.20, respectively.
The same quantities when measured for the reconstruction without
the IHM bias correction are Ap = +8.78, +15.24, and +16.99,
respectively, showing that the power spectrum inferred without IHM
bias correction is biased high with high significance.

While the power spectrum gives a useful consistency check, the
power spectrum does not provide an assessment about the phases
of the Fourier modes. In order to test that the phases of the density
modes are reconstructed correctly, we compute the cross-correlation
rate of the reconstructed density field with the true underlying density
field, which is defined as follows:

(srec(k)ss*im(k))kek bin
Vs\/ Prcc(k)Psim(k) '

where P, is the power spectrum of the reconstruction and Py, is the
true power spectrum of the simulation. V; is the volume of the survey.

pe(k) =

(14)
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We show the cross-correlation of our reconstructed density samples
with the true underlying density field of the simulation in the bottom
panels of Fig. 4. As can be seen, the reconstructed large-scale density
modes show a cross-correlation of ~0.5 with the true density field,
showing that the large-scale density modes are reconstructed well
with our method. The cross-correlation approaches zero for the small-
scale (k > 0.04 h Mpc~') modes. We can see the impact of the ITHM
bias on the cross-correlation from this plot. For the reconstruction
without IHM bias correction on the mock survey with larger distance
uncertainty, cross-correlations of the large-scale density modes are
reduced compared to the reconstruction with IHM bias correction.
This effect is most readily seen in the reconstruction with A; = 0.2

‘We however note that, while the cross-correlation in Fourier space
is an interpretable metric, it may not be the best metric to compare the
two fields. This is because we only have the peculiar velocity data in
a small volume of our simulation box. Therefore, we also compare
the radial velocity in our reconstruction to the true radial velocity
in shells of radial distances. In each shell, we compute the slope,
m, and the scatter, o ,, between the velocity estimates by regressing
the reconstructed velocity on the true velocity field. The slope of
regression is given as:

m = <Vr::c Vtrue> _ U;cc (15)
- 2 - c ’
Viue) oy
where V. is the reconstructed velocity and V. is the true velocity

field. p. is the cross-correlation between the two velocity fields
and o™ jg the standard deviation of the reconstructed and true
velocity fields. In case the two velocity fields have the same standard
deviation, as is the case for unbiased reconstructions, the slope is
equal to the cross-correlation between the two fields in real space.
We show the slope from this comparison in Fig. 5. As it can be
seen from the figure, the IHM bias-corrected reconstruction has
a slope of m > 0.75 in the data region (R S 120 h~' Mpc),
showing good cross-correlation with the truth. However, the quality
of the reconstruction reduces at high R, reflected in the fact that
the value of m ~ 0 at these scales. On the other hand, the IHM
bias leads the reconstructed velocity to be biased high, due to
which 0% > o™, resulting in a slope, m, higher than 1, as seen
in Fig. 5. Furthermore, we compare the reconstruction error for the
different runs of our method. The reconstruction error is defined
as the root mean squared (RMS) error between the reconstruction
and the true velocity, (AV,)? = |Vsamples _ yiue|2 We gee that the
IHM bias-corrected reconstruction leads to a smaller error in the
reconstructed velocity compared to the reconstruction without [HM
bias correction. At large radius, the velocity scatter between the
reconstructed velocity and the true velocity approaches the scatter
of the haloes in the VELMASS simulation. We discuss in more
detail the different sources contributing to this reconstruction error
in Appendix A.

The above tests show that we get an unbiased reconstruction of
the velocity field with our Bayesian reconstruction method after
correcting for IHM bias. On the other hand, not correcting for the
IHM bias can substantially bias the velocity field reconstruction.

5 VELOCITY RECONSTRUCTION IN THE
LOCAL UNIVERSE

In this section, we apply our method on real peculiar velocity data to
reconstruct the velocity field of the local Universe. The description
of the peculiar velocity surveys used in this work is provided in
Section 2.2. By sampling density fields from the posterior (4), we
get samples of reconstruction that are consistent with the observed
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Figure 3. A visual comparison of the reconstructed radial velocity field and the associated uncertainties with the true velocity field in the Z = 0 plane in our
mock simulation. We show the reconstruction for three different mock surveys with a distance error of Ay = 0.07 (left), Ay = 0.15 (centre), and Ay = 0.20
(right). The top row is the true velocity field in the simulation in the Z = 0 plane. The black dashed circle is at a radius of 150 ~~! Mpc, which is close to the
95 per cent completeness radius for each survey scenario. The second and the third rows show the mean velocity for the samples of our reconstructions with and
without IHM bias corrections, respectively. As can be seen, if we do not correct for the IHM bias, the velocity field in the data region is boosted up compared to
the true velocity field. The bottom two rows show the standard deviation in the reconstruction samples with and without the IHM bias correction.
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Figure 4. The power spectrum (top), ratio of the power spectrum to the theoretical expectation (middle) and the cross-correlation of the reconstructed density
field with the true density field (bottom) for the three mock surveys with distance uncertainties, Ay = 0.07 (left), Ay = 0.15 (centre), and Az = 0.20 (right). In
the top panels, we plot the power spectrum inferred from our reconstruction and compare it with the true power spectrum of the simulation (shown with black
line) and the theoretical expectation (shown as a black dotted line). The red lines show the power spectrum of the reconstruction without IHM bias correction
and the blue lines are the corresponding curves with IHM bias correction. The shaded region show the 68 per cent confidence interval as calculated from the
reconstruction samples. In the middle panels, we plot the ratio of the mean of the power spectrum of our reconstructions to the theoretical expectation. The error
bars are calculated assuming a Gaussian covariance for the power spectrum. Note that this is different from the error bars in the top panel. The two quantities
will be the same only if the reconstruction samples are drawn from the prior distribution. As we can see the power spectrum of the reconstruction without
IHM bias correction is biased high. The magnitude of the bias is higher for the reconstruction with larger distance uncertainty. Finally, in the bottom panel, we
plot the cross-correlation of the reconstructed density field with the true density field of the simulation. Similar to the top panel, the shaded region shows the
68 per cent confidence interval as calculated from the reconstruction samples. The cross-correlation is the largest at large scales (small k) and it decreases to 0
at small scales (high k). However, we see that if the ITHM bias is not corrected, the large-scale cross-correlation goes down, suggesting that these density modes
are not reconstructed well.

data. One useful side product of sampling from the posterior is that
we get an estimate of the correlated uncertainties in the reconstructed
velocity field. For the reconstruction of the local Universe, we use
a cubic sampling box of side length, Ly, = 500 h~' Mpc with
1283 grids. In Fig. 6, we plot the power spectrum of the samples
of our reconstruction. In the Bayesian reconstruction approach, we
expect the reconstructed field to have a similar distribution as the
prior, unless the data contradicts the assumed prior. Here we assume
a Gaussian prior on the density field, with the power spectrum
following a cosmological power spectrum consistent with Planck
CMB results (Planck Collaboration VI 2020). Therefore, we expect
the reconstruction to have a cosmological power spectrum. However,
as we saw in Section 4, [HM bias may artificially enhance the inferred
power spectrum. Thus, consistency between the theoretical power

MNRAS 517, 4529-4543 (2022)

spectrum and the inferred power spectrum shows that the IHM bias
is corrected in our reconstruction. As can be seen from the figure, this
is indeed true and the power spectrum computed from the samples
of our posteriors agree very well with the theoretical prediction from
the ACDM model.

5.1 Comparison with 2M++ reconstruction

Unlike simulations, for the real data we do not have access to the
true velocity field. None the less, we can compare our reconstruction
to velocity fields reconstructed using other methods. Therefore,
we compare our reconstructed velocities to the reconstruction of
Carrick et al. (2015) who used an iterative reconstruction procedure,
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Figure 5. (Top) Slope of regression of the reconstructed V, on the true V, values from the simulation, binned in radial shells and (bottom) the RMS error
between the reconstructed velocity and the true velocity. In order to regress the velocity fields, we compare the point estimates of the radial velocity calculated
in voxels of the reconstruction grid within a given radial shell. The three horizontal panels show the results for mock surveys with three distance uncertainties:
Ag = 0.07 (left), Az = 0.15 (centre), and Ay = 0.20 (right). In the top panel, we plot the slopes of regression in radial shells. The red lines show the results
without the THM bias correction and the blue lines are the results after correcting for the IHM bias. We see that the slope of regression m ~ 1 deep inside the data
region and then drops to m ~ 0 at large radius. Without the IHM bias correction, the slope can be higher than 1 since IHM bias introduces spurious velocities. In
the bottom panel, we plot the reconstruction error in radial bins. The blue and the red lines show the RMS of the difference of reconstructed and true values of
the radial velocity, with and without the IHM bias correction as a function of radius. The dotted line shows the standard deviation in our reconstruction samples.
The dashed—dotted line shows the velocity scatter of the haloes in the VELMASS simulation. At large radius, the velocity error in our reconstruction approaches

the velocity scatter of the haloes.
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Figure 6. Power spectrum of the samples of reconstruction of the local
Universe. The reconstruction was performed using the 2MTF and the
SFI++ TF catalogues and the A2 supernovae compilation. The density
reconstruction from Carrick et al. (2015) was used for the IHM bias correction.

where the galaxy density is reconstructed from the galaxies in the
2M++ galaxy compilation (Lavaux & Hudson 2011). The velocity
is predicted from the galaxy density field using linear perturbation
theory. However, since galaxies are a biased tracer of the underlying
density field, the velocity estimate from the galaxy field needs to
be scaled by a factor of B = f/b. The value of B is then fitted by
comparing the predicted velocities to the the peculiar velocity data
from a peculiar velocity survey. In this work, we use the best fit 8 and

V ex value fitted in Carrick et al. (2015). We show a visual comparison
of our velocity reconstruction with the reconstruction of Carrick et al.
(2015; hereafter C15) in the galactic X, Y, Z planes in Fig. 7. The top
panels of Fig. 7 show the radial velocity field in the reconstruction
of C15. The middle and the bottom panels show the mean and
the standard deviation of the velocity field samples reconstructed
using our algorithm. Similar to Section 4, we use a total of 250
independent samples from the chain for estimating the mean and
the standard deviation from the chains. By comparing our velocity
reconstruction to the 2M++ reconstruction, we see the similarity
between some of the same large-scale features in both reconstruction.
Note that in the region without data, the mean field approaches very
small values. This is similar to the Wiener filtered fields, where in
the region without data, the field is strongly suppressed such that
in the limit of no data, the velocity field approaches zero. In the
bottom panel, we plot the uncertainty in the velocity estimates in
these planes. Since our method produces samples of reconstruction
from the posterior with the Gaussian prior, we get the correlated
uncertainties in velocity estimates of our reconstruction. From the
figure, we see that the uncertainties in the velocity estimates are
substantially lower in the inner region than the outer region which
does not have peculiar velocity data. This is because the inner region
contains almost all the peculiar velocity tracers. We note that the
uncertainty obtained from our reconstructions does not account for
the error associated with our modelling choices, e.g. the assumption
of linear theory, choice of smoothing scale, etc. Quantifying these
sources of ‘systematic’ uncertainties is beyond the scope of this
work. Therefore the uncertainty obtained from our reconstructions
should be treated as the statistical error. We also plot the velocity field
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Figure 7. A comparison of our reconstruction with the reconstruction of Carrick et al. (2015) in the galactic X (left), Y (centre), and Z (right) planes. The top
panels show the reconstruction of Carrick et al. (2015), the middle and the bottom panels show the mean and the standard deviation of the velocity reconstruction
from our method. We can see similar large-scale features in the velocity field in both our reconstruction and the C15 reconstruction. We show the radial distance
of 100 A~! Mpc with a black dashed circle. This is the distance cut we use for our peculiar velocity tracer sample. Note that the uncertainty in the velocity field

reconstruction increases drastically beyond this boundary.

and the density field in the supergalactic plane, comparing also the
position of some prominent galaxy clusters in Fig. 8. From the mean
field, we see that while the overdensities around the Perseus—Pisces
(PP), Virgo and Coma clusters are well-reconstructed, we do not see
prominent overdensities around the Norma and the Shapley clusters.
Since the Shapley cluster lies outside the 100 4~! Mpc, the threshold
of our reconstruction, and the Norma cluster lies along the galactic
plane, there is lack of peculiar velocity data around these clusters.
The lack of peculiar velocity data around the cluster leads to poor
reconstruction quality around these regions.

Finally, we compare our reconstruction to the C15 reconstruction
by comparing the velocity fields in radial shells. For this comparison,
we compared the radial velocity from C15 and our reconstruction in
radial shells of width 20 4~ Mpc. In each shell, we compare the radial
velocities from our reconstruction samples and the reconstruction
from C15. We fit the slope and the standard deviation between
the two velocity estimates by regressing the velocity estimates of
our reconstruction on the C15 velocity estimates. The fitted slope
can be thought of as a proxy for the cross-correlation between the
two velocity estimates. The slope and the scatter between the two
velocity fields are shown in Fig. 9. As we can see from the figure, the
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two velocity fields have a large degree of correlation in the nearby
Universe (R < 120 A~! Mpc). Since the peculiar velocity data is
restricted to d < 1004~! Mpc, we do not expect the reconstructed
velocity field to be a good estimate beyond this boundary. This is
reflected in the fact that the slope rapidly approaches zero beyond
the peculiar velocity data boundary. We also see that the scatter
between the two increases with increasing radius. At very low radius
(R < 50 h~! Mpc), the scatter between the two velocity fields is less
than or comparable to the uncertainty due to the non-linearities, o N,
A 150 km s~!. At large radius, the scatter approaches the sample
standard deviation (~250 km s™!).

5.2 Bulk flow

Due to the sensitivity to large-scale density modes, the velocity field
is correlated on very large scales. The large-scale velocity field is
often expanded in terms of its kinematic moments, such as the dipole
and the quadrupole of the velocity field (Jaffe & Kaiser 1995),

Vd)y=U+dQ -7+ .., (16)
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Figure 8. The density and the velocity field reconstruction in the supergalactic plane. The top panels shows the density field smoothed using a Gaussian filter
of smoothing scale 10 ~~' Mpc and the bottom panels shows the velocity field reconstruction. In the left-hand panels, we show the density and the velocity
field of a randomly selected sample in our reconstruction. The middle panels show the mean density and velocity field. The rightmost panels show the standard
deviation in our density and velocity field reconstruction samples. We show the location of several prominent clusters in the supergalactic plane, namely Virgo,
Norma, PP, Coma, and Shapley, with a black star. The black dotted line shows the radius at 100 nl Mpc, which is the selection limit imposed on the sample.
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Figure 9. Comparison of (left) the slope and (right) the RMS difference between the velocity estimates of our reconstruction and the C15 reconstruction for
voxels binned in radial shells. The slope can be interpreted as the cross-correlation between the two velocity fields. We see a large degree of cross-correlation
in the region with the peculiar velocity data (R < 100 ~~! Mpc), while it rapidly goes to zero beyond this region. The right-hand panel shows the RMS error
between the two velocity reconstructions. At very small radius, R < 50 h~' Mpc, the scatter approaches the value onp. &~ 150 km s~!. The black dashed line
show the standard deviation in our reconstruction sample with o Ny, added in quadrature.

where U is the dipolar bulk flow, and Q is the trace-free, symmetric
quadrupolar shear moment and d is the radial distance. The bulk
flow is sensitive to the large-scale power of the density field and
therefore can also be used to constrain cosmological parameters due
to its sensitivity to the power spectrum shape parameter (Feldman &
Watkins 2008).

We can measure the bulk flow and the shear moments directly
from our reconstruction. In order to measure the bulk flow in our
reconstructions at a given scale, we smooth the velocity field with
a window function of characteristic scale, Ryy. We use a Gaussian
filter in order to measure the bulk flow in our reconstruction. The

bulk flow at a scale of Ry, = 40 h~' Mpc for our reconstruction is
Viulk = 22072% km s~ in the direction [ = 295° 4 6°, b = 21° £ 5°
deg. As noted in the previous section, the error bar obtained from the
reconstruction should be treated as the statistical error bar and does
not account for systematic uncertainties. The bulk flow as measured
in our reconstruction is compared to a number of different results
in the literature in Table 2. We also show the total magnitude and
the direction of the bulk flow as measured from our reconstruction
samples in Fig. 10. As we can see from the figure, both the magnitude
and the direction of the bulk flow are consistent with other results in
the literature. Of the compared results, Scrimgeour et al. (2016) and
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Table 2. Comparison of the bulk flow results with other studies in the literature. The results are also shown in Fig. 10.
We see that our bulk flow result is in excellent agreement with the other results in literature.

Reference Abbreviation Effective radius |Viuik| (km s—1) [ (deg) b (deg)
Scrimgeour et al. (2016) S16 50! Mpc 248 + 58 318 £20 40 + 13
Qin et al. (2019) Q17 37h~" Mpc 259 £ 15 300 £ 4 23+3
Boruah et al. (2020) B20 40 h~! Mpc 252 + 11 293 +£5 14+5
Lilow & Nusser (2021) L21 50h~! Mpc 274 + 50 287 +9 11+10
This work - 40 ="' Mpc 220 £21 295+ 6 21+5
700 360 60
! Bl ACDM
600 B This work 407 40 A
500 S16 3204 |
= I aqi7 -y
i 400 - i B2 E 300 A B o
% 300 || oL < 280 = g
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Figure 10. Comparison of the bulk flow measured in our reconstruction and compared to the ACDM expectation as well as the other results in the literature.
The left-hand panel shows the magnitude of the bulk flow, while the middle and the right-hand panels show the direction of the bulk flow in terms of the galactic
longitude and latitude, respectively. As we can see, the magnitude of the bulk flow in our reconstruction (shown in blue) is consistent with both the ACDM
expectation (shown in green hatch) as well as other results in the literature. The direction of the bulk flow as inferred from our reconstruction is also consistent
with other results in the literature. The results in the literature compared in this results are: Scrimgeour et al. (2016) (S16), Qin et al. (2019) (Q17), Boruah et al.

(2020) (B20), and Lilow & Nusser (2021) (L21).

Qin et al. (2019) use an estimator to estimate the bulk flow directly
from the peculiar velocity data. On the other hand, Boruah et al.
(2020) and Lilow & Nusser (2021) explicitly fit an external dipole
in their flow model to account for velocity contribution from outside
the survey volume. Note that the approach presented here is different
from these approaches. We do not explicitly model an additional
dipole. The density modes we fit for in our reconstruction not only
account for the bulk flow but also other higher kinematic moments
of the large-scale velocity field.

5.3 Velocity field comparison

We introduced a Bayesian model comparison framework in Boruah
et al. (2021) to compare the performance of different velocity
reconstruction models. In this model comparison framework, we
look at the Bayes factor between two models, M and M,,

P(DIM,)
P(DIM,)

If the Bayes factor is greater than 1, the model M, is preferred
over the model M, and vice versa. We use this model comparison
framework to assess the quality of the velocity reconstruction
method introduced in this paper. We compare our velocity model
to two different velocity reconstructions of the local Universe —
(1) reconstruction of C15, (ii) an adaptive kernel-smoothed velocity
reconstruction, where the peculiar velocity data is directly smoothed
(Springob et al. 2014, 2016). We use an adaptive-kernel smoothed
velocity field obtained from a combined TF catalogue consisting
of the SFI4++ and the 2MTF velocity field. The Bayesian model
comparison method relies on our capacity to predict new data points
from the model. This is called a posterior predictive test, and thus
requires what is sometimes called a ‘test set’ of peculiar velocities.
Therefore for this comparison, we perform a reconstruction using

Bayes factor = 17
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Table 3. Comparison of the logarithm of Bayes factor for various redshift
selection. A positive value of the logarithm of Bayes factor implies that our
model is favored over the compared model, while a negative value of the
logarithm of the Bayes factor implies the compared model is preferred over
our model. From the table, we can see that our model performs better than
the adaptive kernel-smoothed velocity field. On the other hand, C15 velocity
field performs better than our Bayesian velocity reconstruction.

Test set Selection In < %) In (%) Niracers
ac ﬂpuve
A2 z <0.01 7.44 —2.12 49
z <0.015 10.88 —5.92 92
7z <0.02 21.73 —20.69 168
z<0.03 41.16 —27.65 310

only the TF catalogues for the reconstruction and use the A2 sample
as a test set for the posterior predictive analysis. We note that this
is the same peculiar velocity data set used for the adaptive kernel-
smoothed reconstruction.

The results of the model comparison are shown in Table 3.
Using our model comparison, we find that the Bayesian velocity
reconstruction performs better than the kernel-smoothed velocity
field, even though both reconstructions use the same data sets.
Our velocity field however does not perform as well at predicting
new velocity data compared to the reconstruction of Carrick et al.
(2015), which uses the 2M++ galaxies to map the density field,
and linear perturbation theory to predict peculiar velocities. This is
not a failure of our method, but rather a limitation of the peculiar
velocity data used for the reconstruction. Since the peculiar velocity
data used in this work are very noisy and sparse, the quality
of reconstruction is not comparable to the 2M++4- reconstruction.
In the future, with denser peculiar velocity samples, we expect
the quality of reconstruction to be significantly better. There is
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also the possibility that the approximation of linear perturbation
theory may fail which would require more complex models based,
e.g. on BORG. Furthermore, we see that both the adaptive-kernel
smoothed and the Bayesian velocity field perform worse at higher
redshifts compared to the reconstruction of Carrick et al. (2015). This
degradation is explained by two factors that affect the PV tracer based
reconstructions: (i) The PV tracers are sparser at higher redshift.
(i1) The absolute uncertainty of distances (and therefore velocity) is
higher at higher redshifts.

6 DISCUSSION

Our work provides a way towards including peculiar velocity data
into the initial condition reconstruction framework BORG. A density
reconstruction by combining both galaxy and peculiar velocity data
in BORG potentially has multiple advantages. First, using BORG, we
can access the fully non-linear velocity field, which is accurate to
much smaller scales as compared to the velocity field from linear
perturbation theory. For example, BORG particle mesh runs have
been shown to perform better than linear velocity fields in N-body
simulations (Mukherjee et al. 2021). Furthermore, the vorticity of
the velocity field, which is a uniquely non-linear phenomenon was
already reconstructed in Jasche & Lavaux (2019). In Prideaux-Ghee
et al. (2022), the first steps were taken towards the inclusion of the
peculiar velocity field in BORG. Second, adding the velocity data to
the Bayesian reconstructions can potentially make the reconstruction
robust to the details of the galaxy bias model. As was shown in
Nguyen et al. (2021), the amplitude of the inferred power spectrum
in BORG reconstructions with galaxy/halo catalogues alone may be
substantially biased. This arises because the higher order bias terms
are not sufficiently informative to break the degeneracy between
linear galaxy bias and the amplitude of matter clustering, og.
Since peculiar velocity data is sensitive to the total matter density,
the addition of peculiar velocity data to galaxy data would make
the BORG reconstruction robust to the details of the galaxy bias.
Adding velocity information to the Bayesian reconstruction methods
can potentially lead to improved reconstruction of the full phase
space structure (density + velocity) of dark matter (Leclercq et al.
2017). Such phase space reconstruction can then potentially guide
observation efforts for new discoveries (Kosti¢ et al. 2022).

In the future, we can also extend our method to simultaneously
constrain cosmological parameters from peculiar velocity data. As
we highlight in this paper, not accounting for the IHM bias can lead
to the amplitude of the peculiar velocities and so the inferred power
spectrum of the density/velocity field to be biased high. This is crucial
for the inference of the cosmological parameters, since this bias will
likely translate to the biased inference of cosmological parameters.
Thus, this paper provides the foundation of inferring cosmological
parameters with peculiar velocity data in a Bayesian framework. Also
note that our method is sensitive to the large-scale flows, which in turn
are a sensitive probe of the break in the matter power spectrum (e.g.
Feldman & Watkins 2008). Thus, the large-scale power spectrum
can constrain the shape parameter, ' ~ Q,/h. Combining these
constraints from large-scale flows with traditional velocity—velocity
comparison methods can potentially provide additional cosmological
information. The use of the non-linear velocity field using BORG can
also potentially break the fo s degeneracy through the non-linearities.
This feature was already noted in the context of weak lensing by using
a forward model based on Lagrangian Perturbation theory within the
BORG framework for mock weak lensing data (Porqueres et al. 2022).

Another possible application of our Bayesian velocity recon-
structions is in using the kinetic Sunyaev—Zeldovich (kSZ) data

Bayesian peculiar velocity reconstruction — 4541

to reconstruct the large-scale velocity modes. kSZ-based velocity
reconstruction has been shown to improve the constraints on primor-
dial non-Gaussianities through multitracer analyses (Giri & Smith
2022).

7 SUMMARY

In this paper, we introduced a forward-modelled velocity reconstruc-
tion method which uses peculiar velocity data to reconstruct the
velocity field. Using an external estimate of the LOS density, we
consistently correct for the IHM bias. Using mocks created from an
N-body simulation, we validated that our method leads to unbiased
velocity field reconstruction after accounting for the IHM bias.
However, as we show using mock simulations, not accounting for
the IHM bias in forward-modelled methods can lead to significantly
biased reconstruction. Since the IHM bias may induce spurious
flows, the inferred power spectrum of the reconstruction is biased
high if the IHM bias is not corrected for. We then applied our
method to the 2MTF, SFI++ TF catalogues and the A2 supernovae
compilation, resulting in a novel forward-modelled velocity field
reconstruction of the local Universe. Since we sample our velocity
field reconstruction samples from the field-level posterior, we get an
estimate of the full correlated uncertainties in the peculiar velocity
estimates. Furthermore, we found that the bulk flow calculated from
our reconstruction is consistent with other results in the literature.
Using a Bayesian model comparison framework, we showed that the
reconstructed forward modelled velocity fields perform better than
the widely used adaptive kernel-smoothed velocity fields constructed
from the same data. However, the reconstruction presented here does
not perform as well as the velocity field reconstructed from the
2M++ galaxy catalogue. This is likely because peculiar velocity
data sets are sparser and noisier compared to galaxy catalogues.
Our method provides a way to extend forward-modelled initial
condition reconstruction algorithms such as BORG by including
peculiar velocity data sets.
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APPENDIX: PHYSICAL ORIGIN OF THE
RECONSTRUCTION ERROR

In this appendix, we try to isolate different physical origins of the
uncertainties in our velocity reconstruction. As shown in Section 4,
without the use of the correct line-of-sight (LOS) distribution for
the peculiar velocity tracers, the reconstructed velocity field is
biased high. This bias also leads to increased uncertainty in the
reconstructed velocity. However, another factor contributes to the
increased error in the velocity reconstruction. In equation (12), there
are two contributions to the distribution of peculiar velocity tracers
along the LOS — (i) The uncertainty in the distance, (ii) The LOS
density field. Due to the latter contribution, peculiar velocity tracers
are clustered around regions of high density. Therefore, when we
take the LOS density into account, the radial distribution may be
more peaked than naively expected from the measured distance
uncertainty. This is shown in Fig. A1, where we plot an example from

0.05 —— with LOS density
—— without LOS density
0.04
0.03
&
0.02
0.01
0.00
0 25 50 75 100 125 150 175 200

r (h= Mpc)

Figure A1. The impact of the LOS density field on the radial distribution of
the peculiar velocity tracer. Here, we show the radial distribution of a peculiar
velocity tracer in our mock survey. The red curve shows the expected radial
distribution ignoring the LOS inhomogeneities and the blue curve shows
the distribution after accounting for the LOS inhomogeneities. As we can
see, radial distribution after accounting for the LOS inhomogeneities is more
peaked than the naive distribution expected from the measured distance error.
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Figure A2. The RMS error in the velocity reconstructions in our three runs.
The peculiar velocity tracers in Mock A are sampled by accounting for the
LOS inhomogeneities and therefore the reconstruction is susceptible to IHM
bias. On the other hand, in Mock B, the peculiar velocity tracers are sampled
homogeneously and therefore does not suffer from IHM bias. We notice that
the RMS error in Run 1 is much lower than Run 2 and Run 3. On the other
hand, the RMS error in Run 3 is closer to the error in Run 2 (compared
to Run 1). This suggests that the error in the IHM corrected reconstruction
has the additional advantage of reducing the reconstruction error by better
localization of the peculiar velocity tracers.

our mocks used in Section 4. In this figure, the radial distribution
of the tracer including the LOS density is much sharply peaked
compared to the distribution is we ignored the LOS.

Therefore, when we account for the LOS density, we not only
correct for the IHM bias, but we also sharpen the distance estimate
and therefore decrease the uncertainty in the reconstruction. In order
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to investigate the impact of this factor, we use our method on two
different mock surveys. In mock survey A, we populate the tracers
according to equation (12), accounting for the LOS density field. In
mock B, we populate tracers homogeneously, i.e. we do not account
for the LOS inhomogeneity. Therefore, by design, inference with
mock B does not suffer from IHM bias. Since the velocity tracers are
not clustered around density peaks, we are not able to determine the
position of the tracer better than the distance uncertainty. We then
make three runs of our code on the two mocks:

(i) Run 1: Mock A, corrected for IHM bias.

(ii) Run 2: Mock A, not corrected for IHM bias.

(iii) Run 3: Mock B, not corrected for IHM bias (by design, Mock
B is unaffected by IHM bias).

The results of the three runs are shown in Fig. A2, where we plot
the root mean squared (RMS) error in the velocity reconstruction
binned in radial bins. We see that the RMS error for the Run 1 is
substantially lower than Run2 and Run3. Furthermore the RMS error
on Run 2 is higher than Run 3. Note that only Run 2 is impacted
by the IHM bias. We see that the RMS error in Run 3 is closer to
Run 2 than to Run 1, thus suggesting that extra error of the I[HM
uncorrected run over the IHM corrected run is driven by the fact that
the distance estimates are better localized when we account for the
LOS density field, rather than the IHM bias. Thus, by accounting
for the LOS density, we not only correct for the IHM bias, but also
reduce the reconstruction error by better localization of the peculiar
velocity tracers.
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