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A B S T R A C T 

We present a Bayesian velocity field reconstruction algorithm that performs the reconstruction of the mass density field using 

only peculiar velocity data. Our method consistently accounts for the inhomogeneous Malmquist (IHM) bias using analytical 
integration along the line of sight. By testing our method on a simulation, we show that our method gives an unbiased 

reconstruction of the velocity field. We show that not accounting for the IHM bias can lead to significant biases in the Bayesian 

reconstructions. We applied our method to a peculiar velocity data set consisting of the SFI ++ and 2MTF Tully–Fisher 
catalogues and the A2 supernovae compilation, thus obtaining a no v el v elocity reconstruction in the local Univ erse. Our v elocity 

reconstructions have a cosmological power spectrum consistent with the theoretical expectation. Furthermore, we obtain a 
full description of the uncertainties on reconstruction through samples of the posterior distribution. We validate our velocity 

reconstruction of the local Universe by comparing it to an independent reconstruction using the 2M ++ galaxy catalogue, 
obtaining good agreement between the two reconstructions. Using Bayesian model comparison, we find that our velocity model 
performs better than the adaptive kernel smoothed velocity with the same peculiar velocity data. Ho we ver, our velocity model 
does not perform as well as the velocity reconstruction from the 2M ++ galaxy catalogue, due to the sparse and noisy nature 
of the peculiar velocity tracer samples. The method presented here provides a way to include peculiar velocity data in initial 
condition reconstruction frameworks. 

Key words: galaxies: kinematics and dynamics – large-scale structure of Universe – cosmology: observations. 
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 I N T RO D U C T I O N  

he large-scale structure of the Universe sources the peculiar velocity 
f the galaxies. The study of the peculiar velocity of galaxies in the
ocal Universe is important in cosmological applications for two 
easons: (i) peculiar velocities are the only probe of the growth 
f large-scale structure in the low-redshift ( z � 0.1) Universe, (ii)
eculiar velocities are a nuisance parameter in the measurement 
f the Hubble parameter H 0 and thus need to be corrected for
n such measurements (Boruah, Hudson & Lavaux 2021 ; Peterson 
t al. 2022 ). Correcting for the peculiar velocity contributions to the
edshifts in the measurement of the expansion history relies on using
 reconstruction of the peculiar velocity field in the local Universe. 
iven the current tension in the measurement of the Hubble constant, 
 0 (Verde, Treu & Riess 2019 ), we need to account for all sources
f uncertainties. In order to obtain unbiased estimates of the peculiar 
elocity corrections for the local H 0 measurement, we need accurate 
odels of the local peculiar velocity field. 
Therefore the reconstruction of the velocity field of the local 

niverse is important for these cosmological applications. Many 
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ethods of reconstruction of the peculiar velocity field have been 
roposed in the literature. We can categorize the different methods 
ccording to two criteria: (i) the data used for the reconstruction,
.e. whether galaxy catalogues or peculiar velocity tracers are used 
n the reconstruction and (ii) whether the method involves forward- 
odelling or a direct inversion from the data. 
Most common reconstructions of the local velocity field use galaxy 

atalogues to reconstruct the galaxy density field (e.g. Carrick et al.
015 ; Lilow & Nusser 2021 ). Following the reconstruction of the
alaxy density field, the velocity field is calculated using linear 
erturbation theory. Ho we ver, since galaxies are biased tracers of
he matter field, we need to fit for the parameter β = f / b to get
he velocity field, where f is the logarithmic growth parameter 
nd b is the linear galaxy bias. This is done by comparing the
econstructed velocity field to the peculiar velocity data. On the 
ther hand, reconstruction methods relying directly on peculiar 
elocity data are not affected by galaxy bias, thus providing a
omplementary method for reconstructing the velocity field. On 
he flip side, the peculiar velocity catalogues are sparse and the
elocity estimates obtained from peculiar velocity tracers are very 
oisy. Therefore reconstructing the density field is usually easier 
han reconstructing the velocity field. One well-known example of 
 reconstruction method relying on velocity data is the POTENT 
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ethod (Bertschinger & Dekel 1989 ; Bertschinger et al. 1990 ) which
ses peculiar velocity data directly to reconstruct the velocity field,
ssuming that the velocity field is proportional to the gradient of the
ravitational potential field. Another such widely used method is the
daptiv e kernel-smoothed v elocity reconstruction method (Springob
t al. 2014 , 2016 ) that smooths the peculiar velocity data to obtain
he velocity reconstruction. 

The other criteria that we can use to categorize the reconstruction
ethods is whether the reconstruction is performed using forward-
odelling or uses a direct inversion from the data. Inverting non-

inear problems from partial, noisy, observations is an ill-posed
nverse problem, which mak es forw ard-modelled Bayesian meth-
ds particularly suitable for the task of reconstruction of high-
imensional fields. Bayesian reconstruction methods have become
ncreasingly popular in cosmology and have been applied in a range
f different applications such as initial conditions reconstruction
Jasche & Wandelt 2013 ; Modi, Feng & Seljak 2018 ; Jasche &
avaux 2019 ), weak lensing (Fiedorowicz et al. 2022 ; Porqueres et al.

2021 , 2022 ; Boruah, Rozo & Fiedorowicz 2022 ), and CMB lensing
Millea et al. 2021 ; Millea, Anderes & Wandelt 2020 ). Such methods
ave also been used for the local velocity field reconstruction.
he simplest of such methods uses a Wiener filtering technique

Zaroubi, Hoffman & Dekel 1999 ). This approach assumes that the
ensity/velocity field is described as a Gaussian random field and the
iener filtered reconstruction is the maximum-a-posteriori (MAP)

olution for the problem. The Wiener filtering approach has been
xtended to account for uncertainties and biases in the reconstruction
sing a constrained realization approach (Hoffman & Ribak 1991 ;
offman, Courtois & Tully 2015 ; Hoffman et al. 2018 ; Lilow &
usser 2021 ) An alternative way to account for the biases in the

econstruction in Wiener filtering is using the unbiased minimal
ariance approach (Zaroubi 2002 ). Another similar approach is the
ayesian hierarchical method, VIRBIUS (Lavaux 2016 ), which is
ased on the constrained realization approach but accounts for many
if ferent systematic ef fects in its analysis. This approach has been
een applied to the Cosmicflows-3 (Tully, Courtois & Sorce 2016 )
ata set by Graziani et al. ( 2019 ). A similar reconstruction code,
AMLET , was introduced in Valade et al. ( 2022 ). Ho we ver, these
ethods fail to account for the inhomogeneous Malmquist (IHM)

ias which is an important source of systematic error in peculiar
elocity analysis. The IHM bias arises from an incorrect assumption
n the distribution of peculiar velocity tracers due to neglecting the
ine-of-sight inhomogeneities. 

In this paper, we introduce a Bayesian reconstruction method that
ses peculiar velocity data in its reconstruction while consistently
ccounting for the IHM bias in the analysis. As we show in this paper,
ot accounting for the IHM bias in the reconstruction may lead to
ubstantial biases in the reconstruction. One approach to correct for
he IHM bias is by marginalizing o v er an accurate model of galaxy
istribution (e.g. Hudson 1994 ). We use such an approach to deal with
he IHM bias within our peculiar velocity reconstruction method. Our

ethod results in samples of reconstruction that are compatible with
he data from a given peculiar velocity catalogue, and sampled from
 posterior assuming a � CDM Gaussian prior. Furthermore, the full
orrelated uncertainties in the reconstruction can be estimated from
he posterior samples. Our method presented here can be extended
n a straightforward manner to include more complex gravity models
uch as initial condition reconstruction methods like BORG (Jasche &
andelt 2013 ; Jasche & Lavaux 2019 ). 
The paper is structured as follows: in Section 2 , we describe the

imulations and data used in this paper. In Section 3 , we describe
ur reconstruction method in detail. Our method is validated with
NRAS 517, 4529–4543 (2022) 
ock simulated catalogues in Section 4 followed by an application
f our method to reconstruct the velocity field of the local Universe in
ection 5 . Finally, after a brief discussion in Section 6 , we summarize
ur results in Section 7 . In Appendix A , we investigate in further
etail the various sources contributing to the reconstruction error. 

 SI MULATI ONS  A N D  DATA  

n this section, we describe the simulations and the peculiar velocity
urv e ys used in this work. 

.1 VELMASS simulation 

n order to validate our method, we use an N -body simulation from
he VELMASS suite of simulations. 1 The simulation was performed
n a cubic box of size (2 h −1 Gpc) 3 with 2048 3 particles with mass
.387 × 10 10 h −1 M �. The cosmological parameters used are: �m 

=
.315, �b = 0.049, H 0 = 68 km s −1 Mpc −1 , σ 8 = 0.81, n s =
.97, and Y He = 0.248. The ROCKSTAR (Behroozi, Wechsler & Wu
013 ) halo finding software was used to identify the dark matter
aloes in the simulation. We only consider the haloes with mass M
 3 × 10 12 h −1 M �. 
In order to create a mock peculiar velocity survey, we populate

he haloes with mass M > 3 × 10 12 h −1 M � with a standard candle
ith different levels of intrinsic scatter. That is, we assign it an

bsolute magnitude M = M 0 + ε, where M 0 is the standard candle
bsolute magnitude and ε is the intrinsic scatter drawn from a normal
istribution, ε ∼ N (0 , σ 2 

int ). Here, σ int is the standard deviation of the
ntrinsic scatter. We can calculate the apparent magnitude from this
bsolute magnitude and the distance to the haloes. In this paper, we
eport the results with three different intrinsic scatters, corresponding
o distance uncertainties of 7, 15, and 20 per cent . Finally, we make
n apparent magnitude cut to create a magnitude limited catalogue.
rom this magnitude limited sample, we randomly select 7000
aloes. The non-linear velocity of the haloes is calculated from the
imulation output, which in turn is used to calculate the observed
edshift, z obs , of these haloes. While running the forward likelihood
ethod described in Section 3.3 , the method requires the estimated

alaxy density field as an input. 

.2 Peculiar velocity surveys 

n this work, we use peculiar velocity data from various surv e ys in
ur algorithm to reconstruct the velocity field of the local Universe.
he three peculiar velocity data sets that we use in this work are

he A2 supernovae compilation, SFI ++ and 2MTF Tully–Fisher
TF) catalogues. Compared to our treatment of these data sets in
oruah, Hudson & Lavaux ( 2020 ), we do not fit the TF or the SNe

ight curve fitting parameters during the reconstruction. Instead we
se the distances as provided in the catalogues. We ho we ver fit for
 scaling factor that may arise due to miscalibration in the fitting
f the zero-points of the TF relations as detailed in Section 3.3 .
e use a different scaling factor for each peculiar velocity survey.
e use the galaxy density reconstruction of Carrick et al. ( 2015 )

o correct for the IHM bias. Since this reconstruction is limited to
25 h −1 Mpc in certain sky directions, we only consider peculiar
elocity tracers within estimated distances d < 100 h −1 Mpc in
his work, thus limiting the edge effects in our reconstruction. Note
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Figure 1. Redshift distribution of the tracers in the different peculiar velocity 
catalogues used in this work. We have imposed a distance cut of d < 100 h −1 

Mpc on all catalogues. 
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hat imposing such a distance cut does not introduce a selection 
ias in the forward peculiar velocity analysis methods (Strauss & 

illick 1995 ). The redshift distribution of peculiar velocity tracers 
s shown in Fig. 1 . In the following, we provide a brief description
f the data used in this work. We refer readers to Boruah et al.
 2020 , 2021 ) for more details on the selection and the treatment
f outliers, choosing only to highlight some main features of the 
ata sets. 

(i) A2 Supernovae : In Boruah et al. ( 2020 ), we compiled the
econd amendment (A2) data set of nearby supernovae from publicly 
v ailable supernov ae from the CfA supernov ae sample (Hicken et al.
009 ), Carne gie Superno vae Project-Data Release 3 (CSP-DR3; 
risciunas et al. 2017 ), the Lick observatory Supernova Surv e y

LOSS; Ganeshalingam, Li & Filippenko 2013 ), and the Foundation 
ample (F ole y et al. 2018 ; Jones et al. 2019 ) of supernovae. We
nly consider the supernovae with estimated distance d < 100 h −1 

pc. The median distance uncertainty, � d , of the A2 supernovae 
s around 7 per cent , with the 16 and 84 percentile range of this
ncertainty being 5 and 8 per cent , respectively. 
(ii) SFI ++ : We use peculiar velocity data from the SFI ++ (Mas-

ers et al. 2006 ; Springob et al. 2007 ) TF catalogue, which is an
 -band TF surv e y. We follow the treatment of Boruah et al. ( 2020 )
o remo v e outliers. F or galaxies in groups, we use the peculiar
elocity data for the groups to suppress non-linear contributions 
o the peculiar velocity data. We only consider the galaxies/groups 
ith estimated distance d < 100 h −1 Mpc. The median distance 
ncertainty, � d , of the SFI ++ galaxies is 20 per cent , with the 16
nd 84 percentile range of this uncertainty being 18 and 24 per cent ,
espectively. 

(iii) 2MTF : The 2MTF surv e y (Masters, Springob & Huchra 2008 ;
ong et al. 2019 ) is an all sky TF galaxy catalogue in the near-

nfrared J , H , and K bands. The surv e y is limited to cz < 10000 km
 

−1 , approximately corresponding to d < 100 h −1 Mpc. The median
istance uncertainty, � d , of the 2MTF galaxies is 22 per cent , with
he 16 and 84 percentile range of this uncertainty being 19 and
5 per cent , respectively. 

With the given distance cuts, we select 345, 1682, 556, 1225 
bjects from the A2 catalogue, SFI ++ field galaxy catalogue, 
FI ++ group catalogue, and 2MTF catalogue, respectively. 
 M E T H O D O L O G Y  

e introduce a no v el method for Bayesian velocity reconstruction
hich can consistently account for IHM bias in the reconstruction in

his paper. In this section, we describe the theory and the methodology 
ehind our method for reconstructing the velocity field with the 
eculiar velocity data. 

.1 Peculiar velocity theory 

n the � CDM model, under linear perturbation theory, the present
ay peculiar velocity field can be expressed in terms of the density
eld as (Peebles 1980 ), 

 k = 

if H 0 k 
k 2 

δk , (1) 

here f ≈ �0 . 55 
m 

is the logarithmic growth rate in the � CDM model,
 

2 = −1. Since a factor of k appears in the denominator, the peculiar
elocity field is sensitive to the large-scale density modes. Since 
hese modes are well described with linear perturbation theory, linear 
heory predictions of peculiar velocity provide a fairly accurate result 
or the true velocity field. The peculiar velocity estimated using linear
heory has been calibrated with simulations (Carrick et al. 2015 ;
ollinger & Hudson 2021 ) and the uncertainty in the linear theory
elocity estimates due to the non-linearities was found to be σ NL ≈
50 km s −1 . In this work, we use linear perturbation theory to predict
he velocity field. In the future, this can be extended to include non-
inear differentiable velocity field models such as the Lagrangian 
erturbation theory (LPT; Bouchet et al. 1995 ) full particle mesh
r COLA (Tassev, Zaldarriaga & Eisenstein 2013 ) simulations that 
ave previously been used for Bayesian density reconstruction (e.g. 
asche & Lavaux 2019 ). 

.2 Inhomogeneous Malmquist bias 

eculiar velocity analyses are impacted by a number of different 
tatistical biases, including the homogeneous and IHM biases. The 
omogeneous Malmquist bias arises due to the fact that the number of 
alaxies grows along the line of sight (LOS) according to the volume
actor. In this paper, we mainly discuss the impact of IHM bias in
ayesian reconstruction with peculiar velocity data. Therefore, we 
iscuss the basics of IHM bias in some detail in this section. 
The IHM bias arises due to neglecting inhomogeneity in the 

adial distribution of the peculiar velocity tracers. Neglecting the 
 v erdensities along the LOS leads to a bias in the inferred distance,
 est , compared to the true distance, d true . The magnitude of the bias
s given as (Lynden-Bell et al. 1988 ; Strauss & Willick 1995 ), 

 IHM 

= 〈 d true 〉 − 〈 d est 〉 ≈ d est γ� 

2 
d , (2) 

here, � d is the fractional uncertainty in the distance estimates and
is the logarithmic slope in the galaxy o v erdensity along the LOS

iven by 

= 

d ln n ( r) 

d ln r 
. (3) 

ince the slope changes sign in front of and behind an o v erdensity, the
istance of the galaxies in front of the o v erdensity is underestimated
nd those at the back are o v erestimated. This may be interpreted as
 spurious flow towards the o v erdensity if the IHM bias correction
s neglected, and thus biases the magnitude of the velocity field to
 higher value compared to the true value. Therefore, the inferred
alue of β is biased high when the IHM bias is not accounted for in
 elocity–v elocity comparison methods (e.g. Boruah et al. 2020 ). As
MNRAS 517, 4529–4543 (2022) 
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Figure 2. A probabilistic graph showing the dependency of the different 
observables and the underlying variables. The observables (redshift, cz obs , 
and the distance modulus, μ) are shown with a double circle. In the forward 
methods of peculiar velocity analysis (see Section 3.3 ), the redshift of the 
peculiar velocity tracers are predicted as a function of the distance estimates. 
This is reflected in the relationship between the observables. Note that, we 
use an external estimate of the galaxy density field, ̂  δg , in order to correct for 
the IHM bias. 
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e will show in Section 4 , in Bayesian reconstruction from peculiar
elocity data, this ef fect sho ws up as an increase in the inferred
ower spectrum of the reconstructed density field if the IHM bias is
ot corrected for. 

.3 Probability model 

he method we present in this paper is a Bayesian method to recon-
truct the velocity field using the data from a peculiar velocity survey.
ne such reconstruction method is the VIRBIUS algorithm (Lavaux
016 ) which has previously been applied to the Cosmicflows-3 (Tully
t al. 2016 ) data set in Graziani et al. ( 2019 ). In their method, the true
istance of the peculiar velocity tracers are used as latent parameters
nd the value of the distance is inferred in each Markov Chain Monte
arlo (MCMC) step. The homogeneous Malmquist bias is dealt with
y using a skewed prior on these distances. Ho we ver, the IHM bias
s not explicitly accounted for in their analysis. In this work, we
ccount for the IHM bias by using analytic integration over the LOS
ncertainty. Marginalizing o v er the true distance also reduces the
omplexity since we do not have to infer their value in each MCMC
tep. Furthermore, the posterior distribution of the peculiar velocity
racer distances can potentially be highly multimodal due to the
OS inhomogeneities, which makes the analytical marginalization
referable to sampling based methods. 
In Bayesian reconstructions, we want to infer the velocity field,

 v } , given the peculiar velocity data. The peculiar velocity data set
onsists of the observed redshift, { z obs } , and the estimate of its
istance modulus, { μ} , for a set of peculiar velocity tracers. The
ncertainty associated with the distance modulus is denoted by σμ.
n linear perturbation theory, the velocity field is calculated from the
ensity field, { δ} , using equation ( 1 ). Therefore, we can equi v alently
hink about the process described here as a density reconstruction
lgorithm. Furthermore, we need an estimate of the galaxy density
eld to correct for the IHM bias. For this work, we provide the
stimate of the galaxy density field, { ̂ δg } , as an input to our method. 

In this work, we use a variant of the forward VELMOD method
Willick et al. 1997 ), which was introduced in Pike & Hudson ( 2005 )
o model the likelihood. For simplicity, we call this likelihood the
orward Lik elihood . The forw ard lik elihood method corrects for the
HM bias by accounting for the density dependent LOS distribution
f peculiar velocity tracers. In the forw ard lik elihood method, the
bserved redshift is predicted as a function of the distance estimates.
hat is, we model the likelihood using the conditional probability,
( { cz obs }|{ μ} , { v } , { ̂ δg } ). We show the dependency of the various

ariables and the observables in a probabilistic graph in Fig. 2 . Using
ayes theorem, the posterior for the density field δ can be written
s 

( { δ}|{ cz obs } , { μ} , { ̂ δg } ) ∝ P( { cz obs }|{ μ} , { δ} , { ̂ δg } ) P( { δ} ) . (4) 

n our runs, we use a 128 3 cubic box where the density is inferred.
hat leads to a total of 128 3 density parameters. In order to
ample from such high-dimensional parameter space, we used the
amiltonian Monte Carlo (HMC; Neal 1993 , 1996 ) algorithm. HMC

an be used to sample from very high dimensional parameter space
y using the gradient information of the log-posterior. In this paper,
e implement our code by relying on the JAX package (Bradbury et al.
018 ) which includes the gradients of the requisite function by using
utomatic differentiation. Sampling with HMC is highly sensitive to
he choice of mass matrix. The optimal choice is to use the Hessian
f the ne gativ e log-posterior as the mass matrix (Taylor, Ashdown &
obson 2008 ). We create a number of Gaussian realizations of the
ensity field and then calculate the second deri v ati ve of the log-
NRAS 517, 4529–4543 (2022) 
osterior for 20 such fields. We use automatic differentiation to
alculate the second deri v ati ve of the posterior. The mean of the
essian calculated from these mocks is then used as our mass matrix.
The RHS of equation ( 4 ) consists of two terms, (i) the prior on the

ensity field, P( { δ} ) and (ii) the likelihood, P( { cz obs }|{ μ} , { δ} , { ̂ δg } ).
e will first discuss the prior we use in this work. In this work, we

ssume a Gaussian prior on the density field. In the Fourier space,
e can write it as 

( { δ} ) = 

∏ 

k 

1 √ 

2 πσ 2 
k 

exp 

[
−| δk | 2 

2 σ 2 
k 

]
, (5) 

here σ 2 
k = V s P ( k) is the variance in δk . Here, P ( k ) is the � CDM

ower spectrum and V s is the volume of the simulation box. In
his work, we fix our cosmological parameters to the fiducial
osmological parameters used in the VELMASS simulation. We note
hat the present day density field is significantly non-Gaussian. Thus
t cannot be well-described using a Gaussian prior. In the future, we
an incorporate the method presented here with the BORG framework
hich uses a non-linear, differentiable gravity model to forward
odel the present day velocity field from the density field at an

nitial time when the field is well-described as a Gaussian field.
evertheless, due to the sensitivity of the velocity field to the large-

cale density modes, the Gaussian prior still pro v es to be a useful
pproximation. 

Assuming that the random components of the radial velocity for
he various peculiar velocity tracers are independent, we can write 

 

({ cz obs }|{ μ} , { δ} , { ̂ δg } 
) = 

N PV ∏ 

i= 1 

P 

(
cz 

( i) 
obs | μ( i) , { δ} , { ̂ δg } 

)
. (6) 

iven the large uncertainties on the distance estimates, we marginal-
ze o v er the true LOS distance, r , for the peculiar velocity tracer.
he likelihood for the individual peculiar velocity tracers can be
xpressed as 

P 

(
cz 

( i) 
obs | μ( i) , { δ} , { ̂ δg } 

)

= 

∫ ∞ 

0 
d r P 

(
cz 

( i) 
obs | r , { v } ) P( r | μ( i) , { ̂ δg } 

)
. (7) 

n the abo v e, { v } is the linear velocity field calculated from the density
eld { δ} using equation ( 1 ). The first term inside the integral is
odelled as a Gaussian with the uncertainty in the observed redshift

iven by σ NL , which is the uncertainty in the velocity induced by the
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Table 1. Depth of the three mock peculiar v elocity surv e ys used in this 
work. � d is the fractional uncertainty of the peculiar velocity tracers. r 95 is 
the radius of 95 per cent completeness for the mock surv e y and r peak is the 
radius of peak number density of the peculiar velocity tracers. 

� d r 95 ( h −1 Mpc) r peak ( h −1 Mpc) 

Mock1 0.07 135 120 
Mock2 0.15 143 117 
Mock3 0.20 176 113 
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on-linearities in the density field. This term is given as 

 

(
cz 

( i) 
obs | r, { v } 

)
= 

1 √ 

2 πσ 2 
NL 

exp 

⎡ 

⎢ ⎣ 

−
(
c z 

( i) 
obs − c z 

( i) 
pred ( r, v ) 

)2 

2 σ 2 
NL 

⎤ 

⎥ ⎦ 

, (8) 

here 

 + z pred ( r, v ) = [1 + z cos ( r)] 

(
1 + 

v r ( r) 

c 

)
. (9) 

n the abo v e equation, z cos denotes the ‘cosmological’ recessional 
edshift. Also note that in equation ( 7 ) δ and ˆ δg are assumed to be
ndependent of each other (see end of this section for more details). 

Choice of smoothing length : We use the velocity field calculated 
sing linear theory, equation ( 1 ), to model the non-linear velocity of
he haloes. Since the velocity field predicted by linear theory breaks 
own on small scales, we need to take care to make sure that the
btained velocity is unbiased. Therefore, we calculate a low-pass 
ltered velocity field, v R smooth , by smoothing the linear velocity field 
ith a Gaussian filter of smoothing scale R . The relationship between

his smoothed velocity field and the velocity of the haloes, v halo , can
e modelled as: 

 halo = m · v R smooth + εv . (10) 

ere, εv is the uncertainty in the velocity predicted using linear 
heory. εv is modelled as a Gaussian with standard deviation, σ NL . It
as shown in Berlind, Narayanan & Weinberg ( 2000 ) using N -body

imulations that the slope, m , obtained by regressing the smoothed 
elocity with the ‘true’ halo velocity depends on the smoothing scale 
nd is not al w ays equal to 1, thus showing that the predicted velocity
an be biased depending on the smoothing scale. In Carrick et al.
 2015 ) and Hollinger & Hudson ( 2021 ), it was found that the velocity
eld smoothed with a Gaussian filter of scale R smooth = 4 h −1 Mpc
esults in the slope of regression m ≈ 1. 2 Since our forward model
or the velocity field is the similar to that of Carrick et al. ( 2015 )
nd Hollinger & Hudson ( 2021 ), we use the same smoothing scale
f R smooth = 4 h −1 Mpc for all subsequently reported velocity fields.
t this smoothing scale, the noise in the velocity estimate is σ NL 

150 km s −1 (Carrick et al. 2015 ; Hollinger & Hudson 2021 ). We
x the value of σ NL to this value in our inference. We note that the
hoice of smoothing scales can potentially be a source of systematic 
ncertainty. Ho we ver, we defer a detailed study of this effect to a
uture work. 

The ‘forward’ method for peculiar velocity analysis is susceptible 
o homogeneous and IHM biases (Hudson 1994 ; Strauss & Willick 
995 ). As mentioned earlier, the homogeneous Malmquist bias arises 
f we do not account for the fact that there are more galaxies at
arge radius. Moreo v er, galaxies are not uniformly distributed in 
he Universe, instead are clustered at regions of large overdensities. 
e glecting these o v erdensities along the LOS leads to the IHM bias

s discussed in Section 3.2 . We use an estimate of the LOS galaxy
 We note that Lilow & Nusser ( 2021 ) found that a smoothing scale of ∼7 h −1 

pc results in unbiased velocities. Ho we ver, the two approaches determine 
he unbiased smoothing scale in different ways. Lilow & Nusser ( 2021 ) 
econstruct the linear velocity from mock Two-Micron All-Sky Redshift 
urv e y (2MRS) galaxy catalogue Huchra et al. ( 2012 ) and compares it 
ith mock Cosmicflows-3 peculiar velocity catalogue to determine the value 
f the smoothing scale for unbiased reconstruction. On the other hand, in 
he approach used here (Carrick et al. 2015 ; Hollinger & Hudson 2021 ), 
alo velocities are compared against the smoothed N -body velocity field to 
etermine the smoothing scale for unbiased velocity reconstruction. These 
ifferences makes the direct comparison between the two approaches difficult. 

s  

d
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(
w  

c  

d
o  

w  

(  

o

ensity, ˆ δg ( r), to account for the IHM bias in the radial distribution.
sing the galaxy density field, the expected number of peculiar 
elocity tracers along the LOS can be estimated as 

 

(
r|{ ̂ δg } 

) ∝ r 2 
[
1 + 

ˆ δg ( r) 
]
. (11) 

ccounting for this dependence on the LOS density, we can write
he distribution, 

 

(
r| μ( i) , { ̂ δg } 

) ∝ n 
(
r|{ ̂ δg } 

)
exp 

(
− [ μ( i) − μ( r)] 2 

2 σ ( i)2 
μ

)
, (12) 

here μ( r ) = 5log 10 ( r /10 pc) and σ ( i) 
μ is the uncertainty on the

stimate of the distance modulus. Note that we assume a Gaussian
ncertainty on the distance modulus. One of the main sources of
ystematic uncertainty in estimating the distances to the peculiar 
elocity tracers is the calibration of the zero-point of the distance–
uminosity relation. In order to take care of this uncertainty, we
ntroduce a scale factor, A , so that all the distance estimates in a
iven catalogue are scaled by the same factor, μ → μ + 5log 10 A (or
qui v alently d → Ad ). We then fit and marginalize o v er this factor
uring the reconstruction in a block sampling scheme. When using 
ultiple catalogues, we fit a separate scaling factor for different 

atalogues. 
In this work, the estimated galaxy density field, { ̂ δg } , is an

dditional input to our reconstruction code and is assumed to be
ndependent of the density field that is inferred. This is not fully
elf-consistent and needs to be impro v ed in the future. We note
hat we do not use any cross-correlation information between the 
stimated galaxy density field and the inferred velocity field. The 
stimated galaxy density field simply provides an estimate for the 
adial distance of tracer. For the test with the mock catalogues, we use
he true underlying particle density to account for the IHM correction. 
or our run with the real data, we use an iteratively reconstructed
ensity field from Carrick et al. ( 2015 ). 

 VA LI DATI ON  WI TH  SI MULATI ONS  

aving introduced our method in the previous section, we now 

resent the results of running our code on a mock peculiar velocity
urv e y. We validate our code by running the code on mock surv e ys
escribed in Section 2.1 and comparing the density and velocity 
econstructions with the ground truth. 

In Table 1 , we show the depth of the three mock surv e ys
corresponding to three different levels of distance uncertainty) 
e used in our reconstruction, showing the radius of 95 per cent

ompleteness of the mock surv e ys and the peak of the tracer number
ensity. As mentioned previously, our method requires an estimate 
f the galaxy density field to correct for the IHM bias. In our runs
ith the simulations, we use the halo density field of the simulation

smoothed with a Gaussian filter of scale 4 h −1 Mpc) as the estimate
f the galaxy density field. 
MNRAS 517, 4529–4543 (2022) 
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To compare the impact of the IHM bias correction, we also
an our method without any IHM correction by setting ˆ δg = 0.
s we will see, neglecting the IHM bias correction impacts our

econstruction significantly. A visual comparison of the impact of
he IHM correction in the velocity reconstruction is shown in Fig. 3 ,
here we plot the reconstructed velocity field and the associated
ncertainty with our algorithm in the Z = 0 plane. By comparing the
econstructed mean field to the true velocity field in the figure, we can
ee that our algorithm reconstructs the coherent large-scale velocities
ell. To estimate the mean and the variance of the reconstructions,
e use a total of 250 reconstruction samples from our chain. The

econstructions samples from HMC-based reconstructions can be
ighly correlated. Therefore, we thin our MCMC samples by a
actor of 30, roughly corresponding to the autocorrelation length
f our MCMC chains. Ho we ver, we see that without the IHM bias
orrection, the reconstructed velocity field has a higher amplitude
ompared to the true velocity field. This is due to the fact that the IHM
ias leads to a spurious velocity in the reconstruction as discussed
n Section 3.2 . As expected from equation ( 2 ), this effect is most
ronounced for a distance uncertainty of � d = 0.20. Finally, note
hat outside the data region, the mean velocity field is suppressed to
 smaller value of the velocity. The impact of the IHM bias is most
eadily seen in the power spectrum of the reconstructed density field.

e show the power spectrum of our reconstruction (with and without
he IHM bias correction) in the top panel of Fig. 4 . We can see that
he reconstructed power spectrum without the IHM bias correction
s biased high. This can be seen more clearly in the middle panel
f Fig. 4 where we plot the ratio of the mean of the inferred power
pectrum to the theoretical expectation. As we can see from the figure,
he power spectrum of the reconstruction with IHM bias correction
s consistent with the true power spectrum of the simulation. On the
ther hand, if we do not account for the IHM bias, we see excess
ower in the reconstructions. This is due to the fact that the IHM
ias pushes the velocity to a larger value, which in turn increases
he variance in the density field. In order to quantify the bias in the
ower spectrum, we calculate the quantity 

 P = 

N k−bins ∑ 

i= 1 

〈 P sample ( k i ) 〉 − P theory ( k i ) 

σ [ P ( k i )] 
, (13) 

here σ [ P ( k i )] is the standard deviation in the power spectrum
ssuming a Gaussian co variance. F or an unbiased reconstruction,
e expect this quantity to have a value of zero. We compare the bias

n the reconstruction by computing the bias in the power spectrum
easured in 15 bins in k . For the reconstruction with the IHM

ias correction, we obtain values of � P = + 0.46, −0.25, + 0.55
or the mock surv e ys with � d = 0.07, 0.15, 0.20, respectively.
he same quantities when measured for the reconstruction without

he IHM bias correction are � P = + 8.78, + 15.24, and + 16.99,
especti vely, sho wing that the power spectrum inferred without IHM
ias correction is biased high with high significance. 
While the power spectrum gives a useful consistency check, the

ower spectrum does not provide an assessment about the phases
f the Fourier modes. In order to test that the phases of the density
odes are reconstructed correctly, we compute the cross-correlation

ate of the reconstructed density field with the true underlying density
eld, which is defined as follows: 

c ( k ) = 

〈 δrec ( k ) δ∗
sim 

( k ) 〉 k ∈ k bin 

V s 

√ 

P rec ( k ) P sim 

( k ) 
, (14) 

here P rec is the power spectrum of the reconstruction and P sim 

is the
rue power spectrum of the simulation. V s is the volume of the surv e y.
NRAS 517, 4529–4543 (2022) 
e show the cross-correlation of our reconstructed density samples
ith the true underlying density field of the simulation in the bottom
anels of Fig. 4 . As can be seen, the reconstructed large-scale density
odes show a cross-correlation of ∼0.5 with the true density field,

howing that the large-scale density modes are reconstructed well
ith our method. The cross-correlation approaches zero for the small-

cale ( k � 0.04 h Mpc −1 ) modes. We can see the impact of the IHM
ias on the cross-correlation from this plot. For the reconstruction
ithout IHM bias correction on the mock surv e y with larger distance
ncertainty, cross-correlations of the large-scale density modes are
educed compared to the reconstruction with IHM bias correction.
his effect is most readily seen in the reconstruction with � d = 0.2 
We ho we ver note that, while the cross-correlation in Fourier space

s an interpretable metric, it may not be the best metric to compare the
wo fields. This is because we only have the peculiar velocity data in
 small volume of our simulation box. Therefore, we also compare
he radial velocity in our reconstruction to the true radial velocity
n shells of radial distances. In each shell, we compute the slope,
 , and the scatter, σ v , between the velocity estimates by regressing

he reconstructed velocity on the true velocity field. The slope of
egression is given as: 

 = 

〈
V 

r 
rec V 

r 
true 

〉
〈
V 

r 2 
true 

〉 = ρc 

σ rec 
v 

σ true 
v 

, (15) 

here V 

r 
rec is the reconstructed velocity and V 

r 
true is the true velocity

eld. ρc is the cross-correlation between the two velocity fields
nd σ rec/true 

v is the standard deviation of the reconstructed and true
elocity fields. In case the two velocity fields have the same standard
eviation, as is the case for unbiased reconstructions, the slope is
qual to the cross-correlation between the two fields in real space.
e show the slope from this comparison in Fig. 5 . As it can be

een from the figure, the IHM bias-corrected reconstruction has
 slope of m � 0.75 in the data region ( R � 120 h −1 Mpc),
howing good cross-correlation with the truth. Ho we ver, the quality
f the reconstruction reduces at high R , reflected in the fact that
he value of m ∼ 0 at these scales. On the other hand, the IHM
ias leads the reconstructed velocity to be biased high, due to
hich σ rec 

v > σ true 
v , resulting in a slope, m , higher than 1, as seen

n Fig. 5 . Furthermore, we compare the reconstruction error for the
ifferent runs of our method. The reconstruction error is defined
s the root mean squared (RMS) error between the reconstruction
nd the true velocity, ( �V r ) 2 = | V 

samples 
r − V 

true 
r | 2 . We see that the

HM bias-corrected reconstruction leads to a smaller error in the
econstructed velocity compared to the reconstruction without IHM
ias correction. At large radius, the velocity scatter between the
econstructed velocity and the true velocity approaches the scatter
f the haloes in the VELMASS simulation. We discuss in more
etail the different sources contributing to this reconstruction error
n Appendix A . 

The abo v e tests show that we get an unbiased reconstruction of
he velocity field with our Bayesian reconstruction method after
orrecting for IHM bias. On the other hand, not correcting for the
HM bias can substantially bias the velocity field reconstruction. 

 VELOCI TY  R E C O N S T RU C T I O N  IN  T H E  

O C A L  UNI VERSE  

n this section, we apply our method on real peculiar velocity data to
econstruct the velocity field of the local Universe. The description
f the peculiar velocity surveys used in this work is provided in
ection 2.2 . By sampling density fields from the posterior ( 4 ), we
et samples of reconstruction that are consistent with the observed
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Figure 3. A visual comparison of the reconstructed radial velocity field and the associated uncertainties with the true velocity field in the Z = 0 plane in our 
mock simulation. We show the reconstruction for three different mock surv e ys with a distance error of � d = 0.07 (left), � d = 0.15 (centre), and � d = 0.20 
(right). The top row is the true velocity field in the simulation in the Z = 0 plane. The black dashed circle is at a radius of 150 h −1 Mpc, which is close to the 
95 per cent completeness radius for each surv e y scenario. The second and the third rows show the mean velocity for the samples of our reconstructions with and 
without IHM bias corrections, respectively. As can be seen, if we do not correct for the IHM bias, the velocity field in the data region is boosted up compared to 
the true velocity field. The bottom two rows show the standard deviation in the reconstruction samples with and without the IHM bias correction. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/517/3/4529/6767606 by C
N

R
S user on 31 M

arch 2023

art/stac2985_f3.eps


4536 S. S. Boruah, G. Lavaux and M. J. Hudson 

M

Figure 4. The power spectrum (top), ratio of the power spectrum to the theoretical expectation (middle) and the cross-correlation of the reconstructed density 
field with the true density field (bottom) for the three mock surv e ys with distance uncertainties, � d = 0.07 (left), � d = 0.15 (centre), and � d = 0.20 (right). In 
the top panels, we plot the power spectrum inferred from our reconstruction and compare it with the true power spectrum of the simulation (shown with black 
line) and the theoretical expectation (shown as a black dotted line). The red lines show the power spectrum of the reconstruction without IHM bias correction 
and the blue lines are the corresponding curves with IHM bias correction. The shaded region show the 68 per cent confidence interval as calculated from the 
reconstruction samples. In the middle panels, we plot the ratio of the mean of the power spectrum of our reconstructions to the theoretical expectation. The error 
bars are calculated assuming a Gaussian covariance for the power spectrum. Note that this is different from the error bars in the top panel. The two quantities 
will be the same only if the reconstruction samples are drawn from the prior distribution. As we can see the power spectrum of the reconstruction without 
IHM bias correction is biased high. The magnitude of the bias is higher for the reconstruction with larger distance uncertainty . Finally , in the bottom panel, we 
plot the cross-correlation of the reconstructed density field with the true density field of the simulation. Similar to the top panel, the shaded region shows the 
68 per cent confidence interval as calculated from the reconstruction samples. The cross-correlation is the largest at large scales (small k ) and it decreases to 0 
at small scales (high k ). Ho we ver, we see that if the IHM bias is not corrected, the large-scale cross-correlation goes down, suggesting that these density modes 
are not reconstructed well. 
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ata. One useful side product of sampling from the posterior is that
e get an estimate of the correlated uncertainties in the reconstructed
 elocity field. F or the reconstruction of the local Universe, we use
 cubic sampling box of side length, L box = 500 h −1 Mpc with
28 3 grids. In Fig. 6 , we plot the power spectrum of the samples
f our reconstruction. In the Bayesian reconstruction approach, we
xpect the reconstructed field to have a similar distribution as the
rior, unless the data contradicts the assumed prior. Here we assume
 Gaussian prior on the density field, with the power spectrum
ollowing a cosmological power spectrum consistent with Planck
MB results (Planck Collaboration VI 2020 ). Therefore, we expect

he reconstruction to have a cosmological power spectrum. However,
s we saw in Section 4 , IHM bias may artificially enhance the inferred
ower spectrum. Thus, consistency between the theoretical power
NRAS 517, 4529–4543 (2022) 
pectrum and the inferred power spectrum shows that the IHM bias
s corrected in our reconstruction. As can be seen from the figure, this
s indeed true and the power spectrum computed from the samples
f our posteriors agree very well with the theoretical prediction from
he � CDM model. 

.1 Comparison with 2M ++ reconstruction 

nlike simulations, for the real data we do not have access to the
rue velocity field. None the less, we can compare our reconstruction
o velocity fields reconstructed using other methods. Therefore,
e compare our reconstructed velocities to the reconstruction of
arrick et al. ( 2015 ) who used an iterative reconstruction procedure,

art/stac2985_f4.eps
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Figure 5. (Top) Slope of regression of the reconstructed V r on the true V r values from the simulation, binned in radial shells and (bottom) the RMS error 
between the reconstructed velocity and the true velocity. In order to regress the velocity fields, we compare the point estimates of the radial velocity calculated 
in voxels of the reconstruction grid within a given radial shell. The three horizontal panels show the results for mock surv e ys with three distance uncertainties: 
� d = 0.07 (left), � d = 0.15 (centre), and � d = 0.20 (right). In the top panel, we plot the slopes of regression in radial shells. The red lines show the results 
without the IHM bias correction and the blue lines are the results after correcting for the IHM bias. We see that the slope of regression m ∼ 1 deep inside the data 
region and then drops to m ∼ 0 at large radius. Without the IHM bias correction, the slope can be higher than 1 since IHM bias introduces spurious velocities. In 
the bottom panel, we plot the reconstruction error in radial bins. The blue and the red lines show the RMS of the difference of reconstructed and true values of 
the radial velocity, with and without the IHM bias correction as a function of radius. The dotted line shows the standard deviation in our reconstruction samples. 
The dashed–dotted line shows the velocity scatter of the haloes in the VELMASS simulation. At large radius, the velocity error in our reconstruction approaches 
the velocity scatter of the haloes. 

Figure 6. Power spectrum of the samples of reconstruction of the local 
Universe. The reconstruction was performed using the 2MTF and the 
SFI ++ TF catalogues and the A2 supernovae compilation. The density 
reconstruction from Carrick et al. ( 2015 ) was used for the IHM bias correction. 
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here the galaxy density is reconstructed from the galaxies in the 
M ++ galaxy compilation (Lavaux & Hudson 2011 ). The velocity 
s predicted from the galaxy density field using linear perturbation 
heory. Ho we ver, since galaxies are a biased tracer of the underlying
ensity field, the velocity estimate from the galaxy field needs to 
e scaled by a factor of β = f / b . The value of β is then fitted by
omparing the predicted velocities to the the peculiar velocity data 
rom a peculiar velocity survey. In this work, we use the best fit β and
V ext value fitted in Carrick et al. ( 2015 ). We show a visual comparison
f our velocity reconstruction with the reconstruction of Carrick et al.
 2015 ; hereafter C15 ) in the galactic X , Y , Z planes in Fig. 7 . The top
anels of Fig. 7 show the radial velocity field in the reconstruction
f C15 . The middle and the bottom panels show the mean and
he standard deviation of the velocity field samples reconstructed 
sing our algorithm. Similar to Section 4 , we use a total of 250
ndependent samples from the chain for estimating the mean and 
he standard deviation from the chains. By comparing our velocity 
econstruction to the 2M ++ reconstruction, we see the similarity 
etween some of the same large-scale features in both reconstruction. 
ote that in the region without data, the mean field approaches very

mall values. This is similar to the Wiener filtered fields, where in
he region without data, the field is strongly suppressed such that
n the limit of no data, the velocity field approaches zero. In the
ottom panel, we plot the uncertainty in the velocity estimates in
hese planes. Since our method produces samples of reconstruction 
rom the posterior with the Gaussian prior, we get the correlated
ncertainties in velocity estimates of our reconstruction. From the 
gure, we see that the uncertainties in the velocity estimates are
ubstantially lower in the inner region than the outer region which
oes not have peculiar velocity data. This is because the inner region
ontains almost all the peculiar velocity tracers. We note that the
ncertainty obtained from our reconstructions does not account for 
he error associated with our modelling choices, e.g. the assumption 
f linear theory, choice of smoothing scale, etc. Quantifying these 
ources of ‘systematic’ uncertainties is beyond the scope of this 
ork. Therefore the uncertainty obtained from our reconstructions 

hould be treated as the statistical error. We also plot the velocity field
MNRAS 517, 4529–4543 (2022) 
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Figure 7. A comparison of our reconstruction with the reconstruction of Carrick et al. ( 2015 ) in the galactic X (left), Y (centre), and Z (right) planes. The top 
panels show the reconstruction of Carrick et al. ( 2015 ), the middle and the bottom panels show the mean and the standard deviation of the velocity reconstruction 
from our method. We can see similar large-scale features in the velocity field in both our reconstruction and the C15 reconstruction. We show the radial distance 
of 100 h −1 Mpc with a black dashed circle. This is the distance cut we use for our peculiar velocity tracer sample. Note that the uncertainty in the velocity field 
reconstruction increases drastically beyond this boundary. 
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nd the density field in the supergalactic plane, comparing also the
osition of some prominent galaxy clusters in Fig. 8 . From the mean
eld, we see that while the o v erdensities around the Perseus–Pisces
PP), Virgo and Coma clusters are well-reconstructed, we do not see
rominent o v erdensities around the Norma and the Shapley clusters.
ince the Shapley cluster lies outside the 100 h −1 Mpc, the threshold
f our reconstruction, and the Norma cluster lies along the galactic
lane, there is lack of peculiar velocity data around these clusters.
he lack of peculiar velocity data around the cluster leads to poor

econstruction quality around these regions. 
Finally, we compare our reconstruction to the C15 reconstruction

y comparing the velocity fields in radial shells. For this comparison,
e compared the radial velocity from C15 and our reconstruction in

adial shells of width 20 h −1 Mpc. In each shell, we compare the radial
elocities from our reconstruction samples and the reconstruction
rom C15 . We fit the slope and the standard deviation between
he two velocity estimates by regressing the velocity estimates of
ur reconstruction on the C15 velocity estimates. The fitted slope
an be thought of as a proxy for the cross-correlation between the
wo velocity estimates. The slope and the scatter between the two
elocity fields are shown in Fig. 9 . As we can see from the figure, the
NRAS 517, 4529–4543 (2022) 
wo velocity fields have a large degree of correlation in the nearby
niverse ( R � 120 h −1 Mpc). Since the peculiar velocity data is

estricted to d < 100 h −1 Mpc, we do not expect the reconstructed
elocity field to be a good estimate beyond this boundary. This is
eflected in the fact that the slope rapidly approaches zero beyond
he peculiar velocity data boundary. We also see that the scatter
etween the two increases with increasing radius. At very low radius
 R � 50 h −1 Mpc), the scatter between the two velocity fields is less
han or comparable to the uncertainty due to the non-linearities, σ NL 

150 km s −1 . At large radius, the scatter approaches the sample
tandard deviation ( ∼250 km s −1 ). 

.2 Bulk flow 

ue to the sensitivity to large-scale density modes, the velocity field
s correlated on very large scales. The large-scale velocity field is
ften expanded in terms of its kinematic moments, such as the dipole
nd the quadrupole of the velocity field (Jaffe & Kaiser 1995 ), 

V ( d) = U + dQ · ˆ r + ..., (16) 

art/stac2985_f7.eps
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Figure 8. The density and the velocity field reconstruction in the supergalactic plane. The top panels shows the density field smoothed using a Gaussian filter 
of smoothing scale 10 h −1 Mpc and the bottom panels shows the velocity field reconstruction. In the left-hand panels, we show the density and the velocity 
field of a randomly selected sample in our reconstruction. The middle panels show the mean density and velocity field. The rightmost panels show the standard 
deviation in our density and velocity field reconstruction samples. We show the location of several prominent clusters in the supergalactic plane, namely Virgo, 
Norma, PP, Coma, and Shapley, with a black star. The black dotted line shows the radius at 100 h −1 Mpc, which is the selection limit imposed on the sample. 

Figure 9. Comparison of (left) the slope and (right) the RMS difference between the velocity estimates of our reconstruction and the C15 reconstruction for 
voxels binned in radial shells. The slope can be interpreted as the cross-correlation between the two velocity fields. We see a large degree of cross-correlation 
in the region with the peculiar velocity data ( R � 100 h −1 Mpc), while it rapidly goes to zero beyond this region. The right-hand panel shows the RMS error 
between the two velocity reconstructions. At very small radius, R � 50 h −1 Mpc, the scatter approaches the value σNL ≈ 150 km s −1 . The black dashed line 
show the standard deviation in our reconstruction sample with σNL added in quadrature. 
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here U is the dipolar bulk flow, and Q is the trace-free, symmetric
uadrupolar shear moment and d is the radial distance. The bulk 
o w is sensiti ve to the large-scale po wer of the density field and

herefore can also be used to constrain cosmological parameters due 
o its sensitivity to the power spectrum shape parameter (Feldman & 

atkins 2008 ). 
We can measure the bulk flow and the shear moments directly 

rom our reconstruction. In order to measure the bulk flow in our
econstructions at a given scale, we smooth the velocity field with 
 window function of characteristic scale, R bulk . We use a Gaussian
lter in order to measure the bulk flow in our reconstruction. The
 t  
ulk flow at a scale of R bulk = 40 h −1 Mpc for our reconstruction is
 bulk = 220 + 20 

−21 km s −1 in the direction l = 295 ◦ ± 6 ◦, b = 21 ◦ ± 5 ◦

eg. As noted in the previous section, the error bar obtained from the
econstruction should be treated as the statistical error bar and does
ot account for systematic uncertainties. The bulk flow as measured 
n our reconstruction is compared to a number of different results
n the literature in Table 2 . We also show the total magnitude and
he direction of the bulk flow as measured from our reconstruction
amples in Fig. 10 . As we can see from the figure, both the magnitude
nd the direction of the bulk flow are consistent with other results in
he literature. Of the compared results, Scrimgeour et al. ( 2016 ) and
MNRAS 517, 4529–4543 (2022) 
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Table 2. Comparison of the bulk flow results with other studies in the literature. The results are also shown in Fig. 10 . 
We see that our bulk flow result is in excellent agreement with the other results in literature. 

Reference Abbreviation Ef fecti ve radius | V bulk | (km s −1 ) l (deg) b (deg) 

Scrimgeour et al. ( 2016 ) S16 50 h −1 Mpc 248 ± 58 318 ± 20 40 ± 13 
Qin et al. ( 2019 ) Q17 37 h −1 Mpc 259 ± 15 300 ± 4 23 ± 3 
Boruah et al. ( 2020 ) B20 40 h −1 Mpc 252 ± 11 293 ± 5 14 ± 5 
Lilow & Nusser ( 2021 ) L21 50 h −1 Mpc 274 ± 50 287 ± 9 11 ± 10 
This work – 40 h −1 Mpc 220 ± 21 295 ± 6 21 ± 5 

Figure 10. Comparison of the bulk flow measured in our reconstruction and compared to the � CDM expectation as well as the other results in the literature. 
The left-hand panel shows the magnitude of the bulk flow, while the middle and the right-hand panels show the direction of the bulk flow in terms of the galactic 
longitude and latitude, respectively. As we can see, the magnitude of the bulk flow in our reconstruction (shown in blue) is consistent with both the � CDM 

expectation (shown in green hatch) as well as other results in the literature. The direction of the bulk flow as inferred from our reconstruction is also consistent 
with other results in the literature. The results in the literature compared in this results are: Scrimgeour et al. ( 2016 ) (S16), Qin et al. ( 2019 ) (Q17), Boruah et al. 
( 2020 ) (B20), and Lilow & Nusser ( 2021 ) (L21). 
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Table 3. Comparison of the logarithm of Bayes factor for various redshift 
selection. A positi ve v alue of the logarithm of Bayes factor implies that our 
model is fa v ored o v er the compared model, while a ne gativ e value of the 
logarithm of the Bayes factor implies the compared model is preferred o v er 
our model. From the table, we can see that our model performs better than 
the adaptive kernel-smoothed velocity field. On the other hand, C15 velocity 
field performs better than our Bayesian velocity reconstruction. 

Test set Selection ln 

(
P fwd-PV 
P 

TF 
adaptive 

)
ln 

(
P fwd-PV 
P 2M++ 

)
N tracers 

A2 z < 0.01 7.44 −2.12 49 
z < 0.015 10.88 −5.92 92 
z < 0.02 21.73 −20.69 168 
z < 0.03 41.16 −27.65 310 
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in et al. ( 2019 ) use an estimator to estimate the bulk flow directly
rom the peculiar velocity data. On the other hand, Boruah et al.
 2020 ) and Lilow & Nusser ( 2021 ) explicitly fit an external dipole
n their flow model to account for velocity contribution from outside
he surv e y volume. Note that the approach presented here is different
rom these approaches. We do not explicitly model an additional
ipole. The density modes we fit for in our reconstruction not only
ccount for the bulk flow but also other higher kinematic moments
f the large-scale velocity field. 

.3 Velocity field comparison 

e introduced a Bayesian model comparison framework in Boruah
t al. ( 2021 ) to compare the performance of different velocity
econstruction models. In this model comparison framework, we
ook at the Bayes factor between two models, M 1 and M 2 , 

ayes factor = 

P( D| M 1 ) 

P( D| M 2 ) 
. (17) 

f the Bayes factor is greater than 1, the model M 1 is preferred
 v er the model M 2 and vice versa. We use this model comparison
ramework to assess the quality of the velocity reconstruction
ethod introduced in this paper. We compare our velocity model

o two different velocity reconstructions of the local Universe –
i) reconstruction of C15 , (ii) an adaptive kernel-smoothed velocity
econstruction, where the peculiar velocity data is directly smoothed
Springob et al. 2014 , 2016 ). We use an adaptive-kernel smoothed
elocity field obtained from a combined TF catalogue consisting
f the SFI ++ and the 2MTF velocity field. The Bayesian model
omparison method relies on our capacity to predict new data points
rom the model. This is called a posterior predictive test, and thus
equires what is sometimes called a ‘test set’ of peculiar velocities.
herefore for this comparison, we perform a reconstruction using
NRAS 517, 4529–4543 (2022) 
nly the TF catalogues for the reconstruction and use the A2 sample
s a test set for the posterior predictive analysis. We note that this
s the same peculiar velocity data set used for the adaptive kernel-
moothed reconstruction. 

The results of the model comparison are shown in Table 3 .
sing our model comparison, we find that the Bayesian velocity

econstruction performs better than the kernel-smoothed velocity
eld, even though both reconstructions use the same data sets.
ur velocity field ho we ver does not perform as well at predicting
ew velocity data compared to the reconstruction of Carrick et al.
 2015 ), which uses the 2M ++ galaxies to map the density field,
nd linear perturbation theory to predict peculiar velocities. This is
ot a failure of our method, but rather a limitation of the peculiar
elocity data used for the reconstruction. Since the peculiar velocity
ata used in this work are very noisy and sparse, the quality
f reconstruction is not comparable to the 2M ++ reconstruction.
n the future, with denser peculiar velocity samples, we expect
he quality of reconstruction to be significantly better. There is
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lso the possibility that the approximation of linear perturbation 
heory may fail which would require more complex models based, 
.g. on BORG . Furthermore, we see that both the adaptive-kernel 
moothed and the Bayesian velocity field perform worse at higher 
edshifts compared to the reconstruction of Carrick et al. ( 2015 ). This
e gradation is e xplained by tw o f actors that affect the PV tracer based
econstructions: (i) The PV tracers are sparser at higher redshift. 
ii) The absolute uncertainty of distances (and therefore velocity) is 
igher at higher redshifts. 

 DISCUSSION  

ur work provides a way towards including peculiar velocity data 
nto the initial condition reconstruction framework BORG . A density 
econstruction by combining both galaxy and peculiar velocity data 
n BORG potentially has multiple advantages. First, using BORG , we 
an access the fully non-linear velocity field, which is accurate to 
uch smaller scales as compared to the velocity field from linear 

erturbation theory. For example, BORG particle mesh runs have 
een shown to perform better than linear velocity fields in N -body
imulations (Mukherjee et al. 2021 ). Furthermore, the vorticity of 
he velocity field, which is a uniquely non-linear phenomenon was 
lready reconstructed in Jasche & Lavaux ( 2019 ). In Prideaux-Ghee 
t al. ( 2022 ), the first steps were taken towards the inclusion of the
eculiar velocity field in BORG . Second, adding the velocity data to
he Bayesian reconstructions can potentially make the reconstruction 
obust to the details of the galaxy bias model. As was shown in
guyen et al. ( 2021 ), the amplitude of the inferred power spectrum

n BORG reconstructions with galaxy/halo catalogues alone may be 
ubstantially biased. This arises because the higher order bias terms 
re not sufficiently informative to break the de generac y between 
inear galaxy bias and the amplitude of matter clustering, σ 8 . 
ince peculiar velocity data is sensitive to the total matter density, 

he addition of peculiar velocity data to galaxy data would make 
he BORG reconstruction robust to the details of the galaxy bias. 
dding velocity information to the Bayesian reconstruction methods 

an potentially lead to impro v ed reconstruction of the full phase
pace structure (density + velocity) of dark matter (Leclercq et al. 
017 ). Such phase space reconstruction can then potentially guide 
bserv ation ef forts for ne w disco v eries (Kosti ́c et al. 2022 ). 
In the future, we can also extend our method to simultaneously 

onstrain cosmological parameters from peculiar velocity data. As 
e highlight in this paper, not accounting for the IHM bias can lead

o the amplitude of the peculiar velocities and so the inferred power
pectrum of the density/velocity field to be biased high. This is crucial
or the inference of the cosmological parameters, since this bias will 
ikely translate to the biased inference of cosmological parameters. 
hus, this paper provides the foundation of inferring cosmological 
arameters with peculiar velocity data in a Bayesian framework. Also 
ote that our method is sensitive to the large-scale flows, which in turn
re a sensitive probe of the break in the matter power spectrum (e.g.
eldman & Watkins 2008 ). Thus, the large-scale power spectrum 

an constrain the shape parameter, 
 ≈ �m 

h . Combining these 
onstraints from large-scale flows with traditional v elocity–v elocity 
omparison methods can potentially provide additional cosmological 
nformation. The use of the non-linear velocity field using BORG can 
lso potentially break the f σ 8 de generac y through the non-linearities. 
his feature was already noted in the context of weak lensing by using 
 forward model based on Lagrangian Perturbation theory within the 
ORG framework for mock weak lensing data (Porqueres et al. 2022 ).
Another possible application of our Bayesian velocity recon- 

tructions is in using the kinetic Sun yaev–Zeldo vich (kSZ) data 
o reconstruct the large-scale velocity modes. kSZ-based velocity 
econstruction has been shown to impro v e the constraints on primor-
ial non-Gaussianities through multitracer analyses (Giri & Smith 
022 ). 

 SUMMARY  

n this paper, we introduced a forward-modelled velocity reconstruc- 
ion method which uses peculiar velocity data to reconstruct the 
elocity field. Using an external estimate of the LOS density, we
onsistently correct for the IHM bias. Using mocks created from an
 -body simulation, we validated that our method leads to unbiased
elocity field reconstruction after accounting for the IHM bias. 
o we ver, as we show using mock simulations, not accounting for

he IHM bias in forward-modelled methods can lead to significantly 
iased reconstruction. Since the IHM bias may induce spurious 
o ws, the inferred po wer spectrum of the reconstruction is biased
igh if the IHM bias is not corrected for. We then applied our
ethod to the 2MTF, SFI ++ TF catalogues and the A2 supernovae

ompilation, resulting in a no v el forward-modelled v elocity field
econstruction of the local Universe. Since we sample our velocity 
eld reconstruction samples from the field-level posterior, we get an 
stimate of the full correlated uncertainties in the peculiar velocity 
stimates. Furthermore, we found that the bulk flow calculated from 

ur reconstruction is consistent with other results in the literature. 
sing a Bayesian model comparison frame work, we sho wed that the

econstructed forward modelled velocity fields perform better than 
he widely used adaptive kernel-smoothed velocity fields constructed 
rom the same data. Ho we ver, the reconstruction presented here does
ot perform as well as the velocity field reconstructed from the
M ++ galaxy catalogue. This is likely because peculiar velocity 
ata sets are sparser and noisier compared to galaxy catalogues. 
ur method provides a way to extend forward-modelled initial 

ondition reconstruction algorithms such as BORG by including 
eculiar velocity data sets. 
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Figure A1. The impact of the LOS density field on the radial distribution of 
the peculiar velocity tracer. Here, we show the radial distribution of a peculiar 
velocity tracer in our mock survey. The red curve shows the expected radial 
distribution ignoring the LOS inhomogeneities and the blue curve shows 
the distribution after accounting for the LOS inhomogeneities. As we can 
see, radial distribution after accounting for the LOS inhomogeneities is more 
peaked than the naive distribution expected from the measured distance error. 
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ttps:// cosmicflows.iap.fr/ . The data products generated in this work
ill be shared on reasonable request to the authors. 
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PPENDI X:  PHYSI CAL  O R I G I N  O F  T H E  

ECONSTR  U C T I O N  E R R  O R  

n this appendix, we try to isolate different physical origins of the
ncertainties in our velocity reconstruction. As shown in Section 4 ,
ithout the use of the correct line-of-sight (LOS) distribution for

he peculiar velocity tracers, the reconstructed velocity field is
iased high. This bias also leads to increased uncertainty in the
econstructed velocity. Ho we ver, another factor contributes to the
ncreased error in the velocity reconstruction. In equation ( 12 ), there
re two contributions to the distribution of peculiar velocity tracers
long the LOS – (i) The uncertainty in the distance, (ii) The LOS
ensity field. Due to the latter contribution, peculiar velocity tracers
re clustered around regions of high density. Therefore, when we
ake the LOS density into account, the radial distribution may be

ore peaked than naively expected from the measured distance
ncertainty. This is shown in Fig. A1 , where we plot an example from

https://cosmicflows.iap.fr/
http://dx.doi.org/10.1088/0004-637X/762/2/109
http://dx.doi.org/10.1086/309085
http://dx.doi.org/10.1086/185348
http://dx.doi.org/10.1086/169419
http://dx.doi.org/10.1093/mnras/staa2485
http://dx.doi.org/10.1093/mnras/stab2320
http://dx.doi.org/ 10.1093/mnras/stac2508
http://github.com/google/jax
http://dx.doi.org/10.1093/mnras/stv547
http://dx.doi.org/10.1111/j.1365-2966.2008.13288.x
http://dx.doi.org/ 10.1093/mnras/stac468
http://dx.doi.org/10.1093/mnras/stx3136
http://dx.doi.org/10.1093/mnras/stt893
http://dx.doi.org/ 10.1088/1475-7516/2022/09/028
http://dx.doi.org/10.1093/mnras/stz078
http://dx.doi.org/10.1088/0004-637X/700/2/1097
http://dx.doi.org/10.1086/186160
http://dx.doi.org/10.1093/mnras/stv615
http://dx.doi.org/10.1038/s41550-018-0502-4
http://dx.doi.org/10.1093/mnras/staa4039
http://dx.doi.org/10.1093/mnras/stz1413
http://dx.doi.org/10.1088/0067-0049/199/2/26
http://dx.doi.org/10.1093/mnras/266.2.468
http://dx.doi.org/10.1086/176551
http://dx.doi.org/10.1051/0004-6361/201833710
http://dx.doi.org/10.1093/mnras/stt449
http://dx.doi.org/10.3847/1538-4357/ab2bec
http://dx.doi.org/10.1103/PhysRevD.100.043515
http://dx.doi.org/ 10.1051/0004-6361/202141706
http://dx.doi.org/10.3847/1538-3881/aa8df0
http://dx.doi.org/10.1093/mnras/stv2915
http://dx.doi.org/10.1111/j.1365-2966.2011.19233.x
http://dx.doi.org/10.1088/1475-7516/2017/06/049
http://dx.doi.org/10.1093/mnras/stab2009
http://dx.doi.org/10.1086/166066
http://dx.doi.org/10.1086/508924
http://dx.doi.org/10.1088/0004-6256/135/5/1738
http://dx.doi.org/ 10.3847/1538-4357/ac02bb
http://dx.doi.org/10.1103/PhysRevD.102.123542
http://dx.doi.org/10.1088/1475-7516/2018/10/028
http://dx.doi.org/10.1051/0004-6361/201936724
http://dx.doi.org/10.1088/1475-7516/2021/03/058
http://dx.doi.org/ 10.3847/1538-4357/ac4698
http://dx.doi.org/10.1086/497359
http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1093/mnras/stab204
http://dx.doi.org/10.1093/mnras/stab3234
https://arxiv.org/abs/2204.00023
http://dx.doi.org/10.1093/mnras/sty2826
http://dx.doi.org/10.1093/mnras/stv2146
http://dx.doi.org/10.1086/519527
http://dx.doi.org/10.1093/mnras/stu1743
http://dx.doi.org/10.1093/mnras/stv2648
http://dx.doi.org/10.1016/0370-1573(95)00013-7
http://dx.doi.org/10.1088/1475-7516/2013/06/036
http://dx.doi.org/10.1111/j.1365-2966.2008.13630.x
http://dx.doi.org/10.3847/0004-6256/152/2/50
http://dx.doi.org/10.1093/mnras/stac1244
http://dx.doi.org/10.1038/s41550-019-0902-0
http://dx.doi.org/10.1086/304551
http://dx.doi.org/10.1046/j.1365-8711.2002.05229.x
http://dx.doi.org/10.1086/307473
art/stac2985_fa1.eps


Bayesian peculiar velocity reconstruction 4543 

F  

T  

L
b  

h  

t  

h  

t  

h
l

o  

o
c

c  

a

t  

d  

a  

m  

f
m  

n  

p  

m

 

B

 

t
b  

s
o  

b  

R  

u  

t  

L  

f  

r
v

T

e

igure A2. The RMS error in the velocity reconstructions in our three runs.
he peculiar velocity tracers in Mock A are sampled by accounting for the
OS inhomogeneities and therefore the reconstruction is susceptible to IHM 

ias. On the other hand, in Mock B, the peculiar velocity tracers are sampled
omogeneously and therefore does not suffer from IHM bias. We notice that
he RMS error in Run 1 is much lower than Run 2 and Run 3. On the other
and, the RMS error in Run 3 is closer to the error in Run 2 (compared
o Run 1). This suggests that the error in the IHM corrected reconstruction
as the additional advantage of reducing the reconstruction error by better 
ocalization of the peculiar velocity tracers. 

ur mocks used in Section 4 . In this figure, the radial distribution
f the tracer including the LOS density is much sharply peaked 
ompared to the distribution is we ignored the LOS. 

Therefore, when we account for the LOS density, we not only 
orrect for the IHM bias, but we also sharpen the distance estimate
nd therefore decrease the uncertainty in the reconstruction. In order 
o investigate the impact of this factor, we use our method on two
ifferent mock surv e ys. In mock surv e y A, we populate the tracers
ccording to equation ( 12 ), accounting for the LOS density field. In
ock B, we populate tracers homogeneously, i.e. we do not account

or the LOS inhomogeneity. Therefore, by design, inference with 
ock B does not suffer from IHM bias. Since the velocity tracers are

ot clustered around density peaks, we are not able to determine the
osition of the tracer better than the distance uncertainty. We then
ake three runs of our code on the two mocks: 

(i) Run 1: Mock A, corrected for IHM bias. 
(ii) Run 2: Mock A, not corrected for IHM bias. 
(iii) Run 3: Mock B, not corrected for IHM bias (by design, Mock
 is unaffected by IHM bias). 

The results of the three runs are shown in Fig. A2 , where we plot
he root mean squared (RMS) error in the velocity reconstruction 
inned in radial bins. We see that the RMS error for the Run 1 is
ubstantially lower than Run2 and Run3. Furthermore the RMS error 
n Run 2 is higher than Run 3. Note that only Run 2 is impacted
y the IHM bias. We see that the RMS error in Run 3 is closer to
un 2 than to Run 1, thus suggesting that extra error of the IHM
ncorrected run o v er the IHM corrected run is driven by the fact that
he distance estimates are better localized when we account for the
OS density field, rather than the IHM bias. Thus, by accounting

or the LOS density, we not only correct for the IHM bias, but also
educe the reconstruction error by better localization of the peculiar 
elocity tracers. 
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