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Abstract

A wealth of cosmological and astrophysical information is expected from many ongoing and upcoming large-scale
surveys. It is crucial to prepare for these surveys now and develop tools that can efficiently extract most
information. We present HIFLOW: a fast generative model of the neutral hydrogen (HI) maps that is conditioned
only on cosmology (Ωm and σ8) and designed using a class of normalizing flow models, the masked autoregressive
flow. HIFLOW is trained on the state-of-the-art simulations from the Cosmology and Astrophysics with MachinE
Learning Simulations (CAMELS) project. HIFLOW has the ability to generate realistic diverse maps without
explicitly incorporating the expected two-dimensional maps structure into the flow as an inductive bias. We find
that HIFLOW is able to reproduce the CAMELS average and standard deviation HI power spectrum within a factor
of 2, scoring a very high R2> 90%. By inverting the flow, HIFLOW provides a tractable high-dimensional
likelihood for efficient parameter inference. We show that the conditional HIFLOW on cosmology is successfully
able to marginalize over astrophysics at the field level, regardless of the stellar and AGN feedback strengths. This
new tool represents a first step toward a more powerful parameter inference, maximizing the scientific return of
future HI surveys, and opening a new avenue to minimize the loss of complex information due to data compression
down to summary statistics.

Unified Astronomy Thesaurus concepts: Reionization (1383); Early universe (435); Cosmological parameters
(339); Intergalactic medium (813); Bayesian statistics (1900)

1. Introduction

Extracting the maximum amount of cosmological and astro-
physical information remains a challenge in upcoming large-scale
surveys such as the Square Kilometer Array (SKA; Mellema et al.
2013), the Hydrogen Epoch of Reionization Array (DeBoer et al.
2017), the Low Frequency Array (van Haarlem et al. 2013), the
Vera C. Rubin Observatory Legacy Survey of Space and
Time (Ivezić et al. 2019), Nancy Grace Roman Space
Telescope (Roman, Spergel et al. 2015), Spectro-Photometer for
the History of the Universe, Epoch of Reionization, and Ices
Explorer (Doré et al. 2014), and Euclid (Racca et al. 2016). In
particular, evaluating the exact likelihood of the expected high-
dimensional data sets from these surveys remains intractable.

Because of the large memory requirements associated with the
upcoming data sets, many analyses use summary statistics, which
in many cases (such as the commonly used power spectrum)
results in throwing away a large amount of information. Some
recent works have presented methods to search for the optimal
summary statistic that can successfully capture the non-Gaussian
complex features, such as the information maximizing neural
networks (Charnock et al. 2018) and wavelet scattering
transform (Mallat 2011), to reduce dimensions while minimizing
loss of information. While these methods show different levels of
success, a natural way to prevent loss of information is to perform
inference at the field level.
Convolutional neural networks (CNNs) have been very

successful in extracting information from high-dimensional
data sets by capturing non-Gaussian features. A few examples
of the successful use of CNNs include the following:
constraining cosmology and astrophysics (Hassan et al. 2020;
Villaescusa-Navarro et al. 2021a, 2021b), identifying sources
driving cosmic reionization (Hassan et al. 2019), constraining
the reionization history (Mangena et al. 2020), learning galaxy
properties from 21 cm lightcones (Prelogović et al. 2022),
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recovering astrophysical parameters (Gillet et al. 2019), paint-
ing HI on the matter field from N-body simulations (Wadekar
et al. 2021), removing astrophysical effects (Villanueva-
Domingo & Villaescusa-Navarro 2021), and providing optimal
summary statistics for simulation-based inference (Zhao et al.
2022).

However, preparing these large-scale data sets requires running
thousands of cosmological volumes using state-of-the-art hydro-
dynamic galaxy formation simulations by varying the cosmolo-
gical and astrophysical parameters, which comes with a large
computational expense. In addition, exploring the full parameter
space controlling the astrophysical and cosmological observables
is challenging. For instance, the state-of-the-art CAMELS
(Villaescusa-Navarro et al. 2021c) project, which is the largest
data set designed to train machine-learning models, provides only
1000 simulations per subgrid model, that includes all the different
recipes of modeling stellar and AGN feedback below the
resolution limit, for exploring its six-dimensional parameter
space. Furthermore, linking these simulations directly to statistical
tools, such as EMCEE (Foreman-Mackey et al. 2013) or PYDELFI
(Alsing et al. 2019), to perform inference is beyond the reach of
current computing capability. A powerful alternative approach is
directly learn a tractable likelihood from data sets or simulations to
perform parameter inference with a minimal cost. This is the goal
of this paper.

Currently, there are several competing machine-learning
techniques to generate new examples of large-scale data sets.
This includes generative adversarial networks (GANs; Good-
fellow et al. 2014), variational autoencoders (Kingma &
Welling 2013), and normalizing flows (NF; Dinh et al. 2014;
Jimenez Rezende & Mohamed 2015). Generating new diverse
examples is crucial to ensure capturing the wide range of
features present in the training sample. One common problem
with GANs is called mode collapse, in which the generator
always produces the same realization of the output. However,
the advantages of using NF over other methods is the ability to
learn the exact likelihood function to perform either inference
or generate new diverse examples by inverting the flow
transformations. NF methods have been very successful in
generating random cosmological fields (Rouhiainen et al.
2021), simulating galaxy images (Lanusse et al. 2021),
performing likelihood-free inference (e.g., Alsing et al. 2019),
and modeling color–magnitude diagrams (Cranmer et al. 2019).
NF attempts to learn the mapping between a standard Gaussian
field and the more complex density distribution of the
observable (in this case the HI maps). Once the mapping is
found, new examples can be sampled simply from the initial
Gaussian field. This is, in fact, somewhat conceptually similar
to the flow within the most sophisticated galaxy formation and
cosmological simulations. Most simulations in astrophysics
and cosmology apply a series of recipes (i.e., to evolve the
density and form stars) in order to transform an initial Gaussian
distribution (i.e., the density field) to a complex nonlinear
observable (e.g., large-scale structure, reionization morph-
ology, cosmic evolution of star formation). Similar to galaxy
formation and cosmological simulations, NF models are able to
generate new diverse examples for the same set of parameters,
and hence they naturally capture cosmic variance effects.

In this paper, we present HIFLOW: a fast generative model of
the neutral hydrogen (HI) maps by the end of reionization at
z∼ 6. We choose the HI fields since many of the upcoming
future surveys aim to map out the HI distribution in the early

universe to trace the large-scale structure. To train our
emulator, we use the HI maps that are generated in a similar
way as described in the CAMELS Multifield Data set16

(Villaescusa-Navarro et al. 2022) but at z= 6 with a lower
resolution. The state-of-the-art CAMELS simulation contains
thousands of HI maps generated using SIMBA (Davé et al.
2019) and IllustrisTNG (Weinberger et al. 2017; Pillepich et al.
2018) simulations. We here focus on the HI maps generated
using the ILLUSTRISTNG simulations. We first train uncondi-
tional HIFLOW and test its performance by comparing with
maps from CAMELS in terms of several summary statistics
such as the probability density functions (pdfs) and the power
spectrum. We next train a conditional HIFLOW on the two
cosmological parameters, namely Ωm and σ8, and validate the
results at the power spectrum level. We show several examples
for posterior distributions using the conditional HIFLOW. We
finally demonstrate the ability of HIFLOW to perform
cosmological inference while marginalizing over astrophysics
at the field level.
This paper is organized as follows: We briefly discuss the

simulations in Section 2 and present the NF method used in
Section 3. The unconditional and conditional HIFLOW results are
presented in Sections 4 and 5, respectively. We show several
examples of how to perform efficient inference with HIFLOW in
Section 6, and marginalize over astrophysics in Section 7. We
summarize and make our concluding remarks in Section 8.

2. Simulations

We use simulations from the CAMELS project, which have
been recently introduced in Villaescusa-Navarro et al. (2021c).
Here, we briefly describe CAMELS and refer the reader to
Villaescusa-Navarro et al. (2021c) for further details on the
different simulations and data sets. CAMELS is a suite of
thousands of simulations run with state-of-the-art cosmological
hydrodynamic galaxy formation models, namely SIMBA (Davé
et al. 2019) and ILLUSTRISTNG (Weinberger et al. 2017;
Pillepich et al. 2018), by varying two cosmological parameters
(Ωm and σ8) and four other parameters that modify the strength
of stellar feedback (ASN1, ASN2) and black hole feedback
(AAGN1, AAGN2) relative to the original ILLUSTRISTNG and
SIMBA simulations.
We focus our analysis on two CAMELS sets, namely, the 1

parameter (1P) set, which varies a single parameter at a time
with the same initial seed number, and the Latin-hyper-cube
(LH) set, which is a set of 1000 simulations that explores this
six-dimensional parameter space with uniform prior ranges
defined as follows: Ωm ä (0.1, 0.5), σ8ä (0.6, 1.0),

( )A 0.25, 4.0SN1 Î , AAGN1 ä (0.25, 4.0), ( )A 0.5, 2.0SN2 Î , and
AAGN2 ä (0.5, 2.0), with different initial seeds.

3. Masked Autoregressive Flow

HIFLOW is designed following closely the method presented
in Papamakarios et al. (2017), Germain et al. (2015). NF are a
class of generative models, which allow for tractable and
efficient density estimation. The core principle of NF is the
change-of-variable formula, which constructs a mapping ( f )
between a base distribution (πu(u), usually a Gaussian) and a
more complex distribution p(x) (i.e., the observable). Having
obtained f, a new example of x can be generated using x= f (u),

16 https://camels-multifield-dataset.readthedocs.io
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where u is randomly drawn from the base distribution
(u∼ πu(u)). This transformation ( f ) is required to be invertible
as well as differentiable so that the target density p(x) can be
exactly evaluated as
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where a tractable Jacobian is needed for easy computation of
the determinant. For instance, if f is a series of transformations
(e.g., fi = ( ( ))exp i

2a ), then it is straightforward to find the
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We choose to design HIFLOW using the masked autore-
gressive flow (MAF), which has been shown, in Papamakarios
et al. (2017), to outperform many successful density estimation
methods and generative models, such as the real-valued
nonvolume preserving flow (Dinh et al. 2016). It is worth
noting that there are recently more improved models, such as
neural spline flows (Durkan et al. 2019) and generative flow
with Invertible 1× 1 Convolutions (Kingma & Dhariwal 2018),
that achieve higher performance as compared with MAF.
Autoregressive models (e.g., Uria et al. 2016; Kingma et al.
2016) can be used to estimate densities and generate new
examples by decomposing a joint density p(x) into a product of
conditionals such as p(x)=∏ip(xi|x1:i−1), which ensures that
future conditional transformations are only a function of the
previous values, and hence satisfies the autoregressive
property. If the flow is modeled using an autoencoder (i.e.,
series of layers), then masking is required to remove
connections between different units in different layers to
preserve the ordering and the autoregressive property. This
approach is called the masked autoencoder for distribution
estimation (MADE; Germain et al. 2015), which is the building
block of the flow in MAF. MAF increases the flexibility to
learn more complex distributions by stacking several auto-
regressive models (MADEi, i= 1...k) into a deeper flow, where
the density of the random numbers u1 of MADE1 is modeled
with MADE2, and those of MADE2 with MADE3 and so on, up
to linking MADEk with the base (Gaussian) density. To
evaluate whether MAF is able to learn the target density, the
training data set would be converted back into random numbers
to test whether they represent a standard Gaussian.

We generate HI column density (NHI) maps, along any two
dimensions of size 25 × 25 h−1 cMpc, by projecting gas
particles within 5 cMpc h–1 columns along the third dimension
from the ILLUSTRISTNG LH set with 64× 64 pixels, resulting
in a resolution of ∼0.4 h−1 cMpc at z∼ 6. These NHI maps are
basically generated by adding up the neutral hydrogen masses
of gas particles within each column, and dividing by the pixel
area and proton mass. This means we can generate five distinct
HI maps along each of the three directions x, y, and z per
simulation. While these 15 maps, from each simulation, are not
entirely independent as expected during HIFLOW training, we
assume they are due to the small size of the training set. In
total, our data set contains 15,000 HI maps from the 1000
simulations of the CAMELS LH set. We use 900 simulations
(or 13,500 maps) for training, and 50 simulations (or 750 maps)
for validation and testing each. We convert all maps from two-
dimensional to one-dimensional representation and transform

the data to have a range from −1 to 1. Our best-performing
MAF, as evaluated on both validation and testing sets to show
the highest averaged likelihood probability, consists of 10
autoregressive layers (10 MADE). Each MADE consists of 3
hidden layers of sizes 1024, 2048, and 4096, and each
conditional is parameterized as a mixture of 10 Gaussians.
Training takes approximately 30 minutes on a single graphics
processing unit (GPU). Following the terminology by Papa-
makarios et al. (2017), our design is called MAF mixture of
Gaussians (MoG) (10). We use the hyperbolic tangent as an
activation function throughout, Adam (Kingma & Ba 2014) as
an optimizer to perform stochastic gradient descent via
maximum likelihood, with a minibatch size of 100, a learning
rate of 10−4, a small weight decay rate of 10−6, and early
stopping is applied if no improvement is observed for the 30
consecutive epochs on the validation set. It is straightforward to
extend this flow to learn the target density conditioned on a set
of parameters (y). The conditional density would be decom-
posed as follows: p(x|y)=∏ip(xi|x1:i−1,y). A visual summary of
the conditional HIFLOW on cosmological parameters (Ωm and
σ8) is shown in Figure 1. In this analysis, we design both
unconditional and conditional HIFLOW and discuss their
performance in the next section.

4. Unconditional HIFLOW

We now test the performance of HIFLOW, without
conditioning on parameters. We first show a visual comparison

Figure 1. Diagram of the inference scheme by the conditional HIFLOW on the
cosmological parameters (Ωm and σ8). Arrows indicate conditional dependence
between variables, which constructs the flow between all MADEs in order to
produce the joint density from the N-dimensional Gaussian distribution. The z
variables denote the latent spaces in MADEs.
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between the true HI maps (right) from CAMELS versus the
fake HI maps generated by the unconditional HIFLOW (left) in
Figure 2. We see that the real and fake maps look very similar
on large scales. On the other hand, it is clear that HIFLOW does
not accurately capture the small-scale features such as
filaments. This is expected since the model does not explicitly
incorporate the two-dimensional structure of maps as an
inductive bias. For instance, using invertible 1× 1 convolu-
tions would increase the model flexibility to capture the locality
and reproduce the small-scale features (e.g., Kingma &
Dhariwal 2018). However, it is still promising to see that,
without explicitly taking advantages of the two-dimensional
information, our model is able to generate diverse new
examples that capture the expected large-scale features reason-
ably well.

We now attempt to quantify the accuracy of the uncondi-
tional HIFLOW in terms of the power spectrum (P) and the one-
dimensional pdf of the column density pixels of the generated
HI maps against the CAMELS real maps. We generate 750 fake
HI maps from the unconditional HIFLOW and compare them
with the 750 HI maps from CAMELS testing set. We then
compute the power spectra and pdfs over these 750 maps and
compare the results in Figure 3. We show the average μ(pdf)
and μ(P) in the top panels and the corresponding standard
deviation (σ(pdf) and σ(P)) in the bottom panels. Comparing
the average and standard deviation of the pdfs and power
spectra, we see that the HIFLOW is able to reproduce CAMELS
in the column density range NHI∼ 1014−21 cm−2, and the
power spectrum within a factor of ∼2. The HIFLOW is able to
recover the large-scale power at <1.5 hMpc−1 in wavenumber
with a high accuracy. The disagreement on small scales

(around a wavenumber of 3 hMpc−1) is expected since the
model only sees flattened maps during training, and hence it
would be more challenging to model the highly nonlinear small
scales without additional information such as the two-
dimensional structure. This effect can be clearly seen in
Figure 2. Nevertheless, for studies that focus on large scales,
the HIFLOW still is an accurate, efficient tool for generating
new diverse examples of the HI maps.

5. Conditional HIFLOW

We now focus on our other aim, which is to learn the HI
maps conditioned on parameters. We first attempt to identify
which parameters strongly affect the HI distribution. To do so,
we make use of the CAMELS 1P set, in which a single
parameter is changed at a time while keeping other parameters
fixed. We generate maps from the 1P set, compute their average
pdfs (μ(pdf)), and show the results in Figure 4. We find that the
stellar (ASN1, SN2) and AGN (AAGN1, AGN2) feedback parameters
have no impact on the pdf of the HI maps at z∼ 6. This might
be due to the fact that at these early epochs there are fewer
galaxies and AGN for their feedback to make a noticeable
impact on HI maps on 25 h Mpc−1 scales. On the other hand,
the HI distribution is quite sensitive to the variation in the
cosmological parameters (Ωm, σ8), and hence we choose to
condition our HIFLOW only on the cosmological parameters,
while marginalizing over the astrophysical parameters. In fact,
we have initially conditioned HIFLOW on all six parameters,
and found worse performance (i.e., lower averaged likelihood
probability over all testing set). This is due to the degeneracies
between feedback parameters as seen in Figure 4. We will

Figure 2. Random representative examples of diverse HI maps from the CAMELS testing set (real, right) and generated using the unconditional HIFLOW (fake, left).
These maps cover an area of 25 × 25 h−1 cMpc with 64 pixels on a side, resulting in a resolution of ∼0.4 h−1 cMpc. The color scale in these maps show the column
density range log10 NHI/cm

−2 = 14–22.

4

The Astrophysical Journal, 937:83 (11pp), 2022 October 1 Hassan et al.



come to this point later in Section 7. We next retrain HIFLOW,
using the same architecture, to learn the following conditional
density p(HI|Ωm, σ8) as described earlier in Section 3.

Figure 5 shows a comparison between the conditional
HIFLOW (blue) and CAMELS (red) for randomly selected
values of Ωm and σ8 from the testing set in terms of the power
spectrum. Because we extract 15 maps from each CAMELS
simulation, we generate 15 new maps from the conditional
HIFLOW using the same cosmology. Matching the number of
samples (15) is crucial for a consistent comparison, since
smaller variance is expected for a larger number of samples
(i.e., Ns s ). We then compare them using the mean and
standard deviation powers μ(P) and σ(P) over all 15 maps. We
quote the coefficient of determination R2 in all panels to

quantify the correlation between CAMELS and HIFLOW at the
level of μ(P) and σ(P) for the same set of the cosmological
parameters. The R2 is defined as follows:

( )
( )

( )R 1
X Y

X X
, 3i i i

i i

2
2

2
= -

å -

å -

where Xi≡ (μ(PCAMELS,i), σ(PCAMELS,i)) and Yi≡ (μ(PHIFlow,i),
σ(PHIFlow,i)). The R

2 measures the fraction of the total variance
within CAMELS that HIFLOW can explain. It is worth noting
that the CAMELS maps are generated using six parameters,
while the conditional HIFLOW is based on two parameters.
Hence, these other four parameters might provide additional
sources of variance.

Figure 3. Comparison between CAMELS (red) and the unconditional HIFLOW (blue), in terms of the probability density distribution of the HI column density pixels
(pdf, left) and power spectra of the HI maps (P, right). Top and bottom panels show the average μ(pdf) and μ(P) and standard deviation σ(pdf) and σ(P), respectively,
over the 750 HI real maps from CAMELS testing set and the fake maps from HIFLOW. It is evident that HIFLOW recovers the expected pdf properties (average and
standard deviation as a function of HI column density). While HIFLOW underpredicts the small-scale power by a factor of ∼2, it predicts the expected large-scale
power very accurately. This effect is visible in Figure 2.

Figure 4. Impact of varying a single CAMELS parameter on the mean pdf over 15 HI maps, sharing the same parameters using the 1P set. As is evidenced by the
amount of variation in the mean pdf (μ(pdf)), the HI maps are mostly affected only by the cosmological parameters (Ωm and σ8) and not the astrophysical parameters
(ASN1, ASN2, AAGN1, and AAGN2); hence we choose to condition HIFLOW solely on cosmology.
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Figure 5. Comparison between the conditional HIFLOW (blue) and CAMELS (red) for randomly selected values of Ωm and σ8 from the testing set. The mean and
standard deviation power μ(P) and σ(P) are computed over the 15 maps. The σ(P) panels share the same cosmology as their immediate top μ(P) panels. In all cases,
the HIFLOW is able to reproduce CAMELS within a factor of �2, scoring a very high R2 > 90%.
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We see that, in all cases, there is an impressive agreement
between the HIFLOW and CAMELS in terms of the average
and standard deviation powers (μ(P) and σ(P)) for various sets
of cosmology, achieving R2> 90%. In Figure 6, we show the
ratio between the conditional HIFLOW and CAMELS of the
mean (left) and standard deviation (right) power spectrum over
all the testing set. The solid lines show the average, and the
shaded area shows the standard deviation of the ratios, whereas
dashed lines show several reference lines for the perfect match
and two times more or less than the true powers as produced by
CAMELS. In all cases and over all the prior range, the
HIFLOW is able to reproduce CAMELS within a factor of 2,
depending on the wavenumber. As seen before, the larger
discrepancies on small scales is expected since the model does
not explicitly include the expected structure of maps as an
inductive bias. We finally present a visual summary of R2 for
the testing set in Figure 7 as a function of cosmology. The R2

values for the average power (μ(P)) and standard deviation
power (σ(P)) are shown in the left and right panels, respectively
as quoted in subtitles. The R2 values are higher (darker) for the
μ(P) than σ(P). This is expected since it is generally easier for
models to reproduce the average behavior than higher-order
statistics (e.g., the variance). Nevertheless, in all cases, there is
strong correlation between the CAMELS and HIFLOW with
R2> 90%. This indicates that HIFLOW is able to explain at
least 90% of the total variance of the CAMELS’s power spectra
data, which is quite promising due to the small size of the
training data set, and model simplicity. It is worth nothing that
we have retrained the conditional HIFLOW several times, and
the results have always been similar. Hence, we do not expect
an additional source of variance due to the random initialization
of the network parameters.
To test whether the differences seen at the power spectrum

level might impact inference and parameter recovery, we train a

Figure 6. Ratio between the conditional HIFLOW and CAMELS of the mean (left) and standard deviation (right) power over all the testing set as quoted in the legend.
Solid lines show the average and shaded areas reflect the standard deviation over all the prior range. HIFLOW predicts the large scale with a higher accuracy than the
small-scale power. In all cases, the HIFLOW is able to predict the true mean and standard deviation power within a factor of 2.

Figure 7. Visual summary of the coefficient of determination R2 between CAMELS and HIFLOW as a function of cosmology for all the testing set (50 simulations).
The R2 values for the average power (μ(P)) and standard deviation power (σ(P)) are shown in the left and right panels, respectively as indicated by subtitles. The R2

values are higher for μ(P) than σ(P), but nevertheless, in all cases, there is strong correlation between the CAMELS and HIFLOW with R2 > 90%.
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simple multilayer perceptron on HI power spectra from
CAMELS and attempt to quantify the accuracy using testing
samples from CAMELS versus HIFLOW as shown in Figure 8.
The best-performing multilayer perceptron includes 4 layers
with 10 neurons each using a learning rate of 0.001. The results
of testing with power spectra from CAMELS and HIFLOW are
shown in the top and bottom panels in Figure 8, respectively.
The solid lines show the identify line (target versus target), and
the distance to the identity lines is quantified with the root
mean square error (RMSE) as quoted in the panels. We see that
RMSE values and the scatter are relatively the same whether
testing with data from CAMELS or HIFLOW. This indicates
that the differences seen between CAMELS and HIFLOW
power spectra (see Figures 5, 6, 7) would have a minimal
impact on parameters recovery and inference.

6. Inferring Cosmology with HIFLOW

In the previous section, we have performed a comparison
between maps generated from HIFLOW versus CAMELS, and
found that the HIFLOW, for a given cosmology, is able to
generate maps with power spectra that are in a good agreement
with those expected from CAMELS in terms of the mean and
standard deviation. We now focus on how HIFLOW can be
used to perform parameter inference at the field level by
inverting the flow.

The advantage of NF lies in their ability to learn a tractable
likelihood that can be converted to posterior distribution. In our
case, since all priors are uniform, the learned likelihood is
essentially equivalent to the posterior. To estimate the posterior
for a given observed set of parameters as seen in Figure 9, we
adopt the following approach. We first evaluate the probability
for a random set of observed parameters (Ωm, σ8) given their

observed HI map from CAMELS (red cross symbols). We then
create a uniform grid of 10,00017 set of parameters over the
whole prior range, and evaluate their probabilities given the
same observed HI map. We directly use the 10,000
probabilities to estimate the 1σ, 2σ, and 3σ levels as seen in
the blue contours. To visualize the probability distribution over
the whole prior range, we use the Smooth bivariate spline
approximation to interpolate between probabilities to create the
light–dark blue background that corresponds to the high–low
probability regions given the observed cosmology (red cross)
as seen in Figure 9. In all cases, the red cross symbols from
different parts in the prior range are always within the 1σ–3σ of
the posterior, indicating that HIFLOW is able to recover the
correct cosmologies for the selected observed HI maps. The
contours are quite tight, and hence HIFLOW has the ability to
exclude large part of the parameter space, and narrow down the
broad range of possible scenarios. The well-known negative
correlation between Ωm and σ8 is also seen in all panels. This
figure illustrates an example of how to perform inference using
HIFLOW for an observed HIMAP.

7. Marginalizing over Astrophysics with HIFLOW

In Figure 4, we have shown that HI column density
distribution is insensitive to the variations in the astrophysical
parameters. We now turn our attention to answering the
question whether performing inference with HIFLOW would
be affected by the variations in these astrophysical parameters.
In other words, could the HIFLOW conditioned only on

Figure 8. Correlation between the target and predicted cosmology using a simple multilayer perceptron trained on HI power spectra from CAMELS. Results of testing
with the power spectra from CAMELS (PCAMELS) and HIFLOW (PHIFlow) are shown in the top and bottom panels, respectively. Solid black lines represent the identity
line (target vs. target). While trained on CAMELS, the scatter predicted by testing with HIFLOW is similar to the target scatter produced by testing with CAMELS as
quoted by the RMSE values. This shows that the differences seen in the power spectra between CAMELS and HIFLOW (see Figures 5, 6, 7) have a minimal impact on
parameter recovery.

17 We have checked the results using 1000 and 10,000 grid points and found
similar posterior.
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cosmology (Ωm, σ8) marginalize over the astrophysics (the
other four stellar and AGN feedback parameters)?

To answer this question, we now condition the HIFLOW on
all six parameters. We then test whether the correct cosmology
can be recovered while varying the other four astrophysical
parameters. We select the two sets with the four parameters
(A A A A, , , AGSN1 AGN1 SN2 2) that correspond to low (0.62, 0.62,
0.65, 0.65) and high (3.62, 3.62, 1.85, 1.85) feedback strengths,
as an example. We then repeat the same inference exercise for
the same observed HI maps in Figure 9, and show the results in
Figure 10. The green and orange contours are obtained using
the conditional HIFLOW on all six parameters by setting the
feedback parameters to low and high strength levels as defined
above, respectively. The blue contours are the same as in
Figure 9 that are obtained using the conditional HIFLOW only
on cosmology, and the red cross shows the cosmological
parameters for the selected observed HI maps. For all the
selected observed parameters at different regions in the prior
range, the conditional HIFLOW on cosmology produces
posteriors that show high accuracy in parameter recovery,
because all observed parameters (red cross) are within the 3σ
level. On the other hand, conditioning on all six parameters
clearly fails to recover the observed parameters for different
feedback strengths (green, orange). This is expected because
the column density distribution is insensitive to the variations
in the feedback parameters (see Figure 4). The contours by
conditioning only on cosmology (blue) are smaller than others
(green, orange). This shows the ability of the model to exclude
the larger part of the parameter space, and narrow the range of
possible models. For all contours, the anticorrelation between
Ωm and σ8 exists. This figure illustrates the ability of the
conditional HIFLOW on cosmology to successfully marginalize
over the astrophysical parameters at the field level, regardless
of the strengths of the stellar and AGN feedback.

8. Concluding Remarks

We have presented HIFLOW, an efficient and fast generative
model of HI maps at z∼ 6 from the CAMELS simulations.
This new tool is designed using MAF, which is a class of NF.
The MAF used here is a stack of 10 masked autoencoders for
density estimation, following closely the initial implementation
by Papamakarios et al. (2017). We have trained HIFLOW on
64× 64 HI maps generated from the ILLUSTRISTNG LH set at
z∼ 6 to learn the conditional density p(HI, Ωm, σ8).
Our key findings can be summarized as follows:

1. The unconditional HIFLOW is able to reproduce
CAMELS HI maps in the column density range
NHI∼ 1014−21 cm−2, and power spectrum within a factor
of �2. While the model does not incorporate the two-
dimensional structure of maps as an inductive bias, the
large-scale power at k< 1.5 hMpc−1 is recovered with a
high accuracy (see Figure 3).

2. While the dependence on stellar and AGN feedback is
weak, the statistical properties of the HI distributions are
highly sensitive to the cosmological parameters at high
redshift z∼ 6 (see Figure 4).

3. The conditional HIFLOW on cosmological parameters
(generating maps from parameters) accurately predicts
the correct average and standard deviation power spectra
as obtained by CAMELS within a factor of �2, scoring
R2> 90%. (see Figures 5, 6, and 7). These slight
differences between CAMELS and HIFLOW do not
impact cosmological inference performed using the HI
power spectra (see Figure 8).

4. The HIFLOW is successfully able to perform efficient
cosmological inference at the field level while margin-
alizing over astrophysics, regardless of the strength of
stellar and AGN feedback (see Figures 9 and 10).

Figure 9. Several examples of posterior distributions from HIFLOW for a random set of observed parameters (red cross). The contours represent the 1σ–3σ levels of
the posterior. The blue regions of the posterior indicate low probability values, and the lighter blue shows the high probability regions, where the contours reside. At
different parts of the prior range, the HIFLOW is able to recover the observed HI maps within 3σ level. By inverting the flow, this is an illustrative example of how
HIFLOW can be used to perform efficient and powerful parameter inference.
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While trained on ILLUSTRISTNG, the same architecture as
used in HIFLOW can be used to train on other state-of-the-art
hydrodynamic simulations, such as SIMBA, to generate HI
maps or other morphologically similar maps, and perform
efficient parameter inference at the field level.

One explanation for the good agreement between HIFLOW
and CAMELS is that, at high redshift, the HI distribution is
smoother and only sensitive to the cosmological parameters
with no influence from the stellar and AGN feedback, as seen
in Figure 4. For this reason, a simple NF model is able to learn
the HI distribution very well by observing only the one-
dimensional representation of the maps (i.e., flattened maps). It
is expected that at lower redshifts, when the stellar and AGN
feedback is much stronger, a more complex architecture might
be needed. It is also worthwhile noting that the HI maps are
sensitive to the UV background, and hence we do not expect
HIFLOW to agree with models that employ stronger–weaker
UV background than what ILLUSTRISTNG implements
at z∼ 6.

In addition, CAMELS employs a homogeneous ionizing
background (e.g., Haardt & Madau 2012), and hence the
universe is fully ionized by z∼ 6. If instead we used an
inhomogeneous background, by modeling radiative
transfer (e.g., see Molaro et al. 2019; Hassan et al. 2022)
either on the fly or in post processing, then the HI maps would
contain the nonlinear morphology of ionized bubbles, which
might be challenging to model with the current design of
HIFLOW. In this case, advanced architectures, such as the
neural spline flows (Durkan et al. 2019), generative flow with
invertible 1× 1 convolutions (GLOW; Kingma & Dhariwal
2018), or the vector quantized variational autoencoder
(Razavi et al. 2019), might be needed. We leave investigating
more complex architectures with more complex data sets to
future work.

HIFLOW enables many applications including testing power
spectral pipelines of HI surveys and assisting in computing
statistical properties that require many field samples, such as
the covariance matrix of HI maps or their summary statistics.
HIFLOW is an initial step toward studying the non-Gaussian
nature of HI maps, performing a more efficient parameter
inference, powerful HI forecasting for future large-scale and
intensity mapping surveys, and thereby maximizing the
scientific return of observations by the next generation of
facilities, such as Roman and SKA. Natural next steps would
include improving the model design by incorporating the data
structure as an inductive bias, and learning simultaneously
different emission line intensity maps (e.g., C II, CO, Lyα) to
enable a joint analysis and provide accurate predictions for
future multiwavelength and multimessenger surveys.
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Figure 10. Similar to Figure 9, this figure shows a comparison between conditioning HIFLOW only on the cosmological parameters (blue) vs. on all six parameters
(green, orange) as quoted in the legend above panels ( A A A A, , , , ,m AG8 SN1 AGN1 SN2 2sW ). In all cases, we see that conditioning solely on cosmology is able to recover
the observed HIFLOW maps (red cross). As seen in Figure 4, the astrophysical parameters do not impact the HI distribution, and hence they add degeneracies that lead
to posteriors far away from the target. This shows that the conditional HIFLOW on cosmology is able to successfully marginalize over the astrophysics at the field
level, regardless of the feedback strength.
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