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Abstract. One of the guaranteed features of the stochastic gravitational wave background
(SGWB) is the presence of Doppler anisotropies induced by the motion of the detector with
respect to the rest frame of the SGWB source. We point out that kinematic effects can
be amplified if the SGWB is characterised by large tilts in its spectrum as a function of
frequency, or by sizeable intrinsic anisotropies. Hence we examine the possibility to use
Doppler effects as complementary probes of the SGWB frequency profile. For this purpose
we work in multipole space, and we study the effect of kinematic modulation and aberration
on the GW energy density parameter and on its angular power spectrum. We develop a
Fisher forecast analysis and we discuss prospects for constraining parameters controlling
kinematically induced anisotropies with future detector networks. As a case study, we apply
our framework to a background component with constant slope in frequency, potentially
detectable by a network of future ground-based interferometers. For this specific example,
we show that a measurement of kinematic anisotropies with a network of Einstein Telescope
and Cosmic Explorer will allow us to constrain the spectral shape with a precision of about
16%. We also show that, if a reconstruction of the spectral shape is done via other methods,
e.g. frequency binning, a study of kinematic anisotropies can allow one to constrain our
peculiar velocity with respect to the CMB frame with a precision of 30%. Finally, we identify
cosmological and astrophysical scenarios where kinematic effects are enhanced in frequency
ranges probed by current and future GW experiments.
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1 Introduction

The detection and characterization of a stochastic gravitational wave background (SGWB) is
one of the next goals for gravitational wave (GW) science. A SGWB can have astrophysical
or cosmological origin, or both: see [1–3] for recent reviews. Currently, upper limits are
set on the amplitude [4] of the SGWB at ground-based interferometer frequencies, and on
parameters characterising the first few multipoles of its associated angular power spectrum [5,
6]. Recent tantalising hints of a signal in the nano-Hertz regime are discussed in [7].

In view of future conclusive detections, it is essential to have the best possible theoretical
understanding of the properties of a SGWB. Among its guaranteed features is the presence
of Doppler anisotropies induced by the motion of the detector with respect to the SGWB rest
frame. In fact, the study of kinematic anisotropies in the context of stochastic backgrounds
of electromagnetic radiation is an already well-developed research topic. Doppler-induced
anisotropies in the spectrum of CMB fluctuations have been measured since decades [8–11],
and their analysis provides interesting cosmological information [12–20]. Kinematic effects
are also studied for other cosmological observables, see, see e.g. the dipole in luminosity
distance of SN counts [21], or the kinematic dipole anisotropies in galaxy number counts, see
e.g. [22–24].
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The aim of this work is to analyse kinematic anisotropies in the SGWB, and investi-
gate their physical consequences. In particular, we show that their properties can provide
important information on the spectral dependence of the SGWB:

• In section 2 we compute how the SGWB density parameter ΩGW transforms under a
Doppler boost connecting the observer frame to a frame at rest with the SGWB. The
boost leads to the generation of kinematic anisotropies from the rest-frame monopole,
and to the modulation and aberration of existing rest-frame anisotropies. Kinematic
effects are amplified if the SGWB is characterised by sizeable tilts in its spectrum
as a function of frequency, or by intrinsic anisotropies. Consequently, Doppler effects
offer complementary probes of the SGWB frequency profile, as well as of its rest-frame
anisotropies.

• In section 3 we identify set-ups where kinematic effects can be amplified in frequency
ranges probed by GW experiments, thanks to transient enhancements of the tilt of the
SGWB spectrum. For cosmological background components, such amplifications can
occur when tensor modes are sourced at second order by scalar spectra with pronounced
peaks, as in inflationary models producing primordial black holes. For an astrophysical
background, scenarios with a rapid after merger drop of the density parameter can
potentially lead to a local enhancement of kinematic anisotropies.

• In section 4 we discuss applications of our results, elaborating prospects of detection
of kinematically-induced effects. We investigate constraints on the slope of the SGWB
spectrum associated with measurements of boost induced anisotropies. We develop a
multipolar decomposition of the SGWB spectrum including Doppler effects. We show
how the latter depend on the tilt of the spectrum, and how they affect correlation func-
tions. We develop Fisher forecasts for computing the signal-to-noise ratio relative to
parameters controlling kinematically induced anisotropies. We then apply our general
formulas to the idealised case of an astrophysical background with constant slope in
frequency, detectable by a network of future interferometers. For this specific exam-
ple, we show that a measurement of kinematic anisotropies allows us to constrain the
spectral shape of the SGWB with a precision of about 16%. We also show that, if a
reconstruction of the spectral shape is done via other methods, e.g. frequency binning,
a study of kinematic anisotropies can allow one to constrain our peculiar velocity with
respect to the CMB frame with a precision of 30%.

• We present our conclusions and future directions of our study in section 5, which is
followed by a technical appendix A.

2 Transforming the GW density parameter under boosts

In this section we discuss how the GW density parameter ΩGW transforms under a Doppler
boost connecting two frames moving with relative velocity v. In subsection 2.1 we obtain
the general formulas for boost transformations. In subsection 2.2 we apply them to a case
where the GW density parameter ΩGW is isotropic in the rest frame, and we demonstrate
that kinematic anisotropies are induced by the boost.1 In subsection 2.3 we discuss a more
general scenario where the GW density parameter ΩGW is anisotropic in the rest frame.

1Part of the contents of these two subsections can be found in [25].
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We show how kinematic effects, besides inducing new anisotropies, lead to modulation and
aberration of existing ones. The size of the Doppler-induced effects are enhanced if the
SGWB spectrum has large tilts in frequency. This property suggests an independent way
for probing the frequency dependence of the spectrum. See also [26] for an analysis of the
kinematic dipole of the SGWB, with applications to the case of cosmic string sources.

2.1 The general formulas

Let us consider two sets of observers in an unperturbed FLRW universe. The first observer,
called S ′, is comoving with the SGWB rest frame. The second one, S, moves with constant
velocity v with respect to S ′. Primes indicate rest-frame quantities; vectors with a hat are
unit vectors. The boost connects the SGWB density parameters in the two frames S ′ and S.
We identify two qualitatively different effects of the observer motion on the SGWB sky map:2

1. The generation of higher multipole anisotropies from lower multipole ones.

2. The modulation and aberration of the intensity of existing anisotropies. This leads to
a remapping of the intensity map/Stokes parameters on the sky.

We use the approach of [27] to determine how quantities change from one frame to the other
(see also [13, 18, 28]). We denote with f ′ the frequency of the GW in the SGWB rest frame,
and with n̂′ the unit vector denoting its direction. The frequency f in the system in motion
is related to f ′ by a Lorentz transformation reading

f =
√

1− β2

1− β ξ f
′ , (2.1)

where v = βv̂ denotes the relative velocity of the two frames: we have β = v in units with
c = 1. The unit vector v̂ corresponds to the direction of the relative motion between the two
frames. We introduce the convenient quantity

ξ = n̂ · v̂ , (2.2)

parametrising the relative angle between n̂ and v̂. We re-express equation (2.1) as

f = D f ′ , (2.3)

with
D =

√
1− β2

1− β ξ . (2.4)

The directions of GW propagation in the two frames S ′ and S are related by the aberration
equation of special relativity [11]

n̂′ = n̂ + v̂ [(γ − 1) ξ − γβ]
γ (1− βξ) , (2.5)

with
γ = 1√

1− β2 . (2.6)

2While we investigate these effects in the case of the SGWB, it is worth to point out that they are already
well-known in the CMB literature.
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In order to compute how the GW energy density changes under boosts, we make use
of the GW distribution function, denoted here with ∆′(f ′, n̂′). We assume it only depends
on the frequency f ′ and on the GW direction n̂′ in the SGWB rest frame. We express the
number of gravitons for unit of phase space in the rest-frame S ′ as:

dN ′ = ∆′(f ′, n̂′) f ′2 df ′ d2n̂′ dV ′ , (2.7)

where dV ′ corresponds to the infinitesimal volume containing gravitons with propagation
vector n̂′ in the element of measure df ′ d2n̂′. The combination f ′2 df ′ d2n̂′ dV ′ is invariant
under boosts. In fact, the relations f ′ = D−1 f , d2n̂′ = D2 d2n̂, dV ′ = D dV hold (see [18,
27]). On the other hand, the number of gravitons (2.7) is independent of the frame, and
dN ′ = dN . Hence [28]

∆′(f ′, n̂′) = ∆(f, n̂) . (2.8)

The GW distribution function ∆ can be used to define the energy density of GW in the rest
frame as energy per unit volume and unit solid angle:

dρ′GW(f ′, n̂′) = f ′ dN ′

d2n̂′ dV ′ = ∆′(f ′, n̂′) f ′3 df ′ . (2.9)

We then express the GW density parameter Ω′GW(ω′, n̂′v̂) in the rest frame S ′ as

Ω′GW(f ′, n̂′) ≡ 1
ρc

dρ′GW
d ln f ′ = 3π f ′4

2H2
0 M

2
Pl

∆′(f ′, n̂′) . (2.10)

Using eq. (2.8), we find the equality

ΩGW(f, n̂) =
(
f

f ′

)4
Ω′GW(f ′, n̂′) . (2.11)

Collecting the results so far, we find that the GW density parameter in the moving frame
S is related with the corresponding quantity in the frame S ′ at rest through the formula

ΩGW(f, n̂) = D4 Ω′GW

(
D−1 f,

n̂ + v̂ [(γ − 1) ξ − γβ]
γ (1− βξ)

)
(2.12)

with D, γ and ξ given respectively in eqs. (2.4), (2.6), (2.2). The previous formula is com-
pletely general and valid for any values of 0 ≤ β ≤ 1. On the other hand, the parameter β is
usually small: for example, for cosmological backgrounds, CMB suggests that β ' 1.23×10−3.
Under the assumption of small β, we Taylor expand eq. (2.12) in β, and analyse two cases.

2.2 First example: the SGWB is isotropic in the rest frame

We assume that the GW density parameter in the rest frame S ′ is isotropic, and independent
of n̂′: Ω′GW = Ω′GW(f ′). It is then straightforward to expand eq. (2.12) up to the quadrupole
(and also beyond if needed, see section 4). Taking the notation from CMB physics, we
introduce the tilts of the SGWB spectrum as

nΩ(f) = d ln Ω′GW(f)
d ln f , (2.13)

αΩ(f) = dnΩ(f)
d ln f . (2.14)

– 4 –
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These spectral tilts play an important role in our analysis. Expanding (2.12) in powers of β,
and limiting the expansion to order β2 — in fact we are assuming that β is small — we find
that the GW density parameter in the moving frame S receives a kinematic modulation of
the monopole. Moreover, a kinematic dipole and a kinematic quadrupole are generated by
boost effects:

ΩGW(f, n̂) = Ω′GW(f)
[
1 +M(f) + ξ D(f) +

(
ξ2 − 1

3

)
Q(f)

]
, (2.15)

where remember we define ξ = n̂ · v̂. The frequency-dependent coefficients

M(f) = β2

6 (8 + nΩ (nΩ − 6) + αΩ) , (2.16)

D(f) = β (4− nΩ) , (2.17)

Q(f) = β2
(

10− 9nΩ
2 + n2

Ω
2 + αΩ

2

)
, (2.18)

indicate respectively the monopole, dipole, quadrupole boost contributions; from now on we
understand for simplicity the frequency dependence of the spectral tilts.

The quantities within brackets in the expressions (2.16), (2.17), (2.18) depend on nu-
merical coefficients, as well as on the spectral tilts nΩ and αΩ, as defined in eqs. (2.13), (2.14).
Notice that when the spectral tilts are of at least of order one, they give a sizeable contribu-
tions to the kinetically induced effects of eqs. (2.16)–(2.18). Hence the slope of the spectrum
influences the kinematic anisotropies through nΩ, αΩ: in scenarios where these quantities are
large, boost effects are amplified, and can be used to probe the slope of the spectrum.

The monopole contribution M(f) receives a modulation of its intensity at order β2

in the expansion. See [29] for a study of this effect in the context of the CMB, and more
in general section 2 of [11] for comparing our formulas to their analog in a CMB context,
with the frequency-dependence of the CMB intensity taking the place of what for us is the
frequency-dependence of ΩGW. The dipole contribution (2.17) is the only one starting already
at order β1 in the expansion, and it is typically the largest boost-induced modulation effect.

While our expression (2.15) is built in terms of combinations of ξ = n̂ · v̂, it is also
straightforward to convert it in spherical harmonics. We choose for simplicity v̂ along the
z-direction, and parameterize n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). Then we can rewrite (2.15)
in terms of spherical harmonics Y`m(θ, ϕ) as

ΩGW(f, n̂) =
√

4πΩ′GW(f)
[
(1 +M(f)) Y00(θ, ϕ) + D(f)√

3
Y10(θ, ϕ) + 2Q(f)√

45
Y20(θ, ϕ)

]
.

(2.19)

Choosing v̂ in the z-direction implies that only the m = 0 harmonics are induced by the
boosts — more general choices induce other harmonics as well, and are related to the previous
formula by a spatial rotation (see section 4, especially footnote 9.).

2.3 Second example: the SGWB is anisotropic in the rest frame

Doppler boosts cause aberration effects that change the map distribution of rest-frame
anisotropies in the sky. We investigate this effect in our second example, where we do not

– 5 –
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assume that Ω′GW is isotropic in the rest frame S ′. For simplicity we assume a factorisable
Ansatz [30]:

Ω′GW(f ′, n̂′) = Ω′(f ′)Φ′(n̂′) . (2.20)

We now derive the resulting ΩGW(f, n̂) in the moving frame S. We will find that the
quantity ΩGW(f, n̂) in the moving frame S does not obey any more a factorisable Ansatz as
in eq. (2.20). In fact, using eq. (2.12) we express ΩGW as (recall ξ = v̂n̂)

ΩGW(f, n̂) =
[
D4Ω′

(
D−1 f

)]
×
[
Φ′
( n̂ + v̂ [(γ − 1) ξ − γβ]

γ (1− βξ)

)]
. (2.21)

Expanding up to first order β1, we get

ΩGW(f, n̂) = Ω′GW(f, n̂)
[
1 + β ξ (4− nΩ)− β ξ,i

(
ln Ω′GW

)
,i

]
, (2.22)

where we denote with a comma the covariant derivative, ∇iξ = ξ,i, and we use the identity
ξ,i = v̂i − ξ n̂i. The second term in the parenthesis of (2.22) is a kinematic modulation of
the rest-frame Ω′GW; the third term is due to kinematic aberration.

We can also directly expand eq. (2.21) in powers of β, and use a spherical harmonic
decomposition so to understand in a more transparent way the physical implication of a
Doppler boost. We will carry on a more general analysis of these topics in section 4. To
acquire familiarity with physical consequences of boosting rest-frame anisotropies, here we
present kinematic effects up to the quadrupole ` = 2 expanding at second order in β.

We express the rest-frame function Φ′(n̂′) appearing in eq. (2.20) as

Φ′(n̂′) =
√

4π
2∑
`=0

∑̀
m=−`

Φ′`m Y`m(θ, ϕ) , (2.23)

where Φ′`m are the constant coefficients of the spherical harmonic decomposition in the rest
frame S ′ of the SGWB. They are frequency-independent given the factorization hypothesis
of (2.20). We assume a unit monopole coefficient Φ′00 = 1, factorising it in the overall
frequency-dependent factor. We implement this decomposition in eq. (2.21), expanding up
to order β2. As done in the previous section, we assume that v̂ points towards the ez
direction. We expand the GW density parameter up to the quadrupole in the basis of
spherical harmonics, finding

ΩGW(f, n̂) =
√

4πΩ′(f)
2∑
`=0

∑̀
m=−`

Φ`m(f)Y`m(θ, ϕ) , (2.24)

with the following non-vanishing anisotropy coefficients

Φ00 = 1 + β√
3

(2−nΩ) Φ′10 + β2

6 [8 +nΩ (nΩ− 6) +αΩ] +
√

5β2

12 [50 + (nΩ− 21)nΩ +αΩ] Φ′20 ,

Φ10 = Φ′10 + β√
3

(4−nΩ) +
√

5β√
12

(nΩ− 10) Φ′20 + β2

2 (3nΩ− 14) Φ′10 , (2.25)

Φ20 = Φ′20 + 2β√
15

(5−nΩ) Φ′10 + β2

3
√

5
(
20− 9nΩ +n2

Ω +αΩ
)
− β2

6 [80 + (nΩ− 24)nΩ +αΩ] Φ′20 .

(2.26)
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The previous expressions3 have interesting properties:

• The monopole Φ00 in the moving frame is modulated by boost induced contributions
at order β2 in the expansion, as well as new parts inherited from the rest-frame dipole
Φ′10 and quadrupole Φ′20. Notice that there is a contribution at order β1, induced by
the intrinsic dipole Φ′10, which is generally the largest in size given our hypothesis of a
small-β expansion.

• Both the dipole Φ10 and quadrupole Φ20 receive kinematic modulations of their rest-
frame amplitudes, as well as a kinematic aberration depending on the amplitude of the
rest-frame quantities Φ′10 and Φ′20. Besides a kinematic modulation at order β2 to the
dipole, new aberration effects arise at order β1, which depend on the size of existing
rest-frame anisotropies.

Hence a Doppler boost introduces kinematic aberrations that mix different orders in a mul-
tipole expansion. For example, at order β1, the moving frame dipole coefficient Φ10 receives
contributions from the rest-frame quadrupole Φ′20, and the moving frame quadrupole coef-
ficient Φ20 receives contributions from the rest-frame dipole Φ′10. We will meet again and
make use of this phenomenon in section 4. The formulas we derived in section 2.2 and this
section 2.3, starting from the general result in eq. (2.12), go beyond what previously done in
the literature, for example by considering a Taylor expansion beyond the linear order in β
(see e.g. [26] for linear order expressions), and including the effects of intrinsic anisotropies,
not discussed in [25].

The modulation and aberrations effects can be amplified in models with an enhanced
slope of the GW spectrum in certain range of frequencies, and/or in scenarios with intrinsic
large anisotropies in the rest frame. This suggests that Doppler effects can be used as a
complementary probe of the SGWB frequency profile, as well as of its intrinsic rest-frame
anisotropies. We elaborate on this topic in what comes next.

3 Kinematic anisotropies and SGWB scenarios

In this section we explore cosmological and astrophysical scenarios where our previous find-
ings can be applied. We are especially interested in theoretically identifying set-ups where
kinematic effects can be amplified in frequency ranges probed by GW experiments, thanks to
enhancements of the tilts nΩ, αΩ of the SGWB spectrum at particular frequencies. We focus
on the SGWB from inflation (subsection 3.1) and from astrophysical sources (subsection 3.2).

3.1 Primordial SGWB from the early universe

In analogy to what happens for the CMB, we expect also the SGWB to be characterized by
kinematic anisotropies due to the motion of the solar system with respect to the cosmic rest
frame with velocity β = 1.23 × 10−3. Several early universe models predict rich slopes in
frequency for the spectrum of ΩGW which can be probed at interferometer scales (see e.g. [31]
for a study in the context of LISA). In these models, spectral tilts can become large enough
to compensate for the smallness of β in our Taylor expansion.

3In general, the Taylor expansions we consider always converge to the formula in eq. (2.12) we started from,
so they are mathematically consistent. However, if the tilts of the SGWB are too large, there is the risk that
the terms we neglect in the expansions are of the same order than the ones we consider, hence our truncations
can be physically misleading. In what follows, we will consider our formulas to be valid in regimes where the
terms we neglect in the Taylor expansions are hierarchically smaller than the contributions we include.

– 7 –
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Figure 1. Plot of the GW density parameter ΩGW obtained from the scalar spectrum of (3.2) with
width ∆ = 0.2. We also represent the absolute value of its tilts nΩ and αΩ. The tilts become large at
the location of features of the spectrum.

Focussing on a frequency range that can be probed with space-based or ground-based
interferometers, one finds (see e.g. [3]):

h2
0 ΩGW(f) = 6.73× 10−7 PT (f) , (3.1)

which shows that ΩGW(f) is proportional to the primordial isotropic spectrum of tensor
modes, defined as

PT (f) = k3

2π 〈h
2
ij〉′ ,

where a prime indicates 2-point correlators understanding the momentum-conserving Dirac
delta. For scale-invariant and power-law primordial tensor spectra with constant slope (which
can be relatively large and blue-tilted in models of supersolid inflation, see e.g. [32–34]), it
is simple to obtain the tilts of the spectrum using eq. (2.13) and (2.14), and to compute the
expressions for the Doppler anisotropies.

We analyze here a slightly less straightforward example, so to explore physically well-
motivated situations where the frequency-dependence of the spectrum is richer. We consider a
primordial SGWB sourced at second order in perturbations from scalar fluctuations enhanced
at small scales, a subject first explored in [35–41]. These scenarios arise frequently in models
leading to primordial black hole production, see e.g. [42, 43] for recent reviews. Such source
can induce a rich frequency dependence in the tensor spectrum, particularly when the width
of the scalar spectrum is small and centered at a characteristic frequency f? (see e.g. [44, 45]).

For example, we can parameterise the scalar spectrum Pψ in terms of log-normal Gaus-
sian peak in frequency, as

Pψ(f) = A√
2π∆

exp
{
− [ln(f/f?)]2

2∆2

}
. (3.2)

Such Ansatz leads to fully analytical formulas for ΩGW, as shown in [46] building on the
works of [40, 41, 44, 45, 47, 48]. In eq. (3.2), A is the amplitude of the peak, ∆ its width,
and f? a characteristic frequency. The resulting GW spectrum has a rich and steep profile
in frequency if ∆ � f?. We represent the profile of the induced ΩGW in figure 1, using the
analytic results of [46]. We also plot the absolute value of the parameters nΩ and αΩ, as
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Figure 2. Representation of the relative contributions to eq. (2.15) for the system GW density
parameter represented in figure 1. We choose the CMB value for β = 1.23 × 10−3. Blue is the
monopole; green is the dipole divided by β; red is the quadrupole divided by β2. Below the grey line,
for reference, we include the shape profile of the original ΩGW in arbitrary units. Notice that the
dipole contribution, starting at order β1, is much larger than the others, and can be up to two orders
of magnitude larger than β within the frequency range where features in the spectrum occur.

defined in (2.13), (2.14). A scalar spectrum with a single pronounced peak as the one of
eq. (3.2) can also be obtained in multifield inflation, see for example [49].

In fact, in the limit of thin peak ∆ � f?, the features of ΩGW can be analytically
understood (see e.g. [40, 44, 45]). The GW spectrum starts increasing as f2 from small
towards large frequencies. It then shows a rapid drop in power and a zero at frequencies of
order f/f? =

√
2/3. A resonance4 then produces a pronounced peak, occurring at frequency

f/f? = 2/
√

3. It then definitely drops and it vanishes at frequencies f/f? > 2, since, working
at second order in perturbations, momentum conservation does not allow to generate tensors
whose momenta are larger than twice the scalar momentum.

Let us assume that the primordial anisotropies in the rest-frame S ′ are negligible, so to
work in the set-up of section 2.2. Due to the large absolute values of the tilt parameters nΩ,
αΩ we expect large induced kinematic anisotropies at least in the specific frequency range√

2/3 ≤ f/f? ≤ 2. The amplitude of the kinematic contributions to the monopole, dipole,
and quadrupole of the SGWB amplitude in the moving frame S is controlled by the functions
M(f), D(f), Q(f) introduced in eq. (2.15). In figure 2 we plot these quantities as a function
of frequency, showing that they are indeed enhanced in the expected frequency interval: the
dipole contribution is the dominant one since it is weighted by a single power β1 of the
expansion parameter. In particular, a pronounced amplification of kinematic anisotropies
occurs at the position of the first dip of the spectrum, around f/f? =

√
2/3.

We should now reconsider footnote 3. Given that the spectral tilts become large where
the spectrum has features — see figure 1 — we might ask whether the expansion in powers of β
is consistent in this context. In particular we want to check whetherhigher order contributions
to the kinematic anisotropies can turn larger than the ones we included, thus invalidating our
formulas truncated at second order in a β expansion. We discuss this issue in the technical
appendix B, where we show that higher order corrections in a β expansion are hierarchically
smaller, hence the results plotted in figure 2 are robust.

4In realistic examples, we expect the sharp peak at the resonance position to be smoothed out [40], so
we will not consider the enhancement of kinematic effects occurring precisely at the resonance frequency
f/f? = 2/

√
3.

– 9 –



J
C
A
P
0
8
(
2
0
2
2
)
0
3
6

It would be interesting to explore whether a detection of kinematically induced aniso-
tropies is possible for these scenarios, and whether it can complement direct measurements
of the slope of the spectrum (see e.g. [50–52] for methods and forecasts). This possibility
would allow one to better characterize the spectral profile of the SGWB. We discuss first
steps towards this aim in section 4. We notice that while we focussed on the consequences of
a single peak in scalar fluctuations, there are more complex models with multiple peaks, steps
in the inflationary potential, or multifield inflationary scenarios where even richer features
occur in the spectrum as function of frequency — see for example [53–56].

Until now, we assumed that the SGWB spectrum is perfectly isotropic in the rest
frame. On the other hand, anisotropies are expected, both of primordial origin, or induced
by propagation effects from the early universe to today: see e.g. [57–65]. For example,
sizeable intrinsic quadrupolar anisotropies can be produced in scenarios with large tensor
non-Gaussianity, see e.g. [33, 34, 66–69]. It would be interesting to study effects of kinematic
aberration on these intrinsic anisotropies, given that they can be induced already at order
β1 (see section 2.3) and might then be enhanced in frequency ranges where the spectrum has
enhanced tilts.

Measurements of kinematic dipolar anisotropies have also been proposed as a method
to detect the chirality of a cosmological SGWB with planar interferometers, see [70, 71].
Our analysis can be extended to study how parity violating effects can influence Doppler-
induced modulations and aberrations at higher order in a multipole expansion. We leave the
exploration of these topics to future studies, as well as an analysis of the impact of black hole
binaries on the detection of the primordial background [72].

3.2 Astrophysical SGWB

The astrophysical stochastic gravitational-wave background (AGWB) is generated by the
superposition of signals from various resolved and unresolved astrophysical sources from the
onset of stellar activity until today see e.g. [1, 73, 74]. The AGWB from binary black hole
coalescence (BH) is expected to be dominant in the Hz band and below [75], and may become
a source of confusion noise for some of the other types of sources.

The detection of the binary neutron star (NS) coalescence by the LIGO/Virgo net-
work [76], and the estimated rate R of mergers in the local Universe, which is of order
R = 920+2220

−790 Gpc−3 yr−1 [77], lead to the conclusion that these sources may have a compa-
rable contribution to the AGWB relative to binary BHs [78]. We may therefore expect that
their contribution to the anisotropies of the AGWB is also important.

It is important to stress that the AGWB in the mHz and Hz band (accessible respectively
by space and ground-based interferometers) is very different in nature. In the mHz band,
we are sensitive to the inspiralling phase of the evolution of binary system of (solar mass)
compact objects. The duration of the inspiralling phase is long with respect to human time
scales, hence the background in the mHz band is irreducible. In the Hz band, however, we
detect the very final phase of the evolution of binary systems of compact objects: mergers
are well separated in the time-domain, with almost no overlap in time.5

We represent in figure 3 the evolution of the energy density with frequency for the
astrophysical model used as a reference model in [79, 80]. In the infrared side of the spectrum,
the scaling with frequency follows the ΩGW ∝ f2/3 rule dictated by the Einstein quadrupole

5In other words, with an instrument of very high sensitivity, these events are detectable individually with
a catalogue approach. For this reason the background in the Hz band is not irreducible (at least as long as
we focus on black hole merger contributions).
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Figure 3. Energy density parameter as function of frequency for AGWB dominated by black hole
mergers, compared with the corresponding spectral index as function of frequency (red dashed line).
We choose the astrophysical model of [79, 80] for the source population. Notice the rapid drop in
frequencies at the coalescence stage of the BH population, leading to an increase of the tilt of the
spectrum of almost an order of magnitude.

formula which captures the dynamics of the inspiralling phase. The peak in the Hz band is
due to GW emission during the merger phase. While this qualitative behaviour is universal,
the width of the peak and how fast it decays depends on the details of the underlying model
for mass and redshift distribution of sources. For example, in the unrealistic scenario in
which all coalescing binaries have the same mass M and are located at the same distance D,
the spectrum has a rapid drop in frequency at a given f = fdrop(M,D), because the sources
of AGWB become ineffective at frequencies larger than fdrop. In this case, the tilt of the
spectrum can be large at frequencies around fdrop, enhancing the size of kinematic effects on
the AGWB anisotropies.

Traditionally, the energy density of the AGWB has been modeled and parameterized
under the assumption that both our universe and the distribution of sources are homogeneous
and isotropic (see e.g. refs. [1, 75]). This is a rather crude approximation: GW sources are
located in galaxies embedded in the cosmic web; moreover, once a GW signal is emitted,
it is deflected by the presence of massive structures, such as galaxies and compact objects.
It follows that the energy flux from all astrophysical sources has a stochastic, anisotropic
dependence on direction.

The first prediction of the AGWB angular power spectrum was presented in [81, 82]
following the methods developed in refs. [83, 84]. This framework is flexible and splits the
cosmological large-scale structure and sub-galactic scales so that it can be applied to any
source contributions and to any frequency band. The astrophysical dependence of the an-
gular power spectrum on the detail of the underlying astrophysical model has been studied
in [26, 79, 80, 85, 86] and different formal aspects of the derivation of anisotropies and their
interpretation are discussed in [58, 74, 87, 88, 90]. The angular power spectrum on large
angular scales is characterized by the typical decay of the galaxy correlation function as a
function of multipoles `, i.e. C` ∝ (`+1)−1. This is not surprising as GW sources are a biased
tracer of the underlying galaxy distributions and clustering is the dominant contribution to
the energy density anisotropy. This implies that in the multiple expansion (2.25), which re-
lates boosted and unboosted multipoles, one gets Φ′` ∼

√
(`− 1)/`Φ′`−1. Hence, the intrinsic
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dipole and quadrupole anisotropies are typically of the same size. In the next section we
will learn that the effect of a boost is to generate an off-diagonal structure in the correlation
matrix of the energy density: at a given order βn in an expansion in the boost velocities, we
find correlations between multipoles separated by ±n in their multipole indexes.

Based on the recent observations of merging black holes and neutron star binaries by
the Advanced LIGO and Advanced Virgo detectors, [4], we expect that the stochastic back-
ground from unresolved stellar-mass compact binaries may be detected within a few years of
operation of the extended LIGO-Virgo network. Its anisotropic component is constrained
by LIGO/Virgo observations up to ` = 4 [91], resulting in upper limits on the ampli-
tude of the dimensionless energy density per units of logarithmic frequency in the range
ΩGW(f = 25Hz,Θ) < 0.64–2.47 × 10−8 sr−1 for a population of merging binary compact
objects, where Θ denotes the angular dependence. The updated analysis [6] — including also
Virgo data — improves these bounds by factors of 2.8–3.8. See also [92] for a proposal of
developing future large baseline interferometers for reaching higher values of multipoles `.

The study of the cross correlations with electromagnetic observables provides comple-
mentary information and might improve the signal to noise of the anisotropic searches [79,
90, 93]. Moreover, by cross-correlating the GW background (which collects contribution
from sources at all redshifts along the line of sight) with EM observables at a given redshift
(such as galaxy number counts), we can study a tomographic reconstruction of the redshift
distribution of sources [79, 81, 89, 90, 93].

We close this section with a brief comment on the contribution to the AGWB from
coalescences of galactic sources — see e.g. [94, 95] for recent detailed studies. In this case,
the AGWB is expected to be extremely anisotropic (see [30] for an early forecast of detection
of anisotropies), and the size of the peculiar velocity β with respect to the solar system frame
is not necessarily the same as the cosmological one β = 1.23 × 10−3 we considered above.
It would be interesting to understand whether Doppler effects can be used for disentangling
and characterizing its properties. We leave a study of this topic to future work.

4 Prospects of detection

In the previous sections we identified two physically relevant implications of Doppler boosting
a SGWB. First, the generation of kinematic anisotropies in the moving frame S of a detector
starting from the monopole in the rest frame S ′ of the emitter. Second, the modulation
and aberration of anisotropies in frame S starting from anisotropies in frame S ′. All these
effects depend on both the absolute value of the velocity β and on the frequency slope of
the emitted GW spectrum. In particular, non-stochastic anisotropies are a modulation of
the monopole, while stochastic anisotropies are a modulation (and aberration) of intrinsic
anisotropies. The latter are typically suppressed with respect to the intrinsic anisotropies,
unless the spectral index of the SGWB profile is very large, hence βnΩ ∼ 1. In this section
we forecast prospects of detecting kinematic effects using both the information contained in
the stochastic and non-stochastic anisotropies.6

The fact that non-stochastic anisotropies depend on the spectral frequency shape and on
the relative velocity with respect the CMB rest frame has two interesting applications. First, a
measurement of kinematic anisotropies (and in particular of the kinematic dipole) can provide
us with a complementary way to probe the frequency-dependence of the SGWB spectrum.

6However, in most cases — like the vanilla example we will use for illustration — the stochastic part of
the spectrum is not measurable, and one should focus on the non-stochastic part of the SGWB.
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This can be useful in scenarios where an extragalactic and a galactic background components
are overlapped, making it difficult a spectral shape reconstruction via frequency binning.7
In such a situation, measuring the kinematic dipole helps in distinguishing the backgrounds,
since the extragalactic contributions to the SGWB are expected to have different intrinsic
velocities with respect to galacting ones. Second, if a spectral reconstruction is possible via
binning, then, out of kinematic anisotropies, one can extract information on the value of β,
in a similar (but complementary) way of what done in CMB studies.

In this section we forecast the precision associated with measurements of boost-induced
anisotropies, given a detector network. In particular, we focus on the possibility of using
the Doppler effect for measuring the tilt nΩ of the SGWB frequency spectrum, and the ab-
solute value of the velocity β assuming that the spectral shape is reconstructed from the
monopole. For the forecasts, we use standard textbook methods [97] and we provide ana-
lytical expressions for the SNR of boost-induced anisotropies and for the variance associated
with uncertainties on nΩ and β. As an illustration, we consider a simple case study: an
astrophysical background in the Hz (ground-based) band, measured with a detector network
given by Einstein Telescope (ET) and Cosmic Explorer (CE) plus a futuristic variation of
this set-up where both the instruments have an improved strain sensitivity.

4.1 The multipolar decomposition

We now propose a multipolar expansion of the GW density parameters which allows one to
study the impact of boost effects on its correlation function. We derive formulas which are
valid for any multipole `; however, for simplicity we include only effects up to first order β1

in our Taylor expansion. In this sense, we go beyond what we did in section 2, although we
limit to first order in β (see also [18] for a more complete treatment suited for CMB).

We assume that the density parameter can be factorized into a frequency and a direction
dependent component. In particular, the density parameter Ω′GW in the rest frame S ′ is then
assumed to have the same form of eq. (2.20):

Ω′GW(f ′, n̂′) = Ω′(f ′)Φ′(n̂′) . (4.1)

In order to study correlations among the values of ΩGW along different directions, we find
convenient to split the moving-frame GW density parameter in two parts as (see also [98, 99]
for a similar analysis in the CMB context)

ΩGW(f,n) = ΩNS
GW(f,n) + ΩS

GW(f,n) . (4.2)

In the definition (4.2) the suffix NS indicates what we dub non-stochastic part of the spec-
trum, associated with anisotropies that are kinematically generated from the rest-frame
monopole Ω′(f ′). The contribution with suffix S is the stochastic part of the spectrum,
related with (stochastically-distributed) intrinsic anisotropies: this part experiences modu-
lation and aberration effects due to the kinematic boost.

At first order in a β expansion, the only non-stochastic contribution is a dipole induced
by the monopole, that reads

ΩNS
GW(f, n̂) =

√
4π
3 β (4− nΩ) Ω′(f)Y10(n̂) , (4.3)

7A concrete example is the galactic noise contribution to a SGWB signal in the lower part of the LISA
frequency band, see e.g. [96].
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where Ω′(f) is the quantity appearing in eq. (4.1). Notice that the overall coefficient in
eq. (4.3) depends explicitly on nΩ.

The stochastic part of the spectrum in the frame S can be obtained from eq. (2.22),
which we rewrite in a slightly different form that is more convenient for our present purposes:

ΩS
GW(f, n̂) = (1 + β (4− nΩ)ξ)

[
Ω′GW(f ′, n̂′)− β (∇aξ)∇aΩ′GW(f ′, n̂′)

]
. (4.4)

This expression makes manifest the (overall) effects of modulation, and the effects of aber-
ration in the covariant derivatives of Ω′GW.

With these tools we can compute correlations among stochastic anisotropies. It is
convenient to expand the stochastic contributions to the spectrum in spherical harmonics

ΩS
GW(f, n̂) =

∑
`m

Ω`m(f)Y`m(n̂) , Ω′GW(f,n) =
∑
`m

Ω′`m(f)Y`m(n̂) . (4.5)

Moreover, we also expand in dipolar harmonics the parameter ξ(n̂) of eq. (2.2) and also

β ξ(n̂) =
∑
m

Y1m(n̂)β1m . (4.6)

Plugging these expansions eq. (4.4), after standard manipulations (see also appendix A),
one obtains at linear order in β the following relation among coefficients,

Ω`m = Ω′`m +
∑

`1m1m2

[
3− nΩ −

`1
2 (`1 + 1) + `

2(`+ 1)
]

Ω′`1m1β1m2W
mm1m2
``11 . (4.7)

In writing this formula we introduced the Wigner-like symbol (see appendix A)

Wm1 m2 m3
`1 `2 `3

=
∫
d2nY ∗`1m1Y`2m2Y`3m3 . (4.8)

Since a boost violates statistical isotropy, the correlation functions among the Ω`m of eq. (4.7)
can have a non-diagonal structure. We denote such correlations by a four-index quantity
F `
′m′
`m as

F `
′m′
`m ≡ 〈Ω`mΩ`′m′〉 . (4.9)

We conveniently split (4.9) into a statistically isotropic contribution, and a boost-induced
contribution as

F `
′m′
`m = δ``′δmm′C` + (F `′m′`m )β . (4.10)

The boost-induced part — which violates statistical isotropy — is given by

(F `′m′`m )β = β1 (m−m′) [(3− nΩ) (C` + C`′) + α`′`(C` − C`′)] Wm m′ m−m′
` `′ 1 , (4.11)

where
α`′` ≡

`′

2 (`′ + 1)− `

2(`+ 1) . (4.12)

We notice that the result depends on the spectral tilt nΩ: all the diagonal terms (i.e. ` = `′,
m = m′) of the correlation matrices (F `′m′`m )β are vanishing. Off-diagonal correlators are non-
vanishing only for `′ = `±1, i.e. we have only correlation among `↔ `±1 multipoles. This is
the consequence of the effect explained after eq. (2.26): implementing a spherical-harmonic
expansion of the density parameter, kinematic aberrations introduce contaminations between
different multipoles. This result can be extended beyond linear order in β: at a generic order
nth in the β-perturbation expansion in β (i.e. order βn), only off-diagonal elements separated
at most by n in multipole index are turned on. We plot the correlation (4.11) in figure 4 for
two simple case studies.
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Figure 4. Left: the first off diagonal term of the correlation function (4.11), as function of `. We
choose nΩ = 0 and we test two different scalings of the intrinsic spectrum in eq. (4.11). Right: same
figure for two different values of nΩ and for the astrophysically-motivated scaling of the left panel. In
both panels the normalisation has been chosen for future convenience.

4.2 Fisher forecasts
We now develop Fisher forecasts for measuring the spectral tilt nΩ, exploiting the prop-
erties of boost-induced anisotropies. We assume that the size of nΩ is not too large, so
that the dipole amplitude dominates over the quadrupole in a perturbative expansion of the
non-stochastic term (4.3). Hence we consider only terms linear in boost velocity: this ap-
proximation is well justified as long as β nΩ � 1. The likelihood for the Ω`m is assumed to
be of the standard multivariate Gaussian form:

lnL = −1
2

∑
`m

∑
`′m′

(
Ω∗`m − ΩNS∗

`m

) (
F−1

)`′m′
`m

(
Ω`′m′ − ΩNS

`′m′

)
+ ln det (F )`

′m′

`m

+ const.

(4.13)
We stress that the non-stochastic anisotropies ΩNS

`′m′ induced by the monopole are not in-
herently random. For this reason we treat them as a mean value. The covariance matrix is
given by the two-point correlation function (4.11). To simplify our notation, we introduce
the following matrix form

Fµν ≡ F `
′m′
`m , (4.14)

where the first index corresponds to µ ≡ (`,m), while the second to ν ≡ (`′,m′). Calling δF
the specific contribution of boost-induced anisotropies, we write8

Fµν = δµνCµ + δFµν , (4.15)

The theoretical covariance matrix F−1
µν generally depends on cosmological and astro-

physical parameters λA. The uncertainty associated with these parameters is given by the
Fisher matrix

FAB =
〈
− ∂2 lnL
∂λA∂λB

〉
, (4.16)

which can be written more explicitly as (we use the shortcut notation ∂A ≡ ∂/∂λA)

FAB = 1
2
∑
µνασ

[
(F−1)µν∂AFνσ(F−1)σα∂BFαµ

]
+
∑
µν

∂AΩNS∗
µ (F−1)µν∂BΩNS

ν . (4.17)

8With slight abuse of notation, we denote Cµ ≡ C`, although this quantity does not depend on the
index m.
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We start considering a perfect experiment with no instrumental noise, and we assume that
the boost velocity is the same as the one measured by CMB experiments. We then discuss
in a second step how the instrumental noise can be effectively included in the forecasts.

4.2.1 Uncertainty on the reconstruction of nΩ

We now forecast the precision associated with the measurement of the spectral index param-
eter nΩ controlling the amplitude of the boost-induced anisotropies. We assume that nΩ is
constant and it is the only free parameter to measure: a more realistic analysis would vary
also other model parameters, but our specific goal in this context is to investigate whether
the tilt nΩ is detectable in the most favourable setting.

In this case the Fisher matrix has only one element

FnΩnΩ = σ−2
nΩ =

∑
ν

∂ΩNS∗
ν

∂nΩ
(F−1)νν

∂ΩNS
ν

∂nΩ
δν (1m) + 1

2
∑
µ

Tµ . (4.18)

The first term in this formula is associated with the non stochastic contributions given by
eq. (4.3). We only keep the dipole, being the only contribution linear in β, and this explains
the Kronecker symbol δν (1m). The second term of eq. (4.18) is given by

Tµ ≡
∑
νσρ

δCµν(F−1)νσδCσρ(F−1)ρµ , (4.19)

where with δCµν we denote the part of the correlation function (4.11) proportional to nΩ:

δCµν ≡
∂ δFµν
∂ nΩ

. (4.20)

Notice that the non-stochastic anisotropies ΩNS
µ given in eq. (4.3) do contribute to this for-

mula, as they do depend on nΩ. Since we expect the off-diagonal component to be suppressed
relative to the diagonal one, we write

Fµν =
√
Fµµ

√
Fνν

(
δµν + δFµν√

Fµµ
√
Fνν

)

=
√
Cµ
√
Cν (δµν + εµν) , (4.21)

using the relation Fµµ = Cµ. For the inverse of this quantity we find

(F−1)µν '
δµν
Cµ
− δFµν
CµCν

, (4.22)

which gives for (4.19)
Tµ ≈

1
Cµ

∑
ν

δCµνδCνµ
Cν

+ . . . , (4.23)

where terms of order ∼ (δC)2δF/C3 are neglected.
We now compute the contribution from the µ-dependent term, to understand how the

different terms in the Fisher matrix contribute to the precision with which nΩ can be recon-
structed, i.e. σ−2

nΩ defined in (4.18). Going back to the usual notation (µ) = (`,m)

(
σ−2
nΩ

)
`m

= 1
C`

∑
`′m′

(δC)`′m′`m (δC)`m`′m′
2C`′

+ δ`1
1
C1

(
∂nΩΩNS∗

1m

) (
∂nΩΩNS

1m

)
+O(β3) . (4.24)
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This expression is determined in terms of the multipoles in eq. (4.3), the correlation matrix
in eq. (4.11), and the non-stochastic dipole (4.3).

Without loss of generality, we can choose a system of coordinates with azimuth aligned
with ez, where ez denotes the direction of the boost velocity.9 In such a reference frame
m = m′ = 0. Moreover, the sum in (4.24) can be further simplified recalling that only
multipoles with (`− `′) = ±1 are correlated. We then obtain, using eq. (4.3),

(σ−2
nΩ )` = β2

C`

[
(C` + C`+1)2

2C`+1
(W0 0 0

` `+1 1)2 + (C` + C`−1)2

2C`−1
(W0 0 0

` `−1 1)2
]
, ` > 1 (4.25)

(σ−2
nΩ )1 = β2

C1

[
(C1 + C2)2

2C2
(W0 0 0

1 2 1)2
]

+ 4π
3C1

β2 (Ω′(f)
)2
. (4.26)

This result confirms that, at leading order in β, non-stochastic anisotropies contribute only
to the dipole through the last term in eq. (4.26). Hence, when considering an instrument
with angular resolution `, the corresponding uncertainty on the spectral tilt nΩ is given by

σnΩ =

 ∑̀
`′=1

(
σ−2
nΩ

)
`′

−1/2

. (4.27)

We stress that until now we assumed that instrumental noise is negligible, and we only
considered effects of cosmic variance. The contribution of instrumental noise can be taken
into account replacing C` → C` +N` in the denominator of (4.24), where N` is an estimate
of instrumental noise per multipole for a given detector network, see e.g. [100].

4.2.2 Constraining the velocity β
We now assume that from the study of the monopole, we have a good reconstruction of the
spectral index nΩ in a given frequency band. We ask ourself the questions: can kinematic
anisotropies be used to set constraints on the velocity of our relative motion with respect to
the emission rest frame?

We assume that β is constant and it is the only free parameter to measure: a more
realistic analysis would vary also other model parameters, but our specific goal in this context
is to investigate whether β can be constrained in the most favourable setting.

By repeating steps totally analogous to what done in the previous section, one finds
that the variance associate to β is given by

(σ−2
β )` = [(3− nΩ)(C` + C`+1) + (`+ 1)(C` − C`+1)]2

(W0 0 0
` `+1 1)2

2C`+1C`
+

+ [(3− nΩ)(C` + C`−1)− `(C` − C`−1)]2
(W0 0 0

` `−1 1)2

2C`−1C`
, ` > 1 , (4.28)

(σ−2
nΩ )1 = [(3− nΩ)(C1 + C2) + 2(C1 − C2)]2 (W0 0 0

1 2 1)2

2C2C1
+ 4π

3C1
(4− nΩ)2Ω′(f)2 . (4.29)

9To generalize our analysis, we can consider a rotated coordinate frame. The rotation is described by a
SO(3) matrix R1 characterized by its Euler angles (ϕ1, θ1, 0). In the new coordinate frame the boost direction
is described by the unit vector n1 = R1ez. A direction described by a unit vector n in the old reference frame,
is rotated to R−1n in the new one. The change to the rotated coordinate system does not change the results,
however, and for the Fisher matrix analysis we will continue to use the preferred reference frame in which
only the m = 0 component of the boost potential is non-zero.
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The contribution of instrumental noise can be taken into account replacing C` → C` +N` in
the denominator of (4.28), where N` is an estimate of instrumental noise per multipole for a
given detector network, see e.g. [100].

4.2.3 Signal-to-noise ratio of boost-induced anisotropies
We now compute the cumulative SNR associated with measurements of boost-induced aniso-
tropies. To do so, we introduce a book-keeping parameter A controlling the amplitude of
boost induced anisotropies, and send β → βA. Then by definition

FAA = σ−2
A = (S/N)2 = 1

2
∑
µ

Pµ + ΩNS∗
ν (F−1)ννΩNS

ν δν (1m) . (4.30)

where the index A corresponds to the aforementioned book-keeping parameter relative to
boost-induced quantities. We denote

Pµ ≡
∑
νσρ

δFµν(F−1)νσδFσρ(F−1)ρµ , (4.31)

where δF is defined in (4.15). Eq. (4.31) can be approximated as

Pµ ≈
1
Cµ

∑
ν

δFµνδFνµ
Cν

+ . . . , (4.32)

where we use (4.22) and as above we neglect terms of order ∼ (δF )3/C3 and higher. Then

(S/N)2
`m = 1

C`

∑
`′m′

(δF )`′m′`m (δF )`m`′m′
2C`′

+ δ`1
1
C1

(
∂AΩNS∗

1m

) (
∂AΩNS

1m

)
+O(β3) . (4.33)

In our reference frame, m = m′ = 0. Recalling that only multipoles (` − `′) = ±1
correlate, (4.33) can be written as

(S/N)2
` = β2

2C`C`+1

[
(3−nΩ)2(C` +C`+1)2 + (`+ 1)2(C`−C`+1)2

]
(W0 0 0

` `+1 1)2

+ β2

2C`C`−1

[
(3−nΩ)2(C` +C`−1)2 + `2(C`−C`−1)2

]
(W0 0 0

` `−1 1)2

(S/N)2
1 = β2

2C1C2

[
(3−nΩ)2(C1 +C2)2 + 4(C1−C2)2

]
(W0 0 0

1 2 1 )2 + 4π
3C1

β2(4−nΩ)2 (Ω′(f)
)2
,

(4.34)

where we used eq. (4.3). The cumulative SNR is given by

(
S

N

)Cum

`
=

√√√√∑̀
`′=1

(
S

N

)2

`′
. (4.35)

We stress that up to now we assume to work in a cosmic-variance limited regime. However,
as mentioned above, a contribution of instrumental noise can be included in (4.33) replacing
the denominator with C` → C` + N`, where N` is an estimate of instrumental noise per
multipole for a given detector network, see e.g. [100].
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Figure 5. Instrumental noise per multipole for CE+ET and for two futuristic scenarios where the
network detectors improve their strain sensitivity of a factor 10 and of a factor 50 respectively. We
choose an integration time T = 1 year and f = 63Hz. The blue line is the expected amplitude of a
signal from a population of binary systems of stellar mass black holes, whose monopole in on the edge
of being detected. The signal is time-independent while the noise decreases linearly with observation
time [100]. The size of the non-stochastic dipole is ∼ 10−21.

4.3 Illustration of the forecasting method: a case-study
As a practical illustration of the method, we apply our general results to a specific case study.
We consider an astrophysical extra-galactic background of solar mass compact binaries with
power spectral density with constant slope and nΩ = 2/3. As explained in section 3.2, for
this case we expect the angular power spectrum to scale as the galaxy correlation function
∼ 1/(1 + `), and anisotropies to be suppressed with respect to the isotropic component of
a typical factor ∼ (1–5) × 10−2 depending on the astrophysical model. The astrophysical
dependence of the angular power spectrum on the detail of the underlying astrophysical
model has been studied in [26, 79–82, 87] and different formal aspects of the derivation of
anisotropies and their interpretation are discussed in [58, 74, 83, 84, 87, 90].

We consider the most optimistic scenario in which the amplitude of the monopole is of
the order of present upper bounds in the Hz band, Ω̄GW(f = 25Hz) ∼ 3.4× 10−9 [4] and the
angular power spectrum is suppressed with respect to monopole by a factor 10−3/(`+1). For
a given detector network, the instrumental noise curve per multipole, N`, can be obtained
using results of [100] and the publicly available code schNell.10

For illustrative purposes we consider:
1) a network made of Cosmic Explorer [101] plus Einstein Telescope [102], together with

two futuristic scenarios where

2) both these instruments have an improvement in strain sensitivity of a factor 10 and

3) of a factor 50 with respect to their nominal values.
The instrumental noise per multipole in each of these three scenarios is plotted in figure 5

for a pivot frequency of 63Hz, compared with the typical amplitude of the signal associated
to an extra-galactic background at this frequency (clustering component).

In figure 6 we represent the expected (cumulative) precision for constraining the spectral
density nΩ in each one of the scenarios under study, as a function of multipole `. We show
separately what can be achieved using stochastic anisotropies only (left panel), and adding

10https://github.com/damonge/schNell.
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Figure 6. Variance on nΩ as function of angular resolution. The red line represents the value of the
spectral index nΩ = 2/3. The shaded green, blue and purple areas correspond to the 1σ region for the
realistic scenario CE+ET and for the two futuristic scenarios described in the text (improvement in
strain sensitivity of a factor 10 and 50 respectively). In the left panel we consider only the contribution
of stochastic anisotropies, in the right one we also add the contribution from the non-stochastic dipole
that plays an important role in controlling the error bars. The curves are indistinguishable up to very
high multipoles, where the contribution of the stochastic component starts to be visible. We assume
an integration time T = 10 years.

the non-stochastic dipole (right panel). In the right panel, we notice that the non-stochastic
dipole sets the size of the error bar and stochastic anisotropies help to decrease the error when
adding the contribution of very small angular scales. In this right panel we also see that all
the three scenarios give the same result up to small angular scales (relative uncertainty of
the order of 16%): the reason is that the stochastic dipole is well above the corresponding
instrumental noise level, see figure 5. Hence cosmic variance is the dominant source of
uncertainty in the determination of the dipole.

In figure 7 we represent the expected (cumulative) precision for constraining the velocity
β in each one of the scenarios under study, as a function of multipole `. We show separately
what can be achieved using stochastic anisotropies only (left panel), and adding the non-
stochastic dipole (right panel). Also in this case, we notice that the non-stochastic dipole
sets the size of the error bars. The three scenarios give the same result up to small angular
scales, with a relative uncertainty of the order of 30%.

In figure 8 we show results for the cumulative SNR as a function of multipole, for each
of the three scenarios under study. Also in this case, we plot separately the SNR associated
to stochastic anisotropies alone, and then we add the contribution from the non-stochastic
dipole (dashed lines). Each solid line reaches a plateau in correspondence to the angular
scale at which the size of the signal in figure 5 reduces below the instrumental noise level.
In this case too we notice that the non-stochastic dipole gives the dominant contribution to
the cumulative signal to noise, up to very high multipoles, and that stochastic boost-induced
anisotropies are not detectable alone in the realistic CE+ET scenario.

We stress that this analysis has only the scope of illustrating our forecasting method.
A realistic study of the detectability of the spectral density for an astrophysical background
in the Hz band should include a more realistic noise and signal description, e.g. taking into
account a contribution from shot noise [79, 85, 86, 90], and deviations from the simple power
low behaviour in the spectral index due to the merging phase of the evolution of binaries,
see e.g. [79]. A similar analysis can be done on the cross-correlation between the background
energy density and the distribution of galaxies which, for an astrophysical background, is
expected to have an higher SNR that the auto-correlation — see e.g. [79, 81, 90, 93].
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Figure 7. Variance on β as function of angular resolution. The red line represents the value of the
velocity reconstructed from CMB experiments. The shaded green, blue and purple areas correspond
to the 1σ region for the realistic scenario CE+ET and for the two futuristic scenarios described in
the text (improvement in strain sensitivity of a factor 10 and 50 respectively). In the left panel we
consider only the contribution of stochastic anisotropies, in the right one we also add the contribution
from the non-stochastic dipole that plays an important role in controlling the error bars. The curves
are indistinguishable up to very high multipoles, where the contribution of the stochastic component
starts to be visible. We assume an integration time T = 10 years.
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Figure 8. Cumulative SNR for the three scenarios described in the text (the color code is the same
as for figure 6). With a solid line we represent the cumulative SNR associated to non-stochastic
anisotropies, the dashed line also includes the contribution from the non-stochastic dipole, which
dominates up to very small angular scales (the results for the three models are overlapped). We
assume an integration time T = 10 years.

5 Outlook

In this paper we studied kinematic effects associated with the observer peculiar velocity
on the energy density of the SGWB, paying special attention to their dependence on the
frequency slope of the GW spectrum. We showed that a Doppler boost is responsible for
the modulation and aberration of intrinsic anisotropies, and it additionally generates kine-
matic anisotropies from the rest-frame monopole of the SGWB. We provided analytic and
ready-to-use expressions describing aberration, modulation and monopole-induced Doppler
anisotropies of the SGWB. We showed that these effects are enhanced in the presence of large
tilts of the frequency spectrum, and examined explicit examples where these findings can be
relevant. We point out that a detection of boost-induced anisotropies can provide a comple-
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mentary measurement of the spectral shape. We outlined a method to forecast the precision
with which the spectral shape can be measured by a given detector network. For illustrative
purposes, we applied this method to a simple case study: an extragalactic background with
spectral index nΩ = 2/3 induced by coalescing binaries detectable with ET+CE. In this
simple case we find that the monopole-induced dipole will allow us to constrain the spectral
shape with a precision of about 16%. Interestingly, one can take a different perspective, and
from the study of the kinematic dipole, try to extract information about our peculiar motion
(with respect to the CMB rest frame), assuming that the spectral shape in a given frequency
band is reconstructed via binning methods. We show that a study of kinematic anisotropies
with ET+CE can allow one to constrain our peculiar velocity with respect to the CMB frame
with a precision of 30%.

Our analysis can be further developed in different directions. First, our forecasting
method, which we presented for the case of a power-law frequency dependence for ΩGW,
can be generalized and applied to any frequency profile. It would be interesting to carry
on such generalization to SGWB of cosmological origin whose spectral index can have non-
trivial dependence on frequencies. Moreover, while in section 4 we included only kinematic
corrections at first order in the β-expansion, it would be interesting to extend it at second
order in β, for better clarifying consequences of mixing among different multipoles. At second
order in β, one can constrain additional parameters controlling the properties of the spectrum,
as for example αΩ which can be important for cosmological backgrounds (see e.g. figure 1).

A reconstruction of the spectral shape is a precious tool to distinguish background
components with different origins. Current reconstruction methods require a detection in
multiple frequency bands (binning), via small-band searches, which are more challenging
than the broad band searches currently implemented by the LIGO-Virgo collaboration, in
particular if the signal has a steep spectral shape, with a small frequency bin dominating
the total SNR budget. The method that we present in this work may allow one to extract
information on the spectral shape without the need of multiple band reconstruction.

Finally, SGWB kinematic dipole is a new observable which depends on both the spectral
shape and on the velocity with which we move with respect to the emission frame (tradi-
tionally identified with the CMB rest frame). This new observable provides us with an
independent way of reconstructing our kinematc motion: studying it could potentially shed
light on the existing discrepancy in the value of β reconstructed from CMB and from galaxy
number counts (see e.g. [103] and references therein for a recent critical analysis). We hope
to return to these topics soon.
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A Products of spherical harmonics and the Gaunt coefficient

In this appendix we summarise some properties of integrals over products of three spherical
harmonics, and associated quantities. It is based on appendix H of [98]. The key result is
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that the integral of three spin-weighted spherical harmonics can be written as∫
dΩ s1Y`1m1 s2Y`2m2 s3Y`3m3 =√

(2`1 + 1)(2`2 + 1)(2`3 + 1)
4π

(
`1 `2 `3
−s1 −s2 −s3

)(
`1 `2 `3
m1 m2 m3

)
. (A.1)

The 3− j symbols that appear in this expression satisfy the following properties(
`1 `2 `3
m1 m2 m3

)
=
(
`2 `3 `1
m2 m3 m1

)
=
(
`3 `1 `2
m3 m1 m2

)
(A.2)

= (−)`1+`2+`3

(
`1 `3 `2
m1 m3 m2

)
(A.3)

= (−)`1+`2+`3

(
`1 `2 `3
−m1 −m2 −m3

)
. (A.4)

Specifically, they are identically zero whenever any of the following conditions are violated

m1 +m2 +m3 = 0 , |`i − `j | ≤ `k ≤ `i + `j , {i , j} = {1, 2, 3} . (A.5)

Some important quantities that are used in this paper are defined as

Wm1m2m3
`1`2`3

≡
∫

dΩY ?
`1m1Y`2m2Y`3m3 , (A.6)

This is effectively the Gaunt coefficient (up to the complex conjugation of the first spherical
harmonic which leads to some sign changes). It is given by

Wm1m2m3
`1`2`3

= (−1)m1

(
`1 `2 `3
−m1 m2 m3

)
F`1`2`3 , (A.7)

F``1`2 =

√
(2`+ 1)(2`1 + 1)(2`2 + 2)

4π

(
` `1 `2
0 0 0

)
. (A.8)

Another useful relation is that

Im1m2m3
`1`2`3

= 1
2 [`3(`3 + 1)− `2(`2 + 1)− `1(`1 + 1)]Wm1m2m3

`1`2`3
, (A.9)

where
Im1m2m3
`1`2`3

≡
∫

dΩY ?
`1m1∇

aY`2m2∇aY`3m3 . (A.10)

B On the validity of the β expansion in section 3.1

In this appendix we reconsider the model of section 3.1, to demonstrate the consistency of a
β2 truncation in the expansion as in formulas (2.16)–(2.18). In fact, given that the spectral
tilts are large — see figure 1 — we should be cautious, and check whether contributions
weighted by higher powers of β invalidate or not our formulas. We start from formula (2.12)
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Figure 9. Kinematic contributions to the monopole (M(f), left) dipole (D(f), middle), and
quadrupole (Q(f), right) anisotropies, computed using formulas expanded up to order β2 (contin-
uous lines), together with the difference between their values computed up to order β2 and up to
order β4 (dashed lines). We use the same values of parameters of figure 2.

and expand up fourth order in a β expansion. We obtain the following generalization of
eqs. (2.16)–(2.18):

M(f) = β2

6 (8 + nΩ (nΩ − 6) + αΩ)

+β4

24
(
2n3

Ω − 23n2
Ω − 23αΩ + 94nΩ + 6αΩ nΩ + 2γΩ − 136

)
, (B.1)

D(f) = β (4− nΩ) + β3
(

4nΩ − 8− n2
Ω
2 −

αΩ
2

)
, (B.2)

Q(f) = β2
(

10− 9nΩ
2 + n2

Ω
2 + αΩ

2

)

+β4

4
(
n3

Ω − 13n2
Ω − 13αΩ + 56nΩ + 3αΩ nΩ + γΩ − 80

)
, (B.3)

indicating respectively the monopole, dipole, quadrupole Doppler contributions expanded up
to β4. We define γΩ ≡ dαΩ/d ln f . The monopole and quadrupole are sensitive to the fourth
power of β, the dipole to the third power only.

In figure 9 we represent the frequency dependence of the kinematic anisotropies, com-
puted using formulas expanded up to order β2 in eqs. (2.16)–(2.18), together with the differ-
ence between their values computed up to order β2 and up to order β4 using eqs. (B.1)–(B.3).
The difference is almost always orders of magnitude smaller than the kinematic anisotropies
computed at order β2, except at the frequency f/f? = 2/

√
3. However, as explained in

footnote 4, for that precise frequency resonant effects are expected to be smoothed out, at
least in realistic situations. Hence, we conclude that the expansions used for making the plot
in figure 2 are sufficient for the values of the parameters chosen, and the results of section 3.1
are reliable.
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