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Abstract

We present GIGANTES, the most extensive and realistic void catalog suite ever released—containing over 1 billion
cosmic voids covering a volume larger than the observable universe, more than 20 TB of data, and created by
running the void finder VIDE on QUIJOTE’s halo simulations. The GIGANTES suite, spanning thousands of
cosmological models, opens up the study of voids, answering compelling questions: Do voids carry unique
cosmological information? How is this information correlated with galaxy information? Leveraging the large
number of voids in the GIGANTES suite, our Fisher constraints demonstrate voids contain additional information,
critically tightening constraints on cosmological parameters. We use traditional void summary statistics (void size
function, void density profile) and the void autocorrelation function, which independently yields an error of
0.13 eV on∑mν for a 1 h

−3 Gpc3 simulation, without cosmic microwave background priors. Combining halos and
voids we forecast an error of 0.09 eV from the same volume, representing a gain of 60% compared to halos alone.
Extrapolating to next generation multi-Gpc3 surveys such as the Dark Energy Spectroscopic Instrument, Euclid, the
Spectro-Photometer for the History of the Universe and Ices Explorer, and the Roman Space Telescope, we expect
voids should yield an independent determination of neutrino mass. Crucially, GIGANTES is the first void catalog
suite expressly built for intensive machine-learning exploration. We illustrate this by training a neural network to
perform likelihood-free inference on the void size function, giving a ∼20% constraint on Ωm. Cosmology problems
provide an impetus to develop novel deep-learning techniques. With GIGANTES, machine learning gains an
impressive data set, offering unique problems that will stimulate new techniques.

Unified Astronomy Thesaurus concepts: N-body simulations (1083); Cosmology (343); Large-scale structure of the
universe (902); Voids (1779); Cosmic web (330); Computational astronomy (293); Cosmological parameters
(339); Cosmological parameters from large-scale structure (340); Cosmological neutrinos (338); Astrostatis-
tics (1882)

1. Introduction

Cosmic voids—the large underdense regions infilling the
cosmic web (Gregory & Thompson 1978; Jõeveer et al. 1978;
Peebles 1980; Kirshner et al. 1981; van de Weygaert & van
Kampen 1993; Bond et al. 1996)—have gained interest in the
last 10 years as a robust tool for extracting cosmological
information (see Pisani et al. 2019, and references therein).
Until a few decades ago survey volumes were too small to
provide enough statistics for voids, as voids are among the
largest objects in the universe. Large-scale surveys are now
ushering in the era of big data in astronomy and astrophysics,
which is essential for unveiling the power of cosmic voids.
With such large amounts of data and access to previously
unresolved phenomena, machine learning is becoming a
prudent tool in astrophysics (see, e.g., Charnock et al. 2018;
Baron 2019; Chalapathy & Chawla 2019; He et al. 2019;
Ntampaka et al. 2019; Villaescusa-Navarro et al. 2020a, and
references therein).

Many traditional techniques, such as multilayer perceptrons
(MLPs) and convolutional neural networks (CNNs), are not
interpretable, making discovering new physics a challenge, and
can obscure information. The inherently graphical nature of the
universe has prompted substantial recent development in
interpretable deep-learning methods with graph neural net-
works (GNNs; Cranmer et al. 2020). At the same time,
symmetries are embedded in physical laws that govern the
evolution of the universe. Cosmic voids offer more symmetries
that can improve interpretable machine-learning techniques.
The data-rich field of astrophysics, with its large surveys, offers
unique problems fundamentally characterized by symmetries,
interpretability, and the need for accurate error estimates,
providing an impetus for the development of new machine-
learning techniques to conquer these questions.
With the advent of large modern surveys, we are entering the

golden age of cosmic voids. The Baryon Oscillation Spectro-
scopic Survey (BOSS; Alam et al. 2017) and eBOSS (Dawson
et al. 2016) have already provided several thousand voids
(Aubert et al. 2022; Hamaus et al. 2020). This number will
dramatically increase in the coming years thanks to data from
the Dark Energy Spectroscopic Instrument (DESI) experiment
(DESI Collaboration et al. 2016), the Subaru survey with the
Prime Focus Spectrograph (PFS; Tamura et al. 2016), the
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Spectro-Photometer for the History of the Universe and Ices
Explorer (SPHEREx) mission (Doré et al. 2018), the Nancy
Grace Roman Space telescope (Spergel et al. 2015), the Euclid
mission (Laureijs et al. 2011), and the Legacy Survey of Space
and Time (LSST) survey from the Vera Rubin Observatory
(The LSST Dark Energy Science Collaboration et al. 2018),
each expected to detect up to an order of 105 or more voids.
Large-scale surveys provide enough volume to measure voids
over large areas of the sky while simultaneously observing low-
mass galaxies. Beyond increasing the statistical power of
cosmic voids, we can now intensely study their properties, such
as by mapping their interiors in detail.

Devoid of matter, comic voids are inherently extremely
sensitive to the properties of diffuse components; they are a
novel tool for constraining neutrino masses (Villaescusa-
Navarro et al. 2013; Massara et al. 2015; Banerjee &
Dalal 2016; Sahlén 2019; Kreisch et al. 2019; Schuster et al.
2019; Zhang et al. 2020; Bayer et al. 2021b), modified gravity
(Clampitt et al. 2013; Barreira et al. 2015; Cai et al. 2015;
Zivick et al. 2015; Achitouv 2016; Falck et al. 2018;
Sahlén 2019; Achitouv 2019; Perico et al. 2019; Alam et al.
2021; Contarini et al. 2021), and dark energy (Bos et al. 2012;
Spolyar et al. 2013; Pisani et al. 2015; Pollina et al. 2016;
Verza et al. 2019). The current understanding of our universe
sets the observed accelerated expansion of the universe as one
of the most puzzling mysteries for modern cosmology. The
nature of dark energy, the component constituting ∼68% of the
universe and postulated to explain such accelerated expansion
(Planck Collaboration et al. 2020), is still poorly understood.
As matter is missing in voids by definition, voids are regions in
the universe that become dark energy dominated the earliest,
thus providing a window toward unraveling this dark mystery
(Lee & Park 2009; Lavaux & Wandelt 2012). The spherical
property of void stacks in real space provides standard spheres
for the Alcock–Paczyński test (Alcock & Paczynski 1979;
Ryden 1995; Ryden & Melott 1996; Biswas et al. 2010;
Lavaux & Wandelt 2012). Using stacked voids, it is also
possible to model the redshift-space distortion (RSD) pattern
around voids. The use of the void-galaxy cross-correlation
function for the Alcock-Paczyński test and RSDs is an area of
intense data-analysis-based activity in recent years (Lavaux &
Wandelt 2010). Voids have provided results competitive to
those from galaxies, and as voids do not suffer from
nonlinearities to the same extent as galaxies, there are
indications that modeling could be easier for voids than for
galaxies (e.g., Sutter et al. 2012; Paz et al. 2013; Sutter et al.
2015; Cai et al. 2016; Hamaus et al. 2016; Achitouv et al.
2017; Cai et al. 2017; Hamaus et al. 2017; Hawken et al. 2017;
Correa et al. 2019; Nadathur et al. 2019; Aubert et al. 2022;
Hamaus et al. 2020; Hawken et al. 2020; Nadathur et al. 2020;
Paillas et al. 2021). Aside from voids’ use in cosmology, the
study of galaxy properties in voids is also an active field of
research (Hoyle et al. 2005; Patiri et al. 2006; Kreckel et al.
2012; Ricciardelli et al. 2014; Habouzit et al. 2020; Panchal
et al. 2020).

Despite the wide use of voids in galaxy clustering analyses
of survey data, simulation-based analyses of void capabilities
with an extremely large set of simulations have only been
performed using dark matter with neutrino particles or dark
matter particles alone as tracers to find voids, and with a
spherical void finder (Bayer et al. 2021b). To provide synergy
with data analysis, a thorough investigation of voids extracted

from the halo field and with a void finder preserving void shape
and cosmic-web information is imperative.
Relying on the large set of halo catalogs from the

QUIJOTE simulations (Villaescusa-Navarro et al. 2020b) and
the shape-preserving void finder VIDE (Sutter et al. 2015), we
build the most extensive and realistic data set of void catalogs
ever released: the GIGANTES8 void catalogs suite, containing
over 1 billion cosmic voids. The suite includes 15,000 VIDE
fiducial cosmology void catalogs, as well as over 9,000
catalogs in nonfiducial cosmologies, spanning various values of
the following cosmological parameters {Ωm, Ωb, h, ns, σ8, Mν,
w} and fully leveraging the QUIJOTE simulation suite, which
covers redshifts z= 0.0, 0.5, 1.0, and 2 in the real and redshift
space. The void finding relies on the popular public Void
IDentification and Examination (VIDE; Sutter et al. 2015)
toolkit, based on the ZOBOV void finder (Neyrinck 2008).
VIDE is arguably the most used void finder, as testified by its
use in a plethora of papers performing both simulation-based
theoretical modeling and data analysis from modern surveys
(e.g., Chan et al. 2014; Hamaus et al. 2014a, 2014b; Pisani
et al. 2014; Sutter et al. 2014; Pisani et al. 2015; Sutter et al.
2015; Pollina et al. 2017; Cousinou et al. 2019; Fang et al.
2019; Kreisch et al. 2019; Verza et al. 2019; Vielzeuf et al.
2021; Jeffrey et al. 2021). Figure 2 provides a visualization of
VIDE voids from GIGANTES. We provide further details on
the QUIJOTE simulations and the VIDE void finder in
Appendix A.
Voids provide a set of summary statistics uniquely sensitive to

the properties of the cosmological model. However, voids have
been hotly debated as to whether or not they provide different
information than the halo distribution they are found within. The
main void summary statistics are the void–halo cross-correlation
function ξvh, equivalent to the void density profile, the void size
function nv, a histogram of void sizes, and the void autocorrelation
function ξvv. With our suite of over 1 billion voids, we show in
Figure 1 that void summary statistics carry novel and com-
plementary information to halos, evidenced by the different
degeneracies in the cosmological parameters for a volume of 1
h−3 Gpc3 (see Section 3 for details).
Due to its unprecedented size and exploration of the power of

different void summary statistics, including well-known summary
statistics such as ξvh and nv, but also recent summary statistics
such as ξvv, and its power in accurately estimating covariance
matrices, the GIGANTES voids data set constitutes a powerful
benchmark for machine-learning applications. Its massive number
of voids coupled with a large number of realizations permits the
extraction of a strong void signal, information that is usually
obscured by noise due to a low number of voids. As such, the
GIGANTES suite opens the realm of machine-learning exploration
for voids, a new avenue for these objects. With such a wealth of
data for voids, the GIGANTES suite provides a test bed not only
for developing new cosmological theories, but also for developing
novel machine-learning techniques. Given the nature of voids,
they can be analyzed with traditional techniques, such as CNNs
(when projected into 2D or 3D grids) albeit with the caveats
mentioned earlier, or GNNs (when exploiting the full sparsity of
the data). Their symmetries, need for interpretation, and need for
uncertainty estimation, however, pose questions ideally suited for
the development of new machine-learning techniques.

8 A reference to the giants in Don Quijoteʼs world (Miguel de
Cervantes 1605, 1615).
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This paper is organized as follows, and all results are presented
for a volume of 1 h−3 Gpc3. In Section 2 we present the
GIGANTES data set as well as the standard three void summary
statistics. In Section 3 we address the question on whether voids
carry additional information on cosmological parameters with a
Fisher matrix forecast in real space at z= 0 exploring the
constraining power of voids obtained from the halo field with

respect to traditional probes. We leave for future work an analysis
in the redshift space. In Section 4 we study where the information
comes from, with a computation of the correlation between and
among void and halo summary statistics, a Fisher forecast in real
space exploring the combined power of voids and halos, and a
comparison of the power of void shape in constraints to a
simplistic spherical void finder. This paper focuses on illuminating

Figure 1. Constraints on the sum of neutrino masses Mν, Ωm, σ8, and h from the halo mass function (HMF), void size function (VSF), halo autocorrelation function
(ξhh), void autocorrelation function (ξvv), and combined statistics for a volume of 1 h−3 Gpc3. Void summary statistics provide strong constraints and orthogonal
information to halo summary statistics.

Figure 2. Several randomly selected voids are projected on the halo density field in orange, illustrating a range of sizes and shapes. The background shows the halo
density field over a region of h375 750 250 Mpc1 3( )´ ´ - . Void shapes are approximated by treating Voronoi cells as circles and projecting them on the halo
density field. Despite the presence of projection effects, this 2D representation of voids in the slice illustrates the complex substructure of voids and the rich variety in
their shapes.
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the full information contained in these probes rather than
exploring models for such probes. In Section 5 we show a
machine-learning application by training a neural network to
perform likelihood-free inference from the void size function. We
draw the main conclusions of this work in Section 6.

2. GIGANTES

This section describes the void catalogs and the primary void
summary statistics.

2.1. GIGANTES Catalogs

We build VIDE void catalogs from all the QUIJOTE
simulations at different redshifts. A summary of all catalogs
available is shown in Table 1. GIGANTES includes catalogs for
the fiducial cosmology, catalogs varying single parameters for
Fisher matrix calculations, and catalogs sampling multiple
parameters at a time from a latin hypercube. We provide catalogs
at different redshifts (0.0, 0.5, 1.0, and 2.0) as well as for the real
space and redshift space. Overall, the GIGANTES suite provides
more than 1 billion voids over thousands of different cosmological
models. The GIGANTES data set will be publicly released upon
acceptance of the paper.

Each void catalog provides a set of files as described in
Sutter et al. (2015), giving for each void a set of properties,
including:

1. the void center position (R.A., decl., z for observations; x,
y, z for simulations),

2. the void radius (see Appendix A),
3. the void volume,
4. the void density contrast (as defined by ZOBOV and thus

used by VIDE, given by the ratio of the minimum density
along the ridge of the void versus the minimum density in
the void),

5. the number of particles of each void (halos in our case),
6. the central density (density in a sphere of 0.25Rv; see

Sutter et al. 2015),
7. the void ellipticity,
8. and the void hierarchy.

As VIDE voids are found taking into account the hierarchical
feature of the cosmic web, the void finder outputs all voids
(parents) and their subvoids (children): for each void, the
catalog includes the ID of the void parent (if applicable), the
tree level, and the number of children.

2.2. Main Void Summary Statistics

The void finder provides void centers and radii, which in
themselves yield two different summary statistics to be used in
cosmological data analyses: the void autocorrelation function,

and the void size function. Combining void positions with halo
positions defines a third summary statistic: the void–halo cross-
correlation function.

2.2.1. The Void–Halo Cross-correlation Function ξvh

By knowing the position of void centers and halos, it is
possible to compute the probability of finding a halo at a certain
distance from the void center, known as the void–halo cross-
correlation function, ξvh, or the void density profile found in the
halo field. This probability will be low in the center of the void
(it is not very likely to find halos, or galaxies, close to the void
center), and high at the overdense rim enclosing the void,
which is coincident with the average void radius. It is usually
computed considering a stack of many voids. While the
estimation of the void–halo cross-correlation function from
data usually relies on estimators, it can be shown that ξvh is
equivalent to the void density profile (see Equations (2.7) and
(2.8) of Hamaus et al. 2015):

r
r

, 1vh
vh h

h

( )
( ) ¯

¯
( )x

r r
r

=
-

where r is the distance between the halos and the void center;
ρvh is density of halos in shells around the void center; and hr̄
is the average tracer density of the data set.
The void density profile is sensitive to cosmological

parameters in both the real space and redshift space. The peak
height and location of the 1D real space profile, denoting the
void wall’s rim and average void radius, responds to changes in
cosmological parameters. In a homogeneous and isotropic
universe, void density profiles do not possess a preferred
direction. Thus, in real space, the 2D density profile will be
spherically symmetric. In the redshift space, however, the
spherical stacked 2D void profile will be distorted due to the
Alcock–Paczyński effect, which introduces cosmology-depen-
dent geometrical distortions along the line of sight (Alcock &
Paczynski 1979). The 2D redshift space profile is also distorted
due to RSDs. The magnitude of these effects depend on the
cosmological model, so the observed 2D void density profile
can be used to constrain cosmology.
The void density profile has been used to successfully measure

the Alcock–Paczyński effect by using voids as standard spheres
(e.g., Sutter et al. 2012) and simultaneously modeling RSDs (e.g.,
Hamaus et al. 2016, 2020). The profile provides the most stringent
constraint on the universe’s expansion history at z= 0.5 to date
from voids: a calibration-free measurement from voids only, with
a 16.8% precision level measurement of the growth rate of
structure and an independent measurement of the matter content
of the universe yielding Ωm= 0.312± 0.020 (Hamaus et al.
2020).

Table 1
Summary of The GIGANTES void Catalogs

Cosmology Redshifts Realizations (real space) Realizations (redshift space) Total void #

Fiducial [0.0, 0.5, 1.0, 2.0] 15,000 (per z-bin) 15,000(per z-bin) ∼400,000,000

± for Fisher [0.0, 0.5, 1.0, 2.0] 500 × 9 (per z-bin & ± parameter) 500 × 9 (per z-bin & ± parameter) ∼300,000,000

Latin Hypercube [0.0, 0.5, 1.0, 2.0] 2000(per z-bin & resolution) 2000(per z-bin & resolution) ∼350,000,000

Note. The fiducial cosmology used in the simulations is: Ωm = 0.3175, Ωb = 0.049, h = 0.6711, ns = 0.9624, σ8 = 0.834, Mν = 0.0 eV, w = −1. Void catalogs for
Fisher analyses are derived from simulations with a slight variation in each parameter.
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Figure 3 shows two density profiles measured from the
GIGANTES void catalogs for voids with radii 40–49 h−1 Mpc
and 49–112 h−1 Mpc at z= 0. The distance is normalized by
the average void radius for the denoted radius bin. Larger voids
have a less pronounced void wall rim than smaller voids due to
the fact that larger voids have evolved more than smaller voids
at a fixed redshift and because we find voids in the halo field
rather than in the dark matter field. Figure 4 shows profiles
from two different redshift bins (z= 0 and z= 1) for voids
50–70 h−1 Mpc in radius.9 For the same radius bin, voids at
present are more evolved than voids at z= 1 as they are, on
average, older. Thus, voids at z= 0 are more evolved and so
have a lower void wall rim than voids at z= 1.

2.2.2. The Void Size Function

The void size function measures the number of voids as a
function of their radius, also known as the void abundance, and
is particularly sensitive to cosmological parameters, such as the
dark energy equation of state (Pisani et al. 2015; Verza et al.
2019), modified gravity (Contarini et al. 2021), and massive
neutrinos (Sahlén 2019; Kreisch et al. 2019). The theoretical
modeling of the void size function is an area of intense activity
(e.g., Sheth & van de Weygaert 2004; Jennings et al. 2013;
Pisani et al. 2015; Sahlén & Silk 2018; Contarini et al. 2019;
Verza et al. 2019) and will provide stringent constraints when
applied to the next generation of surveys (e.g., Pisani et al.
2015; Doré et al. 2018). The main theoretical model to be
considered for the abundance is the Sheth and van de Weygaert
model (Sheth & van de Weygaert 2004), an excursion-set-
based prediction of void numbers of different sizes, later
extended to consider the volume conservation of voids, as
small voids merge to form larger voids (Jennings et al. 2013).
This model has been shown to reproduce simulation results in
different cosmologies where either the dark energy equation of
state (Pisani et al. 2015; Verza et al. 2019) is varied or modified
gravity is considered (Contarini et al. 2021). As the model
assumes dark matter voids and spherical symmetry, current
work focuses on improving the match of predictions with

measurements of observed voids in mocks (e.g., by including
tracer bias; see Pollina et al. 2019; Contarini et al. 2019, 2021).
In this work we do not attempt to model the measured void

abundance with theoretical models, but we instead choose the
approach of relying on the measured values of void numbers
from the GIGANTES data set to assess its constraining power
for cosmology. In Figure 1 we show a Fisher forecast over a
volume of 1 h−3 Gpc3 for constraints on a few cosmological
parameters from the void size function for radii 6–60 h−1 Mpc.
The void size function puts superior constraints on ∑mν, for
example, compared to the halo mass function (errors of 0.21 eV
and 1.56 eV, respectively), and is competitive with the halo
autocorrelation function (error of 0.22 eV). See Appendices B
and C for forecasted constraints on additional cosmological
parameters. In Appendix B we also illustrate the stability of the
Fisher uncertainties by varying the number of simulations used
to calculate the uncertainties and illustrating that the change in
the value of the uncertainties is less than the change in the
number of simulations.
Figure 5 shows the abundance of voids from the GIGANTES

data set at z= 0 and at z= 1. As described below in Section 2.2.3,
voids are larger in the latter case. We show the void size function
for radii ranging from 15 to 100 h−1Mpc. The median void radius
is 35 h−1Mpc for z= 0. Voids of lower size are less abundant due
to the low simulation resolution at small scales (the mean tracer
separation is∼13 h−1Mpc at z= 0 and∼17 h−1Mpc at z= 1).
Nevertheless, small voids improve cosmological constraints,
pointing to the constraining power of the void hierarchy, which
will be further explored in future work. The large volume and,
thus, strong void statistics in the GIGANTES suite promote a high
signal-to-noise ratio for the void size function’s response to
cosmological parameters.

2.2.3. The Void Autocorrelation Function ξvv

We can compute the probability of finding a void center at a
given distance from a randomly selected void in our void
catalog, yielding the void autocorrelation function. As the
center of a void is defined as the volume-weighted barycenter
of the Voronoi cells composing the void, it carries information
about the whole structure of the void. This allows us to uncover
a new sensitivity of the large-scale structure of the universe to
cosmological parameters (see Sections 3, 4, and Section 5). The

Figure 3. Void density profiles for two different radii bins in h−1 Mpc at z = 0.
The void wall rim occurs at the peak of the density profile, which is also
coincident with the average void radius.

Figure 4. Void density profiles for z = 0 and z = 1 with void radii spanning
50–70 h−1 Mpc for each.

9 Errors are propagated for the average correlation function based on the
individual errors estimated by VIDE, which are based on scatter in the bin
average.
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void autocorrelation function requires a great number of voids
to overcome shot noise, and it has so far been measured from
data only at low redshift, over a volume of h0.6 Gpc1 3( )-

(Clampitt et al. 2016), and considering relatively small
effective void radii (<30 h−1 Mpc).

Given its limited application to data, the void autocorrelation
function has not yet been used to derive constraints on parameters
of the cosmological model. It has been investigated in simulations
(Chan et al. 2014; Hamaus et al. 2014) and shows a strong
sensitivity to massive neutrinos (Kreisch et al. 2019). We further
illustrate this sensitivity to neutrinos for a volume of 1 h−3 Gpc3 in
Figure 1, in which the void autocorrelation function puts the
strongest forecasted constraints on ∑mν of 0.13 eV. One reason
for ξvvʼs strong constraints on the parameters could be that it
contains a strong, clear feature at the void exclusion scale. Such
strong features are useful for measuring distances, like baryon
acoustic oscillations, probing the background cosmology (see also
Hamaus et al. 2014). Further, void bias can be large (see, e.g.,
Chan et al. 2014; Schuster et al. 2019), and this boosts the large-
scale correlation function amplitude, which can provide a better
signal-to-noise ratio to measure the large-scale power spectrum,
which depends on σ8 and ns. See Appendices B and C for further
forecasted constraints on cosmological parameters.

With the advent of upcoming surveys, such as the DESI
experiment (DESI Collaboration et al. 2016), the Roman Space
Telescope (Spergel et al. 2015), the Euclid ESA satellite
(Laureijs et al. 2011), the SPHEREx mission (Doré et al. 2018),
the Rubin Observatory (The LSST Dark Energy Science
Collaboration et al. 2018), and the PFS Subaru survey (Tamura
et al. 2016), hundreds of thousands of voids will be observed
(Pisani et al. 2019). The void autocorrelation function will then
reach the realm of observable quantities that can be measured
from data with high significance, and used to constrain
cosmological parameters. Additionally, in the framework of
exploiting statistics such as the void autocorrelation function
and the void size function, it is important to consider that void
finding may suffer from selection effects; in particular in
imaging surveys these effects are expected to have a stronger
impact due to photometric redshift errors distorting the line-of-
sight direction (Sánchez et al. 2017). The GIGANTES set of
void catalogs could serve as a mock data set to characterize and
quantify such effects.

We show the void autocorrelation function measured from the
GIGANTES data set in Figure 6 at z= 0 and z= 1. The void
autocorrelation function has a maximum at twice the mean void
radius of the sample. This corresponds to the void exclusion scale
(Hamaus et al. 2014a), which is termed as such because, on
average, void walls touch at twice the mean void radius as voids
cannot overlap. This makes it likely to have two void centers at a
distance corresponding to twice the mean void radius of the
sample. Voids on average cannot be separated by smaller scales
because then they will overlap. However, there is a distribution of
void sizes (i.e., the void size function), and smaller voids are
allowed to be separated by equivalently smaller scales. Thus, the
probability of two voids being separated smoothly decreases as
scales become smaller, as there are fewer small voids.
At higher redshift, the observed average radius of GIGANTES

voids is larger. The universe is more dominated by dark energy at
z= 0 than it was at z= 1. Large, isolated voids in the dark matter
field mostly expand in their lifetime. Large voids in the dark
matter field at z= 1 most likely continue to expand through z= 0.
Here, however, we consider voids found in the halo field. The
number density of halos of a lower fixed mass of, e.g., 1013Me, is
higher at present. This high number density of small halos results
in, on average, more small voids at present than at z= 1. This is
also why the peak of the void density profile at z= 0 is shallower
than at z= 1, whereas in dark matter simulations the opposite
occurs (Hamaus et al. 2014b). Thus, the average void size is larger
at z= 1 in the GIGANTES void catalogs suite. We also note that
at z= 1 there are less voids, so the ξvv is noisier. The theoretical
modeling of the void autocorrelation function is an area that will
deserve further attention in coming years, given its promising
constraining power (see Section 3).

3. Do Voids Carry Additional Information? Yes

The question of whether voids, defined by relying on the
halo (or galaxy) distribution, carry additional cosmological
information with respect to traditional tools based on the halo
(or galaxy) distribution, such as the two-point correlation
function or the halo mass function, has been a debated topic.
From a theoretical perspective, there have been indications to

believe voids contain higher-order information. As extended
3D objects, voids must be defined by at least four nonplanar
halos. The fact that voids are defined by many halos could hint

Figure 5. Void size function, or void abundance, from the GIGANTES data set
for both z = 0 and z = 1. The peak of the abundance corresponds to the median
void radius.

Figure 6. Void autocorrelation function ξvv from GIGANTES voids, for both
z = 0 and z = 1. The void exclusion scale is coincident with the peak of the
void autocorrelation function at R2 V˜~ , where RV˜ is the median void radius.
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to the possibility of accessing higher-order information, but this
is not in principle guaranteed: it is possible to find extended 3D
objects, and thus voids, in a Gaussian random field (or a
Poisson distribution of tracers; see Cousinou et al. 2019).
Nevertheless, the universe at present is not a Gaussian random
field, and certain summary statistics associated to voids, like
the void size function, have been expected to contain
information beyond the two-point correlation function. As
one-point functions, the amplitude and shape are expected to
depend on all n-point functions. The probability of a random
volume being a void can be written in terms of n-point
correlations (Fry 1986; Fry & Colombi 2013):
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where N̄ is the mean tracer (i.e., halo or galaxy) count. Further,
we are using voids found in the halo field, which already
probes higher k. Another possible explanation for why voids
can capture nonlinear information is that an individual void is
built from halos separated by distances approximately less than
or equal to its diameter, highlighting scales that are quasi-linear
and approaching nonlinear.

This paper has the tools necessary to properly investigate this
question, relying on a comprehensive Fisher analysis. The
Fisher Matrix is given by
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The error on the parameter θi (marginalized over the other
parameters), is:
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The derivatives and covariance matrices are computed using
the simulations and GIGANTES void catalogs (see Section 4.1
in Villaescusa-Navarro et al. 2020b for more detailed
information on how the Fisher analysis is performed).

We investigate the power of the void statistics mentioned in
Section 2.2 with respect to two traditional statistics defined
from the halo field: the halo mass function and the halo
autocorrelation function. The halo mass function measures the
abundance of halos of a given mass, while the halo
autocorrelation function gives the probability that, taken a
random halo, there is another halo at a distance r from the
first halo.

Figure 1 shows constraints from different void summary
statistics, as well as for the halo mass function and the halo
autocorrelation function, in the real space over a volume of
1 h−3 Gpc3 for selected parameters: the sum of neutrino masses
∑mν, the matter content of the universe Ωm, the reduced
Hubble constant h, and the amplitude of linear density
fluctuations inside spheres of radius 8 h−1 Mpc σ8. Bayer
et al. (2021b) analyzed the power of voids found in the dark
matter distribution, but here we use the realistic set of
GIGANTES void catalogs drawn from the halo distribution to
show that voids observed by galaxy surveys hold the power to

strongly reduce the available parameter space for cosmological
parameters.
From this figure we clearly see that the void size function

constraints have a very different orientation with respect to
constraints from the halo mass function and the halo
autocorrelation function. The void autocorrelation function
provides even stronger constraining power as well as access to
unique information, as evidenced from its orientation with
respect to the other three summary statistics. The void size
function, in particular, is almost fully orthogonal to the halo
mass function, illustrating it provides access to information
beyond that accessible from the halo statistics. Further, the
orientation of the void and halo autocorrelations differ, and for
some parameter planes, such as the σ8− h plane, the halo mass
function, void size function, halo autocorrelation function, and
void autocorrelation function are almost all in different
orientations. We forecast a gain in ∑mν for a 1 h−3 Gpc3

simulation of 60% combining halos and voids compared to the
halo autocorrelation function and of 94% compared to the halo
mass function.
The combination of all the mentioned summary statistics

considerably tightens final constraints, demonstrating that voids
carry complementary information to that of halos. See
Appendix C for the constraining power for other parameters.

4. Where The Information Comes From

Aside from showing that voids provide additional informa-
tion, the large GIGANTES data set allows us to estimate how
correlated the different summary statistics are and where the
information on cosmological parameters comes from. The
GIGANTES data set contains void catalogs similar to those
expected from future surveys such as PFS, as they have a
similar number density to the QUIJOTE simulations, although
different halo biases. Upcoming surveys such as Euclid and the
Roman Space Telescope will have a higher number density
than the QUIJOTE simulations, and so are expected to provide
even better constraints from voids than what is illustrated
here. See Appendix A for details on comparing the QUIJOTE
simulations to upcoming surveys.

4.1. Summary Statistic Correlation

An important point to address is how the different void
statistics are correlated, and if information from different bins is
correlated. In Figure 7 we show the correlation matrix between
and within the halo mass function (first 15 bins), the void size
function (following 18 bins), the void autocorrelation function
(following 61 bins), the halo autocorrelation function (follow-
ing 61 bins), and the void–halo cross-correlation function (last
61 bins). We utilize the 15,000 fiducial simulations at z= 0 and
compute the standard Pearson correlation coefficient for the
different summary statistics:

x y
x y

,
Cov ,

. 6
x y

( ) ( ) ( )r
s s

=

The correlations are computed for a volume of 1 h−3 Gpc3 for
scales utilized in the Fisher forecast, namely, 15–200 h−1Mpc in
log space for the correlation functions and radii 6–60 h−1Mpc for
the void size function. Bins for the HMF are used from Bayer et al.
(2021b). This, however, does not make a statement on whether or
not the parameter constraints are independent, as 0 correlation does
not imply parameter independence. In Appendix B we also
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illustrate the stability of the covariance by varying the number of
simulations used to calculate the covariance and illustrating that the
change in the value of the uncertainties is less than the change in
the number of simulations.

The void size function and the halo mass function each have
relatively uncorrelated bins. A few bins at small distances
(below the median radius of 35 h−1 Mpc) in the void
autocorrelation function are correlated, indicating some
coupling at those scales, while larger scales are decoupled.
The halo autocorrelation function is more strongly correlated
over all scales, while the void–halo correlation function shows
a slightly higher correlation at low radii (that is, below the
average void radius) than the void autocorrelation function. We
note that scales roughly below 20 h−1 Mpc in the correlation
matrix show some scatter. This may be physical due to
QUIJOTE being well resolved below such scales and the
covariance being stable (see Appendix B), but in the interest of
transparency, we compute the Fisher uncertainties for all ξ for
only scales 20–200 h−1 Mpc in Appendix B and Table 14.

Most changes in error are near 10%, although there are a few
that exceed this. Fisher forecasts are idealized, however, and so
should be trusted up to the 10% level as a rule of thumb.
The void size function and the halo mass function are

uncorrelated with each other, as highlighted by the perpend-
icular Fisher contours already, confirming that the two probes
are strongly complementary. By inspecting the correlation
between the void size function and void autocorrelation
function, as well as the void size function and the void–halo
cross correlation, we see that large voids tend to be slightly
anticorrelated at small scales, while small voids tend to be
correlated at small scales. We can also see that large voids tend
to be anticorrelated with halos that are close to each other, as
expected. Viewing the correlation between the void autocorre-
lation function and the void–halo cross-correlation function, we
see that at scales larger than the void exclusion scale and larger
than the void wall rim, respectively, the two functions are
somewhat correlated. This is because each follows the matter
field at such large scales. We also see a parallel increase in

Figure 7. Correlation for the halo mass function (first 15 bins), the void size function (following 18 bins), the void autocorrelation function (following 61 bins), the
halo autocorrelation function (following 61 bins), and the void–halo cross-correlation function (last 61 bins). All the correlation functions span from 15 to
200 h−1 Mpc in log space. The VSF goes from 6 to 60 h−1 Mpc in increments of 3 h−1 Mpc.
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correlation for scales larger than the median void radius and
larger than the void wall rim, due to the fact that voids are more
likely to be clustered at these scales. Without the sheer volume
of the GIGANTES suite, the correlation among and within these
void summary statistics could not be understood in such detail.

4.2. Optimal Constraints Combining Voids and Halos

The previous section showed that voids provide different,
additional information than other probes. Given that voids are
obtained from the halo or galaxy distribution, we want to
compare the total information from all void summary statistics
(void size function and ξvv) with the total information from
halo summary statistics (halo mass function and ξhh)—without
considering the combined statistics ξvh for this comparison.
Figure 8 shows the comparison for a volume of 1 h−3 Gpc3: for
some parameters, voids in fact perform better than halos, and
overall voids are orthogonal in their constraints to halos. Voids
are particularly effective in constraining massive neutrinos and
h. Constraints on neutrinos are expected to be powerful from
voids (Massara et al. 2015; Kreisch et al. 2019), as diffuse
components particularly impact voids. See Appendix C for
further parameter comparisons.

In all cases, as highlighted above, combined constraints are
powerful. We recall that for this comparison we have not
considered the void–halo cross correlation, in order to compare
halo-only with void-only summary statistics. If adding the
void–halo cross correlation, constraining power is further
increased (see Appendix C). We leave for future work the
exploration of the constraining power on dark energy, expected
to be large from voids (Bos et al. 2012; Pisani et al. 2015, 2019;
Verza et al. 2019). Finally, we note that in this paper we do not
investigate the impact of varying the density-based threshold,
defining the hierarchy, because the QUIJOTE simulations have
a relatively high minimum mass. To properly investigate the
effect of varying this parameter on the hierarchy of voids one
would need a simulation set that reaches very low masses of
halos, allowing to properly detect the nested hierarchy of
subvoids. In the current set of simulations, less than ∼5% of

the voids are subvoids. We leave for future work the
exploration of the constraining power of the void hierarchy.

4.3. Void Shape Adds Information

Void definition has been an intense area of discussion in the
past (Colberg et al. 2008; van de Weygaert & Schaap 2009;
Cautun et al. 2018). Recently, to exploit cosmological
information, most works have chosen the approach of testing
a particular definition and pushing its use in measuring
cosmological signals. This approach has been particularly
successful, as the point is not finding the best definition, but
merely understanding the sensitivity of a particular definition to
the signal to measure. In the realm of maximizing the signal
and being able to model the signal, which can be more
challenging for some void definitions than others, fully
understanding the impact of definition choices is crucial.
There are various classes of void finders, but a striking

differentiating feature is whether the algorithm assumes a
spherical shape for voids. While it can be considered intuitive
that a void finder with no shape assumption helps when trying
to infer cosmological information from the void shape (that is
for applications relying on the void–halo cross-correlation
function, such as the Alcock–Paczyński test and RSD measure-
ments from voids, or void ellipticity), it is not so trivial to
understand what is the relevance of considering void shape for
applications such as the void size function. Our large set of
simulations allows us to address this question.
In this section we compare the information content captured

when the void shape is measured in detail with the case in
which a spherical assumption is made by the void finder. In
other words we compare constraints obtained when selecting
voids with VIDE, a void finder with no prior on void shape,
and a more simplistic spherical-assumption-based void finder
(see, e.g., Villaescusa-Navarro et al. 2020b; Bayer et al.
2021b). Figure 9 shows results of the comparison for a volume
of 1 h−3 Gpc3. For most of the cosmological parameters
considered in this paper the void size function measured by
VIDE provides more stringent constraints than the void size

Figure 8. Comparison of halo-only with void-only constraints (therefore not including the void–halo cross correlation).
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function measured by the spherical void finder (see
Appendix C for the full set of contours). We notice, however,
that in some cases the orientation of constraints is different.
This consideration is relevant: in future work aiming to
maximize the constraints extracted from the cosmic web, it
could be possible to combine constraints from different void
finders for the void size function. One has to keep in mind,
however, that the correlations between constraints from two
different void finders may be nontrivial to be accounted for, but
GIGANTES contains enough catalogs to estimate this covar-
iance accurately.

We also note that this comparison is more realistic given that
it is obtained with voids found in the halo distribution, and not
in the dark matter field. These results showcase for the first
time that even for nonshape-based applications, such as the
void size function, shape plays a strong role in determining the
quality of constraints.

5. Likelihood-free Inference of Cosmological Parameters

In this section we show a machine-learning application to the
GIGANTES data set. Our goal is to perform likelihood-free
inference from one of the most important summary statistics
associated to cosmic voids: the void size function. In order to
carry out this task, we need many examples from different
cosmological models in order to be able to extract unique
patterns that allow us to find a connection between the void size
function and the value of the cosmological parameters.

We use the void catalogs from the high-resolution QUIJOTE
latin-hypercube at z= 0 over a volume of 1 h−3 Gpc3. We
use 18 bins equally spaced from R= 10.5h−1 Mpc to
R= 61.5h−1 Mpc. Our goal is to predict the mean (θ) and
standard deviation of the posterior (δθ) from the void size
function

f VSF , 7( ) ( )q dq =

where we are going to use neural networks to approximate the
function f. We use moment networks (Jeffrey & Wandelt 2020)

to achieve this. To carry out this task we first compute the void
size function using the above bins for each of the 1000 high-
resolution QUIJOTE simulations. We then split the data into
training (900 VSF), validation (50 VSF), and testing (50 VSF).
Next, we use fully connected layers to find the relation between
the VSF and the value of the cosmological parameters, using
the Jeffrey & Wandelt (2020) loss function to estimate
posterior means and standard deviations. The number of layers,
the number of neurons per layers, the learning rate, and the
value of the weight decay are considered as hyperparameters
that we optimize.
We show the results in Figure 10 for 40 different void size

functions of the test set. We note that we only show results for
Ωm and ns, as those are the only two parameters for which we
have enough statistical power to find a relation between the
void size function and the value of the parameters. For Ωm we
obtain a ∼20% constraint. For the case of Ωb, h, and σ8 our
model just predicts the mean with a large error bar that is not
meaningful due to the edges of the prior.
As it can be seen, our method is able to recover the true

value within the standard deviation in most of the cases; it is
expected that the true value lies outside of the posterior
standard deviation for some cases.
This simple application illustrates the power of the so-called

simulation-based inference, where accurate and reliable
simulations can be used to perform inference over statistics
whose likelihood is unknown. We emphasize that this
procedure is not limited to summary statistics, but can be
carried out at the field level.

6. Conclusion

We have introduced the state of the art GIGANTES void
catalogs suite obtained from the QUIJOTE simulations. The
catalogs, built with the popular void finder VIDE, provide a
comprehensive set of more than 1 billion voids in a large range
of ΛCDM cosmologies.

Figure 9. Comparison of constraints from a void finder with no prior on the shape of voids, and a more simplistic spherical-assumption-based void finder. Voids are
found from the same halo field.
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To present the GIGANTES data set we show the void size
function, average profiles, and the void autocorrelation
function. We also compute the correlation among and between
different void summary statistics, as well as between traditional
quantities such as the halo mass function and the halo
autocorrelation function.

To illustrate the immense power provided by the
GIGANTES catalogs, we show for the first time in a realistic
setup of voids found in the halo field that voids provide
complementary and independent information with respect to
halos. Voids allow us to extract higher-order information from
the cosmic web that would otherwise remain inaccessible. Our
results show that added information is particularly effective
with respect to constraining neutrinos and h but helps for most
parameters of interest.

We show that, aside from the void–halo cross-correlation
function and the void size function, a strong contribution to
constraints comes from the void autocorrelation function. We
also compare the power of halos with respect to voids when
combining different summary statistics. Finally, by comparing
constraints from VIDE voids with voids from a spherical void
finder, we show that void shape knowledge provides an
important contribution to the overall information content from
voids.

While providing the largest and most realistic set of voids
ever released, this paper answers many open questions relevant
for void cosmology: Do voids provide additional information?
How is that information correlated? Which parameters are
optimally constrained by voids? Is void shape important for
cosmological constraints? We have showed that voids allow us
to go beyond the two-point correlation function and provide
additional constraining power. GIGANTES opens up the
exploration of the cosmological constraining power of void
statistics beyond the ones considered in this paper. Theory
developments and instrument systematics analyses for void
summary statistics will allow us to fully exploit the power of
the void size function, the void–halo, the void–void correlation
functions, and other void statistics to constrain cosmological
parameters with voids from the next generation of surveys.
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Appendix A
Simulations and Void Finder

A.1. The QUIJOTE Simulations

The QUIJOTE simulations (Villaescusa-Navarro et al.
2020b) are a suite of 44,100 full N-body simulations exploring
more than 7000 cosmological models. These simulations
contain trillions of particles over a combined volume larger
than the volume of the entire observable universe, and were
designed for two main tasks: (1) to quantify the information
content on cosmological observables, and (2) to provide
enough data to train machine-learning algorithms. Given their
immense combined volume, they represent a powerful tool to
explore the properties of extreme objects, such as galaxy
clusters and cosmic voids. The simulations have been used in a
range of papers (e.g., Giusarma et al. 2019; Obuljen et al. 2019;
Allys et al. 2020; Aviles & Banerjee 2020; Alves de Oliveira
et al. 2020; Banerjee et al. 2020; Chen et al. 2020; Cranmer
et al. 2020; de la Bella et al. 2021; Dai et al. 2020; Friedrich
et al. 2020; Giri & Smith 2020; Hahn et al. 2020; Kodi
Ramanah et al. 2020; Philcox et al. 2020a, 2020b; Uhlemann
et al. 2020; Banerjee & Abel 2021a, 2021b; Bayer et al.
2021a, 2021b; Bernal et al. 2021; Chartier et al. 2021; Gualdi
et al. 2021a, 2021b; Hahn & Villaescusa-Navarro 2021;
Kuruvilla & Aghanim 2021; Lazeyras et al. 2021; Massara
et al. 2021; Parimbelli et al. 2021; Philcox 2021; Philcox et al.
2021; Samushia et al. 2021). On average, each realization of
the QUIJOTE simulations contains ∼500,000 dark matter
halos over a volume of 1 h Gpc1 3( )- at z= 0, corresponding

Figure 10. We use likelihood-free inference with moment networks (Jeffrey & Wandelt 2020) to estimate the mean and standard deviations of the posterior from
measurements of the void size function. The above panels show the results for Ωm (left) and ns (right). Each point represents the posterior mean from a measurement of
the void size function from one realization of the HR latin hypercube at z = 0. The error bars display the standard deviation of the posterior. For Ωm (left) and ns we are
able to recover the true value in most of cases; it is expected that some points lie outside the posterior standard deviation interval. We are unable to recover the value of
Ωb, h, and σ8 from these measurements, as we do not have enough statistical power for these parameters as we only use the VSF from 1 h−3 Gpc3.
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to a halo number density of 4× 10−4 h3 Mpc−3 and mean halo
separation of∼13 h−1 Mpc. The equivalent values at z= 1 are
2× 10−4 h3 Mpc−3 and∼17 h−1 Mpc, respectively. As access
to the void hierarchy may depend on tracer number density, it
is relevant to notice that the tracer number density of the
QUIJOTE halo catalogs is of a similar order of magnitude than
what we can expect from surveys such as PFS (Tamura et al.
2016), and denser than DESI (DESI Collaboration et al. 2016).
With the QUIJOTE halo catalogs, however, we have a tracer
number density below what will be achieved by Euclid
(Laureijs et al. 2011), and the Roman Space telescope (Spergel
et al. 2015), indicating that these upcoming surveys will be able
to fully capture the power from the void hierarchy, and can
expect even tighter constraints on cosmological parameters
than what we illustrate in this work.

A.2. The Void Finder VIDE

VIDE is the most popular Voronoi-watershed-based void
finder used in cosmology. Based on ZOBOV (Neyrinck 2008),
VIDE provides a convenient, publicly released toolkit to find
voids in simulations (dark matter/hydrodynamical) and data
(spectroscopic or photometric data).

The void finder first performs a Voronoi tessellation of the
tracer particle field (tracers can be dark matter particles, halos,
galaxies), providing a physical splitting of the 3D particle field
into cells. Each cell is assigned a density equal to the inverse of
the volume of the cells. Starting from local minima (largest
cells) of the tessellation, the algorithm creates basins by
merging cells with a monotonic increase in density. Through
the use of the watershed transform, VIDE provides the final set
voids.

Void centers are defined as the volume-weighted barycenters
of the Voronoi cells composing the void. Void centers are
therefore sensitive to the whole structure of the object.
Considering a sphere of equivalent volume to the volume Vi

of all the cells, one can define an effective radius for voids, R:
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Even though it provides the effective radius (that we simply
refer to as radius in the rest of the paper), VIDE makes no
assumption on the void shape, conversely to other void finders
assuming sphericity.
The absence of a shape prior makes VIDE an excellent

option for cosmological analyses for which a precise
determination of void shape is a strength (e.g., Alcock-
Paczyński test and redshift-space distortion analyses). Finally,
VIDE is built to handle a survey mask, and can easily be
applied to study voids from both data and simulations, as its
wide range of applications shows. Among other results, it has
been used to provide the most stringent to date constraints from
cosmic voids (Hamaus et al. 2020). Recently, a Python 3
version of the code has been released.10

Since most applications of void finding in data for
cosmology rely on Voronoi-based void finders, the work
performed in this paper for this category of void finders is
pertinent to current cosmological observational analyses. The
large set of void catalogs presented in this work will be
publicly released upon acceptance of the paper.

Appendix B
Fisher Error Stability

Tables 2, 3, 4, 5, 6, and 7 show 1 standard deviation
uncertainties on cosmological parameters from the denoted
summary statistic and given number of simulation realizations
marginalized over the parameters listed as well as Ωb. Percent
differences relative to the error with 500 simulations are shown
in parentheses. For all void summary statistics, the percent

Table 2
Error Sensitivity for HMF + VSF + ξvv + ξhh

Number of Simulations Ωm h ns σ8 ∑mν

500 0.0022 0.052 0.030 0.0054 0.089
450 (10%) 0.0022 (0%) 0.048 (8%) 0.029 (3%) 0.0052 (4%) 0.086 (3%)
400 (20%) 0.0022 (0%) 0.048 (8%) 0.028 (7%) 0.0053 (2%) 0.083 (7%)

Table 3
Error Sensitivity for VSF

Number of Simulations Ωm h ns σ8 ∑mν

500 0.072 0.19 0.15 0.11 0.21
450 (10%) 0.069 (4%) 0.18 (5%) 0.14 (7%) 0.099 (10%) 0.21 (0%)
400 (20%) 0.062 (14%) 0.18 (5%) 0.13 (13%) 0.094 (15%) 0.18 (14%)

Table 4
Error Sensitivity for ξvv

Number of Simulations Ωm h ns σ8 ∑mν

500 0.037 0.089 0.086 0.067 0.13
450 (10%) 0.036 (3%) 0.082 (5%) 0.079 (8%) 0.064 (4%) 0.12 (8%)
400 (20%) 0.032 (14%) 0.077 (13%) 0.074 (14%) 0.065 (3%) 0.12 (8%)

10 https://bitbucket.org/cosmicvoids/vide_public/wiki/Home
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Table 5
Error Sensitivity for ξvh

Number of Simulations Ωm h ns σ8 ∑mν

500 0.027 0.067 0.066 0.063 0.10
450 (10%) 0.026 (4%) 0.061(9%) 0.063 (5%) 0.062 (2%) 0.10 (0%)
400 (20%) 0.024 (11%) 0.061 (9%) 0.062 (6%) 0.062 (2%) 0.090 (10%)

Table 6
Error Sensitivity for HMF

Number of Simulations Ωm h ns σ8 ∑mν

500 0.033 0.28 0.13 0.078 1.56
450 (10%) 0.027 (18%) 0.25 (11%) 0.12 (8%) 0.064 (18%) 1.23 (21%)
400 (20%) 0.028 (15%) 0.26 (7%) 0.12 (8%) 0.065 (17%) 1.27 (19%)

Table 7
Error Sensitivity for ξhh

Number of Simulations Ωm h ns σ8 ∑mν

500 0.027 0.17 0.15 0.11 0.22
450 (10%) 0.028 (4%) 0.18 (6%) 0.16 (7%) 0.11 (0%) 0.22 (0%)
400 (20%) 0.029 (7%) 0.19 (12%) 0.17 (13%) 0.11 (0%) 0.22 (0%)

Table 8
Covariance Error Sensitivity for HMF + VSF + ξvv + ξhh

Number of Simulations Ωm h ns σ8 ∑mν

15000 0.0022 0.052 0.030 0.0054 0.089
13500 (10%) 0.0022 (0%) 0.052 (0%) 0.030 (0%) 0.0054 (0%) 0.089 (0%)
12000 (20%) 0.0022 (0%) 0.052 (0%) 0.030 (0%) 0.0054 (0%) 0.089 (0%)

Table 9
Covariance Error Sensitivity for VSF

Number of Simulations Ωm h ns σ8 ∑mν

15000 0.072 0.19 0.15 0.10 0.21
13500 (10%) 0.072 (0%) 0.19 (0%) 0.15 (0%) 0.10 (0%) 0.21 (0%)
12000 (20%) 0.071 (1%) 0.19 (0%) 0.15 (0%) 0.10 (0%) 0.21 (0%)

Table 10
Covariance Error Sensitivity for ξvv

Number of Simulations Ωm h ns σ8 ∑mν

15000 0.037 0.089 0.086 0.067 0.13
13500 (10%) 0.037 (0%) 0.089 (0%) 0.085 (1%) 0.066 (1%) 0.13 (0%)
12000 (20%) 0.037 (0%) 0.089 (0%) 0.085 (1%) 0.066 (1%) 0.13 (0%)

Table 11
Covariance Error Sensitivity for ξvh

Number of Simulations Ωm h ns σ8 ∑mν

15000 0.027 0.067 0.065 0.063 0.10
13500 (10%) 0.027 (0%) 0.067 (0%) 0.065 (0%) 0.062 (2%) 0.10 (0%)
12000 (20%) 0.027 (0%) 0.067 (0%) 0.065 (0%) 0.062 (2%) 0.10 (0%)
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change in error is less than the percent change in the number of
realizations, indicating the constraints are stable.

Tables 8, 9, 10, 11, 12, and 13 also show 1 standard deviation
uncertainties, but given the number of simulations used to
compute the covariance. Percent differences relative to the error
with 15000 simulations are shown in parentheses. Most percent
changes are below 1%, indicating the covariance is stable.

Finally, in Table 14, we illustrate the impact on the Fisher
uncertainties from computing the correlation functions on
scales 15− 200 h−1 Mpc in log space compared to computing
the correlation functions on scales 20–200 h−1 Mpc in log
space. Percent differences relative to scales 20− 200 h−1 Mpc
are shown in parentheses. Most changes are near 10%,

although a handful are larger. An increase in error is expected
as less data are used.

Appendix C
Full Constraints

We show in Figure 11 the constraints from different void
summary statistics, as well as for the halo mass function and
the halo autocorrelation function, for all the parameters
considered in this paper: the sum of neutrino masses, σ8, ns,
h, and Ωm. In Figures 12 and 13 we show full cosmological
parameter contours for combined halo and combined void
summary statistics, and the spherical void finder VSF and
VIDE VSF, respectively.

Table 12
Covariance Error Sensitivity for HMF

Number of Simulations Ωm h ns σ8 ∑mν

15000 0.033 0.28 0.13 0.078 1.56
13500 (10%) 0.033 (0%) 0.28 (0%) 0.13 (0%) 0.078 (0%) 1.56 (0%)
12000 (20%) 0.033 (0%) 0.28 (0%) 0.13 (0%) 0.078 (0%) 1.56 (0%)

Table 13
Covariance Error Sensitivity for ξhh

Number of Simulations Ωm h ns σ8 ∑mν

15000 0.027 0.17 0.15 0.11 0.22
13500 (10%) 0.027 (0%) 0.17 (0%) 0.15 (0%) 0.11 (0%) 0.22 (0%)
12000 (20%) 0.027 (0%) 0.17 (0%) 0.15 (0%) 0.11 (0%) 0.22 (0%)

Table 14
Impact of Small Scales on ξ Constraints for {Ωm, h, ns, σ8, Mν}

Summary Statistic(s) 15–200 h−1 Mpc 20–200 h−1 Mpc

ξvv 0.037 (30%), 0.089 (11%), 0.086 (11%), 0.067 (17%), 0.13 (7%) 0.053, 0.10, 0.097, 0.081, 0.14
ξvh 0.027 (10%), 0.067 (7%), 0.065 (14%), 0.063 (6%), 0.10 (9%) 0.030, 0.072, 0.076, 0.067, 0.11
ξhh 0.027 (10%), 0.17 (11%), 0.15 (12%), 0.11 (27%), 0.22 (12%) 0.030, 0.19, 0.17, 0.15, 0.25
HMF + VSF + ξvv + ξhh 0.0022 (12%), 0.052 (5%), 0.030 (6%), 0.0054 (8%), 0.089 (8%) 0.0025, 0.055, 0.032, 0.0059, 0.097
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Figure 11. Constraints on cosmological parameters from the voids (void size function, void–halo, and void–void correlation functions) and halos (halo mass function,
halo autocorrelation function).
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Figure 12. Comparison of halo-only with void-only constraints (therefore not including the void–halo cross correlation) for all parameters.
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Figure 13. Comparison of constraints for all parameters from a void finder with no prior on the shape of voids, and a more simplistic spherical-assumption-based void
finder. Voids are found from the same halo field.
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