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ABSTRACT

Context. Scientific interest in studying high-energy transient phenomena in the Universe has risen sharply over the last decade. At
present, multiple ground-based survey projects have emerged to continuously monitor the optical (and multi-messenger) transient sky
at higher image cadences and covering ever larger portions of the sky every night. These novel approaches are leading to a substantial
increase in global alert rates, which need to be handled with care, especially with regard to keeping the level of false alarms as low
as possible. Therefore, the standard transient detection pipelines previously designed for narrow field-of-view instruments must now
integrate more sophisticated tools to deal with the growing number and diversity of alerts and false alarms.
Aims. Deep machine learning algorithms have now proven their efficiency in recognising patterns in images. These methods are now
used in astrophysics to perform different classification tasks such as identifying bogus from real transient point-like sources. We explore
this method to provide a robust and flexible algorithm that could be included in any kind of transient detection pipeline.
Methods. We built a convolutional neural network (CNN) algorithm in order to perform a ‘real or bogus’ classification task on
transient candidate cutouts (subtraction residuals) provided by different kinds of optical telescopes. The training involved human-
supervised labelling of the cutouts, which are split into two balanced data sets with ‘true’ and ‘false’ point-like source candidates. We
tested our CNN model on the candidates produced by two different transient detection pipelines. In addition, we made use of several
diagnostic tools to evaluate the classification performance of our CNN models.
Results. We show that our CNN algorithm can be successfully trained on a large and diverse array of images on very different pixel
scales. In this training process, we did not detect any strong over- or underfitting with the requirement of providing cutouts with a
limited size no larger than 50× 50 pixels. Tested on optical images from four different telescopes and utilising two different transient
detection pipelines, our CNN model provides a robust ‘real or bogus’ classification performance accuracy from 93% up to 98% for
well-classified candidates.

Key words. methods: numerical – techniques: image processing

1. Introduction

Time-domain astronomy consists of studying variable sources
in the Universe that periodically change in brightness or tran-
sient sources coming from the sudden outburst of known flaring
objects or single cataclysmic events. Over the past few years,
our way of observing and monitoring the optical transient sky
has significantly evolved both with the arrival of new opti-
cal synoptic survey projects and the advent of multi-messenger
astronomy. It is now a matter of observing consistently greater
portions of the sky at higher sensitivities and with a high
image cadence. New optical synoptic surveys such as ATLAS
(Tonry et al. 2018), GOTO (Dyer et al. 2020), MeerLICHT
and BlackGEM (Groot et al. 2019), SVOM/GWAC (Han et al.
2021), ZTF (Bellm et al. 2019; Graham et al. 2019), or the
upcoming Vera Rubin/LSST (Ivezić et al. 2019) are now able
to observe their entire observable sky over a timespan of just a
few nights. Thanks to their large fields of view (FoV) and high
? The codes and diagnostic tools presented in this paper are available

at https://github.com/dcorre/otrain

image cadences at moderate and high sensitivities, a fraction of
their observation time can also be dedicated to the follow-up
of poorly localised multi-messenger alerts sent by gravitational
wave detectors or high-energy neutrino and gamma-ray tele-
scopes. The current optical surveys have already led to the
discovery of tens of thousands of new optical transients. Those
transients in part belong to known astrophysical classes such as
supernovae or galactic flaring stars, while new classes of tran-
sients have been recently discovered. For example, since 2018,
the ATLAS and ZTF surveys have already confirmed the exis-
tence of a new type of transient called fast blue optical transients,
(FBOTs), for which only four events have been robustly iden-
tified thus far: ATcow18 (Smartt et al. 2018; Prentice et al.
2018), ZTF18abvkwla (Ho et al. 2020), CSS161010 (Coppejans
et al. 2020), and AT2020xnd/ZTF20acigmel (Bright et al. 2022;
Perley et al. 2021; Ho et al. 2021). Down to minute timescales,
the SVOM/GWAC fast cadence survey (Han et al. 2021) has also
detected new powerful outburts from nearby M dwarf stars (Xin
et al. 2021; Wang et al. 2021). Finally, a new class of luminous
supernova explosions, namely, the so-called super luminous
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supernovae (SLSNe), have also been identified as recently as a
decade ago, with about 100 candidates currently reported and
around 20 under extensive study (Quimby et al. 2011; Gal-Yam
2012, 2019).

In fact, we are just starting to extensively explore the plethora
of optical transients, especially towards the shortest timescales
(from minutes to hours). Hence, there is room for new discov-
eries by adapting the different survey or follow-up observational
strategies (image cadence, filter strategy, frequency of revisits,
limiting magnitude depth, etc.) as well as the algorithm used for
identifying the different types of transients. Behind the scenes,
there is actually an unprecedented amount of images and data
available to process as well as transient candidates to charac-
terise every night. As an example, a survey such as ZTF can
typically produce up to 2 × 106 raw alerts at 5σ confidence level
every clear night, among which 103–105 are likely real sources
(Masci et al. 2019). This is nothing in comparison to the mil-
lions of real alerts (corresponding to 20 terabytes of data every
night) the Vera Rubin LSST survey will produce daily during its
10 yr of operations. As a consequence, new detection pipelines,
used for detecting and identifying in near real-time new sources
in optical images, have to be designed by taking in consider-
ation these new alert flow constraints. To this aim, many of
them now make use of (deep) machine learning (ML) methods
inspired by big data solutions. Deep ML algorithms allow for
a quick processing of astrophysical images or different sets of
complex information to give classification probabilities in near
real-time. These probabilities can then be easily interpreted by
astronomers to trigger further targeted follow-up observations.
Usually, in time-domain astronomy, ML algorithms are used to
perform the two following classification tasks: (1) ‘real or bogus’
classification to reduce the false alarm rate due to artefacts that
may be falsely identified as new real sources (Gieseke et al.
2017; Duev et al. 2019; Turpin et al. 2020; Killestein et al. 2021;
Hosenie et al. 2021) and (2) astrophysical classification to iden-
tify the types of transients the detection pipelines have detected
based on several pieces of information about some key parame-
ters evolving with time, the flux-colour evolution of the transient
or its spectral shape and associated features, etc. (Carrasco-Davis
et al. 2019, 2021; Möller & de Boissière 2020; Burhanudin et al.
2021).

These fast classifiers are now a standard in the software archi-
tecture of any detection pipeline to avoid the need for human
intervention as much as possible. This is particularly relevant
when the goal is to perform systematic manual visual inspec-
tions of the transient candidate cutouts, since this is a heavily
time-consuming and sometimes complex task. In addition, when
dealing with the processing of big data sets, the ML algorithms
generally turn out to be more reliable and stable than human
decision-taking, yielding better scientific perspectives for each
promising transient candidate.

In this paper, we propose a robust machine learning
algorithm called Optical TRAnsient Identification Network
(O’TRAIN) to filter out any type of bogus from a list of optical
transient (OT) candidates a detection pipeline may output. Our
‘real or bogus’ (RB) classifier is based on a convolutional neural
network (CNN) algorithm, a method that has already proved its
efficacy in such a classification task (Gieseke et al. 2017; Turpin
et al. 2020). We developed a store of pedagogical tools to eas-
ily launch a training procedure and diagnose the classification
performances. Therefore, we can provide a generic and flexible
classifier that can be embedded in any detection pipeline and
applied to a broad range of image characteristics. In Sect. 2, we
briefly describe the general task a detection pipeline is supposed

to perform and the expected outputs that will be used by our
CNN model. We then detail, in Sect. 3, the architecture of our
CNN and the implementation setup to perform the training pre-
sented in Sect. 4. The different data sets and the diagnosis tools
used to evaluate the performances of our CNN architecture are
described in Sects. 5 and 6, respectively. We show our results in
Sect. 7 and we discuss some important future prospects for our
work in Sect. 8. Our conclusions are given in Sect. 9.

2. Transient detection pipeline: Inputs and outputs

To find new transient sources in optical images, a detection
pipeline usually acts on the so-called ‘science-ready’ images or
pre-processed images. These images are actually the raw images
corrected from the dark, bias, offset, and flat field master images
and for which the astrometry has been calibrated with the WCS
coordinates system using dedicated software such as SCAMP1

(Bertin 2006) or ASTROMETRY.NET2. A second pre-processing
step is usually needed to obtain a photometric calibration of
the scientific images. This is done in several steps: (1) first, we
extract the position of the point-like sources using, for exam-
ple, the SEXTRACTOR software (Bertin & Arnouts 1996) or
the python library SEP (Barbary 2016); (2) we estimate the
point spread function (PSF) model of the image or in different
regions of the images (PSF varying model) using such software
as PSFEX (Bertin 2011, 2013); (3) we subtract the image back-
ground and mask the brightest (saturated) stars that can lead to
errors when measuring both their centroid positions and total
flux in analog digital units (ADU). This tasks can make use of the
PHOTUTILS3 Astropy package (Bradley et al. 2021) and PSFEX;
(4) we cross-match the detected sources in the image with known
star catalogues and build the photometric model for their instru-
mental magnitudes. This is usually done using the Xmatch (Boch
et al. 2012; Pineau et al. 2020) and Vizier services of the CDS in
Strasbourg, France.

Following these steps, the science-ready images can be
exploited to search for new transient sources. Some detection
pipelines might also add few other steps by already remov-
ing most of the cosmic-ray induced-artefacts or identifying
moving objects (asteroids and solar system objects). Two meth-
ods are traditionally employed to find OT candidates: catalog
cross-matching and the difference image analysis.

2.1. Catalog cross-matching method

This method consists in searching for uncatalogued sources in
the scientific images. The list of sources and their positions
extracted by SEXTRACTOR are compared with the positions of
known stars by associating both sources within a given cross-
match radius (typically a few arcseconds). To be able to compare
all the extracted sources with a given catalog, it is necessary to
choose the catalogs that have deeper image sensitivities than the
science images. This method is easy to set up and to apply to a
large amount of images but it suffers from two main important
limitations. First, depending on the image pixel scale and the
accuracy of the astrometric calibration of the science images,
this method may hardly distinguish blended sources, leading
either to false positive cross matchings or wrong mismatches.
Secondly, for flaring or variable unknown sources, this method
is limited to the detection of only large flux amplitude variations

1 https://www.astromatic.net/software/scamp/
2 https://astrometry.net/
3 https://github.com/astropy/photutils

A81, page 2 of 18

https://www.astromatic.net/software/scamp/
https://astrometry.net/
https://github.com/astropy/photutils


K. Makhlouf et al.: O’TRAIN, for the study of the optical transient sky

between the science and the reference images. For these rea-
sons, the catalog cross-matching method would generally yield
an incomplete list of transient candidates. This list must be com-
pleted by a difference image analysis to collect the transient
sources close to catalogued sources or having faint variations in
brightness, or both.

2.2. Difference image analysis

By definition, optical transients are new sources that suddenly
imprint their patterns in the images with their fluxes strongly
evolving with time. Performing the subtraction of the science
images with some reference images allows to reveal the pres-
ence of these new sources as significant excesses in the residual
images. While being a powerful tool to identify transient and
flux-varying sources, it implies to perform several important
steps, which require fine tuning prior to the subtraction. The ref-
erence images have to be carefully chosen in order to not contain
the transient sources. Depending on the timescale of the OT flux
evolution, the reference images are usually taken days to months
prior to the science images. A reference image can originate
either from the same telescope that acquired the science image
or from all-sky surveys providing public image databases such as
Pan-STARRS (Chambers et al. 2016) or 2MASS (Skrutskie et al.
2006). These catalogs of reference images can be directly down-
loaded from a catalog server or extracted by using the hips2fits4

service at the CDS, Strasbourg. For such a subtraction technique,
it is preferable to obtain reference images of deeper limiting
magnitudes and better seeing than the science images as well as
taken with the same or at least close filter system. A bad pixel
map for the reference image can also be produced to already
remove bad pixel values or saturated stars in the subtraction pro-
cess. The science and reference images must be well aligned and
the PSF resampled if the reference images originate from an all-
sky survey have different pixel scales. A flux normalisation of
the two sets of images is also performed to ensure the good qual-
ity of residual images. These steps and the image subtraction can
be done by software such as MONTAGE5 (image realignment)
and HOTPANTS6 (Becker 2015).

2.3. Minimum output required for a transient detection
pipeline

Both of the methods mentioned above will output two lists of OT
candidates that will then be merged into a single one to avoid
redundancies. This final list basically describes the properties of
each OT candidate, including: (1) Their celestial and physical
coordinates in the image; (2) their Full Width at Half Maximum
or FWHM; (3) their measured magnitude with the associated
error; (4) their detection time; (5) additional information and
flags that may help in classifying them such as edge position and
extended object flags, signal-to-noise ratio (S/N), light curves,
and so on.

In addition, small (typically few tens of pixels) cutouts cen-
tered at the position of the OT candidates are usually cropped
from the original, reference and residual images for a manual
visual inspection by a scientific expert. After the visual inspec-
tion, the OT candidates are kept either as promising sources to

4 https://alasky.u-strasbg.fr/hips-image-services/
hips2fits
5 http://montage.ipac.caltech.edu/docs/montagePy-UG.
html
6 https://github.com/acbecker/hotpants

be followed-up or discarded. This selection task is exactly what
a RB classifier must efficiently do. These cutouts and primarily
the residuals will be the input for our RB classifier to deliver its
decision.

2.4. Sources of artefacts

The various artefacts that we can find in astronomical images are
usually produced via three main steps. First, during the acquisi-
tion, the images can be contaminated by cosmic ray tracks or
blooming or crosstalk effects from the saturated and bright stars,
artificial sources or tracks left by human-made flying objects
(satellites, planes, etc.), or hot or bad groups of pixels. The
so called ‘ghost’ sources (diffuse extended sources) are also
observed in optical images due to multiple light reflections from
the optical system back to the CCD chip. Secondly, at the CCD
reading step, some issues can lead to some columns of pixels
that are no longer exploitable. Finally, some artefacts can appear
when subtracting two images either due to bad image alignment
or a lack of optimisation of the HOTPANTS parameters especially
for the subtraction of survey catalog images which have a dif-
ferent pixel scales compared to the science image. At the end,
all these processes create a very large and diverse collection of
artefacts that may lead to many false detections. While some
artefacts are easily recognisable, others can hardly be distin-
guished from point-like sources by eye or with standard filtering
systems such as PSF-matching methods.

3. O’TRAIN: A ‘real or bogus’ CNN classifier

3.1. Purpose of O’TRAIN

Artificial intelligence models are built to lighten the workload of
the astronomers on duty and to help them in the decision-making
process. They take on annotated data and try to understand the
logic behind them by creating connections between their prop-
erties. Our work involves cutouts centered at the position of the
OT candidates that we want to classify into two folders: real tran-
sients and bogus ones. The most dominant model in this sort of
computer vision tasks is the convolutional neural network since
they use every information in the input image (the pixels) with-
out being computationally expensive. By applying filters, the
CNN highlights regions of the image according to their rele-
vance when classifying the image, hence the name convolutional
(Yamashita et al. 2018). These regions are commonly called ’fea-
tures’. They would distinguish, in our case, the real sources from
the bogus ones. In this section, we go into more details about our
model architecture, its configuration settings and how it learns
to decide the relevant features of the source, and their spatial
hierarchies.

3.2. Model architecture

We start off by extracting the features. At each convolutional
layer, multiple filters are applied to the input of the layer, the
results of these convolutions are called a feature maps. This
output goes through a pooling layer that enhances the features,
while maintaining the spatial information. The final output fea-
ture maps are then fed to fully connected layers (i.e. the ‘dense’
layers) thus connecting the features to the corresponding class.
The number of filters in each convolutional layer, their sizes, the
number of cells in the dense layers, are all configurations that
should be decided to optimise the model’s performance on our
task. Since our cutouts are small (roughly few tens of pixels),
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Fig. 1. Illustration of the O’TRAIN model architecture for performing the binary classification task: real or bogus transients.

we chose to apply 3× 3 filters in our convolutional layers. The
number of filters is increasing throughout the network. The more
filters we use the more features we extract. As we did not want
to extract features from the noise next to the source, we limited
the number of filters in the first layers. In Fig. 1, we illustrate the
different layers of our CNN among which the input images have
been analysed step by step.

3.3. Training procedure

After building the CNN model, we launched the training pro-
cedure, where the model updates the parameters connecting the
layers (also called trainable parameters) in order to minimise the
difference between its prediction and the ground truth binary
label. The data set is first ruffled and divided into training and
validation sets. Each of these data sets are then split into batches
(or samples). The model starts the training process by taking the
first batch of images. They go through one by one and propose an
update to the trainable parameters. We average these proposals
and update the parameters accordingly, and move on to the next
batch. After the last batch of the training set, the updated model
is applied to the validation data set, so as to see if it can perform
well on images it has never seen before. This is the generalisa-
tion aspect we look for in a deep learning model. This procedure,
illustrated in Fig. 2, is done within one training step also called
an epoch. The more epochs, the better the model’s performance
will be, provided that the performance on the validation data set
does not deteriorate (cf. Sect. 6.3).

This procedure calls for a fine tuning of key parameters to
optimise the training environment of the model, as follows: (1)
The fraction of the original data set used to make the training
and validation sets: this fraction is usually 70% over 30% to 90%
over 10% for the training and validation data sets respectively. It
is strongly unbalanced in order to enable the model to train on
the maximum number of images while keeping enough images
for the validation purpose. In this work, we set this value at
85% over 15%; (2) The number of epochs: as mentioned above,
this parameters influence significantly the performance of the
model. We trained our model with 30 epochs, and implemented
a method to trace any classification performance deterioration
on the validation data set; (3) The batch size: this parameter
represents the number of images per sample in the training pro-
cedure. The bigger the size (more than 512), the more accurate
our updates will be, with a trade-off involving the training speed.
Since we used a GPU for our training, we set this value to 1024;

Fig. 2. Schema of the training procedure in O’TRAIN: In one train-
ing epoch, the original data set is split into two sub sets to train/update
the CNN model and validate the classification results on a new batch
of images. By repeating N times these epochs, the model converges
towards the desired classification performances.

(4) The optimiser: the optimiser interferes in the way the train-
able parameters get updated. The dominant optimiser for CNN
applications is the Adam; (5) The learning rate: this configu-
ration concerns how much the parameters get updated. We set
this value to 0.001 in order to allow the model to converge to the
minimum steadily.

3.4. Python implementation

We implemented the model using the Python libraries TEN-
SORFLOW and KERAS compatible with Python version 3.7 and
above. In Fig. 3, we show the output of KERAS displaying our
CNN architecture and the number of trainable parameters after
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Fig. 3. Layer architecture and the list of the trainable parameters of
O’TRAIN displayed by KERAS before launching a training.

launching a training procedure. All our codes as well as the diag-
nostic tools we present in this paper are publicly available in a
documented git project7.

4. Training procedure of O’TRAIN

4.1. Building the training data set

To build a training data set for our O’TRAIN CNN, we have
to start by creating two folders labelled ‘True’ and ‘False’ , in
which we store the small cutouts of the subtraction residuals
centered at the positions of the real transient sources and the
bogus, respectively. Each folder must contain sources that will
be as close as possible to the ones the imaging instruments and
the detection pipelines will output in real conditions. In addition,
we require some non-standard keywords in the fits header of the
‘True’ and ‘False’ cutouts that will be used to quickly identify
and characterise the candidates afterwards. We list them here:
(1) CANDID (mandatory) : unique ID or name of the candidate;
(2) MAG (optional): magnitude of the source; (3) MAGERR
(optional): error on the magnitude of the source; (4) FILTER
(optional) : filter used for the observation; (5) FWHM (optional):
estimation of the Full-Width at Half Maximum of the source; (6)
EDGE (mandatory): ‘True’ if the source is close an image edge
(depends on the detection pipeline setup) and ‘False’ otherwise.
The label of all the candidates stored in the ‘True’ folder is set to
“1” while it is set to “0” for the candidates in the ‘False’ folder.
The label of all the candidates stored in the ‘True’ folder is set to
‘1’, whereas it is set to ‘0’ for the candidates in the ’False’ folder.
For a supervised ML algorithm as O’TRAIN, it is required to
provide a large amount of labelled candidates for the training,

7 https://github.com/dcorre/otrain

Table 1. The numpy arrays stored in the training data cube python
dictionary (.npz).

Numpy array Content

CUBE The cutouts centered at the
positions of the candidates

CANDIDS The unique IDs or names of the candidates
MAGS The value of the MAG keywords
MAGERRS The value of the MAGERR keywords
FILTERS The value of the FILTER keywords
FWHMS The value of the FWHM keywords
LABELS The value of the labels (‘1’ or ‘0’)

typically several thousands. Depending on the telescope discov-
ery potential, OT sources are sometimes too rare in the science
images to sufficiently populate the ’True’ folder. To overcome
this issue, point-like sources can be simulated in the original sci-
ence images in order to artificially increase the number of real
OT candidates (data augmentation techniques, see Gieseke et al.
2017). Artefacts can also be simulated (if needed) using software
like SKYMAKER (Bertin 2009). We note that in all our analysis,
we did not make use of such a technique for simulating artefacts
as we had obtained enough of them in the science and resid-
ual images after performing the image subtractions. However,
we had to simulate most of our OT candidates in the original
images. In the following section, we describe how we have sim-
ulated additional point-like sources in our science images and the
building of the final data cube that will then be used for training
the CNN model.

4.2. Point-like source simulation

To simulate point-like sources in an optical image, a model of the
PSF response has to be determined to give the adequate shapes
of the simulated star-like sources. We used PSFEX to estimate
the PSF response function of the science images into which we
wanted to inject sources. To be more realistic, we estimated a
spatially varying PSF response for each science image in order
to take into account the possible distortion of the PSF in differ-
ent regions of the images and, in particular, close to the edges.
Hence, we divided the science images into grids of 9× 9 regions.
In each grid, we simulated N point-like sources at random posi-
tions by convolving a polynomial function with the local PSF
response function. On top of these new simulated sources, we
finally added a shot noise signal. We note that in our simula-
tions, we did not take into account the positions of pre-existing
sources in the science images when we inserted our simulated
sources. This choice was motivated by the fact that in real con-
ditions, an OT source could lie close to a catalogued source,
be blended with it, or even be detected very close to the image
edges. As a consequence, this may lead to possible failures when
trying to detect these simulated sources depending on the detec-
tion pipeline setup. The injected sources are simulated in a wide
range of magnitudes in order to test our CNN classification per-
formances in the context of different conditions – from bright
stars up to the faintest ones close to the detection limit.

4.3. Training data cube

Once the ‘True’ and ‘False’ folders are adequately filled by
enough candidate cutouts, we processed all of them to build
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Table 2. Telescope and image properties of the four telescopes used to
test our CNN model.

Tel. name D FoV radius Pixel scale Im. size
(cm) (arcmin) (”/pixel) (pixels)

JAST 83 60.42 0.58 9216× 9232
FRAM-N 25 18.72 1.52 1056× 1024
TACA 16 51.66 2.81 1832× 1224
TCA 25 79.81 3.31 2048× 2048

a final data cube that is to be given as a single input to train
our CNN model. The final data cube contains several python
numpy arrays (.npy format) zipped in a dictionary-like archive
as a .npz format. The different objects of the .npz dictionary are
described in Table 1. We note that if some candidates are flagged
as ‘edge’ sources, they are automatically discarded from the final
data cube. We note also that the content of this data cube is not
set in stone as additional relevant parameters could be added if
needed. In the data cubes we have simulated, the ‘True/False’
ratio is kept balanced (50%/50%), however, we have imple-
mented the possibility to produced unbalanced ’True/False’ data
cube if needed.

5. Testing O’TRAIN on different data sets

One of our main goals is to propose a CNN model that can
robustly classify real sources and bogus coming from a wide
range of optical instruments (i.e. covering a wide range of pixel
scale values, PSF response functions, depth of the limiting mag-
nitudes, etc.) and detection pipelines. Therefore, we decided to
test our O’TRAIN CNN on four different telescope images pro-
cessed by two different detection pipelines. Many of the science
images we have used were kindly provided by the telescope
teams of the GRANDMA Collaboration8 (Agayeva et al. 2021),
which operate a worldwide robotic telescope network. In par-
ticular, during the third acquisition run of the GW LIGO/Virgo
detectors, GRANDMA took a large amount of images covering
different sky regions (Antier et al. 2020a,b). The diversity of the
weather and seeing conditions found in those images allowed us
to build unbiased training data sets. We choose to use the images
produced by the following telescopes: (1) the Javalambre Aux-
iliary Survey Telescope (JAST/T80) located at the Observatorio
Astrofísico de Javalambre9 (OAJ); (2) the FRAM-CTA-N tele-
scope located at the Observatorio del Roque de los Muchachos10;
(3) the TAROT Calern (TCA) telescope located at the Calern
French Plateau (Observatoire de la Côte d’Azur, OCA); (4) the
TACA telescope located at Guitalens, France. Those telescopes
produce images with different pixel scales from good spatial
resolution with the JAST telescope (0.′′58/pix) up to poorly sam-
pled images like for the TCA telescope (3.′′31/pix). Hence, our
CNN has to be robust and flexible enough to keep decent classi-
fication performances along these image feature differences. In
Table 2, we summarise some important properties of the images
produced by these four telescopes.

In the following sections, we briefly describe the transient
detection pipelines we used to produce the inputs for O’TRAIN
and then, we detail the training data set we built for each
telescope.

8 https://grandma.lal.in2p3.fr
9 https://www.cefca.es/observatory/description
10 https://www.iac.es/es/observatorios-de-canarias/
observatorio-del-roque-de-los-muchachos

5.1. GMADET pipeline

The GMADET pipeline is publicly available on a dedicated
git repository11. It takes science-ready images (dark, flat, bias
calibrated) as inputs. First, several preprocessing steps are per-
formed: cosmic rays are removed from this science-ready image
using either LACOSMIC (van Dokkum 2001) or ASTROSCRAPPY
(McCully et al. 2018) python package, the background is esti-
mated using PHOTUTILS (Bradley et al. 2021) routines, the point
spread function is estimated using PSFEX (Bertin 2013), finally,
the astrometric calibration is computed with SCAMP using the
Gaia catalog (Bertin 2006). The image is then subtracted using
the HOTPANTS code (Becker 2015). Following the procedure
described in section 4.2, we simulated N point-like sources for
which we stored in an ascii file their positions in the different
images. We then ran the GMADET transient detection pipeline
on those images. By cross matching the positions of the tran-
sient candidates output by GMADET with those of the initial
list of simulated point-like sources, we retrieved a vast major-
ity of them. For these ‘True’ candidates, we produced cutouts
of 32× 32 pixel sizes. The rest of the candidates with a failed
cross match in position are directly put in the ‘False’ folder with
the same cutout size (32× 32 pixels). With GMADET, we usu-
ally got much more ‘False’ candidates with respect to the ‘False’
ones. To keep our final training data cube balanced, we randomly
picked-up the same number of ‘False’ cutouts than in the ‘True’
folder.

5.2. STDPIPE pipeline

Science-ready images are passed through a custom STDPIPE
pipeline (Karpov 2021). The steps implemented in the pipeline
includes extraction of objects in the image using SEXTRACTOR,
cross-matching them with the Pan-STARRS DR1 catalogue,
determining the photometric solution for each frame using Pan-
STARRS r magnitude and the g− r colour-for-colour correction,
and carrying out an image subtraction using Pan-STARRS r
band images acquired through the HIPS2FITS service (Boch
et al. 2020) as a template with the HOTPANTS code (Becker
2015). Then the difference images are weighted with the image
noise model and transient detection is performed on these
weighted images, taking into account the masks from both orig-
inal images and templates to identify possible difference image
artefacts. We simulated a set of artificial sources and injected
them into the images before the image subtraction using the
position-varying PSF model obtained with the PSFEx code
(Bertin 2013). For the spatially coincident (within 1′′) transient
candidate output by STDPIPE with our simulated stars, we drew
some cutouts (63× 63 pixels) centered at the transient candidate
position and stored them in the ‘True’ folder. The rest of the tran-
sients non spatially coincident with the simulated sources were
then pushed into a ‘False’ folder. They mostly consist of either
a variety of CCD defects or cases where the image alignment
was not good enough to properly eliminate the transients (e.g.
due to an imprecise HOTPANTS kernel). The STDPIPE pipeline
is publicly available on a dedicated git repository12.

5.3. Training data sets

Below, we describe the original images and the procedure used
to build the data cubes from the four selected telescopes. The
final data cube configurations for each training data set are
summarised in Table 3.
11 https://github.com/dcorre/gmadet
12 https://github.com/karpov-sv/stdpipe
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Table 3. Summary of the different data cube configurations used to train
our O’TRAIN CNN.

Tel. Detection Number of True/False Cutouts size
name pipeline candidates % (pixels)

JAST GMADET 13 558 50/50 32× 32
JAST STDPIPE 18 328 50/50 32× 32
FRAM GMADET 8906 50/50 32× 32
TACA GMADET 18 450 50/50 32× 32
TCA GMADET 11 414 50/50 32× 32

Notes. The number of candidates reported is the sum of the labelled
‘True’ and ‘False’ candidates stored in the respective data cubes.

Fig. 4. Numbers of simulated point-like sources injected in the JAST
images (red histogram) and retrieved by the GMADET transient detec-
tion pipeline (blue curve) as function of their simulated magnitudes.
The source fluxes are computed from an arbitrarily chosen zero point
magnitude value. The drop observed at magnitude r ∼ 20.5 in the blue
curve shows the point at which the sources are close to the detection
threshold used in the GMADET pipeline.

5.3.1. JAST/T80 telescope

We used images taken during the follow-up observations of the
O3 GW event S200213t on February 2020 (Blazek et al. 2020;
Antier et al. 2020b). After injecting artificial point-like sources
in the images using both the GMADET and the STDPIPE tran-
sient detection pipelines, we performed searches for transient
candidates with the two pipelines in order to populate the ‘True’
and ‘False’ folders. Our simulated sources span a wide range of
magnitudes that are drawn from an arbitrary zero-point magni-
tude in order to cover both faint and bright transient source cases.
As an example, in Fig. 4, we show the magnitude distribution of
the simulate sources retrieved by the GMADET pipeline.

In Fig. 5, we show some examples of the residual cutouts
produced by both the GMADET and the STDPIPE pipelines and
then stored in the ‘True’ and ‘False’ folders. We note that for the
training process, when using STDPIPE, we finally cropped the
cutouts down to the sizes 32 × 32 pixels in order to compare
the classification results with the GMADET cutouts directly. We
elaborate this choice in Sect. 8.

5.3.2. FRAM-CTA-N telescope

As a part of its nightly operation routine, the FRAM-CTA-N
telesceope (a 25 cm f /6.3 telescope located at Observatorio del
Roque de los Muchachos, La Palma, Spain, equipped with B,

False True

Fig. 5. Some JAST cutouts of bogus (left column) and point-like sources
candidates (right column). The cutouts at the top are produced by the
GMADET pipeline (32× 32 pixels) while the ones at the bottom are
produced by the STDPIPE pipeline (63× 63 pixels).

False True

Fig. 6. Some FRAM-CTA-N cutouts of bogus (left) and point-like
sources candidates (right). The cutouts at the top are produced by the
GMADET pipeline (32× 32 pixels).

V , R, and z filters and having a 26′ × 26′ field of view with
1.′′52/pix pixel scale) performs sky survey observations of ran-
dom locations of the sky. We used the images acquired during
these observations as an input for evaluating our transient classi-
fier. To do so, the images from the telescope were pre-processed
by the telescope data acquisition and archiving system that han-
dles initial astrometric calibration using the locally installed
ASTROMETRY.NET code, as well as basic steps such as dark
subtraction, flat-fielding, and masking of cosmic rays. We used
the GMADET pipeline to retrieve thousands of artificial point-like
sources we have simulated in each image. We then populated
the dedicated ‘True’ and ‘False’ folders following the method
described in Sect. 5.1. In Fig. 6, we show some examples of the
cutouts stored in the ‘True’ and ‘False’ folders.

5.3.3. TACA

We used the TACA images produced during the optical follow-
up of the O3 GW event S200114f. Two nights of observations
were collected on the January 15–16, 2020 to obtain 36 images
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False True

Fig. 7. Some TACA cutouts of bogus (left) and point-like sources can-
didates (right). The cutouts are produced by the GMADET pipeline
(32× 32 pixels).

False True

Fig. 8. Some TCA cutouts of bogus (left) and point-like sources can-
didates (right). The cutouts are produced by the GMADET pipeline
(32× 32 pixels).

of the sky. Using the GMADET pipeline, we simulated four hun-
dred sources per image from which we built a list of candidates.
After cross-matching these candidates with the position of the
simulated sources, we were able to build the ‘True’ and ‘False’
folder. In Fig. 7, we show some examples of the cutouts stored in
these folders.

5.3.4. TCA

The TCA telescope took a significant number of follow-up
observations during the O3 LVC campaign for the GRANDMA
Collaboration (Antier et al. 2020a,b). We used TCA images from
various regions of the sky taken in the first half of the O3 run. We
then applied the method described in Sect. 5.1 to simulate thou-
sands of artificial sources in these images using the GMADET
pipeline. Finally, we obtained several thousand candidates to
populate the data cube of ‘True’ and ‘False’ sources as shown in
Table 3. In Fig. 8, we show some examples of the cutouts stored
in the ‘True’ and ‘False’ folders.

6. Classification performance diagnosis tools

6.1. Metrics

Once a residual cutout is analysed by our O’TRAIN CNN, it will
deliver, as output, a probability, pclass, that the source at the cen-
ter is a bogus or a real source. Typically, when pclass = 0, the
CNN model has unambiguously identified a bogus and recipro-
cally when pclass = 1, the CNN model has determined the OT
candidate is real. A random guess would lead to pclass = 0.5.
Actually, a probability threshold, pt, needs to be defined to make

Table 4. Components of the confusion matrix.

Predicted Predicted
Positive (1) Negative (0)

Actual positive True positive False negative
(1) (TP) (FN)

Actual negative False positive (a) True negative
(0) (FP) (TN)

Notes. (a)Also known as a ‘false alarm’.

a final decision, namely, whether a candidate is tagged as a ‘True’
and ‘False’ OT source. As a consequence, we can determine that
an OT candidate is well classified if it satisfies the two following
configurations:
1. pclass ≥ pt and the OT candidate was initially labelled as

‘True’. We call this candidate a ‘True Positive’.
2. pclass < pt and the OT candidate was initially labelled as

‘False’. We call this candidate a ‘True Negative’.
All other possible configurations lead to misclassifications (false
positives or false negatives). In order to have a global and
the most realistic perspectives of our model’s performance, we
implemented multiple evaluation metrics and curves. Since the
threshold, pt, affects our metrics, we plotted their values on a 2D
curve with a varying threshold. This enables us to see which one
works best for each telescope. Firstly, for a binary classification,
we may generate a ‘confusion matrix’ to display the frequency
of every combination of predicted classes and actual classes, as
shown in Table 4.

The confusion matrix allows to quickly identify pathological
classification behaviours of our model especially if the frac-
tion of false positives (FP) or false negatives (FN) is high.
We typically do not want to exceed 5% of the total candidates
misclassified as FP, while keeping the FN as low as possible.
The other implemented metrics help to summarise the confu-
sion matrix and emphasise different aspects of the classification
performance: (1) the Accuracy (Acc) corresponding to the per-
centage of candidates that are accurately classified; (2) the Loss
function. In our model, we use a cross entropy loss function with
the following formula:

loss = −(y× log(p) + (1 − y)× log(1 − p)), (1)

where y is a binary indicator of a class and p is the probability
given to said class; (3) the Precision (Prec) that calculates the
number of real point-like sources well classified by the model
amongst the candidates classified as real by the model. A good
precision score (near 1) shows that the model is usually right in
its predictions of the positive class, marked as ‘real sources’; (4)
the Recall which calculates how many real transients were well
classified in the true transient data set, so a good recall score
indicates that the model was able to detect many positive can-
didates; (5) the F1-score that estimates the harmonic mean of
recall and precision:

2× precision× recall
precision + recall

. (2)

The F1-score ranges from 0 to 1, the better the performance is,
the higher the value of this score; (6) the Matthews correlation
coefficient (MCC, Matthews 1975) that takes into account the
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four parts of the confusion matrix, with the following formula:

TP×TN − FP×FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

. (3)

The MCC score is in essence a measure of correlation between
the observed and the predicted binary classification. They would
be considered positively associated if most data falls along the
diagonal cells in the confusion matrix. In other words, the MCC
score is an application of the Pearson correlation coefficient
on the confusion matrix. Hence, a MCC score greater than 0.7
corresponds to strong agreement between predictions and obser-
vations (Boslaugh 2012; Nettleton 2014; Schober et al. 2018); (7)
the ROC curve that displays the true positive rate (TPR) versus
the false positive rate (FPR). An ideal model would have a ver-
tical line on x = FPR = 0 and horizontal line for y = TPR = 1.
This metric enables us to visualise the global performance; (8)
the Recall-Precision curve as with the F1-score, it displays the
model performance on the positive class (real sources).

The evaluation of the confusion matrix, displayed by the
ROC and the recall-precision curves, is clear and easily inter-
pretable, however, it might not be realistic. While the recall-
precision curve helps us to compare the model with an always-
positive classifier, it fails to include the evaluation on the neg-
ative class. On the other hand, the ROC curve leverages the
four values in the confusion matrix, but its analysis could be
misleading for unbalanced data sets. Even if our global data
sets are balanced, we lose this property when, for example, we
split the candidates into ranges of magnitude and uncertainty in
magnitude.

A more sophisticated solution was proposed by Yamashita
et al. (2018) to assess the performance of the model over a
varying threshold, based on the MCC and the F1-score. The
F1-MCC curve displays the MCC score versus the F1-score
for a varying threshold. This allows us to determine the confi-
dence score of the model for every telescope, by looking at the
threshold that optimises both scores.

6.2. Optimising the classification threshold

A threshold of pt = 0.5 is usually the default value and the most
intuitive one. But it is not always the most suitable to provide the
best classification performances. Therefore, for each telescope
data set, we studied the impact of varying thresholds of probabil-
ity, pt, on the classification results. We did so in order to choose
the pt that will finally maximise the classification performances.
We based our choice of the best pt on the ROC, the precision-
recall and the F1-MCC curves for which we plotted TPR versus
FPR, the precision versus the recall and the F1-score versus the
MCC, respectively, for a varying threshold, pt. Therefore, the
best pt is the one that will jointly maximise the score of these
three chosen metrics. With regard to the ROC curve, we selected
a value that maximises the g-mean score:

gmean =
√

TPR× (1 − FPR). (4)

For the precision-recall curve, we try to maximise the F1-score.
The F1-MCC curve shows the threshold, pt, at which we max-
imise both the F1-Score and the MCC by maximising the sum
of these two metrics. The value of the best threshold differs from
one telescope to another and helps us to get a better perspective
of the CNN model’s performance (as explained in further detail
in Sect. 7).

Fig. 9. Illustration the Grad-CAM function that helps identifying the
regions of interest in the image that triggered the O’TRAIN classifi-
cation. Left: residual cutout (32× 32 pixels) of a bogus identified in
the JAST telescope images. Center: the GRAD-CAM Heatmap (8×
8 pixels) showing the final feature maps × their importance where
our O’TRAIN CNN focused on to take its decision. Right: rescaled
Grad-CAM heat map (32× 32 pixels) for a direct comparison with the
cutout.

6.3. Issues of overfitting or underfitting

Providing the model with just enough data to reasonably train
it is crucial. With a small data set, the model does not have
enough information to make the necessary distinction between
a true transient and a bogus one. The ideal case would be to have
a large data set of several tens of thousands of candidates with
no contamination, along with the computational resources to be
able to train a model on a data set of this size. The model should
be at least complex enough to create good non-linear connec-
tion between these characteristics, but not too complex, so that
we may avoid creating connections that are not relevant to the
classification and that are only present in the training data set.
When the model is not trained enough, we call it an underfitting,
and the performance is inefficient in terms of both training and
validation data sets. If the model, on the other hand, is learning
too much and getting trivial information, we call it an overfit-
ting; in this case, the performance in the validation data set is
considerably worse than it is on the training data set. We can esti-
mate such an over(under)fitting behaviour of our CNN thanks to
two metrics: loss and accuracy. We can track these two values
throughout the training process (i.e. the epochs) to see if at some
point we notice the beginning of a divergence between these val-
ues on the training and the validation data sets. If so, we should
configure the model so that it stops the training at that moment.

6.4. Understanding the model’s decision with the gradient
class activation map (Grad-CAM)

The output of a CNN and its classification decisions are some-
times not easy to understand or interpret. We used gradient-
weighted class activation mapping (i.e. Grad-CAM, Selvaraju
et al. 2020) to track the regions that were considered as the most
important ones by the model to make its decision. The idea here
is to take the last feature maps (right before flattening them) and
multiply each one of them with its corresponding importance in
the classification by back propagating the derivative of the loss
with respect to it. We add them up and resize this output to the
size of the input images in order to overlay them. The Grad-CAM
is therefore a powerful diagnosis tool for the O’TRAIN users to
understand what has triggered the CNN classification decision.
In Fig. 9, we show an example of the Grad-CAM output tested
on one bogus cutout from the JAST telescope. In these images,
we can clearly see that the CNN model focuses on the correct
region of the residual cutout to make the right decision, namely,
classifying a non-point-like source as a bogus transient.
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Table 5. Results of the different metrics used to evaluate the classification performances of our CNN models trained on 5 telescope data cubes.

Telescope Detection pt Acc Loss Prec Recall F1-score MCC Confusion
name pipeline [0-1] [0-1] [0-1] [0-1] [0-1] [0-1] [0-1] Matrix

JAST GMADET 0.35 0.98 0.06 0.98 0.99 0.99 0.97
[

0.49 0.01
≤0.01 0.49

]
JAST STDPIPE 0.51 0.95 0.10 0.94 0.97 0.96 0.91

[
0.46 0.03
0.02 0.5

]
FRAM-CTA-N GMADET 0.55 0.93 0.30 0.89 0.97 0.93 0.85

[
0.43 0.06
0.02 0.49

]
TACA GMADET 0.52 0.93 0.20 0.91 0.96 0.95 0.86

[
0.43 0.06
0.01 0.50

]
TCA GMADET 0.34 0.94 0.2 0.92 0.97 0.95 0.89

[
0.45 0.04
0.01 0.49

]
Notes. The values of the metrics have been computed based on the best probability threshold, pt. pt has been chosen to maximise the F1-MCC
scores and minimise the false alarm rate (i.e. false positives).

7. Results and classification performance

Given the diagnosis tools described above, we were able to eval-
uate the classification performance of our CNN models trained
on the five training data sets described in Table 3. We describe
our results in the following sections.

7.1. O’TRAIN classification performance

We applied the aforementioned metrics and curves to track the
performance of the model, in both the ‘True’ and ‘False’ classes
and for a varying threshold and ranges of magnitude. This allows
us to get a very general and global perspective of the per-
formances. Following the method described in Sect. 6.2, we
selected the best threshold, pt, for each telescope training set.
Then we calculated the accuracy and loss of the last epoch on
the validation data set, the precision, recall, F1-score, and MCC,
as well as the confusion matrix with percentages of each part
among the validation set. The results are summarised in Table 5.

We paid particular attention to the MCC score since it gath-
ers all parts of the classification (or the confusion matrix) and
is more robust than other metrics. We want it to be greater than
0.7 to ensure we have a strong correlation between the O’TRAIN
predicted classes and the labelled true ones, see Sect. 6.1. For all
of our training data cubes, the MCC scores are greater than 0.84
and, therefore, they satisfied our scientific requirements. We also
noticed that all the FP are kept below 2% which is again perfectly
in agreement with our scientific requirements (FP≤ 5%).

As an example, we show in Fig. 10, a collection of differ-
ent diagnosis curves we produced after the training of O’TRAIN
on the JAST cutouts created with the GMADET pipeline. First,
we estimated the best probability threshold, pt to clarify the
CNN decision. Once this was fixed, we used this value (pt =
0.35) to derive all other metrics values. On the one hand, we
can see that the model unambiguously classifies the candidates,
namely ∼50% ‘False’ with pclass = 0 and ∼50% ‘True’ with
pclass = 1. Such a drastic classification behaviour shows that the
model is well designed for making these binary classifications
and the training data cube is correctly constructed with a high
purity of both ‘True’ and ‘False’ candidates. The ROC curve
is near the ideal case for this telescope and for all ranges of

magnitude. These near ideal diagnosis curves associated with the
metrics values listed in Table 5 allow us to validate the perfor-
mance of our CNN model. By checking the accuracy and the
loss metrics, we note that after ten epochs, the O’TRAIN model
converges towards high accuracies (Acc > 0.98) and small losses
(loss < 0.1). Despite a little deviation in the loss metric between
the training and the validation data sets, we did not detect any
significant over(under)fitting as we will show in the following
section. In Appendix A, we show the same diagnosis curves
for the other telescope cases we studied in this work. They all
show very good classification performances in agreement with
our scientific requirements.

7.2. Evaluating the over(under)fitting behaviour of the trained
CNN model

As explained in Sect. 6.3, an important parameter that ensures
the classification performance will be reproducible in real obser-
vational conditions (with a data sets never seen by our CNN
model) is the over(under)fitting parameter. As we trained our
CNN on relatively small data set sizes, we might be sensitive
to over(under)fitting behaviours. To measure it from each of our
five data cubes, we computed ∆Acc = Acctrain − Accval as func-
tion of different data set sizes by gradually changing the sizes of
the ‘True’ and ‘False’ folders used for the training. As shown
in Fig. 11, we found that with training data set sizes smaller
than 5000 candidates including both ‘True’ and ‘False’ ones,
the learning process leads to unavoidable over- or under-fittings
with |∆Acc| > 2%. For larger data sets, the architecture of our
O’TRAIN CNN is finally well adapted for being trained on such
a binary classification task as it converges towards ∆Acc ∼ 0. In
a complementary way, we also show in Fig. 11 the evolution of
the accuracy, the F1-score and the MCC metrics as functions of
the data set size for the JAST-GMADET data cube only. We also
see that the metrics converge towards high scores once the data
set size used for the training is larger than 5000 cutouts.

These results allow us to conclude that our CNN model
will have reproducible robust classification results while being
trained on a relatively small amount of labelled cutouts (typically
10 k of cutouts).
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Fig. 10. Different visualisation of the metrics used to evaluate the performance of the O’TRAIN model trained on the JAST-GMADET data cube.
Top left: evolution of the MCC and F1-score as a function of different values of pt. The value pt = 0.35 maximises both the MCC and F1-score,
our two main diagnosis to evaluate the CNN classification performances. Top right: classification probability distribution of the validation data set
at the last epoch of training. Bottom left: evolution of the accuracy and loss metrics as a function of the number of training epochs. Bottom right:
ROC curve per bin of the OT candidate magnitudes in order to diagnose the behaviour of the O’TRAIN model for different source brightness.

8. Discussion and perspectives

In this work, we demonstrate that we are able to obtain very
good RB classification results with our algorithm. However,
there are still some limitations involved, which we discuss in this
section.

8.1. Size of the cutouts used to train O’TRAIN

The cutouts contain the information about the OT candidate
signal at the center of the image, the noise model, and (pos-
sibly) the signal from other sources located elsewhere in the
image. As the CNN model analyses all those features in the
cutouts, large cutouts may result in confusing the classification
decision as more features have to be extracted and weighted.
This is due to the fact that the size of the convolutional fil-
ter kernels may not be well adapted to extract numerous and
large features in the cutouts. Therefore, we decided to study
the impact of the cutout sizes in our CNN decisions. To do so,
we used the cutouts (‘True’ and ‘False’) produced by the STD-
PIPE pipeline in 63× 63 pixels from the JAST telescope original
images. We built several data cubes with the cutout sizes vary-
ing from 15× 15 pixels to 63× 63 pixels while still keeping
the OT candidates at the center. We show in Fig. 12 that the

maximum acceptable size for these cutouts to maintain a high
level of classification performance is 48× 48 pixels. Above
this cutout size, the model behaves randomly and ends up
erroneously classifying the candidates. We attribute this to a
structural limitation of our CNN algorithm which employs small
kernel filters (3× 3 pixels) in the convolutional layers. These ker-
nels might therefore not be adapted to catch features in cutouts
larger than 48 pixels. subsection Possible ways to improve
the classification Currently, our CNN algorithm performs its
classification process on the residual cutouts provided by the
subtraction of science and reference images. While we obtained
just a few false positives, we ended with a non-negligible num-
ber of false negatives. In other words, we optimised O’TRAIN
to keep the false alarm rate as low as possible with the cost
of losing real optical transient sources (conservative approach).
However, additional informations on each candidate could be
used to reduce the FN and, hence, improve the classification
performances. Gieseke et al. (2017) explored this approach by
considering three cases for their CNN training: (1) The CNN
predictions are based on the analysis of the science, the reference
and the residual cutouts; (2) the CNN predictions are based on
the analysis of the science and the reference cutouts; 3) the CNN
predictions are based on the analysis of the residual cutouts only.
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Fig. 11. Top: Evolution of ∆Acc between the batch and the validation
data sets as function of the size of the initial training data set after
25 epochs. This visualisation allows to quickly identify if the CNN algo-
rithm is in an over(under)fitting regime (outliers of the dashed lines).
Bottom: Evolution of three metrics: accuracy, F1-score and MCC as a
function of the training data set size (JAST-GMADET).

According to these authors, the training data sets based on
the first and second configurations described above give sim-
ilarly good classification performances. On the contrary, their
CNN model gave slightly worse results when it only analysed the
residual cutouts. An interesting perspective is highlighted here,
namely, the possibility of discarding the image subtraction pro-
cess (that can produce plenty of artefacts) for RB classification
purposes. In our approach, we only used the standard resid-
ual images output from the GMADET and STDPIPE pipelines
which already provides decent classification results. In order to
give more flexibility and scientific perspectives to O’TRAIN,
an update allowing the users to give different types of cutouts
as a data cube input (science-ready, reference, residual, mask
template images) is foreseen.

8.2. Towards more sophisticated methods: FASTER-R and
MASK-R CNN

Thanks to the Grad-CAM tools included in O’TRAIN, we
noticed that some OT candidates were misclassified due to the
presence of additional sources in the cutouts (see Fig. 13).

Fig. 12. Evolution of the accuracy, F1-score, and MCC metric scores
as a function of the cutout sizes given as input to O’TRAIN. The
architecture of our O’TRAIN model applied to the JAST-STDPIPE is
well adapted for a RB classification if the cutouts sizes do not exceed
∼50 pixels.

Fig. 13. Example of a misclassified OT (FN) by O’TRAIN. While the
CNN focuses a fraction of its attention into the central part of the cutouts
(where the OT is), most of its classification decision relies on the pres-
ence of a brighter source and a non-uniform background noise at the top
of the cutouts.

This kind of misclassification might be solved by the addition
of more information in the data cube as discussed above. It could
also be completely avoided by using novel techniques to analyse
the astronomical images by deep convolutional neural networks
such as: FASTER-R (Ren et al. 2015) and/or MASK-R CNN (He
et al. 2017) algorithms. Whilst both methods consists of finding
regions in the image that contains the object (i.e. the OT) that we
are looking for, the FASTER-R CNN will output bounding boxes
containing these objects, whereas the MASK-R-CNN goes one
step further and gives us the exact pixels of the targeted objects.

For the training, the FASTER-R-CNN, as explained by Ren
et al. (2015), takes on a data set of images with information
such as the coordinates of the bounding boxes containing sources
of the image. It applies a CNN model to extract features, and
passes them to another model called the ‘region proposal net-
work’ (RPN), which performs a regression on the coordinates,
and then on to a classifier to predict the class of the detected
objects. Like all training processes, the model tries to align its
predictions with the ground truth. In this case, it places a sliding
window (anchors) that could vary in size and proportions and
then calculates the score of Intersection over the Union (IoU)
between its predicted boxes and the ones in the data set we had
given it.

The RPN outputs several proposals, called regions of interest
(ROI), for all objects detected in the image. Since these regions
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will not have the same size, a pooling (i.e. ROI Pool) will be
applied before passing it through a classifier as explained in
Girshick (2015). The coordinates in the data set, and therefore the
predicted coordinates, are on the original image scale. However,
the feature maps were decreased a few times from the original
image. To adapt the coordinates, the ROI Pool divides them by
the ratio of the size of the original image and that of the feature
maps (in our case, this ratio would be n = 8) and takes the integer
part:

new coordinates = [original/n]. (5)

The ROI Pool also transforms the regions into a fixed sized out-
put in order to give it to the classifier. Given a shape fixed by
the user, the ROI Pool will divide each region of interest into a
grid of this shape, each bin of the grid might contain just a few
pixels. The ROI Pool will take the maximum value of each cell
and produce a matrix of the desired shape.

The MASK-R CNN outperforms the FASTER-R-CNN as
it adds a branch to this structure for a binary mask, showing
whether the pixel is part of the object or not, and thus perform-
ing a pixel-level detection of objects. He et al. (2017) noticed
a misalignment between the ROIs after the ROI Pool layer and
the regions in the original image, which could cause a drop in
the model’s performance since the mask requires precision at a
pixel level. These authors adjusted this part by using ROIAlign
instead of ROIPool (Dai et al. 2015; He et al. 2017), where they
did not take the integer part in Eq. (5); this outputs coordinates
as float values, so we do not have the exact pixels. The region in
ROI Align is still divided into a grid. In each bin of this grid, we
regularly put four sample points and for each point, we kept the
coordinates of the middle cell of the nearest four pixels and the
values of these pixels, in its vicinity (i.e. if the sample point is
on the top-left of the bin, we looked for the nearest pixels to this
point on the top-left of the bin). Using the bilinear interpolation
between these coordinates and the values, we were able to get
a representative point. Finally, we obtained four representative
points for the specific bin and we kept their maximum values.

This model could be well adapted to our RB problem, since
some astronomical tools, such as SEXTRACTOR, exist to cre-
ate a segmentation map of the optical sources present in the
image and an offset of only two pixels can greatly affect the
performances. Implementing these new classification methods
is beyond the scope of this paper, however, further development
will be employed to include them in the O’TRAIN framework in
the future.

9. Conclusions

Real and bogus classifiers are now standards in the pipelines aim-
ing at detecting a large number of transient phenomena at optical
wavelengths. We have developed a robust and flexible convolu-
tional neural network model called O’TRAIN. It aims at distin-
guishing real point-like sources from various types of bogus in
optical images. We have shown that O’TRAIN reaches high clas-
sification performances for a wide range of telescope pixel scales
and observational conditions. In addition, we demonstrated the
capabilities of our CNN model to behave robustly against various
types of inputs (cutout and data set sizes, residuals images from
different subtraction methods, etc.) provided by two publicly
available transient detection pipelines (GMADET and STDPIPE).
Indeed, on the five training data cubes, we obtained very good
classification performances with MCC scores ranging in the
interval [0.84 - 0.99]. Such performances can be obtained with

a relatively small size of the training data sets, typically on the
level of a few tens of thousands of labelled cutouts, without creat-
ing any over- or underfitting during the training epochs. To guide
users, we have built a complete user-friendly and easy-to-use
frame work to launch training as well as to check diagnostic tools
monitoring the performance of the CNN model. This will greatly
help observers who would like to use such a machine learning
technique in their own pipeline even if they are not fully experts
on the method. Overall, O’TRAIN is a publicly available code
and aims to be upgradeable in the future, with new features that
would enhance the flexibility of the code and the classification
perspectives such as the simultaneous classification of multiple
sources at once.
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Appendix A: O’TRAIN diagnosis curves for
JAST-STDPIPE, TACA, FRAM, and TCA images

JAST-STDPipe post-training diagnosis curves

Fig. A.1. Different visualisations of the metrics used to evaluate the performance of the O’TRAIN model trained on the JAST-STDPIPE data cube.
Top left: Evolution of the MCC and F1-score as a function of different values of pt. The value pt = 0.51 (best threshold) maximises both the MCC
and F1-score. Top right: Classification probability distribution of the validation data set at the last epoch of the training. Bottom left: Evolution of
the accuracy and loss metrics as a function of the number of training epochs. Bottom right:) ROC curve per bin of the OT candidate magnitudes in
order to diagnose the behaviour of the O’TRAIN model for different source brightness.
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TACA post-training diagnosis curves

Fig. A.2. Different visualisations of the metrics used to evaluate the performance of the O’TRAIN model trained on the TACA-GMADET data cube.
Top left: Evolution of the MCC and F1-score as a function of different values of pt. The value pt = 0.52 (best threshold) maximises both the MCC
and F1-score. Top right: Classification probability distribution of the validation data set at the last epoch of the training. Bottom left: Evolution of
the accuracy and loss metrics as a function of the number of training epochs. Bottom right: ROC curve per bin of the OT candidate magnitudes in
order to diagnose the behaviour of the O’TRAIN model for different source brightness.

A81, page 16 of 18



K. Makhlouf et al.: O’TRAIN, for the study of the optical transient sky

FRAM-CTA-N post-training diagnosis curves

Fig. A.3. Different visualisations of the metrics used to evaluate the performance of the O’TRAIN model trained on the FRAM-CTA-N-GMADET
data cube. Top left: Evolution of the MCC and F1-score as a function of different values of pt. The value pt = 0.55 (best threshold) maximises both
the MCC and F1-score. Top right: Classification probability distribution of the validation data set at the last epoch of the training. Bottom left:
Evolution of the accuracy and loss metrics as a function of the number of training epochs. Bottom right: ROC curve per bin of the OT candidate
magnitudes in order to diagnose the behaviour of the O’TRAIN model for different source brightness.
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TCA post-training diagnosis curves

Fig. A.4. Different visualisations of the metrics used to evaluate the performance of the O’TRAIN model trained on the TCA-GMADET data cube.
Top left: Evolution of the MCC and F1-score as a function of different values of pt. The value pt = 0.34 (best threshold) maximises both the MCC
and F1-score. Top right: Classification probability distribution of the validation data set at the last epoch of the training. Bottom left: Evolution of
the accuracy and loss metrics as a function of the number of training epochs. Bottom right: ROC curve per bin of the OT candidate magnitudes in
order to diagnose the behaviour of the O’TRAIN model for different source brightness.
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