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a b s t r a c t

A gauge-invariant wave equation for the dynamics of hybrid quantum–classical systems is formulated
by combining the variational setting of Lagrangian paths in continuum theories with Koopman
wavefunctions in classical mechanics. We identify gauge transformations with unobservable phase
factors in the classical phase-space and we introduce gauge invariance in the variational principle
underlying a hybrid wave equation previously proposed by the authors. While the original construction
ensures a positive-definite quantum density matrix, the present model also guarantees the same
property for the classical Liouville density. After a suitable wavefunction factorization, gauge invariance
is achieved by resorting to the classical Lagrangian paths made available by the Madelung transform
of Koopman wavefunctions. Due to the appearance of a phase-space analogue of the Berry connection,
the new hybrid wave equation is highly nonlinear and it is proposed here as a platform for further
developments in quantum–classical dynamics. Indeed, the associated model is Hamiltonian and
appears to be the first to ensure a series of consistency properties beyond positivity of quantum and
classical densities. For example, the model possesses a quantum–classical Poincaré integral invariant
and its special cases include both the mean-field model and the Ehrenfest model from chemical physics.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The coupling between classical and quantum degrees of freedoms represents an outstanding question ever since the rise of quantum
echanics as a physical theory. Following Bohr’s work, Landau and Lifshitz [1] defined a quantum measurement as the interaction
etween a measured quantum system and a classical system commonly referred to as the apparatus. In this way, ‘‘quantum mechanics
ccupies a very unusual place among physical theories: it contains classical mechanics as a limiting case, yet at the same time it
equires this limiting case for its own formulation’’ [1]. However, the search for an extension of quantum theory (and its mathematical
ooting) to include the coupling to a classical system has been one of the most challenging directions for about a century. The main
ifficulty is capturing the correlations between the quantum system and the ‘apparatus’ that are responsible for the decoherence
henomenon, i.e. the loss of pure states in the quantum sector as time goes by. In addition, according to Bohr [2], the classical apparatus
tself undergoes some kind of uncontrollable disturbance that is also a consequence of quantum–classical correlations. While Bohr’s
isturbance has never been fully characterized, a possible interpretation lies in the loss of classical pure states, i.e. the loss of delta-like
lassical Liouville distributions [3].
The search for an extension of quantum theory to incorporate the interaction with classical systems leads naturally to the idea of a

ybrid model in which classical and quantum dynamics are treated on an equal footing: when no interaction is present in the treatment,
he theory must reduce to the uncoupled equations of quantum and classical mechanics, that is Schrödinger’s (or quantum Liouville)
nd Newton’s (or classical Liouville) equations, respectively. For example, this important property is satisfied by the mean-field model.
n standard Poisson bracket and commutator notation, this model is given by

∂ρc

∂t
= {Tr(ρ̂qĤ), ρc} , ih̄

∂ρ̂q

∂t
=

[∫
ρc Ĥ dqdp , ρ̂q

]
. (1.1)
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ere, ρc and ρ̂q are the classical Liouville density and the quantum von Neumann operator, while the hybrid Hamiltonian Ĥ(q, p) is a
hase-space function taking values in the quantum operators. Unfortunately, the mean-field equations (1.1) neglect quantum–classical
orrelations [4], thereby ignoring decoherence. Thus, one is motivated to look for a more involved model where the fundamental
uantities are functions of both classical and quantum coordinates on phase-space and configuration-space, respectively. This direction
as pursued only occasionally in the physics community [5–8] and with little success. For example, in some cases the models fail to
educe to the uncoupled equations of quantum and classical mechanics in the absence of quantum–classical interaction [9]. Lists of
onsistency criteria for hybrid quantum–classical models were provided in [5] and more recently in [10]. Among the most important
riteria, we find the positivity of quantum and classical densities, as well as the decoherence property Trρ̂2

q ̸= const .
The difficulties encountered in establishing a hybrid quantum–classical theory beyond mean-field led much of the community

o move away from this direction, thereby abandoning Bohr’s initial view of quantum measurements based on quantum–classical
nteraction. For example, no-go arguments have been proposed over the years to even exclude the possibility of such hybrid
heories [11–13] beyond simple models of mean-field type. A currently common picture involves a fully quantum apparatus in
hermodynamic equilibrium, while the link to classical mechanics is provided by the classical limit that is obtained as a result of
ong-time evolution. Based on Lindblad’s master equation [14] this approach completely ignores the motion of the apparatus, whose
egrees of freedom are traced out to yield the irreversible dynamics of the quantum density matrix. Due to irreversibility, the fine
mall-scale structures are eventually smoothened out just as in the classical Fokker–Planck equation. Then, in this picture a classical
tate emerges as the result of irreversible dissipative dynamics at the quantum scales. Due to the absence of small-scale phenomenology,
t has been pointed out that the classical states made available in this way are ‘‘arguably among the least classical ones’’ [15], as it seems
o emerge also from recent simulations in the Wigner picture [16]. However, we shall not enter this discussion here.

While quantum–classical coupling first emerges as a foundational question in relation to the measurement process, similar question
ppear in semiclassical descriptions of gravity [17]. In this context, the absence of a consistent quantum theory of gravity leads to
reating the geometric background as a classical system [18]. Then, the question is how an evolving quantum field in an expanding
niverse affects the expansion rate of the background on which it is defined. Currently available semiclassical theories fail to address
his backreaction problem and thus one is motivated to look for more complete models that can include this important effect [5].

Besides the foundational aspects, the development of mixed quantum–classical models is also an active area of research in more
pplied areas such as chemical physics [19–21], solid state physics [22,23], and more recently spintronics [24]. For example, in the
atter case, recent proposals involve the use of classical ferromagnets to enlarge the parameter space in spin control. On the other hand,
n quantum chemistry and solid-state physics, hybrid/mixed quantum–classical models emerge as a promising direction to alleviate
he curse of dimensionality currently challenging many-particle quantum simulations. One typically identifies the slow motion of
ome degrees of freedom which are eventually treated as classical in order to mitigate the cost of simulating their evolution. The
ost celebrated example is provided by Born–Oppenheimer molecular dynamics [25], which arises from methods in slow-manifold

eduction [26]. In this model, the nuclei are treated as classical, while quantum electrons are constrained to evolve adiabatically in their
round state. Then, the degeneracies appearing in the associated electronic eigenvalue problem lead to topological singularities, known
s ‘‘conical intersections’’. The numerical treatment of these singularities and their resulting geometric phase pose further difficulties
hat continue to challenge the community. However, recently the question emerged whether the topological singular nature should be
etained at all in order to account for geometric phase effects [27,28].

Despite the paramount importance of Born–Oppenheimer molecular dynamics, the adiabatic approximation underlying electron
ynamics is quite limitative and a whole new industry has now emerged to tackle nonadiabatic dynamics. In this context, the equations
urrently implemented in hybrid quantum–classical methods [19] often lack a sound mathematical footing. The desire for such a
undamental rigorous ground has led some [29,30] to derive mixed quantum–classical algorithms from the Aleksandrov–Gerasimenko
AG) equation [31,32]

∂D̂
∂t

= −ih̄−1
[Ĥ, D̂] +

1
2

(
{Ĥ, D̂} − {D̂, Ĥ}

)
. (1.2)

ere, D̂(q, p) is a phase-space density with values in the quantum von Neumann operators, so that the classical and quantum densities
re written as ρc = TrD̂ and ρ̂q =

∫
D̂ dqdp. Eq. (1.2) satisfies several important properties [5] and is commonly regarded as a

undamental step beyond the mean-field model. In turn, the AG equation allows for a sign-indefinite density matrix ρ̂q of the quantum
ubsystem with the potential drawback of violating the uncertainty principle. In addition, as the AG equation breaks the time-reversal
ymmetry, one would like to justify this property in terms of an H−theorem for the entropy increase. However, such a result is currently
navailable. This lack of entropy arguments also applies to stochastic augmentations of the AG equation [33].
Recently, a new approach has been proposed by the authors [3] upon following a suggestion by George Sudarshan [7,34]. By

xploiting Koopman’s Hilbert space formulation of classical mechanics [35], one can try to construct a hybrid quantum–classical
avefunction Υ (q, p, x), whose dynamics recovers the mean-field model by writing Υ (q, p, x) = χ (q, p)ψ(x). Here, (q, p) are classical
hase-space coordinates and x is the quantum configuration coordinate. Moreover, χ is a Koopman wavefunction obeying an equation
f the type

ih̄∂tχ = {ih̄H, χ} + ϕχ , (1.3)

o that the classical Liouville equation ∂tρc = {H, ρc} emerges by writing ρc(q, p) = |χ (q, p)|2. However, finding a consistent evolution
aw for a general hybrid wavefunction Υ (q, p, x) is far from easy and Sudarshan’s early attempt led to interpretative issues [13,36,37].
he authors recently addressed this problem by modifying Koopman’s original prescription ρc = |χ |

2 after selecting the specific phase
actor ϕ = p∂pH−H given by the usual Lagrangian on phase-space. The resulting hybrid theory leads to the construction of an unsigned
perator-valued distribution D̂(q, p), which however yields a positive-definite quantum density matrix ρ̂q. As this feature allows to
ecover the quantum uncertainty principle, the underlying hybrid model from [3] represents a step forward beyond the AG equation
1.2). However, the classical density ρc constructed in this way has a sign-indefinite expression and thus one is led to ask whether an
nitially positive Liouville density may develop negative values in time. As discussed in [38], a general answer is currently unavailable,
lthough there are infinite families of hybrid systems for which ρ was shown to stay positive in time.
c
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The question whether the classical density should be positive-definite in hybrid dynamics is crucial since the development of
negative values may lead to interpretative issues. Some of these issues were addressed in [3] by resorting to analogies with Wigner
functions, following earlier ideas by Feynman [39]. However, general arguments are still lacking and thus one may ask if the hybrid
theory presented in [3] can be modified to accommodate a positive-definite classical Liouville density. A positive answer was provided
by the authors in [10] by combining recent mathematical techniques in chemical physics and the geometry of Hamilton’s variational
principle. The main feature is that, while the original hybrid theory is linear, the new closure variant appears to be nonlinear and the
nonlinearity seems to be produced by the emergence of a Berry connection in phase-space. Explicitly, this closure module reads as
follows:

ih̄∂t P̂ + ih̄ div
(
P̂ ⟨XĤ⟩

)
=

[
Ĥ, P̂

]
, (1.4)

where P̂(q, p) is a hybrid density playing the role of D̂ in (1.2), while we have used the notation XÂ = (∂p̂A,−∂q̂A ) and ⟨̂A⟩ = Tr(̂AP̂)/TrP̂ .
Here, the effective Hamiltonian Ĥ is given by Ĥ = Ĥ + h̄F̂(P̂), where the operator-valued function F̂ is expressed in terms of P̂ and
P̂, Ĥ} + {Ĥ, P̂}. Neglecting the h̄−contribution to the effective Hamiltonian reduces Eq. (1.4) to the Ehrenfest model, which will be
iscussed at the end of this paper. In more generality, the full closure model (1.4) has so far been formulated only in terms of hybrid
uantum–classical densities. In this paper, we will show that a wavefunction description unfolds several relevant properties, including
he existence of a Poincaré integral invariant leading to the construction of a Liouville volume density that can be used to identify a
ibbs entropy functional for the classical sector.
In particular, this paper shows that positivity of the classical density may be achieved by adopting a gauge invariance principle to

eflect the fact that classical phases are actually unobservable. This particular remark about the irrelevance of local phases in classical
echanics represents the second fundamental point raised by Sudarshan and it was addressed in his paper by the enforcement of
pecific superselection rules whose mode of operation has never been clear [13,36,37]. Instead of superselection rules, this paper
ddresses the point of unobservable classical phases by treating them as a gauge freedom. This is exactly what happens in standard
uantum mechanics where global phase factors are irrelevant and wavefunctions are always defined up to a phase. In this context, the
iouville density can be thought of as a Noether charge just like total probability in quantum theory. This paper pursues this analogy by
aking the original treatment in [3] manifestly gauge invariant under local phase transformations, that is multiplicative phase factors

or which the phase is a function on the classical phase-space. The achievement of gauge invariance is made possible by the specific
act that the original quantum–classical wave equation in [3] is already manifestly gauge-covariant. On the other hand, the actual
rocess leading to gauge invariance requires several steps. Starting with the variational principle underlying the original theory, its
ssociated Lagrangian will undergo several exact transformation steps so that it is finally taken into a form where the gauge invariance
rinciple can finally be applied. As we will see, this is a nontrivial process combining hydrodynamic approaches to Liouville phase-
pace dynamics with specific wavefunction factorization techniques recently developed in chemical physics. The combination of these
pproaches is made necessary by two facts: (1) the classical Liouville equation is a characteristic equation accompanied by a Lagrangian-
ath hydrodynamic description, and (2) the extraction of the classical phase in a hybrid context requires writing the quantum–classical
avefunction in a convenient way so that a classical phase can be adequately identified. Fortunately, the process leading to this gauge-

nvariance principle has a purely classical analogue, which will serve as a pilot example. As a general methodology, we emphasize that
his paper will not proceed by operating on a particular set of equations of motion. Instead, we will mostly manipulate its underlying
ariational principle in order to keep track of basic conservation laws and transformation properties. This is a common method in gauge
heory and has a long history in quantum dynamics [40]. For an account of quantum-classical variational principles in the context of
he Ehrenfest theorem, see [41].

lan of the paper. Our discussion starts with a discussion of Koopman wavefunctions in classical mechanics. After a preliminary
ntroduction to standard Koopman–von Neumann (KvN) theory in Section 2.1, we show how apparent issues in the original treatment
ay be addressed by adding a phase term first proposed by van Hove. This is presented in Section 2.2, which covers the Koopman–van
ove (KvH) formulation of classical mechanics. The important role of phase transformations in the Koopman context is discussed in
ection 2.3, where the concept of gauge transformation in classical mechanics is also introduced. As the KvH construction appears to
iffer substantially from KvN theory, one is led to ask whether these two formulations are actually related. As shown in Section 3,
tandard KvN dynamics may be obtained by simply applying a gauge-invariance principle to the variational formulation of KvH theory.
s shown in Section 3.1, the application of this gauge-invariance principle requires techniques from continuum theories, such as
he Lagrangian flow paths widely used in hydrodynamics. Then, the gauge-invariance principle leads to an alternative variational
ormulation of KvN theory, which represents the immediate extension of the well-known variational setting of the classical Liouville
quation [42].
After discussing the various Koopman formulations of classical mechanics, the paper proceeds in Section 4 to illustrate the present

tatus of the Koopman hybrid theory for the description of mixed quantum–classical systems [3]. Once hybrid quantum–classical
avefunctions are introduced in Section 4.1, Section 4.2 discusses how classical and quantum densities may be obtained in this context.
he rest of the paper proceeds to apply the same gauge-invariance principle from Koopman classical mechanics in the hybrid setting.
his requires several steps, the first of which consists in a suitable factorization of the hybrid wavefunction, as discussed in Section 5.
he latter is entirely devoted to transforming the variational principle of the original hybrid formulation from the preceding sections
n such a way that the gauge principle can finally be applied. After applying the Madelung transform in Section 5.1, once again we
bserve the emergence of Lagrangian flow paths in the Koopman context, as discussed in Section 5.2.
At this point, the variational principle of the original hybrid formulation is amenable to the application of the gauge principle in such

way to make classical phases unobservable. This is the topic of Section 6, which starts by constructing the gauge-invariant Lagrangian
f quantum–classical dynamics. The latter is formulated in Section 6.1 while Section 6.2 presents the full gauge-invariant evolution of
ybrid wavefunctions.
A discussion of some of the various properties of the new gauge-invariant model is presented in Section 7. After discussing the

resence of a Poincaré integral invariant and some of its consequences in Section 7.1, the noncanonical Hamiltonian structure of hybrid
ynamics is presented in Section 7.2. Also, Section 7.3 presents a prototype for a quantum–classical density operator: while this appears
3
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o be generally unsigned, it gives rise to positive quantum and classical densities and possesses important covariance properties finally
nsuring basic conservation laws such as momentum conservation. Finally, Section 7.4 presents relevant special cases, including the
hrenfest model from chemical physics. As discussed therein, the present model allows to identify explicitly the source of backreaction
orces.

. Koopman wavefunctions in classical mechanics

This section reviews different formulations of classical mechanics based on Koopman wavefunctions. As we will see, the standard
oopman–von Neumann formulation presents important issues which will be addressed by exploiting the variational structure of
oopman dynamics.

.1. Koopman–von Neumann construction

The simplest example of Koopman classical dynamics is given by the Koopman–von Neumann (KvN) equation in the following
ommon form:

ih̄∂tχ = {ih̄H, χ} =: L̂Hχ . (2.1)

Here, the factor ih̄ is inserted to produce the Hermitian operator L̂H = {ih̄H, }, known as Liouvillian. In this way, classical dynamics
is regarded as a unitary flow on the Hilbert space HC = L2(R2) of square-integrable functions on phase-space. Here, we focus on
one-dimensional degrees of freedom as the extension to higher dimensions is straightforward. In polar form χ =

√
DeiS/h̄, one finds

∂tD = {H,D} , ∂tS = {H, S} , (2.2)

hereby recovering the usual Liouville equation for the density D = |χ |
2. We observe that the phase can be simply set to zero so that

he KvN wavefunction may be identified with a real-valued amplitude |χ |.
Since the KvN equation (2.1) identifies classical dynamics as a type of unitary flow, one may look at its underlying variational

rinciple. Mimicking the Dirac–Frenkel Lagrangian for the standard Schrödinger equation [43], we write [44,45]

δ

∫ t2

t1

LKvN (χ, ∂tχ ) dt = 0 , LKvN (χ, ∂tχ ) = Re
∫

ih̄χ∗(∂tχ − {H, χ}) dqdp . (2.3)

n [3], we showed how this variational principle for KvN dynamics may lead to relevant issues. For example, integration by parts leads
o rewriting the conserved Hamiltonian functional hKvN (χ ) = Re

∫
ih̄χ∗

{H, χ} dqdp as

hKvN (χ ) = h̄
∫

H Im{χ∗, χ} dqdp , (2.4)

hich differs from the physical energy
∫
H|χ |

2 dqdp, unless one sets |χ |
2

= h̄ Im{χ∗, χ}. Indeed, both quantities |χ |
2 and h̄ Im{χ∗, χ}

atisfy the classical Liouville equation, although they can be set equal only by allowing for topological singularities in the KvN
avefunction [45]. More importantly, if one initializes a zero phase S = 0 in (2.2), then the Hamiltonian functional (2.4) collapses
ntirely, thereby indicating that this variational formulation may need special care. This difficulty was recently overcome in [42], where
n alternative variational formulation was presented. This variant will be discussed later on. Instead, the next section shows how this
nd other apparent issues may be addressed by modifying the original KvN formulation.

.2. Koopman–van Hove construction

One possibility to overcome the difficulties arising from the conventional variational formulation of KvN theory was presented in [3]
nd follows from previous work by van Hove [46] and Kostant [47,48] on prequantum theory in geometric quantization [49,50]. Without
oing into the details, the immediate modification consists in changing the phase dynamics of KvN theory by replacing (2.2) by

∂tD = {H,D} , ∂tS + {S,H} = p∂pH − H =: L , (2.5)

here L identifies the usual phase-space expression of the Lagrangian which already appeared in the Introduction. Notice that the
ame equations may be written in the characteristic form

d
dt

D(q, p, t) = 0 ,
d
dt

S(q, p, t) = L (q, p) , along (q̇, ṗ) = (∂pH,−∂qH) =: XH (q, p),

here we have used standard notation for the Hamiltonian vector field XH (q, p). We notice that the phase equation is reminiscent of
he usual phase dynamics occurring in Hamilton–Jacobi theory; see [51] for more details on this point.

Eqs. (2.5) are naturally written in terms of the wavefunction χ =
√
DeiS/h̄, thereby leading to the Koopman–van Hove (KvH) equation

ih̄∂tχ = ih̄{H, χ} − Lχ =: L̂Hχ . (2.6)

ollowing [3], here we have introduced the covariant Liouvillian operator L̂H := ih̄{H, }−L , which is also known in prequantum theory
s prequantum operator [47,50]. This Hermitian operator replaces the standard Liouvillian L̂H := ih̄{H, } appearing in the KvN equation
2.1). The sense in which L̂H is covariant was explained in [3] in terms of minimal coupling arguments in phase-space. See Section 2.3
or further comments on gauge covariance in KvH theory. As Eq. (2.6) again identifies a unitary flow on HC = L2(R2) analogous to the
chrödinger equation, one can again look at the underlying variational principle of Dirac–Frenkel type, that is

δ

∫ t2
LKvH (χ, ∂tχ ) dt = 0 , LKvH (χ, ∂tχ ) = Re

∫
χ∗

(
ih̄∂tχ − ih̄{H, χ} + χL

)
dqdp . (2.7)
t1

4
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e observe that, upon expanding L = p∂pH−H and integrating by parts, this variational principle identifies the conserved Hamiltonian
unctional

hKvH (χ ) =

∫
H

(
|χ |

2
+ ∂p(p|χ |

2) + h̄ Im{χ∗, χ}

)
dqdp . (2.8)

s pointed out in [3], one notes that in the parenthesis both the first term and the sum of the last two obey the classical Liouville
quation. This observation leads to defining the Liouville density in KvH theory as

ρc = |χ |
2
+ ∂p(p|χ |

2) + h̄ Im{χ∗, χ}

=D + ∂p(pD) + {D, S} , (2.9)

hich eliminates all the ambiguities otherwise occurring in the KvN construction. For example, as shown in (2.6), the KvH phase
ndergoes nontrivial dynamics and therefore the Hamiltonian functional (2.8) cannot be made to vanish by simply setting an initial zero
hase. In addition, we notice that the distribution (2.9) appearing in (2.8) integrates to 1, unlike the expression h̄ Im{χ∗, χ} appearing
n (2.4).

While the present discussion omits the mathematical details, we point out that the above expression has a deep geometric structure
n terms of momentum maps, as discussed in [38]. Importantly, here we notice that the expression (2.9) of the classical density is not
ositive-definite. This point should not be regarded as an issue in classical dynamics: since the Liouville equation is a characteristic
quation, the sign of the initial condition is preserved in time. For example, following [3], one can initialize the KvH wavefunction χ
orresponding to a Gaussian density.

.3. Phase transformations in Koopman mechanics

A distinctive difference between the KvN and KvH formalisms lies in the different transformation properties underlying the classical
iouville density ρc under local U(1) transformations. Indeed, while the KvN prescription ρc = |χ |

2 is evidently invariant under
↦→ χeiϕ/h̄, the KvH expression (2.9) involves a phase shift S ↦→ S + ϕ. Nevertheless, as pointed out in [3], the KvH prescription

till enjoys a covariance property. To see this, let us introduce the symplectic potential A := (p, 0) (equivalently, A(z) · dz = pdq) to
ewrite (2.9) as

ρc = D + div(DJ(∇S − A)) , with J =

(
0 1

−1 0

)
, (2.10)

here J = (∇A)T − ∇A is the canonical symplectic form. Then, it is clear that combining the phase transformation χ ↦→ χeiϕ/h̄ with
he shift A → A−∇ϕ leaves ρc invariant, thereby recovering the usual notion of gauge-covariance. In this sense, the KvH construction
s gauge-covariant. More specifically, we observe that the KvH Lagrangian in (2.7) is manifestly covariant in the sense that it satisfies
he relation

L(eiϕ/h̄χ, eiϕ/h̄∂tχ;A − ∇ϕ) = L(χ, ∂tχ;A) , (2.11)

here the semicolon indicates that the vector potentialA appears in the Lagrangian merely as a parameter. In more generality, we recall
hat a covariant Lagrangian allows for an additive total time derivative on the right-hand side of (2.11). Such an additive time derivative
s also allowed in the case of gauge-invariant Lagrangians, while manifest gauge-invariance simply means L(eiϕ/h̄χ, eiϕ/h̄∂tχ ) = L(χ, ∂tχ ).
e notice that, while the KvN expression of the Liouville density is indeed manifestly gauge-invariant, the KvN Lagrangian in (2.3) is
ot even covariant. This is a point which we will come back to in Section 3.2, where KvN theory will be endowed with a manifestly
auge-invariant Lagrangian.
Besides these technical details, we emphasize that this form of gauge transformations has been discussed in several prominent works

n hybrid quantum–classical dynamics. In particular, here we refer to [5,52]. Therein, the authors point out that the gauge invariance
nder local U(1) transformations is absolutely essential in reflecting the correct dynamics in the classical sector of hybrid systems.
his is due to the fact that, as a general rule, phases are normally considered unobservable in classical mechanics. For example, as
iscussed in [52], Sudarshan’s early approach to hybrid dynamics aimed at incorporating gauge invariance by enforcing appropriate
uperselection rules. However, the role of these superselection rules has attracted a certain amount of criticism [13,36,37].
In this work superselection rules are replaced by local phase invariance, much in the same spirit as global phase invariance in

tandard quantum mechanics. In particular, gauge invariance is achieved by starting with a covariant formulation based on KvH theory,
o that the full invariance can be enforced at the level of the underlying variational principle. The next section illustrates this process
or the special case of purely classical dynamics.

. From KvH back to KvN

So far, we have observed that KvH theory overcomes the issues emerging in the standard variational formulation of KvN dynamics.
owever, one may insist that the KvN prescription ρ = |χ |

2 is perfectly sensible so that the question becomes to identify an alternative
ariational formulation overcoming the issues emerging from to the canonical structure for the KvN theory presented in Section 2.1.
hile this alternative construction was presented in [42], here we will show how this can be obtained as a closure model emerging

rom KvH theory. This new result will pave the way to the construction of a hybrid quantum–classical model later on.
We start our discussion by presenting a remark that motivates the steps taken later on. We realize that, if we could set ∂pS = 0 and

= ∂qS in (2.10), the KvH expression of the classical density would recover the original KvN prescription ρc = |χ |
2. Importantly, upon

aking the gradient of the second in (2.5), we notice that ∇S − A satisfies the evolution equation

∂t (∇S − A) + XH · ∇(∇S − A) + ∇XH · (∇S − A) = 0 (3.1)

so that the initial condition ∇S = A is preserved in time. However, this type of initial condition requires introducing topological
singularities that are difficult to treat. Nevertheless, it is rather suggestive that replacing ∇S → A takes the classical density ρc back to
he KvN prescription ρ = |χ |

2. In what follows we will take full advantage of this observation, yet avoiding topological singularities.
c
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.1. KvH variational principles and hydrodynamic paths

Instead of allowing for a singular phase, here we will pursue an alternative direction which consists in replacing ∇S → A within a
uitable form of the KvH variational principle. Indeed, in order to make this replacement, we first need to bring the variational principle
2.7) into a form that is amenable to appropriate manipulations. For this purpose, we first express the Lagrangian LKvH in terms of phase
nd amplitude, that is

LKvH =

∫
D
(
∂tS − {H, S} − p∂pH + H

)
dqdp . (3.2)

Inspired by Madelung’s hydrodynamic method in quantum mechanics [53], we will now introduce the characteristics of the vector
ield XH . More specifically, borrowing the terminology from continuum dynamics, we introduce the Lagrangian coordinate η(q0, p0, t)
uch that η̇(q0, p0, t) = XH (η(q0, p0, t)). In this hydrodynamic picture, XH is regarded as the Eulerian velocity corresponding to its
Lagrangian counterpart η̇. Then, as a consequence of the first equation in (2.5), the density D is transported along η. Upon introducing
the notation z = (q, p), the density transport can be written as the Lagrange-to-Euler map

D(z, t) =

∫
D0(z0)δ(z − η(z0, t)) d2z0 =

D0(z0)
Jη(z0, t)

⏐⏐⏐⏐
z0=η(z,t)−1

. (3.3)

Notice that here we are retaining the Jacobian Jη = det∇η in the denominator for later convenience, although the flow of a Hamiltonian
vector field identifies a canonical transformation with unit Jacobian.

Let us now replace (3.3) in the Lagrangian LKvH . In particular, let us apply the product rule D∂tS = ∂t (DS) − S∂tD to the first term
of (3.2) and ignore the irrelevant total derivative ∂t (DS). Here, the time derivative ∂tD may be found from (3.3) so that we have

∂tD + div(XD) = 0 , (3.4)

with X (z) = η̇(z0, t)|z0=η−1(z,t). Notice that, while the original relation η̇ = XH (η) leads to XH (z) = η̇(z0, t)|z0=η−1(z,t), the prescribed
ector field XH has been replaced by the unknown vector field X . Indeed, in the present treatment the Lagrangian coordinate η is left
s a dynamical variable and analogously for its velocity η̇. Then, the associated Eulerian vector field X must be treated in the same
ay. With these steps in mind, we observe that the Lagrangian LKvH in (3.2) assumes the new form

LEPKvH (X ,D, S) =

∫
D
(
∇S · X + (A − ∇S) · J∇H − H

)
d2z , (3.5)

p to an ignorable total time derivative. For the sake of clarity, here we have indicated the functional dependence of LEPKvH on the
ynamical variables. We notice that the variational principle associated to this Lagrangian is not of standard type in that, unlike δS, the
ariations δD and δX are not arbitrary. Instead, these variations must be found from their definitions in terms of η. This procedure is
result of a reduction process from Lagrangian to Eulerian variables that is known as Euler–Poincaré reduction [54], which justifies the

etters EP in the subscript ‘EPKvH’ above. Once the KvH Lagrangian is taken into the Euler–Poincaré form (3.5), the equations of motion
re obtained by simply adopting standard methods in Euler–Poincaré variational principles [55,56]. In this approach, Eq. (3.4) appears
s an auxiliary equation following from the definition (3.3) and accompanying the variational principle δ

∫ t2
t1

LEPKvH dt = 0.
One can verify that the variational relation

δD = − div(DY) (3.6)

ollows from taking variations of the Lagrange-to-Euler map (3.3), upon defining the arbitrary displacement vector field Y(z, t) =

η(z0, t)|z0=η−1(z,t). By proceeding analogously, a more cumbersome vector calculus exercise leads to

δX = ∂tY + X · ∇Y − Y · ∇X . (3.7)

e verify that the variations δX and δD produce (3.1), which is equivalent to the second equation in (2.5) up to an irrelevant number. In
ddition, arbitrary variations δS lead to div(DX ) = div(DXH ) so that from (3.4) one recovers the first equation in (2.5). Thus, Hamilton’s
rinciple δ

∫ t2
t1

LEPKvH dt = 0 with the Lagrangian (3.5) does indeed recover KvH dynamics in the form (2.5).

.2. Alternative variational approach to KvN theory

Following the observations preceding Section 3.1, let us now perform the replacement

∇S → A

n the Euler–Poincaré Lagrangian (3.5). We obtain

LEPL =

∫
D(A · X − H) d2z . (3.8)

ere, the subscript ‘EPL’ anticipates the next result: the replacement ∇S → A recovers the Euler–Poincaré variational formulation
f the classical Liouville equation. Indeed, upon recalling that A = (p, 0) is constant in time, the variations (3.6) and (3.7) produce

= XH so that the auxiliary equation ∂tD + div(DX ) = 0 becomes the classical Liouville equation. Notice that, upon writing X in
erms of its velocity and force components, that is X (z, t) =

(
u(z, t), f (z, t)

)
, explicitly one has A ·X = pu(q, p, t). However, it may be

onvenient to retain the full A−notation since the symplectic potential may acquire different suitable forms depending on the problem
nder consideration. For example, as noticed in [3], the symplectic potential A(z) = Jz/2 is particularly useful in the case of quadratic

amiltonians.

6
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At this point, as presented extensively in [42], one can perform the replacement D = |χ |
2. Taking the square root of (3.3) yields the

following Lagrange-to-Euler map for Koopman–von Neumann wavefunctions:

χ (z, t) =
χ0(z0)√
Jη(z0, t)

⏐⏐⏐⏐
z0=η−1(z,t)

. (3.9)

Consequently, an alternative KvN Lagrangian to the one in (2.3) may be written as

LEPKvN =

∫
|χ |

2(A · X − H) d2z , (3.10)

which is manifestly gauge invariant under phase transformations χ ↦→ eiϕ/h̄χ . Here, the time derivative ∂tχ and the variations δχ
follow from (3.9) and read

∂tχ = −X · ∇χ −
1
2
χ divX , δχ = −Y · ∇χ −

1
2
(divY)χ , (3.11)

respectively. The variations δX are still given by (3.7) and they produce the relation X = XH , so that the first equation in (3.11)
recovers the KvN equation in the form ∂tχ = {H, χ}. In the general case, the first equation in (3.11) identifies the transport equation
for a wavefunction, so that the well-known density transport in (3.4) is indeed recovered by setting D = |χ |

2. In this construction, no
ambiguity occurs when the Koopman phase is set to zero and the total energy coincides with the KvN prescription

∫
H|χ |

2 d2z.
Before concluding this section, we present the noncanonical Hamiltonian structure of the KvN equation, as it arises from the

variational principle (3.10). In general, a Hamiltonian structure comprises a Hamiltonian functional h = h(χ ) and a Poisson bracket
{ , }χ , so that any functional f (χ ) evolves according to df /dt = {f , h}χ . A Poisson bracket is a Lie bracket satisfying the Leibniz product
rule {f , gk}χ = {f , g}χk+{f , k}χg . The main difficulty in constructing a Poisson bracket consists in ensuring the Jacobi identity for cyclic
permutations. There are lots of examples in the literature where candidate Poisson brackets fail to satisfy the Jacobi identity; see [57]
for a discussion in the context of hybrid quantum–classical dynamics. Thus, the safest way to construct a Poisson bracket is usually
to derive it from another bracket which is already known to be Poisson. As discussed in [10,42], the Poisson bracket and Hamiltonian
functional associated to the KvN equation read, respectively,

{f , k}χ =

∫
1

|χ |
2

(
χ ⋄

δf
δχ

)
· J

(
χ ⋄

δk
δχ

)
d2z , h(χ ) =

∫
H|χ |

2 d2z , (3.12)

where we introduce

χ ⋄
δf
δχ

:=
1
2
Re

(
δh
δχ

∗

∇χ − χ∗
∇
δf
δχ

)
(3.13)

or compactness of notation. As we will see, an analogue of this Poisson structure will reappear in the context of hybrid quantum–
lassical dynamics.
While this section has presented a prescription for obtaining an alternative variational structure for KvN theory that is immune

f the ambiguities discussed in Section 2.1, little was said about how this prescription can be justified within KvH theory. As already
entioned, the equality ∇S = A requires a singular phase which we want to avoid in the present work. Thus, the present wavefunction

reatment is insufficient by itself to obtain the KvN construction as a type of reduced model of KvH dynamics. An extension of this
reatment that overcomes this difficulty is presented in Appendix A, which shows how KvN can be realized as an exact solution of the
vH equation for density matrices.

. Hybrid quantum–classical dynamics

Having characterized the different Koopman formulations of classical mechanics, we move on to discussing the Koopman approach
o mixed quantum–classical systems. In particular, here we will review a recent approach proposed by the authors and based on the
vH construction [3,38]. This approach is heavily inspired by Sudarshan’s early work [7], which however was based on KvN theory.
s we have seen in Section 2.2, the KvH approach differs substantially from KvN by the fact that the former has a nontrivial phase
ynamics. In the present context this phase dynamics is crucial in realizing the quantum–classical coupling.
While the approach discussed in this section succeeds in capturing essential properties such as quantum uncertainty, it is not clear

hether the associated phase-space distribution of the classical subsystem remains positive in time. So far, this particular point was
artly addressed in [38], where we identified an infinite family of hybrid systems for which the classical subsystem has a positive
iouville density at all times. However, a general statement is still lacking. Later on in this paper we will overcome this potential issue
y presenting a closure model ensuring a positive classical density. At this stage, we simply review the original approach which our
losure model is based on.

.1. Hybrid wavefunctions

As explained in [3], the interaction of a quantum and a classical particle can be formulated by starting with the KvH equation for
he two-particle wavefunction Υ (z1, z2) and then applying canonical quantization to quantize one of them. This approach was also
artly followed in [58]. The quantization process follows the usual rules: in particular, we make the replacements q2 → x̂ = x and
2 → p̂ = −ih̄∂/∂x. Then, upon setting ∂Υ /∂p2 = 0 and dropping the subscripts, we obtain the quantum–classical wave equation:

ih∂ Υ = {ihĤ,Υ } +
(
Ĥ − p∂ Ĥ

)
Υ . (4.1)
¯ t ¯ p
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ere, Υ (q, p, x) is a hybrid wavefunction, that is a square-integrable function of both the classical and quantum coordinates z = (q, p)
and x, respectively. Also, Ĥ(q, p, x̂, p̂) is an operator-valued function on the classical phase-space. Following the discussion in Sections 2.1
and 2.2, here we can write the equation above as

ih̄∂tΥ = L̂ĤΥ , with L̂Ĥ := {ih̄Ĥ, } − p∂pĤ + Ĥ. (4.2)

The quantum–classical Liouvillian operator L̂Ĥ is again Hermitian so that, similarly to quantum and classical mechanics, hybrid dynamics
is described as a unitary flow on the space of quantum–classical wavefunctions.

The hybrid wave equation (4.1) possesses a profound geometric structure in symplectic geometry as discussed in [38]. While here
we will not enter the details, we will however emphasize that Eq. (4.1) possesses a Dirac–Frenkel variational principle of the type (2.3)
and (2.7). In particular, Eq. (4.1) arises as the Euler–Lagrange equation associated to the Lagrangian

LQC (Υ , ∂tΥ ) = Re
∫

(ih̄Υ ∗∂tΥ − Υ ∗L̂ĤΥ ) d2z dx , (4.3)

where the last term identifies the total energy h(Υ ) = Re
∫
Υ ∗L̂ĤΥ d2z dx.

4.2. Quantum and classical densities

The Lagrangian (4.3) is important in that its associated total energy naturally identifies a distribution-valued von Neumann operator
playing the role of a hybrid quantum–classical density. Indeed, integration by parts yields

Re
∫
Υ ∗L̂ĤΥ d2z dx = Tr

∫
ĤD̂ d2z (4.4)

with

D̂(z) := Υ (z)Υ †(z) + ∂p(pΥ (z)Υ †(z)) + ih̄{Υ (z),Υ †(z)} . (4.5)

Here, ‘†’ denotes the quantum adjoint so that, for example, the measure-valued operator Υ (z)Υ †(z) has matrix elements Υ (z, x)Υ ∗(z, x′),
while Υ †(z)Υ (z) =

∫
|Υ (z, x)|2 dx is a phase-space density. The right-hand side of the relation (4.4) confers the distribution-valued

operator D̂(z) the role of a hybrid density for the calculation of expectation values. Given a hybrid observable represented by an
operator-valued function Â(z), we prescribe the following definition of its expectation value: ⟨̂A⟩ = Tr

∫
D̂(z)̂A(z) d2z. The hybrid

Ehrenfest theorem for expectation value dynamics was presented in [3], where we showed that the total quantum–classical momentum
⟨p + p̂⟩ remains conserved in time for translation-invariant Hamiltonians. Recent work [59] has investigated this result in the context
of the Galilean covariance of the quantum–classical wave equation (4.2).

We notice that the hybrid density operator (4.5) is sign-indefinite. Despite this potential issue, we observe that the quantum density
matrix

ρ̂ =

∫
D̂(z) d2z =

∫
Υ (z)Υ †(z) d2z (4.6)

is actually positive-definite by construction and this property ensures that the Heisenberg uncertainty principle is satisfied. This is a
crucial ingredient in the study of quantum–classical coupling. For example, the AG equation (1.2) fails to satisfy this property. To see
how decoherence is captured in the present hybrid context, we write the dynamics of the quantum density matrix as [3]

ih̄
∂ρ̂

∂t
=

∫
[Ĥ, D̂] d2z . (4.7)

In general, this equation does not allow for an initial pure quantum state ρ̂0 = ψ0ψ
†
0 to remain pure over time. Indeed, upon defining

the quantum purity as Tr(ρ̂2), we see that dTr(ρ̂2)/dt ̸= 0 thereby leading to quantum decoherence. As we will see below, purity
non-preservation also affects the classical evolution.

Let us look closely at the expression of the classical Liouville distribution, that is

ρc(z) = TrD̂(z) =

∫ (
|Υ (z)|2 + ∂p(p|Υ (z)|2) + h̄ Im{Υ ∗(z),Υ (z)}

)
dx . (4.8)

Importantly, this quantity is generally sign-indefinite. At present, we do not know whether an initially positive ρc stays always positive
in time or may develop negative values. The evolution on the classical distribution ρc is governed by the equation

∂ρc

∂t
= Tr{Ĥ, D̂} . (4.9)

o far, we could only prove that this equation does not change the initial sign of ρc whenever the hybrid Hamiltonian Ĥ depends only on
set of mutually commuting operators; see [38] for further details. This property was confirmed in [3] for the case of a pure-dephasing
roblem with quadratic coupling. In this particular case, we observed that both the quantum density (4.6) and the classical density
4.8) remain positive in time while the hybrid density (4.5) develops negative eigenvalues.

As the question whether (4.8) remains always positive is currently open, one may use analogies with Wigner functions to justify the
ossible emergence of negative values in the classical distribution in the presence of quantum–classical interaction [3]. Alternatively,
ne may want to enforce a positive Liouville density in some way. We will pursue this second direction later on in this paper.
Before closing this section, we observe that Eq. (4.9) does not allow for Klimontovich particle solutions. Specifically, a δ−like initial

ondition ρc 0(z) = δ(z− ζ0) gets spread across phase-space as time goes by. While this may sound somewhat reminiscent of diffusion
processes, we emphasize that no diffusion mechanism takes place in this case; at least, not in any standard sense. Since Klimontovich
states are classical pure states [60–62], we conclude that this classical form of purity non-preservation is analogous to the decoherence
8
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ppearing in the quantum sector. This point raises the foundational question whether this phenomenon in the classical sector is related
o the uncontrollable disturbance invoked by Bohr in his original interpretation of quantum measurements.

Also, we notice that while the loss of classical pure states leads to a form of statistical uncertainty, the latter is very different from
eisenberg’s relation ∆⟨x̂⟩∆⟨p̂⟩ ≥ h̄/2 which establishes a well-characterized lower bound. Thus, the form of classical decoherence
xperienced by the classical system cannot be considered as a loss of its ‘classicality’; instead, it simply means that this system must
e described by a statistical phase-space distribution in the standard Liouville picture.

. Exact factorization of hybrid wavefunctions

In this section, we formulate a closure scheme of the quantum–classical wave equation (4.2) so that both the quantum and classical
densities are positive at all times. While the quantum density operator (4.6) is already positive-definite by construction, we will ensure
a positive classical density by exploiting a gauge-invariance principle, as outlined in the Introduction. In particular, we will modify the
original theory from Section 4 to enforce a gauge symmetry with respect to local phase factors for which the phase is a function of
the classical phase space. For the purely classical case, a similar procedure was followed in Sections 3.1 and 3.2. However, before this
procedure can be applied in the hybrid context, we face the difficulty that the classical degrees of freedom cannot be isolated in a
simple way since the current form of the theory involves a hybrid wavefunction Υ (z, x) in which quantum and classical coordinates,
respectively x and z = (q, p), are treated on an equal footing.

In order to circumvent this difficulty, we resort to a method from chemical physics [63]. Known under the name exact factorization,
in our context this method simply consists in rewriting the hybrid wavefunction as follows:

Υ (z, x, t) = χ (z, t)ψ(x, t; z) , with
∫

|ψ(x, t; z)|2 dx = 1 , (5.1)

where the semicolon indicates that the classical coordinates appear in the expression of the quantum wavefunction ψ merely as
parameters. In other words, one has a Koopman wavefunction χ (z, t) and a Schrödinger wavefunction ψ(x, t; z), where the latter is
parameterized by the classical coordinates z = (q, p). While so far the quantum state space was identified with the infinite-dimensional
space L2(R) of square-integrable Schrödinger wavefunctions, in what follows we shall consider an arbitrary quantum Hilbert space HQ
with inner product ⟨·|·⟩, induced norm ∥ · ∥, and real-valued pairing

⟨·, ·⟩ = Re⟨·|·⟩ . (5.2)

For later purpose, it is convenient to introduce the shorthand notation

⟨̂A⟩ = ⟨ψ, Âψ⟩ (5.3)

for any Hermitian operator-valued function on phase-space Â = Â(z). We hope that no confusion arises with the expectation value
notation introduced in Section 4.2. Notice that both wavefunctions χ and ψ in the factorization (5.1) are defined up to an arbitrary
phase factor eiϕ(t,z).

The name exact factorization arises from the fact that the relation (5.1) generally identifies an exact solution of (4.1), as long as
χ is nowhere vanishing. Over the years, factorizations of the type (5.1) appeared in the context of standard quantum mechanics. For
example, this is the common approach to the hydrodynamic formulation of the Pauli equation [64]. However, it was only in [63] that
this type of wavefunction factorization was recognized to have more general validity. The geometric underpinning of (5.1) was studied
in [65–67] and the results therein provide the basis for the present work.

Importantly, we observe that, upon writing χ =
√
DeiS/h̄, the exact factorization (5.1) transforms the original expression (4.8) into

he form

ρc = D + div
(
DJ(∇S + AB − A)

)
, (5.4)

here we have introduced the Berry connection

AB := ⟨ψ,−ih̄∇ψ⟩ . (5.5)

Thus, similarly to the arguments in Section 3, we realize that setting

∇S + AB = A (5.6)

ould lead to a positive definite classical density ρc = |χ |
2. Motivated by this observation, we will perform various steps in order to

pply the method in Sections 3.1 and 3.2 within the present hybrid setting. As we will see, the relation (5.6) leads to a gauge-invariant
uantum–classical theory for which classical phases merely represent a gauge freedom and are thus unobservable.
The discussion in the following sections provides an alternative treatment to that in [10], where the same closure model was obtained

n terms of density matrices by exploiting the mathematical methods from geometric mechanics [55,56]. Instead, the present treatment
ollows a more direct approach mostly based on wavefunctions.

.1. Madelung transform and variational approach

As we aim to develop a closure model by using the tools illustrated in Section 3, it is important to combine the variational approach
o the Madelung transform with the Euler–Poincaré construction, as presented in Section 3.1. Here we restrict to focus only on the
lassical degrees of freedom and thus we choose to apply a partial Madelung transform only to the classical part of the wavefunction
n (5.1). Thus, upon writing χ =

√
DeiS/h̄, we replace the ansatz Υ (z, x) =

√
D(z)eiS(z)/h̄ψ(x; z) into the hybrid Lagrangian (4.3), thereby

btaining

LEF =

∫
D
(
∂tS − ⟨ψ, ih̄∂tψ⟩

)
d2z + h(D, S, ψ) , (5.7)
9
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here the subscript ‘EF’ stands for Exact Factorization and the Hamiltonian h(D, S, ψ) arising from (4.3) is written as

h(D, S, ψ) =

∫
D
(
⟨XĤ⟩ · (∇S + AB) +

⟨
L̂Ĥ − AB · XĤ

⟩)
d2z

=

∫
D
(
⟨XĤ⟩ · (∇S + AB − A) +

⟨
ψ, Ĥψ − ih̄X̃Ĥ · ∇ψ

⟩)
d2z . (5.8)

Note that (5.7) is the quantum–classical extension of the Lagrangian (3.2) for the classical case. Here, we recall (5.3) and we have
denoted

XĤ = (∂pĤ,−∂qĤ) , X̃Ĥ := XĤ − ⟨XĤ⟩ , (5.9)

while L̂Ĥ was defined in (4.2). Also, all differential operators act on the classical phase-space and we recall the symplectic potential
A = (p, 0) from Section 3. More importantly, in (5.8) we have added and subtracted the Berry connection AB. In addition, we notice that
the condition ∥ψ∥

2
= 1 is not enforced here as a constraint. As we will see, this condition is preserved in time by the final equations

of motion.
Arbitrary variations δS and δD in the action functional associated to (5.7) yield

∂tD + div(D⟨XĤ⟩) = 0, (5.10)

∂tS + ⟨XĤ⟩ · ∇S =
⟨
ψ, ih̄∂tψ

⟩
−

⟨
ψ, L̂Ĥψ

⟩
(5.11)

and we will next focus on the equation for the quantum wavefunction ψ .

5.2. Quantum wavefunction and classical flow paths

In order to write the quantum evolution equation, it is convenient to introduce the functional

f (D, ψ) :=

∫
D

⟨
ψ, (L̂Ĥ − AB · XĤ )ψ

⟩
d2z . (5.12)

Then, arbitrary variations δψ in
∫ t2
t1

LEF dt yield [10]

ih̄
(
∂t + ⟨XĤ⟩ · ∇

)
ψ = (∇S + AB) · XĤψ +

1
2D

δf
δψ

, (5.13)

here we compute
δf
δψ

= 2DĤψ − 2D(A + AB) · XĤψ − 2ih̄DX̃Ĥ · ∇ψ − ih̄ψ div(DX̃Ĥ ).

hile the current explicit form of Eq. (5.13) is not particularly insightful, we will be able to make relevant considerations by recognizing
hat the functional (5.12) can be entirely expressed in terms of the local density matrix ρ̂(z) = ψ(z)ψ(z)† as follows:

f =
1
2

∫
D
(⟨
XĤ , ih̄[ρ̂,∇ρ̂]

⟩
− 2

⟨
A · XĤ − Ĥ, ρ̂

⟩)
d2z . (5.14)

Here, we use the real-valued pairing ⟨̂A, B̂⟩ = Re⟨̂A|̂B⟩ = Re Tr(̂A†̂B). Notice the appearance of the non-Abelian gauge connection [ρ̂,∇ρ̂]

already emerged in Mead’s work on molecular geometric phases [68]. More importantly, the chain-rule relation δf /δψ = 2(δf /δρ̂)ψ
allows us to rewrite Eq. (5.13) as

ih̄
(
∂t + ⟨XĤ⟩ · ∇

)
ψ =

(
(∇S + AB) · XĤ +

1
D
δf
δρ̂

)
ψ , (5.15)

here we compute
δf
δρ̂

= DĤ − DA · XĤ +
ih̄
2

(
D{ρ̂, Ĥ} + D{Ĥ, ρ̂} +

[
ρ̂, {D, Ĥ}

])
.

At this point, the form of Eq. (5.15) reveals the structure underlying the quantum evolution. Indeed, we realize that, since δf /δρ̂ acts
on ψ(z, t) as a Hermitian operator and so does (∇S + AB) · XĤ , the parenthesis on the right-hand side of (5.15) generates a unitary
propagator parameterized by the phase-space coordinates. This implies (∂t + ⟨XĤ⟩ · ∇)∥ψ∥

2
= 0, so that the partial normalization

ondition ∥ψ(z, t)∥2
= 1 is preserved in time. More importantly, we notice the appearance of the material derivative ∂t + ⟨XĤ⟩ · ∇

lready present in (5.11). This indicates that the unitary quantum evolution occurs in a phase-space frame moving with the Lagrangian
low path η(z0, t) generated by the vector field ⟨XĤ⟩, which transports the density D as in (5.10). This important remark was recently
xploited in [10]. In the fully quantum case, a similar approach was previously followed in [65].
Having uncovered the hydrodynamic Lie-transport features underlying the exact factorization system, we are motivated to cast the

agrangian (5.7) in Euler–Poincaré form, which is a more natural setting for hydrodynamic continuum theories. Following the arguments
n Section 3.1, we consider the Lagrange-to-Euler map (3.3) and write the Lagrangian (5.7) in Euler–Poincaré form as

LEPEF =

∫
D
(
∇S · X + ⟨ψ, ih̄∂tψ⟩

)
d2z − h(D, S, ψ) , (5.16)

here h(D, S, ψ) is given in (5.8). Note that (5.16) is the quantum–classical extension of the Lagrangian (3.5) for KvH classical mechanics.
e recall that the vector field X is defined in terms of the Lagrangian phase-space path η(z , t) as η̇(z , t) = X (η(z , t), t), so that one
0 0 0

10
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(

as the constrained variations (3.6)–(3.7) along with arbitrary variations δS. One can verify that, up to an irrelevant time-dependent
umber, the Lagrangian (5.16) leads to Eq. (5.11), while the auxiliary equation ∂tD + div(DX ) = 0 recovers (5.10). In addition, the
uantum evolution equation (5.13) follows from taking arbitrary variations δψ .
So far the exact factorization (5.1) has not provided much insight into the nature of quantum–classical coupling, which still looks

ery intricate. However, as anticipated, the variational setting made available by the Lagrangian (5.16) allows us to apply the method
n Section 3 thereby leading to a closure model ensuring that the classical density (5.4) is positive definite at all times. This is done in
he next section.

. A nonlinear hybrid wave equation

Let us now extend the method from Section 3 to the hybrid setting and use that as a tool for ensuring a positive-definite classical
ensity.

.1. The quantum–classical Lagrangian

In first place, we recall that the exact factorization (5.1) transforms the original expression (4.8) into (5.4). Thus, here we want to
e able to use the relation (5.6) by following the method in Section 3. In this way, the classical density becomes ρc = |χ |

2, which
is positive-definite. Notice that, unlike the classical case treated in Section 3, the relation (5.6) may not be preserved by the hybrid
system (5.10), (5.11), and (5.13). As we show in Appendix C, the wavefunction treatment can be extended to von Neumann operators,
in which case relation (5.6) can be realized as a dynamical closure ansatz. In the present discussion, however, we will simply follow
the procedure from Sections 3.1 and 3.2, which is entirely based on wavefunctions. In particular, we will make use of the relation (5.6)
by replacing ∇S → A − AB in the Lagrangian (5.16). Then, the latter becomes gauge-independent and acquires the form

ℓ(X ,D, ψ, ∂tψ) =

∫
D
(
(A − AB) · X +

⟨
ψ, ih̄∂tψ − Ĥψ + ih̄X̃Ĥ · ∇ψ

⟩)
d2z , (6.1)

here the last two terms are found by replacing (5.6) in (5.8). At this point, the relation (5.4) yields ρc = D = |χ |
2, thereby recovering

positive classical density at all times. Indeed, we observe that the initial sign of D is preserved by its dynamics, which is given by
ransport equation ∂tD + div(DX ) = 0.

Upon using D = |χ |
2, one may restore the hybrid quantum–classical wavefunction Υ = χψ . For this purpose, we notice that

Υ ,−ih̄∇Υ ⟩ = D∇S + D⟨ψ,−ih̄∇ψ⟩, where we recognize the appearance of the Berry connection (5.5) on the right hand-side. Since
he addition of the pure differential ∇S is irrelevant, we are led to writing

AB =
⟨Υ ,−ih̄∇Υ ⟩

∥Υ ∥2 . (6.2)

Here, the angle brackets denote the quantum pairing, that is ⟨Υ1,Υ2⟩ = Re(Υ †
1 (z)Υ2(z)), so that the notation (5.3) leads to writing

⟨̂A⟩ = ⟨Υ , ÂΥ ⟩/∥Υ ∥
2. With this notation, the Lagrangian (6.1) becomes

ℓQC (X ,Υ , ∂tΥ ) =

∫ ⟨
Υ , ih̄∂tΥ + (A − AB) · XΥ

⟩
d2z − hQC (Υ ) , (6.3)

where the quantum–classical Hamiltonian functional now reads

hQC (Υ ) =

∫
⟨Υ , L̂ĤΥ + (A − AB) · XĤΥ ⟩ d2z

=

∫ ⟨
Υ , ĤΥ − ih̄X̃Ĥ · ∇Υ

⟩
d2z . (6.4)

Here, the variation δΥ is arbitrary and δX is given by (3.7). Notice that, while the original hybrid Hamiltonian hQC (Υ ) =
∫
⟨Υ , L̂ĤΥ ⟩

2z dx appearing in (4.3) is manifestly covariant with respect to gauge transformations Υ (z) ↦→ eiϕ(z)/h̄Υ (z), the new reduced
amiltonian (6.4) is manifestly gauge invariant. This gauge invariance under local phase factors is a long-sought property in the theory
f quantum–classical wavefunctions and its absence in previous hybrid models has been referred to as a ‘‘severe problem’’ [5]. The
act that the present theory is immune from these issues, thereby ensuring positive quantum and classical densities, represents an
mportant step forward in the theory of quantum–classical coupling.

In addition, we observe that the total energy identified by the Hamiltonian functional (6.4) clearly differs from the usual expression
f the expectation value of the Hamiltonian operator, that is the first term

∫
⟨Υ , ĤΥ ⟩ d2z. A possible interpretation of this fact is that

he energy balance of quantum–classical interactions involves an extra work – here given by the second term in (6.4) – that is produced
y correlation effects. This seems to be the possibility suggested by the authors of [69]. Alternatively, we may simply use integration
y parts to isolate a form of the hybrid quantum–classical density that is alternative to that presented in (4.5). This second approach
ill be discussed in Section 7.3. Instead, the next section proceeds by writing the equation for Υ .

.2. Hybrid wave equation

At this point, we are ready to take variations and write the hybrid wave equation for Υ . Indeed, taking arbitrary variations δΥ in
6.3) yields a nonlinear wave equation of the form

ih̄
∂Υ

+ ih̄X · ∇Υ +
ih̄
Υ divX =

1 δhQC
− X · AΥ , (6.5)
∂t 2 2 δΥ

11
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here we compute

1
2
δhQC

δΥ
=

(
Ĥ − AB · X̃Ĥ

)
Υ − ih̄X̃Ĥ · ∇Υ −

1
2
ih̄(div X̃Ĥ )Υ . (6.6)

Here, we have used (6.4) and noticed that δ⟨XĤ⟩/δΥ = 2∥Υ ∥
−2X̃ĤΥ . Then, Eq. (6.5) becomes

ih̄
∂Υ

∂t
+ ih̄(X + X̃Ĥ ) · ∇Υ +

ih̄
2

div(X + X̃Ĥ )Υ =
(
Ĥ − AB · X̃Ĥ

)
Υ − X · AΥ . (6.7)

s a consequence, we observe that Eq. (6.5) leads to the following continuity equation for the classical Liouville density ρc = ∥Υ ∥
2:

∂t∥Υ ∥
2
+ div(∥Υ ∥

2X ) = 0 . (6.8)

This shows that the vector field X indeed identifies the Lagrangian trajectories of the classical flow, which advances the classical density
according to (3.3), that is ρc(z, t) =

∫
ρc0(z0)δ(z − η(z0, t)) d2z0.

At this stage, however, the vector field X still needs to be determined. In order to find its expression, we first see that taking
variations δX in (6.3) according to (3.7) and making use of (6.8) yields

X · ∇A + ∇X · A = ∂tAB + X · ∇AB + ∇X · AB

=
1

2∥Υ ∥2

(⟨
δhQC

δΥ
,∇Υ

⟩
−

⟨
Υ ,∇

δhQC

δΥ

⟩)
+ ∇(X · A) . (6.9)

he second equality is easily verified. Indeed, upon introducing γ = Υ /∥Υ ∥, we use AB = ⟨γ ,−ih̄∇γ ⟩ to notice that (6.5) leads to
h̄∥Υ ∥(∂t +X ·∇)γ = (1/2)δhQC/δΥ −X ·AΥ . The latter can then be used to expand the terms after the first equality in (6.9). Therefore,
pon using the defining relation (∇A)T − ∇A = J , we obtain

X =
1

2∥Υ ∥2 J
(⟨
Υ ,∇

δhQC

δΥ

⟩
−

⟨
δhQC

δΥ
,∇Υ

⟩)
=

1
∥Υ ∥2 J

[
∥Υ ∥

2
⟨∇(Ĥ − X̃Ĥ · AB)⟩ + AB⟨Υ , (div X̃Ĥ )Υ ⟩ + 2

⟨
∇Υ , X̃Ĥ · (ih̄∇)Υ

⟩
− ∇

⟨
Υ , X̃Ĥ · (ih̄∇)Υ

⟩]
,

where the second equality is proved in Appendix B using (6.6). Alternatively, a further vector calculus exercise shows that

X = ⟨XĤ⟩ +
1

2∥Υ ∥2

(⟨
∥Υ ∥

2JΓ̂ · ∇,XĤ
⟩
−

⟨
XĤ · ∇, ∥Υ ∥

2JΓ̂
⟩)
, (6.10)

where Γ̂ = ih̄∥Υ ∥
−2

[ΥΥ †,∇(ΥΥ †)] = 2ABΥΥ
†

+ ih̄∥Υ ∥
−2(Υ∇Υ †

− (∇Υ )Υ †) is a non-Abelian gauge potential already appeared
in Eq. (5.14).

Then, together with (6.10), Eq. (6.7) gives a nonlinear hybrid wave equation (NHWE) obtained by a suitable modification of the
variational structure underlying the original quantum–classical wave equation (4.2). The NHWE is very complicated in several ways,
due to the cumbersome expression of the phase-space vector field X . Thus, suitable numerical methods will need to be developed to
approach the associated initial value problem and we are currently pursuing this direction. Here, we will simply notice that, in both the
purely quantum and the purely classical cases, one has X̃Ĥ = 0. Then, in the purely quantum case one recovers the standard Schrödinger
equation ih̄∂tΥ = ĤΥ , while in the purely classical case, one has X = XH and (6.7) returns the KvH equation ih̄∂tΥ = L̂HΥ . Notice that
in the present context the phase term −(A · XH − H) appearing in the prequantum operator L̂H is an irrelevant phase factor. Indeed,
we need to recall that the classical density is now given by ρc = ∥Υ ∥

2, rather than the expression in (4.8).
The fluctuation vector field X̃Ĥ = XĤ − ⟨XĤ⟩ deserves some words. Notice that ⟨̃XĤ⟩ = 0 and if

Ĥ(q, p) = ĤQ (x̂, p̂) + HC (q, p) + V̂I (q, x̂) , (6.11)

then the expression

X̃Ĥ = (0, F̂ − ⟨̂F⟩) , with F̂ = −∂qV̂I (q, x̂) , (6.12)

dentifies the force fluctuation F̃ := F̂ − ⟨̂F⟩ from the Hellmann–Feynman average ⟨̂F⟩ [70]. As we will see later on, neglecting the
luctuation force F̃ leads to a particularly simple model.

In the remainder of this paper, we will discuss various interesting features arising from the NHWE. Before moving on to this
iscussion, we point out that the NHWE may be regarded as a closure scheme based on von Neumann operators and their Wigner
ransform, similarly to the discussion in Appendix A. This is the topic of Appendix C.

. Discussion

This section presents a series of implications of the NHWE model comprised by Eqs. (6.7) and (6.10). As we will see, this model
njoys several properties including the presence of invariants associated to a Hamiltonian structure combining those of quantum and
lassical mechanics alone. Later on in this section, we will consider how the NHWE model recovers important special cases occurring
n the chemical physics literature and the comparison between the full model and its special cases will lead us to make considerations
n the presence of the quantum backreaction on the classical trajectories. At first, we will present how Poincaré’s integral invariant
ransfers to the quantum–classical setting.
12
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.1. Poincaré integral invariant

The NHWE model discloses an interesting feature: as a consequence of the first line in (6.9), we obtain the hybrid Poincaré integral
nvariant

d
dt

∮
c(t)
(pdq − AB(z, t) · dz) = 0 , (7.1)

where c(t) = η(c0, t) and c0 is an arbitrary loop in the classical phase-space. In terms of differential forms, one may introduce the
Berry curvature

B = ∇AB − (∇AB)T =
2h̄

∥Υ ∥2

(
Im⟨∇Υ |∇Υ ⟩ − Im⟨Υ |∇Υ ⟩ ∧ Re⟨Υ |∇Υ ⟩

)
,

where we have used the wedge product notation v∧w = vw−wv. Then, applying Stokes theorem to (7.1) yields the following evolution
for the exact two-form Ω(t) = J − B(t):

Ωjk(η(z0, t), t) dηj(z0, t) ∧ dηk(z0, t) = Ω0 jk(z0) dz
j
0 ∧ dzk0 , (7.2)

which is analogous to the relation for Hamiltonian flows in symplectic geometry. However, in this case the differential 2-form Ω(t) is
time-dependent and it remains symplectic at all times if it is so initially.

Notice that, by the usual identification between maximal forms and densities, the Liouville theorem ensures that the density detΩ
satisfies the continuity equation ∂t (detΩ) + div(XdetΩ) = 0. Consequently, any one-variable function Φ(x) generates the invariant
functional

I(Υ ) =

∫
∥Υ ∥

2Φ

(
detΩ

∥Υ ∥2

)
d2z.

or example, upon recalling (6.2) and its preceding lines, we observe that in the purely classical case the Berry connection is a pure
ifferential so that the invariant

∫
∥Υ ∥

2 ln(detΩ/∥Υ ∥
2) d2z recovers the usual expression of Gibbs’ entropy. The identification of

ntropy functionals in the context of quantum–classical dynamics is an interesting question that is currently under investigation.
The existence of a Poincaré integral invariant unfolds some of the symplectic properties of the NHWE (6.7). As recently shown in [10]

y using the density matrix formalism, the closure model provided by the NHWE possesses a very rich geometric content and here we
ontinue this discussion by presenting the Hamiltonian structure underlying Eqs. (6.7) and (6.10).

.2. Density matrix and Hamiltonian structure

As the NHWE model is derived from the variational principle associated to the Lagrangian (6.3), it is expected that its equations of
otion are Hamiltonian with respect to the Hamiltonian functional (6.4). In order to present the Hamiltonian structure, it is convenient

o rewrite the NHWE (6.5) in terms of the density matrix P̂(z) = Υ (z)Υ †(z). This is an easy step upon recognizing that the Hamiltonian
unctional (6.4) may be rewritten as

hQC (P̂) =

∫ ⟨
P̂, Ĥ +

ih̄
2TrP̂

[
∇P̂,XĤ

]⟩
d2z (7.3)

and by resorting to the chain rule, that is δhQC/δΥ = 2(δhQC/δP̂)Υ . These relations allow rewriting (6.5) as ih̄∂t P̂ + ih̄ div(X P̂) =

[δhQC/δP̂, P̂]. In addition, the vector field X may be written in terms of P̂ by using the chain rule in the first line of (6.10). One finds
X = J⟨P̂,∇(δhQC/δP̂)⟩/TrP̂ = ⟨XδhQC /δP̂⟩, where we have used ⟨̂A⟩ = ⟨P̂, Â⟩/TrP̂ . In conclusion, one obtains Eq. (1.4) with Ĥ = δh/δP̂
and

δhQC

δP̂
= Ĥ +

1
2TrP̂

(
2ih̄

(
{P̂, Ĥ} + {Ĥ, P̂}

)
+ ih̄[{ln TrP̂, Ĥ}, P̂] −

⟨
ih̄{P̂, Ĥ} + ih̄{Ĥ, P̂}

⟩
1
)
. (7.4)

Notice that Eq. (1.4) is gauge-independent and thus the pure phase term −A · XΥ in (6.5) plays no role in this setting. In addition,
pon using ⟨X Ĥ⟩ = ⟨ρ,X Ĥ⟩ = X⟨ρ,Ĥ⟩ −⟨Xρ, Ĥ⟩, with ρ = P̂/ Tr P̂ , the Leibniz product rule yields the expression of X in (6.10) whereˆ = ih̄[ρ,∇ρ].
Eq. (1.4) was shown to be Hamiltonian in [10]. In particular, upon introducing the notation A : B = Tr(AB), its Poisson bracket reads

{k, h}P̂ = −

∫ ⟨
P̂,

i
h̄

[
δk
δP̂
,
δh
δP̂

]⟩
d2z +

∫
1

TrP̂

(
P̂ :

{
δk
δP̂
,
δh
δP̂

}
: P̂

)
d2z , (7.5)

nd this is accompanied by the Hamiltonian functional (7.3). A thorough discussion of the Poisson bracket (7.5) was given in [10]. The
racket structure for the NHWE is found from (7.5) by simply using the chain rule. One obtains

{k, h}Υ =

∫ (
1
2h̄

Im
⟨
δk
δΥ

⏐⏐⏐⏐ δhδΥ
⟩

  
Quantum Schrödinger bracket

+
1

∥Υ ∥2

(
Υ ⋄

δk
δΥ

)
· J

(
Υ ⋄

δh
δΥ

)
  
Classical Koopman−von Neumann bracket

)
d2z . (7.6)

here

Υ ⋄
δh
δΥ

:=
1

2∥Υ ∥2

(⟨
δh
δΥ

,∇Υ

⟩
−

⟨
Υ ,∇

δh
δΥ

⟩)
.

mportantly, due to its construction, this bracket structure becomes Poisson when restricted to gauge-invariant functionals, which is
ndeed the case for (6.4). Notice that the bracket (7.6) returns Eq. (6.7) in the gauge obtained by dropping the pure phase term −A·XΥ .
13
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The bracket (7.6) has a particularly suggestive form in that it is the sum of the canonical quantum bracket for the evolution of
Schrödinger wavefunctions and the classical KvN bracket (3.12) from (3.12). For earlier attempts to construct Poisson brackets in
quantum–classical dynamics, we address the reader to [6,71].

7.3. Hybrid density operator

In this section we are interested in the analogue of the hybrid density operator (4.5) in the context of the NHWE model. Upon
performing a similar integration by parts to the second equality in (4.4), we observe that the NHWE Hamiltonian functional (6.4) may
be rewritten as∫

⟨Υ , L̂ĤΥ + (A − AB) · XĤΥ ⟩ d2z = Tr

∫
D̂Ĥ d2z , (7.7)

where

D̂ := ΥΥ †
− div(JABΥΥ

†) + ih̄{Υ ,Υ †
} (7.8)

and all quantities are evaluated at the same phase-space point z = (q, p). Notice that the original expression in (4.5) is obtained by
simply replacing AB → A in (7.8). As we showed in [10], the hybrid operator (7.8) may also be written in terms of the variable
P̂ = ΥΥ †. Similarly to (4.5), the new density operator is sign-indefinite while it consistently recovers a positive quantum density
matrix ρ̂q =

∫
D̂ d2z and a positive classical density ρc = TrD̂. We recall from the original treatment in Section 4 that the expression

(4.8) was not positive-definite.
More importantly, in [10] we proved that the hybrid operator (7.8) is covariant with respect to both canonical transformations η

in phase-space and unitary transformations U of the quantum state space. Upon denoting the functional dependence of D̂(z) on Υ by
D̂[Υ (z)], we have the properties

D̂[Υ (η(z))] = D̂[Υ ](η(z)) and D̂[UΥ ] = UD̂[Υ ]U†.

Here, U is a quantum unitary operator while η is a classical canonical transformation, so that Jjk dηj(z)∧dηk(z) = Jjk dz j∧dzk. As showed
in [10], these covariance properties lead to casting the equations for the classical density ρc = ∥Υ ∥

2 and the quantum density matrix
ρ̂q =

∫
ΥΥ †d2z as

∂ρc

∂t
= Tr{Ĥ, D̂} , ih̄

dρ̂q
dt

=

∫
[Ĥ, D̂] d2z , (7.9)

which are formally identical to the analogous relations (4.9) and (4.7) in the original treatment. The relations (7.9) govern the Ehrenfest
equations for quantum and classical expectation values. In general, we define the expectation value of a hybrid observable Â = Â(z)
as ⟨̂A⟩Υ := Tr

∫
D̂Â d2z. Then, if Â = AC (z) is a classical observable and ÂQ is a quantum observable (independent of z), their Ehrenfest

equations are
d
dt

⟨AC ⟩Υ = ⟨{AC , Ĥ}⟩Υ , and ih̄
d
dt

⟨̂AQ ⟩Υ = ⟨[̂AQ , Ĥ]⟩Υ .

While no simple Ehrenfest equation is available for general hybrid observables, the relations above provide already much insight. For
example, it is easy to see that hybrid Hamiltonians of the type Ĥ = m−1p̂2/2 + M−1p2/2 + V̂ (q − x̂) yield conservation of that total
momentum, that is d⟨p + p̂⟩Υ /dt = ⟨{p, V̂ } − ih̄−1

[p̂, V̂ ]⟩Υ = 0.

7.4. Specializations and further comments

This section is devoted to presenting relevant special cases of the NHWE model in quantum–classical dynamics. As we already
discussed after Eq. (6.10), the purely quantum and purely classical cases are immediately recovered by the present treatment. Here,
we will show how simple quantum–classical models are also naturally recovered. Eventually, we will conclude this section by making
considerations on the appearance of the quantum backreaction on the classical Lagrangian paths.

Mean-field model. If Υ (z, x) = ψ(x)
√
D(z)eiS(z)/h̄ (with ψ independent of z), then the NHWE Hamiltonian (6.4) reduces to h =

D⟨Ĥ⟩ d2z and AB = ∇S. Thus, the term ⟨Υ ,AB · XΥ ⟩ reduces to a pure time derivative and the Lagrangian (6.3) drops to
MF =

∫
D
(
A · X + ⟨ψ, ih̄ψ̇ − Ĥ⟩

)
d2z, whose associated variational principle returns the mean-field equations (1.1) for ρc = D

nd ρ̂q = ψψ†.

hrenfest model. If we assume X̃Ĥ ≃ 0 and discard the corresponding term in the NHWE Hamiltonian (6.4), then the latter reduces
o h(Υ ) = ⟨Ĥ⟩Υ . In this case, we have X = ⟨XĤ⟩ and the NHWE (6.7) reduces to

ih̄
∂Υ

∂t
+ ih̄⟨XĤ⟩ · ∇Υ +

ih̄
2
Υ div⟨XĤ⟩ = ĤΥ − ⟨p∂pĤ⟩Υ , (7.10)

In terms of the measure-valued density matrix P̂ = ΥΥ †, the hybrid wave equation (7.10) reads ih̄∂t P̂ + ih̄ div(P̂⟨XĤ⟩) = [Ĥ, P̂] .
Recently, this model was also obtained as a closure model directly from the original theory in Section 4; see [72]. The equations for
the classical density ρc = TrP̂ and the quantum density matrix ρ̂q =

∫
P̂d2z are

∂ρc

∂t
+ div(ρc⟨XĤ⟩) = 0 , ih̄

dρ̂q
dt

=

∫
[Ĥ, P̂] d2z , (7.11)

espectively. We notice that, unlike the mean-field model (1.1), the present construction allows to capture some decoherence effects.
ndeed, the second in (7.11) implies that the quantum purity ∥ρ̂ ∥

2
= Tr(ρ̂2) possesses nontrivial dynamics. Similar conclusions were
q q
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eached previously in [73], although in most cases the decoherence levels obtained by this model – usually known as the Ehrenfest model
are considerably lower than those obtained from fully quantum predictions. Another limitation of Ehrenfest dynamics arises in the
ontext of pure-dephasing systems, that is hybrid systems involving a quantum two-level subsystem and whose hybrid Hamiltonian
s Ĥ = Hc + HI σ̂k, where σ̂k is any of the three Pauli matrices. In this case, Ehrenfest dynamics gives ∂t⟨σ̂k⟩ + ⟨XĤ⟩ · ∇⟨σ̂k⟩ = 0
with ⟨XĤ⟩ = XHc + XHI ⟨σ̂k⟩. Then, if ⟨σ̂k⟩ = 0 initially, this relation holds indefinitely and the classical evolution in (7.11) returns
simply ∂tρc = {Hc, ρc}. Thus, we observe that the classical dynamics decouples completely from the quantum motion. This quantum–
classical decoupling occurring for pure-dephasing systems is among the main drawbacks of the Ehrenfest model. Instead, this issue
is absent in the NHWE, or its density-matrix formulation given by (1.4), with Ĥ = δh/δP̂ and (7.4). Indeed, in this case one obtains
(∂t +X · ∇)⟨σ̂k⟩ = D−1

{HI ,D(⟨σ̂k⟩2 − 1)}, with X = XHc +XHI ⟨σ̂k⟩ + ρ−1
c

(⟨
ρc JΓ̂ , σ̂k

⟩
· ∇XHI −XHI · ∇

⟨
ρc JΓ̂ , σ̂k

⟩)
/2 and ρcΓ̂ = ih̄[P̂,∇P̂].

See [10] for more discussions on how the closure model proposed here adapts to the case of quantum two-level systems.

Quantum decoherence and backreaction force. While quantum decoherence is absent in the mean-field model (1.1) and is poorly
captured by the Ehrenfest wave equation (7.10), the full NHWE model (6.7) seems to suggest that decoherence and other quantum–
classical correlation effects arise from the fluctuation vector field X̃Ĥ , which is given by (6.12) for the standard-type Hamiltonian
operator (6.11). Then, the fluctuation force F̃ = F̂ − ⟨̂F⟩ around the Hellmann–Feynman average ⟨̂F⟩ emerges in the present framework
as the main responsible for quantum–classical correlations. Besides quantum decoherence, this Hellmann–Feynman fluctuation F̃ also
comprises the so-called quantum backreaction, that is the feedback force on the classical trajectories. While the mean-field vector field
X⟨Ĥ⟩ occurring in the first equation ∂tρc + div(ρcX⟨Ĥ⟩) = 0 of (1.1) ignores this important effect, part of the backreaction appears in the
Ehrenfest vector field ⟨XĤ⟩ = X⟨Ĥ⟩ + (⟨XĤ⟩−X⟨Ĥ⟩) from the first equation in (7.11). Unfortunately, the Ehrenfest model is known to lack
most backreaction effects [21]. In the more general case of Eq. (6.10), however, we observe that the rest of the backreaction effects is
retained by the difference X −⟨XĤ⟩, which for the Hamiltonian (6.11) is triggered entirely by the fluctuation force in XĤ −⟨XĤ⟩ = (0, F̃ ).
Then, the quantity F̃ emerges as a fundamental object in quantum–classical coupling and we shall call it the backreaction force.

8. Summary and outlook

Based on Sudarshan’s early attempt in [7], this paper has formulated a dynamical theory of hybrid quantum–classical systems by
following two sequential steps. In the first, we followed our original work by blending the variational structure of Koopman and
Schrödinger wavefunctions after exploiting the KvH construction to retain classical phases within the formalism. In the second, we
took a step beyond our original model by making classical phases unobservable via a gauge-invariance principle. As we showed, the
second step is crucial in ensuring that the classical state is always identified by a positive-definite Liouville density on phase-space,
whose transport equation is now directly related to Noether’s theorem. While classical phases were made unobservable by enforcing
superselection rules following Sudarshan’s work, the latter led to substantial issues which are here circumvented by resorting to a
simpler gauge principle. The idea of a gauge principle reflects previous comments made by Ghose [52], and much earlier by Boucher
and Traschen [5], on the role of classical phases in hybrid dynamics.

As we showed, the introduction of a gauge principle in the original variational principle requires nontrivial sophisticated steps
in geometric mechanics combining tools from continuum dynamics, such as Lagrangian paths and Lie transport, with Hilbert-space
methods from quantum and Koopman classical mechanics, e.g. phase-space wavefunctions and local density matrices. In particular,
a key ingredient is the exact factorization method allowing the identification of the classical phase and ultimately leading to the
application of the gauge principle.

The final NHWE model comprised by (6.7) and (6.10) consists of a formidable equation for a hybrid QC wavefunction. Unlike the
original formulation in (4.2), the NHWE equation is made highly nonlinear by the presence of the Berry connection in the Lagrangian
(6.3). Yet, in this context the Berry connection is crucial in realizing the QC correlations. Given the level of complexity of the NHWE
model, trajectory-based computational tools analogue to those in [65,67] are currently under development in order to account for
several degrees of freedom and strong subsystem–bath couplings. Also, further closure models are desirable to alleviate the difficulties
arising from a full phase-space treatment. At present, fluid closure models are under investigation.

Despite its complexity, the NHWE model was shown to retain several remarkable features that are not easy to find in alternative
hybrid theories. For example, the model possesses a hybrid Poincaré integral invariant which is unavailable in the original formulation.
As showed, this leads to defining a time-dependent hybrid symplectic form whose associated Liouville volume can be used to construct
dynamical invariants. Indeed, the latter are allowed in the form of Casimir functionals by the presence of a noncanonical Hamiltonian
structure that is written in (7.6) as the sum of a quantum Schrödinger term and a classical Koopman term. In turn, the existence of
Casimir invariants allows the identification of Lyapunov-stable equilibria by following the methods in [74]. In addition, as discussed in
the previous section, the NHWE overcomes the quantum–classical decoupling occurring in pure-dephasing Ehrenfest dynamics, thereby
ensuring the persistence of a quantum backreaction on the classical evolution.

We conclude by emphasizing two more different directions arising from this work. At a foundational level, we would like to
understand how the results in this paper can be used to formulate a dynamical theory of quantum measurement. As pointed out
by Peres [75], the latter can be envisioned as the combination of a reversible pre-measurement mechanism and an irreversible process.
The latter is due to the fact that the classical apparatus is realistically in a thermal equilibrium. This description requires the addition
of entropy sources in the classical sector, thereby indicating a possible way forward in the formulation of a measurement theory.

On a more applied level, we would also like to apply the present theory to devise newmodels for quantum–classical spin hybrids [24].
The general idea is to reach previously unaccessible regions in the control parameter space of spin control protocols by exploiting the
coupling to large dipole moments of classical magnets. This picture involves the interaction dynamics of a classical magnetization vector
with quantum spins, in which case the former obeys Landau–Lifshitz-type dynamics. We plan to pursue this interesting direction in
future work.
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ppendix A. Von Neumann operators in Koopman mechanics

This appendix presents an extension of the treatment in Section 3 that overcomes the difficulties arising from the use of the relation
S = A. As discussed in various instances, this relation requires a singular phase which may pose several problems. Here, we will
vercome this difficulty by extending the wavefunction treatment from Section 3 to consider the more general setting made available
y von Neumann operators and their Wigner transforms.
Let us start from KvH theory. Instead of considering the KvH equation (2.6) for the wavefunction χ (z, t), here we consider the

Koopman mixture

Θ̂(z, z′) =

N∑
a=1

waχa(z)χ∗

a (z
′) , (A.1)

with wa ≥ 0 and
∑N

a=1wa = 1. The von Neumann operator Θ̂ mimics the density matrix from standard quantum theory and satisfies
the equation

ih̄∂tΘ̂ = [L̂H , Θ̂] , where L̂H := ih̄{H, } + L (A.2)

is the covariant Liouvillian from (2.6). Then, the variational structure for the Koopman mixture is given by the natural extension of the
KvH Lagrangian LKvH in (2.7), that is

Lmix =

N∑
a=1

waLKvH (χa, ∂tχa) , (A.3)

where the subscript ‘mix’ refers to the fact that we are dealing with a mixture. This Lagrangian yields a sequence of identical KvH
equations for each χa, with the same Hamiltonian H . Then, we can write χa =

√
DaeiSa/h̄ and perform exactly the same steps in the

previous section. For example, the Lagrange-to-Euler map (3.3) now reads Da(z, t) =
∫
Da,0(z)δ(z − η(z0, t)) d2z0, or equivalently in

terms of the Jacobian Jη = det∇η. We note that, since the χa’s all obey the same KvH equation, the Lagrangian path η is the same for
each a = 1, . . . ,N . Upon defining

D =

N∑
a=1

waDa , and σ =

N∑
a=1

waDa∇Sa , (A.4)

the classical Liouville density reads

ρc = D + div(J(σ − DA)) (A.5)

and the Lagrangian (A.3) is taken into the Euler–Poincaré form

LEPmix =

∫
(σ · X + (DA − σ) · J∇H − DH) d2z , (A.6)

which replaces the previous expression in (3.5). It may be worth noticing that the quantities (A.4) may also be written entirely in terms
of the operator Θ̂ as [65]

D(z) = Θ̂(z, z′)|z′=z , and σ(z) =
1
2

[
λ̂, Θ̂

]
+
(z, z′)|

z′=z
, (A.7)

where [·, ·]+ denotes the anticommutator and we have introduced the operator λ̂ = −ih̄∇ , so that [ẑ, λ̂] = ih̄1. Given the appearance
f the above quantities in (A.5), here we remark that the KvH formulation generally allows for a sign-indefinite operator Θ̂ , as long as

the corresponding classical distribution ρc is positive. Indeed, as we will see below, it is convenient to consider von Neumann operators
beyond the mixture type (A.1), which however represents a useful tool to obtain the Lagrangian LEPmix.

In the variational formulation associated to (A.6), the variation δσ is arbitrary and one makes use of the variations (3.6)–(3.7),
along with (3.4). Equivalently, one may also write σ = DΛ with arbitrary δΛ. Then, Hamilton’s principle δ

∫ t2
t1

LEPmix dt = 0 yields the
nalogous of (3.1), that is, upon writing Λ := σ/D,

∂t (Λ − A) + XH · ∇(Λ − A) + ∇XH · (Λ − A) = 0 . (A.8)

We realize that, since Λ is no longer an exact differential, the preserved condition Λ = A may be set at the initial time without
incurring in topological singularities. In this way, the classical density (A.5) collapses to ρc = D, which again satisfies ∂tD = {H,D}. But
what does the relation Λ = A correspond to in terms of the von Neumann operator Θ̂ in (A.2)? Can we obtain the relation Λ = A as a
closure model expressing σ = DΛ as a function σ = σ(D,A)? In order to address these points, it is convenient to use Wigner functions.

Let us consider the Wigner transform of Eq. (A.2), that is

∂ W (z,λ, t) = {{L (z,λ),W (z,λ, t)}} , where L (z,λ) = X (z) · λ − L (z) (A.9)
t H H H
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s the Weyl symbol of the covariant Liouvillian in (A.2), W (z,λ, t) is the Wigner transform of Θ̂(z, z′, t), and {{ , }} is the Moyal bracket
in the double phase-space coordinates (z,λ). We notice that, since LH (z,λ) is linear in λ, the moment hierarchy

∫
λnW d2z closes at

ny order greater than or equal to 1. This can be seen explicitly by taking the L2−pairing of (A.9) with the arbitrary analytic function
nΦn(z), and then using the properties of the Moyal bracket. Thus, we may consider the closed dynamics for the variables given by
= 0, 1, that is D =

∫
W d2z and σ =

∫
λW d2z, respectively. In particular, we notice that any local Gaussian function of the type

(z,λ, t) = (2πΣ2)−1D(z, t) exp
(
−Σ−2|λ − Λ(z, t)|2/2

)
is an exact solution of (A.9) for any Σ , provided that Λ = σ/D satisfies (A.8)

nd D satisfies the classical Liouville equation. Thus, setting Λ = A we obtain that the Wigner function

W (z,λ, t) =
D(z, t)
2πΣ2 e−

|λ−A(z)|2

2Σ2 =
D(z, t)
2πΣ2 e−

(λq−p)
2
+λ2p

2Σ2 , (A.10)

s an exact solution of (A.9) provided D satisfies ∂tD = {H,D}. The second equality in (A.10) follows immediately by recalling
(z) = (p, 0). The von Neumann operator associated to the Wigner function (A.10) is found as

Θ̂(z, z′, t) =

∫
W

(z + z′

2
,λ, t

)
e−iλ·(z−z′)d2λ = D

(z + z′

2
, t

)
e−

1
2h̄

(
i(q−q′)(p+p′)+Σ2

h̄ |z−z′|2
)
. (A.11)

In the limit caseΣ → 0, the von Neumann operator associated to the singular Wigner function W = Dδ(λ−A) was presented explicitly
n [76].

Here, the Wigner function (A.10) appears as a closure for the von Neumann equation (A.2), or its Wigner–Moyal correspondent in
A.9). Actually, the function (A.10) is an exact solution of Eq. (A.9), which emerges as the natural extension of KvH theory to Wigner
istributions. We notice that, as mentioned above, the operator (A.11) is sign-indefinite and thus is more general than the mixture
A.1). Nonetheless, this unsigned operator yields a positive distribution (A.5), so that the resulting closure model coincides with the
lassical Liouville equation for ρc = D (or KvN equation, by writing D = |χ |

2).
Equivalently, the classical Liouville equation may be obtained by simply replacing σ → DA in the Euler–Poincaré variational

rinciple (A.6) for Koopman mixtures. The latter observation allows us to avoid dealing with von Neumann operators when looking for
reduction process taking the KvH construction to the simpler KvN dynamics.

ppendix B. Calculations for the diamond operator

From (6.6), we compute the diamond Υ ⋄ δh/δΥ term by term as follows⟨
ĤΥ + AB · ⟨XĤ⟩Υ ,∇Υ

⟩
−

⟨
Υ ,∇(ĤΥ + AB · ⟨XĤ⟩Υ )

⟩
= −∥Υ ∥

2
⟨∇Ĥ⟩ − ∥Υ ∥

2
∇

(
AB · ⟨XĤ⟩

)
⟨
XĤ · (ih̄∇)Υ ,∇Υ

⟩
−

⟨
Υ ,∇(XĤ · (ih̄∇)Υ )

⟩
= 2

⟨
XĤ · (ih̄∇)Υ ,∇Υ

⟩
− ∇

⟨
Υ ,XĤ · (ih̄∇)Υ

⟩
= 2

⟨
XĤ · (ih̄∇)Υ ,∇Υ

⟩
+ ∇(∥Υ ∥

2AB · ⟨XĤ⟩) − ∇
⟨
Υ , (XĤ − ⟨XĤ⟩) · (ih̄∇)Υ

⟩
⟨
XĤ · ABΥ ,∇Υ

⟩
−

⟨
Υ ,∇(XĤ · ABΥ )

⟩
=

⟨
XĤ · ABΥ ,∇Υ

⟩
− ∥Υ ∥

2
⟨∇(XĤ · AB)⟩ −

⟨
Υ ,XĤ · AB∇Υ

⟩
= − ∥Υ ∥

2
⟨∇(XĤ · AB)⟩

lso if we apply

1
2

(⟨
δh
δΥ

,∇Υ

⟩
−

⟨
Υ ,∇

δh
δΥ

⟩)
=

⟨
δh
δΥ

,∇Υ

⟩
−

1
2
∇

⟨
δh
δΥ

,Υ

⟩
,

we have
1
2

(⟨
ih̄Υ div⟨XĤ⟩,∇Υ

⟩
+

⟨
ih̄Υ ,

(
div⟨XĤ⟩

)
∇Υ + Υ∇ div⟨XĤ⟩

⟩)
= ∥Υ ∥

2AB div⟨XĤ⟩

= 2AB
⟨
Υ , (XĤ − ⟨XĤ⟩) · ∇Υ

⟩
and

2
⟨
ih̄⟨XĤ⟩ · ∇Υ ,∇Υ

⟩
− ∇

⟨
Υ ,

(
ih̄⟨XĤ⟩ · ∇Υ

)⟩
= 2

⟨
⟨XĤ⟩ · (ih̄∇)Υ ,⊗∇Υ

⟩
+ ∇(∥Υ ∥

2AB · ⟨XĤ⟩),

which altogether recovers (6.10).

Appendix C. Closure method and hybrid von Neumann operators

In Section 6, we showed how the relation (5.6) is used to achieve a positive-definite classical density while taking the Lagrangian
(5.16) into the manifestly gauge-invariant form (6.1). In this appendix, we will show how the resulting gauge-invariant Lagrangian ℓQC
in (6.3) emerges in the context of the original theory from Section 4 by resorting to von Neumann operators and their Wigner functions.

Following the discussion in Appendix A, we prefer to partly abandon the wavefunction picture of Koopman dynamics in favour
of the mixture picture, which was mentioned in [10] only briefly. The reason for resorting to mixtures is that AB often vanishes at
the initial time (for example, when ψ is real) and thus the relation (5.6) would require the presence of topological singularities. In
more generality, we wish to understand how the hybrid Lagrangian in (6.3) emerges as a type of closure model by adopting an ansatz,
similarly to the arguments in Appendix A. In particular, in analogy to (A.1), we combine mixtures with the exact factorization (5.1) by
constructing a von Neumann operator with matrix elements

Θ̂(z, z′, x, x′) =

N∑
waΥa(z, x)Υ ∗

a (z
′, x′) , with Υa(z, x) = χa(z)ψ(x; z) , (C.1)
a=1
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nd
∫

|ψ |
2 dx = 1. Mixtures of this type are analogous to those considered in [65] within the context of nonadiabatic quantum

ydrodynamics. Then, following the same arguments as in Appendix A, we will proceed by inserting the exact factorization Υa = χaψ

in the mixture Lagrangian
∑

awaLQC (Υa, ∂tΥa), where LQC is given in (4.3). After writing χa =
√
DaeiSa/h̄ and using the definitions (A.4),

the steps from Section 5 take us to the following Euler–Poincaré Lagrangian (and thus to its associated dynamics):

L =

∫ (
σ · X + D

⟨
ψ, ih̄∂tψ − Ĥψ + ih̄X̃Ĥ · ∇ψ − (D−1σ + AB − A) · XĤψ

⟩)
d2z . (C.2)

n this case, the original expression (5.4) of the classical density changes to ρc = D + div(Jσ + DJAB − DJA) and one would like to set
−1σ + AB = A in such a way to obtain a positive-definite density ρc = D. Unlike the purely classical case treated in Appendix A, the
ybrid relation D−1σ + AB = A is not preserved in time by the dynamics arising from (C.2). Here, we will devise a closure scheme so
hat a particular ansatz at the level of the von Neumann operator is applied to the Lagrangian (C.2) thereby returning (6.1).

We realize that the operator (C.1) emerges as a special case of a wider class of operators, which will be particularly convenient in
esigning our closure scheme. Specifically, let us consider matrix elements of the type

Θ̂(z, z′, x, x′) = θ̂ (z, z′)ψ(x; z)ψ∗(x′
; z′) , (C.3)

here θ̂ is itself a von Neumann operator acting only on the classical sector. We observe that (C.3) leads to the relations (A.7) with Θ̂
eplaced by θ̂ . In this setting, the Hamiltonian functional h(θ̂ , ψ) is given by (5.8) upon replacing D∇S → σ and using (A.7) to express
and σ in terms of θ̂ . Thus, if we follow the procedure in Appendix A and define Λ := D−1σ, finding a closure for which Λ+AB = A
mounts to finding a von Neumann operator θ̂ so that

[
λ̂, θ̂

]
+
(z, z′)|z′=z = 2θ̂ (z, z′)|z′=z(A − AB). We will address this problem by

esorting to Wigner transforms, following the treatment in Appendix A. We anticipate that, similarly to the approach in that section, we
ill now allow for the operator θ̂ to be sign-indefinite, as long as its associated phase-space distribution ρc = D+div(J(σ+DAB−DA))
emains positive.

Let us introduce the Wigner transform

w(z,λ) =
1

(h̄π )2

∫
θ̂ (z − z′, z + z′) e2iλ·z′/h̄ d2z ′ (C.4)

f the von Neumann operator θ̂ , so that

D(z) =

∫
w(z,λ) d2λ , D(z)Λ(z) =

∫
λw(z,λ) d2λ . (C.5)

hen, we see that the relation Λ + AB = A is achieved by a slight modification of the closure (A.10), that is

w(z,λ) =
D(z)
2πΣ2 exp

(
−

|λ − A(z) + AB(z)|2

2Σ2

)
. (C.6)

ere, we recall that the Berry connection AB is expressed in terms of ψ by (5.5). Thus, we are left with the conclusion that the closure
elation Λ = A − AB taking the Lagrangian (5.16) into the closure model Lagrangian (6.1) is achieved by a von Neumann operator of
the type (C.3), where θ̂ has a Wigner transform given by (C.6) for some Σ . Similarly to (A.11), we compute

θ̂ (z, z′) = D(ζ) exp
(
−

i
2h̄

(z − z′) · (A(ζ) − AB(ζ)) −
Σ2

2h̄2 |z − z′
|
2
)⏐⏐⏐

ζ=(z+z′)/2
, (C.7)

here we recall A(z) = (p, 0). In the limit Σ → 0, this type of von Neumann operator was previously found in [65], although the
xpression (C.7) now involves phase-space coordinates. By following analogous steps to those in [65] (see Section 5.1 therein), one
hows that replacing (C.7) in the variational principle underlying the dynamics of the hybrid von Neumann operator in (C.3) ultimately
eads to the Lagrangian (6.3), thereby recovering the NHWE system (6.7)–(6.10). The explicit relations involved in this argument are
mitted here and we refer to Section 5.1 in [65] for the technical details in the fully quantum context.
We notice that the Wigner function (C.6) extends the usual fluid closure method from kinetic theory to consider Maxwellian

istributions on phase-space. Although their von Neumann operator is sign-indefinite, as we pointed out in Appendix A, Wigner
istributions of general Maxwellian type are occasionally used in mixed-state quantum hydrodynamics [77,78]. In the present context,
owever, we will not have to deal with the various aspects concerning Maxwellian distributions. Indeed, as we already showed, our
HWE model is simply obtained by replacing ∇S → A − AB in the Lagrangian (5.16) from the original theory.
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