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1. Introduction
Thermal tides play important roles in the Martian atmosphere. As a result of the low atmospheric heat capacity 
and the fast planetary rotation, the Martian atmosphere experiences large and rapid daily temperature varia-
tions. Primarily driven by solar insolation and influenced by topography, thermal tides are excited as forms of 
planetary-scale harmonic responses (Gierasch & Goody, 1968; Zurek, 1976). Some modes of the tides propagate 
vertically with increasing amplitude due to the conservation of energy (Lindzen & Chapman, 1969). These tides 
are significant and highly coupled with airborne dust and water ice as well as atmospheric circulation, and are 
sensitive indicators of excitation sources (Barnes et al., 2017; Wu et al., 2022). These excitations and coupling 
processes are among current bottlenecks of numerical simulations (Gilli et al., 2020; Navarro et al., 2017), and 
also our understanding of the Martian atmosphere.

Since the first global and diurnal observation of the Martian atmospheric temperature obtained by the InfraRed 
Thermal Mapper onboard the Viking orbiters (Wilson & Richardson, 2000), our knowledge of thermal tides in 
the Martian atmosphere has been significantly enriched in the past two decades from a number of Mars orbiter 

Abstract Temperature profiles retrieved using the first set of data of the Emirates Mars InfraRed 
Spectrometer obtained during the science phase of the Emirates Mars Mission are used for the analysis of 
migrating thermal tides in the Martian atmosphere. The selected data cover a solar longitude (LS) range of 
60°–90° of Martian Year 36. The novel orbit design of the Hope Probe leads to a good geographic and local 
time coverage that significantly improves the analysis. Wave mode decomposition suggests dominant diurnal 
tide and important semi-diurnal tide with maximal amplitudes of 6 and 2 K, respectively, as well as the 
existence of ∼0.5 K ter-diurnal tide. The results agree well with predictions by the Mars Planetary Climate 
Model, but the observed diurnal tide has an earlier phase (3 hr), and the semi-diurnal tide has an unexpectedly 
large wavelength (∼200 km).

Plain Language Summary As a result of its small thickness, the Martian atmosphere experiences 
large temperature variations within each Martian day due to the incoming sunlight. Such rapid and large 
temperature variations excite waves propagating in the Martian atmosphere that highly influence winds, cloud 
formation, and dust transport. In this work, we use the atmospheric temperature measurements derived using 
observations obtained by an infrared spectrometer onboard the Hope Probe to analyze the diurnal temperature 
variations and the excited waves. The novel design of the spacecraft's orbit provides good data coverage 
in location and time, leading to the success of detailed analyses of the waves that propagate in the Martian 
atmosphere synchronously with the movement of the Sun, among which a new wave mode with a period of one 
third of a Martian day is detected. We compare the results with predictions provided by numerical simulations, 
and they show good agreements in the wave strengths, but the observed waves have different wavelengths and 
phases.
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and lander observations (Banfield et  al., 2003; Forbes et  al., 2020; Hess et  al., 1977; Kleinböhl et  al., 2013; 
Lee et  al.,  2009). However, the local time coverage of most observations prevents detailed analysis of such 
planetary-scale diurnal/sub-diurnal variations. Sun-synchronous spacecraft orbits limit observations near two 
local times that result in wave mode aliasing, for example, the Thermal Emission Spectrometer onboard the Mars 
Global Surveyor (MGS/TES, Banfield et al., 2003), and the Mars Climate Sounder onboard the Mars Reconnais-
sance Orbiter (MRO/MCS, Forbes et al., 2020; Kleinböhl et al., 2013; Lee et al., 2009), while slow-drifting orbits 
introduce seasonal changes into diurnal variation analyses, for example, the Planetary Fourier Spectrometer 
onboard the Mars Express (MEX/PFS, Giuranna et al., 2021), and the TIRVIM Fourier-spectrometer, part of the 
Atmospheric Chemistry Suite onboard the ExoMars Trace Gas Orbiter (TGO/ACS/TIRVIM, Fan et al., 2022). 
Therefore, data with planetary-scale spatial coverage that sample all local times within a short range of season 
is necessary for detailed thermal tide investigations. Observations obtained by the Emirates Mars InfraRed 
Spectrometer onboard the Hope Probe of the Emirates Mars Mission (EMIRS/EMM, Almatroushi et al., 2021; 
Edwards et al., 2021) meet such a requirement, which is the subject of this work.

2. Observations and Data Processing
2.1. EMM/EMIRS

The scientific objectives of EMM mainly focus on the Martian atmosphere (Almatroushi et al., 2021). The Hope 
Probe is in a high orbit (19970/42650 km altitude at periapsis/apoapsis) with a low inclination (25°), which 
allows it to have a global-scale view of Mars from any location of the orbit. EMIRS is a Fourier transform infra-
red spectrometer onboard the spacecraft, which covers a spectral range of 1666-100 cm −1 with a resolution of 
5 or 10 cm −1 depending on observing modes (Edwards et al., 2021). The instrument is equipped with a moving 
pointing mirror that samples the Martian disk within 0.5 hr, and a full geographic and local time coverage can 
be reached  within 10  days (Figure  1a). Retrievals using these spectra provide information about the surface 
and atmospheric temperatures, water vapor, and dust and water ice aerosols (Smith et  al.,  2022), which use 

Figure 1. (a) Season and local time of the first set of Emirates Mars InfraRed Spectrometer (EMIRS) temperature profile observations between ±5° in latitude 
(back dots). The blue shaded area denotes the season (LS = 60°–90°) selected in this work. (b) Location of the selected EMIRS observations. The color denotes the 
observation local time. (c) Number of EMIRS observations in the (latitude, local time) bins. (d) Temperatures (color dots, lower axis) and estimated uncertainties (color 
lines, upper axis) retrieved using EMIRS observations between ±5° in latitude and within 0.5 hr of 9 hr (blue) and 21 hr (red). (e) Averaging kernels of retrieving the 
temperatures at 30 Pa (black dashed line) using observations between ±5° in latitude and within 0.5 hr of 9 hr (blue lines) and 21 hr (red lines). The retrieved pressure 
levels are averages weighted by corresponding asymmetric kernels, so they do not coincide with maximal values of the kernels. (f) Zonal and diurnal mean temperature 
derived using EMIRS observations during MY 36 LS = 60°–90°.
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a constrained linear inversion method based on that for TES (Conrath et al., 2000; Smith, 2002, 2004; Smith 
et al., 2001) to fit sequentially for atmospheric temperature, aerosol optical depth and surface temperature, and 
water vapor, with first guesses of surface and atmospheric temperatures from the spectra themselves. The atmos-
pheric temperature profiles are constrained from the Martian surface to ∼50 km (∼2 Pa) with a vertical resolution 
of approximately one scale height (∼10 km), and uncertainties ranging from ∼2 K at 1–3 scale heights above the 
surface to 5–10 K at lower and higher altitudes (Smith et al., 2022).

2.2. Data Processing

Observations used in this work are taken from the first set of data obtained by EMIRS. These data range from the 
start of the EMM science phase in May 2021 to the Mars solar conjunction in September 2021, equivalent to a 
solar longitude (LS) range of 49°–100° of Martian Year (MY) 36. Two gaps exist at LS = 51°–57° and 93°–97° due 
to spacecraft safe mode events, so the continuous data at LS = 60°–90° are selected to avoid possible influence 
of these gaps (Figure 1a). This is a dust-clear season in the late northern spring when Mars is near aphelion, and 
there are no significant seasonal variations of daily temperature anomalies (Text S1; Figures S1–S3 in Supporting 
Information S1). Observations within this 30° of LS are considered together to improve statistics. The selected 
temperature profiles total ∼7.0 × 10 4 in number, and have a full coverage in geography and local time, despite 
a slight asymmetry in latitude with more day time sampling in the north and night time in the south (Figures 1b 
and 1c). Individual profiles are firstly vertically interpolated to the same pressure grid, which is finer than that 
in the retrieval, and then binned in longitude, latitude, and local time with grid sizes of 5°, 10°, and 1 hr, respec-
tively (Figure 1c), in the investigations of zonal and diurnal mean temperature and corresponding daily anomalies 
(Section 3.1). Each bin is assigned the same weight to reduce the biased local time sampling. Uncertainties of the 
binning include retrieval uncertainties and the variance of retrieved temperatures, and those of zonal and diurnal 
averaging are computed through error propagation. They are usually small and negligible after binning and aver-
aging (therefore not shown), except for the case of detecting the ter-diurnal tide (Section 3.2).

2.3. Wave Mode Decomposition

Contributions of atmospheric waves, including amplitudes (A) and phases (θ), on the diurnal temperature varia-
tions are derived using least-square fit with a linear assumption (Gierasch & Goody, 1968; Zurek, 1976).

𝑇𝑇 (𝜆𝜆𝜆 𝜆𝜆𝜆 𝜆𝜆𝜆 𝜆𝜆) =
∑

𝜎𝜎𝜆𝜎𝜎

𝐴𝐴𝜎𝜎𝜆𝜎𝜎(𝜆𝜆𝜆 𝜆𝜆)sin (𝜎𝜎𝜆𝜆 + 𝜎𝜎𝜆𝜆 + 𝜃𝜃𝜎𝜎𝜆𝜎𝜎(𝜆𝜆𝜆 𝜆𝜆)) (1)

where λ, φ, and p are longitude, latitude, and pressure level, respectively; t is the universal time; s and σ are 
the wave frequencies in longitude and time. Data are binned only in latitude and interpolated in pressure in this 
decomposition analysis, as the longitude and time are considered directly. Pairs of the frequencies, (s, σ), denote 
the wave modes; for example, (s, σ) = (1, 1) represents the mode with wavenumber one in longitude and a period 
of one Martian day in time, which is the diurnal tide. Among them, migrating thermal tides propagate westward 
Sun-synchronously with s/σ = 1. Details of the linear regression and the derivation of uncertainties are given in 
the Supporting Information S1 (Text S2). All wave modes with s = {0, 1, 2, 3} and σ = {−2, −1, 0, 1, 2} are 
considered, while σ = ±3 is later included due to a visible ter-diurnal tide structure in the residual (Section 3.2).

3. Results
3.1. Diurnal Temperature Variation

Temperature profiles and estimated retrieval uncertainties obtained near local times of 9 and 21 hr in the equato-
rial region are shown in Figure 1d as examples. Consistent differences exist between these two local times. The 
atmosphere at 21 hr is colder at ∼100 Pa, but warmer near the surface and at <10 Pa, which is an indication of 
vertically propagating thermal tides. These profiles are smoother than those obtained from limb sounding, for 
example, ∼5 km of MCS observations, half that of EMIRS (Lee et al., 2009), due to the information content of 
the near-nadir observations (Figure 1e, Smith et al., 2022). The derived temperature at a certain pressure level is 
a weighted average of its neighboring pressure levels, so the oscillations in the profiles and therefore the inferred 
tide amplitudes are smaller.

Zonal and diurnal mean temperature (Figure 1f) is obtained by averaging the binned temperature profiles along 
the axes of longitude and local time. The temperature structure shows typical solstice features with a warm 
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summer pole and a warming structure at a few to tens of Pa toward the winter pole, which is a result of the down-
welling branch of the Hadley circulation. Comparison with the predictions of the Mars Planetary Climate Model 
(PCM, Fan, 2022; Forget et al., 1999, 2022; Madeleine et al., 2011; Navarro et al., 2014), where microphysics of 
radiatively active water clouds are included, is given in the Supporting Information S1 (Text S3, Figure S4). The 
model (Fan, 2022) generally agrees well with the observation except for some temperature overestimates at low 
latitudes by a few K, and underestimates near the poles (Figure S4f in Supporting Information S1).

Daily temperature anomalies (Figure 2) are derived by subtracting the zonal and diurnal mean from the zonally 
averaged binned profiles. This is the first time that such variations are observed on a global scale without any 
significant gaps in local time or sampling bias in season. The daily anomalies at low latitudes between ±20° 
(Figures 2f–2j) show signatures of dominant downward phase propagation of diurnal tide with an amplitude of 
∼6 K at <10 Pa to ∼2 K at >100 Pa. The temperature maximum propagates approximately from 23 hr at 5 Pa to 
19 hr at 500 Pa. At mid-latitudes, however, a large day-night contrast of ∼4 K extends from surface to ∼10 Pa 
at certain local times (Figures 2c–2e and 2k–2m). A tide-like structure exists at small pressure levels with a 
temperature anomaly propagating from approximately 8 hr at 5 Pa to 18 hr at 20 Pa in the north (Figures 2k–2m), 
while it is not clear in the south (Figures 2c–2e). Such a phase transition likely results from a rapid decrease of 
dust loading near the dust top (Wu et al., 2021), which is also north-south asymmetric due to the topography 
and its induced meridional circulation (Richardson & Wilson,  2002). The derived temperature anomalies at 
high-latitudes have gaps in local time (Figures 2a, 2b, 2n and 2o) due to under sampling (Section 2.2, Figure 1c).

3.2. Migrating Thermal Tides

Analysis in this work mainly focuses on migrating thermal tides, as they constitute the main diurnal temperature 
variation in the Martian atmosphere below 60 km (Banfield et al., 2003; Fan et al., 2022; Lee et al., 2009). By 

Figure 2. Zonal mean daily temperature anomalies derived using Emirates Mars InfraRed Spectrometer observations for latitude bins centered at 70°S to 70°N with an 
interval of 10°.
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applying the least-square fit of Equation 1 to the observed temperatures (Section 2.3), amplitudes and phases of 
the tides are derived. The result in the equatorial bin between ±5° is shown in Figure 3. Combination of the modes 
with the time frequency, σ, truncated at ±2 (Figure 3a) reproduces most of the diurnal temperature variation 
(Figure 2h), with residual less than 0.8 K at most pressure levels (Figure 3b). However, the residual is consistently 
larger than the uncertainty, and patterns of downward phase progression with a period of one third of a Martian 
day appear (Figure 3b), which suggests the existence of ter-diurnal tide. Therefore, the wave mode decomposition 
is then reapplied with σ expanded to ±3. Although the resulting diurnal temperature variation does not change 
much (Figure 3c), the residual is mostly below the uncertainty level and becomes random (Figure 3d). The inclu-
sion of ter-diurnal tide greatly improves the decomposition, which indicates its existence.

Contributions of the first three migrating thermal tides and their phases are shown in Figure 4 for the same equa-
torial bin. The diurnal tide, the (1, 1) mode, dominates the diurnal temperature variation with an amplitude of 
∼2–6 K (Figure 4a). Its phase progression is linear with the logarithm of pressure (Figure 4b), which suggests 
a constant wavelength of ∼40 km if assuming a scale height of 10 km. Compared to the model predictions, the 
observed diurnal tide has a similar vertical wavelength, but an earlier phase of ∼3 hr. Both of the observed and 
modeled wavelengths become larger at pressure levels <20 Pa, which is likely due to the difference in zonal 
wind and/or excitation sources of dust/clouds (Wu et al., 2017). The semi-diurnal tide, the (2, 2) mode, shows an 
amplitude of ∼1.5–2 K across all pressure levels (Figure 4c). Its phase progression is also linear, and indicates a 
wavelength of ∼200 km (Figure 4d), which is far larger than that in the model prediction (∼60 km for the orig-
inal output, or ∼80 km if sampling and vertical convolution are considered). Such a large wavelength indicates 
a possible dominant trapped Hough mode, which does not vertically propagate outside the region of excitation 
sources (likely water ice clouds in the aphelion tropics; Kleinböhl et  al.,  2013; Wilson et  al.,  2014; Haberle 
et al., 2020). As a new finding, the ter-diurnal tide, the (3, 3) mode, has an amplitude of ∼0.3–0.5 K (Figure 4e), 
which is well above the uncertainty level at ∼30–200 Pa where the retrieved temperatures are best constrained 
(Figure 3d). The inferred phase agrees with the model (different by < 1 hr) at low pressure levels (∼5–50 Pa), but 
it is completely different at hundreds of Pa (Figure 4f), which corresponds to the three temperature maxima at 
∼4, ∼12, and ∼20 hr shown in the residual (Figure 3b). This wave mode may result from the wavenumber three 
of subtropic topography, but approval or negation requires future numerical simulations.

Figure 3. (a) Wave mode decomposition result of the daily temperature anomaly in the equatorial bin between ±5° with the time frequency, σ, truncated at ±2. (b) 
Residual (filled contours) of the wave mode decomposition shown in (a), which is its difference from Figure 2h, and the combined uncertainty (magenta contour lines), 
which includes that from both observation and wave mode decomposition. The interval of uncertainty levels is 0.25 K. (c and d) Same as (a and b), respectively, but for 
decomposition with σ = ±3 included.
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Latitudinal and vertical distributions of amplitudes and phases of the migrating tides are derived by repeating the 
wave mode decomposition in each latitude bin and at pressure level (Figure 5). The diurnal tide has a maximal 
amplitude of ∼6 K near the equator at ∼5 Pa, and also large values north of 30°N (Figure 5a). Such a latitudinal 
distribution agrees with the dominant propagating (1, 1) Hough mode. The phase progression of the diurnal tide 
is well constrained in the equatorial region between ±20°, while it has a constant value across a range of pressure 
levels at mid-latitudes (Figure 5b). This constant phase corresponds to the vertically extended day-night tempera-
ture contrast (Figures 2k–2m), and indicates trapped Hough modes in subtropics. Similar to that in the equatorial 
bin (Figures 4c and 4d), the semi-diurnal tide between ±20° has an amplitude of ∼2 K (Figure 5c), but with 
slightly different downward propagating phases (Figure 5d). The phase in the northern hemisphere is earlier than 
that in the south, which is likely due to asymmetric dust loading or cloud extension caused by topography-induced 
meridional circulation (Richardson & Wilson, 2002). The ter-diurnal tide has a maximal amplitude of ∼0.5 K at 
∼20 Pa (Figure 5e), and also a downward phase progression at most latitudes (Figure 5f). Its phase distribution 
seems to have a symmetrical pattern about 20°N, which serves as a reference for further investigations.

4. Discussion and Conclusion
Diurnal temperature variations in the Martian atmosphere are investigated at LS = 60°–90° of MY 36, using 
temperature profiles retrieved from the first set of EMM/EMIRS observations. The data show a dominant diurnal 
tide and an important semi-diurnal tide, as well as the existence of ter-diurnal tide. Compared to the Mars PCM, 
all migrating tides show similar amplitudes providing that the coarse resolution of EMIRS is taken into account, 

Figure 4. (a) Diurnal thermal tide derived from the wave mode decomposition using Emirates Mars InfraRed Spectrometer (EMIRS) observations in the equatorial bin 
between ±5°. (b) Phase of the diurnal tide, represented by the local time of the temperature maximum, in the equatorial bin derived using EMIRS observations (blue 
dots), the Mars Planetary Climate Model outputs (red dots), the model outputs sampled at the same locations and times with observations (green dots), and the sampled 
model outputs with vertical convolution included (magenta dots). The color lines denote the approximate linear downward phase progressions. (c and d) Same as (a and 
b), respectively, but for the semi-diurnal tide. (e and f) Same as (a and b), respectively, but for the ter-diurnal tide.
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but the observed diurnal tide has an earlier phase, and the wavelength of the semi-diurnal tide is unexpectedly 
large.

Due to the novel and high-altitude design of the spacecraft orbit, EMM/EMIRS observes diurnal temperature 
variations in the Martian atmosphere on a global scale, with all location and local time covered within a short 
range of season. This coverage is essential for detailed analysis of thermal tides, and was one of the major issues 
in previous works. Observations obtained by TES and MCS on Sun-synchronous orbits are usually around two 
local times separated by half of a Martian day (Banfield et al., 2003; Lee et al., 2009), which contain strong 
aliasing of wave modes, even with unequally-spaced cross-track observations (±1.5–3.0 hr) included (Kleinböhl 
et  al.,  2013; Wu et  al., 2015, 2017). Dealiasing of these wave modes requires significant assumptions of the 
Martian atmospheric physical properties and knowledge from tidal theory (Lindzen & Chapman, 1969). Obser-
vations obtained by PFS and TIRVIM on slowly drifting orbits (Fan et al., 2022; Giuranna et al., 2021) have 
strong seasonal change influence in the interpretation of diurnal variations. The advantage of EMM/EMIRS 
observations that cover all geographic locations and local times within 10 days (∼5° in LS) largely addresses this 
issue, which enables detailed tide investigations with good constraints on their amplitudes and phases, as well as 
the detection of the ter-diurnal tide. Effects of the observational scheme including sampling and vertical convo-
lution on the tide interpretations are shown in the Supporting Information S1 (Text S3). Sampling does not make 
noticeable influence and is no longer an issue; vertical convolution decreases the interpreted amplitude by a factor 
of ∼2 and results in smaller phase changes. Amplitudes of diurnal and semi-diurnal tides agree well with results 
in previous works during this aphelion season (Banfield et al., 2003; Fan et al., 2022; Kleinböhl et al., 2013), but 
the phases show significant differences. The inferred amplitude of the ter-diurnal (∼0.3–0.5 K) is also consistent 
with the TIRVIM results (<0.5 K, Fan et al., 2022), where the data sampling scheme was not sufficiently good 
for detecting this mode.

Figure 5. (a) Amplitude (filled contours) and uncertainty (while contour lines) of the diurnal tide component derived using Emirates Mars InfraRed Spectrometer 
observations. The interval of the uncertainty level is 0.1 K. (b) Same as (a), but for the phase of the diurnal tide, denoted by the local time of the temperature maximum. 
(c and d) Same as (a and b), respectively, but for the semi-diurnal tide. (e and f) Same as (a and b), respectively, but for the ter-diurnal tide.
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Amplitudes and phases of thermal tides are usually indicators of their excitation sources, among which airborne 
dust and water ice clouds are two key factors (Guzewich et  al.,  2013; Hinson & Wilson,  2004; Kleinböhl 
et al., 2013; Wilson & Guzewich, 2014; Wu et al., 2017, 2021). During the dust-clear aphelion season, water 
ice clouds play an important role in shaping the temperature structure of the Martian atmosphere (Wilson 
et al., 2008, 2014), and are among major sources exciting diurnal and semi-diurnal tides (Haberle et al., 2020; 
Kleinböhl et al., 2013; Wilson et al., 2014). Disagreements between observations and model predictions shown 
in this analysis suggest improvements in numerical simulations. The earlier phase of the diurnal tide and the 
likely trapped modes of both diurnal and semi-diurnal tides provide constraints on the vertical distribution of 
dust and/or clouds as well as their particle sizes and radiative processes. New mechanisms are needed to explain 
the excitation and distribution of the ter-diurnal tide. These are important in enriching our understanding of the 
Martian atmosphere on a diurnal basis.

Data Availability Statement
Data from the Emirates Mars Mission (EMM) are freely and publicly available on the EMM Science Data Center 
(SDC, http://sdc.emiratesmarsmission.ae). This location is designated as the primary repository for all data prod-
ucts produced by the EMM team and is designated as long-term repository as required by the UAE Space Agency. 
The data available (http://sdc.emiratesmarsmission.ae/data) include ancillary spacecraft data, instrument teleme-
try, Level 1 (raw instrument data) to Level 3 (derived science products), quicklook products, and data users guides 
(https://sdc.emiratesmarsmission.ae/documentation) to assist in the analysis of the data. Following the creation of 
a free login, all EMM data are searchable via parameters such as product file name, solar longitude, acquisition 
time, sub-spacecraft latitude & longitude, instrument, data product level, and etc. Emirates Mars Infrared Spec-
trometer (EMIRS) data and users guides are available at: https://sdc.emiratesmarsmission.ae/data/emirs. Data 
products can be browsed within the SDC via a standardized file system structure that follows the convention: 
/emm/data/<Instrument>/<DataLevel>/<Mode>/<Year>/<Month> Data product filenames follow a stand-
ard convention: emm_<Instrument>_<DataLevel><StartTimeUTC>_<OrbitNumber>_<Mode>_<Descrip-
tion>_<KernelLevel>_<Version>.<FileType>.

The Mars PCM output during LS = 0°–90° of MY 36 is available on the IPSL data server with https://doi.
org/10.14768/d49ef040-476c-4264-bf67-6b4b018b8620. Permission is granted to use these datasets in research 
and publications with appropriate acknowledgements that are presented on the data set websites.
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