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Abstract

We present a catalog of 948,216 stars with mass labels and a catalog of 163,105 red clump (RC) stars with mass
and age labels simultaneously. The training data set is crossmatched from the Large Sky Area Multi-Object Fiber
Spectroscopic Telescope DR5, and high-resolution asteroseismology data, mass, and age are predicted by the
random forest (RF) method or a convex-hull algorithm. The stellar parameters with a high correlation with mass
and age are extracted and the test data set shows that the median relative error of the prediction model for the mass
of the large sample is 3%, and for the mass and age of RC stars is 4% and 7%. We also compare the predicted age
of RC stars with recent works and find that the final uncertainty of the RC sample could reach 18% for age and 9%
for mass; meanwhile, the final precision of the mass for the large sample with different types of stars could reach
13% without considering systematics. All of this implies that this method could be widely used in the future.
Moreover, we explore the performance of different machine-learning methods for our sample, including Bayesian
linear regression and the gradient-boosting decision tree (GBDT), multilayer perceptron, multiple linear regression,
RF, and support vector regression methods. Finally, we find that the performance of a nonlinear model is generally
better than that of a linear model, and the GBDT and RF methods are relatively better.

Unified Astronomy Thesaurus concepts: Stellar ages (1581); Stellar masses (1614); Support vector machine
(1936); Random Forests (1935)

1. Introduction

To describe the current structure, evolution, and formation
history of the Milky Way, it is necessary to accurately estimate the
mass and age of a large number of stars distributed throughout our
home galaxy. Through the spectra of stars, astronomers can
acquire many stellar parameters (Mathur et al. 2017; Wu et al.
2019; Huang et al. 2020; Zhang et al. 2020, 2021). However, to
date it is still not easy to acquire the age of stars accurately and
precisely. The indirect isochrones method can obtain the age of
clusters with relatively high precision by matching the observed
data based on the stellar evolution model (Soderblom 2010; Xiang
et al. 2017), but for field stars the precision of this method might
not be perfect due to the highly accurate stellar parameters that are
needed.

For a long time, due to the limitation of observations and data
analysis, we can only estimate the ages of a small number of stars
in the solar neighborhood (Edvardsson et al. 1993; Nordström
et al. 2004; Takeda et al. 2007; Haywood et al. 2013; Bergemann
et al. 2014). With large sky surveys, such as the Large Sky Area
Multi-Object Fiber Spectroscopic Telescope (LAMOST), Xiang
et al. (2015, 2017) estimated the ages of a large number of stars.
Following this, it has been found that there is a relation between
carbon and nitrogen abundances and the ages of giant stars, which
has already been used to predict the ages of red giant branch
(RGB) stars (Martig et al. 2016; Ness et al. 2016; Ho et al. 2017).

There are also other surveys that could provide the age of
large sample. The Galactic Archaeology with HERMES
(GALAH) survey, a high-resolution spectroscopic survey, aims
toward a chemical tagging experiment (Freeman & Bland-
Hawthorn 2002; Bland-Hawthorn et al. 2010); for very bright
stars, more than 30 different elements can be measured. The
age and kinematic inventory of the solar neighborhood was
provided in Buder et al. (2019). Bright giant stars become the
primary targets for the Apache Point Observatory Galactic
Evolution Experiment (APOGEE) survey, a high-resolution
spectroscopic survey that has lead to some works on the mass
and age of stars (Zasowski et al. 2013; Martig et al. 2016;
Majewski et al. 2017). Recently, a precision of ∼5% for mass
and ∼20% for age was acquired by Silva Aguirre et al. (2020)
with Transiting Exoplanet Survey Satellite (TESS) data.
Meanwhile, there also are many other results with similar
precisions such as ∼6% for mass and ∼20% for age in Stello
et al. (2022) by using TESS asteroseismology of the Kepler red
giants, and ∼10% for mass and ∼30% for age in Mackereth
et al. (2021) with asteroseismology of giant stars in the TESS
continuous viewing zones and beyond.
It has been found that there is a correlation between the age

of solar-like stars and their surface rotation, and detailed studies
have been carried out with asteroseismology data (García et al.
2014; McQuillan et al. 2014; Ceillier et al. 2016; van Saders
et al. 2016). At the present time, it is known that
asteroseismology is an effective method to estimate the mass
and age of stars (Gai et al. 2011; Chaplin et al. 2014), however,
it needs high-precision, long-duration, and high-resolution
photometric observation so, unfortunately, we still do not have
a large-enough asteroseismological sample.
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Up to now, although there are many methods to predict the
mass and age of stars, their precision and efficiency are still not
perfect. We desperately need to make full use of big data to
obtain more samples and try more methods to improve the
precision of predictions, thus we can then explore both the
history of the Galaxy’s assembly more effectively, and more
properties of the Milky Way such as mass distribution,
population structure, and dynamical evolution (e.g., Wang
et al. 2018a, 2018b, 2019, 2020a, 2020b, 2020c, 2022a, 2022b;
Bland-Hawthorn et al. 2019; Yu et al. 2021; Yang et al. 2022)
and references therein).

Machine learning is a branch of artificial intelligence and we
could make full use of high-quality data for training through
algorithms. By combining machine learning with high-quality
asteroseismology data, we could predict the relationship
between stellar mass (age) and stellar parameters, and thus
we could then get these two parameters of a large sample with
high confidence.

In this paper, we use a novel machine-learning method to
estimate the mass of a larger sample and a smaller sample for
the age and mass of red clump (RC) stars in LAMOST.
Furthermore, we quantitatively compare the different machine-
learning methods for the first time.

The paper is structured as follows: Section 2 presents the
data we adopt, Section 3 is the method introduction we use,
Section 4 shows our results, Section 5 is for discussion, and
finally Section 6 gives a brief summary of our work.

2. Data

2.1. Catalogs

Xiang et al. (2019) have provided 8,162,566 stars from the
LAMOST survey and the chemical abundances are derived
from the DD-Payne model, which is inherited from both the
Payne (Ting et al. 2019) and the Cannon (Ness et al. 2015). In
this work, we use this catalog to obtain the chemical
abundances of stars.

Ting et al. (2018) provided us with 175,202 RC stars in
LAMOST with 3% contamination, and this work also includes
two asteroseismology parameters ΔP and Δν. We use this
catalog to obtain the RC stellar label and notice that theΔP and
Δν are also obtained from stellar spectra, therefore the
frequency separation (Δν) between adjacent acoustic p-modes
and the period spacing (ΔP) of the mixed gravity g-modes and
acoustic p-modes could be used for the separation of RC stars
and RGB stars (Ting et al. 2018; Hawkins et al. 2018). The
precision for LAMOST ΔP and Δν is 50 s and 1 μHz,

respectively, which is enough for the age/mass determination
according to the previous results (Ting et al. 2018, 2019). In
this work, we determine the final age and mass using new a
training data set and new methods we chose, then we compare
these with other catalogs in order to test the robustness of the
different methods.
Pinsonneault et al. (2018) have provided ages of 6676 stars

in APOKASC-2, which are derived from their model using
mass, radius, [Fe/H], and [α/Fe]. We train our model for mass
and age by this high-quality high-resolution asteroseismology
catalog. To be more specific, this catalog contains stellar
properties for a large sample of evolved stars with APOGEE
spectroscopic parameters and Kepler asteroseismic parameters.
With the help of five independent techniques, the median
random mass uncertainties for RGB stars could reach 4%, for
RC stars it could reach 9%, with the age precision being within
8%, which is suitable for the training sample.
In short, thanks to the works above we use the chemical

abundance from Xiang et al. (2019), the precise mass and age
from Pinsonneault et al. (2018), and the RC label, ΔP, and Δν
from Ting et al. (2019). Then we use the new machine-learning
methods and new high-quality asteroseismic age and mass to
estimate the mass of the large sample for Xiang et al. (2019)
and the age and mass of RC stars for Ting et al. (2019).
After crossmatching the above catalogs, we first get 4479

stars to predict the large-sample mass (LS-mass) and 1806 stars
for RC mass (RC-mass) and RC age (RC-age); notice that these
are not the final data sets as shown in the next part. The
distribution of the sample needed to be predicted in the Galactic
longitude and latitude in celestial coordinates is shown in
Figure 1.

2.2. Final Training Data Sets

In order to improve the precision of the machine-learning
prediction, we do the following experiment for the three
catalogs mentioned above.
The three data sets after the first crossmatch mentioned

above are equally separated as the test and training samples,
then we first use the random forest (RF) method to train and
make mass and age predictions for the test data set. For large-
sample stars (LS-mass), we select stars whose absolute error of
mass prediction is less than 1 M☉ and relative error is less than
0.3, and for RC stars, we select stars whose absolute error of
mass (age) prediction is less than 1 M☉ (3 Gyr) and relative
error is less than 0.4. Notice that here we only use 200 decision
trees and make full use of all stellar parameters shown in
Figure 2 as inputs in the method to finish this step. After this,

Figure 1. Distribution of the LAMOST data for mass estimation we use (left) and the RC distribution we use for age and mass (right).
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we finally get an LS-mass set of 4246 stars, an RC-mass set of
1751 stars, and an RC-age set of 1384 stars for training and
predicting, as detailed in Figure 3, which shows the final
training mass and age distribution on the Teff–log g plane.

3. Method

3.1. Feature Importance

The machine-learning methods used in this paper are mainly
from Scikit-learn (sklearn; Anghel et al. 2019; Mediratta &
Oswal 2019; Florescu & England 2020), and can be divided
into six categories: classification, regression, clustering,
dimensionality reduction, model selection, and preprocessing.

First, we explore the feature importance distribution of the stellar
parameters for the mass/age of the three selected training samples
with the RF method shown in Figure 2. In order to avoid the severe

impact of one feature on the prediction due to the unexpected
dimension problems, we choose to do the standardization that can
accelerate the convergence of weight parameters. Standardization or
Z-score normalization is the transformation of features by
subtracting from the mean and dividing by the standard deviation.
The RF method adopted here is based on decision trees and the

final prediction result is also dependent on these trees. The
correlation between different parameters can be easily identified
with the help of information gain used to train the model so that
this method has good robustness and overfitting can be avoided.
The importance here is relative or not absolute, and we have

a test that finds that the importance of many stellar parameters
is highly correlated, so it is therefore reasonable that we choose
to use the first six or nine parameters to estimate the mass and
age. As shown in Equation (3) in Pinsonneault et al. (2018), the
mass is very sensitive to the Δν and it is known that the age is
also sensitive to mass, so it is not strange to see the Δν is the
most important factor for the RC-age and mass.

3.2. Features Choice

The relation between the prediction precision and the
number of features in the training data set, based on the
relative error distribution versus feature numbers, is clearly
shown in Figure 4. The mean relative error of the test data set
decreases with the increase of the number of training features
(orange line) until a stable pattern is reached. Based on this
pattern, we choose the first six stellar parameters to train the
model for LS-mass, the first nine features for the mass of RC
stars, and the first six features for the age of RC stars.
We notice that the LS-mass is mixed with different types of

stars that might not belong to the training data set, so we use
the first six stellar parameters of [C/Fe], Teff, [Mg/Fe], [N/Fe],
log g, and [Ba/Fe] to construct a convex hull in order to
determine which stellar types our training model are suitable
for, as displayed in Figure 5. We can see our sample mainly
consists of K-giant stars including RC and RGB stars; there are
also very few possible other types of stars (e.g., G type stars),
which is consistent with the result that APOKASC mainly
consists of RGB and RC stars. Our large sample almost entirely
consists of K giants and we find that LAMOST DR5 contains
around 1 million K-giant stars; in this work we also use convex
hulls to select 948,216 stars, which are self-consistent. Notice
that in the future our method could be used for different types
of stars if the quality and quantity of the training data set is
good enough, and in order to avoid the mixing effects of RGB
and RC stars, we choose not to estimate the age of all of the
large sample here. The age of the RGB estimation will be
shown in subsequent work. Algorithms that construct convex
hulls of various objects have been used in astrophysics,
mathematics, and computer science. We have 948,216 stars for
LS-mass suitable for the training model based on Pinsonneault
et al. (2018). Notice that we have also removed some vacancy
values for the RC catalog before mass and age determination,
and we finally get the 163,105 stars to be predicted without a
convex-hull algorithm.

4. Results

4.1. Final Age and Mass Distribution

The final predicted mass of 948,216 stars (using [C/Fe], Teff,
[Mg/Fe], [N/Fe], log g, and [Ba/Fe]), and mass (using Δν,

Figure 2. The results of feature extraction using random forest. The different
panels are three different training samples that we have selected, the top one is
for the large sample containing a different type of stars, for which we only
estimate mass, and the middle and bottom ones are for RC stars, for which we
could estimate mass and age. The importance represents the contribution of the
stellar parameter to our prediction model, and it is actually the relative
importance.
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Figure 4. The relations between the number of training features and the mean relative error of the test data set in our prediction model. Different panels represent
different samples. The blue line represents the training data set, the orange line represents the test data set, and the green dotted lines guide the eyes to the minimum
value used for the stable pattern. The minimum values are also labeled at the top of each panel. Notice that it is the minimum value, but not the final feature, that we
adopt; we choose final features empirically and accordingly.

Figure 5. A mass distribution of the stars we use to create a convex hull and train prediction models on the Teff and log g plane. Different colors represent different
masses.

Figure 3. The final training sample distribution for mass and age on the Teff–log g plane.
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[C/Fe], Teff, [N/Fe], ΔP, [Na/Fe], [Ba/Fe], [Co/Fe], and [O/
Fe]) and age (using Δν, [Ti/Fe], [C/Fe], [N/Fe], [Mn/Fe],
Teff) of 163,105 RC stars are vividly presented in Figure 6,
colored by the mass or age on the Galactic longitude and
latitude celestial sphere. For the mass distribution, we can see
the more massive stars are located in the disk similarly to the
mass pattern for the RC stars in the middle panel, and the age
distribution of RC stars also shows that the younger stars are
mainly located in the low latitudes. It could be naturally
understood that there are more star-forming regions in the disk,
so therefore more massive stars and younger stars are located in
the disk and low latitudes.

The distribution of age in the R.A. and decl. plane is also
shown in the left panel of Figure 7, the numbers and fractions
for decl. beyond 20° or 30° are denoted at the top: they are
110,071 and 68%, and 82,739 and 51%, respectively. The
middle panel of this figure is for density distribution in the
longitude and latitude planes and star counts; fractions beyond
20° or 30° for latitude are labeled at the top of this panel: they
are 47,926 and 29%, and 24,673 and 15%, respectively. The
right panel in this figure is the R and Z planes in cylindrical
Galactic coordinates colored by density/stellar number;
fractions larger than 10 or 15 kpc for distance are also denoted
at the top, they are 78,424 and 48%, and 2694 and 2%
separately.
Figure 8 shows the results of our method for the test data

sets of three groups. From the top left to the top right, the y-
axis is the predicted mass, the absolute mass error, and the
relative error, and the x-axis is the true mass from
asteroseismology. As shown in the figure, the predicted
dispersion of the large-sample mass is 0.13 M☉, the mean
absolute error is 0.08 M☉, and the median is 0.05 M☉; the
mean relative error is 6% and the median is 3%. Dispersion
means the standard deviation of the predicted ages/mass
minus the true values in the catalog we used, the absolute
error is the predicted value minus the true value, and the
relative error is the predicted value minus the true value
divided by the true value; notice in this work we use the
median relative error for the final precision uniformly.
Similarly, the middle row of Figure 8 is the RC stars’ mass;

as shown in the label the predicted dispersion of mass of RC
stars is 0.14 M☉, the mean absolute error is 0.09 M☉, the
median value is 0.05 M☉, the mean relative error is 6%, and the
median value is 4%.
It can be found in Figure 8 for the prediction of mass that

the precision of RC stars (4%) is slightly worse than that of
large-sample stars (3%) for the test data set. The main reason
is that the number of stars in the training samples is
different. The larger the sample size, the more effectively the
machine-learning method could find the rule. Moreover, the
predicted dispersion of the age of RC stars is 0.68 Gyr, the
mean absolute error is 0.42 Gyr, the median value is 0.21
Gyr, the mean relative error is 11% ,and the median relative
value is 7%. We could speculate that the precision of the age
of RC stars could be higher if we have a higher-quality
catalog.
We then explore the relations between the predicted age and

[C/N], as shown in Figure 9. We can see that in the region
where age is less than or equal to 8 Gyr, the age and [C/N]
show a good linear relationship, which is consistent with our
expectation. In the region where age is older than 8 Gyr, it
seems that there is no obvious pattern because the RC stars are
inclined to the relatively younger group, and the number of old
stars is very small in our sample, so it is impossible to make
high-precision statistics.

4.2. More Comparisons

Figure 10 shows the comparison between the mass or age we
predict and the reference values we use; the consistency
provides verification for the robustness of our method. We also
compare our predicted age with other works based on
LAMOST, APOGEE, and Gaia data, which will also provide
independent verification for the method. The comparison
results are shown in Figure 11, where the top-left panel is a

Figure 6. The distribution of predicted mass (age) in celestial sphere
coordinates. The top panel is the mass distribution of the large sample, the
middle panel is the mass distribution of RC stars, and the bottom one is the age
distribution of RC stars.
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Figure 7. The distribution of RC-age on the R.A. vs. decl. plane is shown in the left panel colored by age, the number and fraction for decl. beyond 20° or 30° are
denoted at the top of the panel. The middle panel is for density distribution in the longitude and latitude planes and star counts; fractions beyond 20° or 30° for latitude
are labeled at the top of this panel. The right panel is the R and Z planes in cylindrical Galactic coordinates colored by density/star counts; fractions larger than 10 or
15 kpc for radial distance are also denoted at the top.

Figure 8. The predicted results of our test data sets using RF. Different rows represent different groups of samples, and different columns show the dispersion (M☉,
Gyr), absolute error (M☉, Gyr), and relative error, respectively. Dispersion means the standard deviation of the predicted ages/mass minus the true values in the
catalog we used, the absolute error is the predicted value minus the true value, and the relative error is the predicted value minus the true value divided by the true
value; notice in this work we use the median relative error for the final precision uniformly The dispersion, mean, and median values of the data are marked in the
upper-left corner of each figure, and the final number of features we adopt to train each model is marked at the top of each panel.
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comparison for the common stars of APOGEE (Ting &
Rix 2019), the top-right panel is for LAMOST (Ting et al.
2018),6 the bottom-left panel is for Gaia (Sanders & Das 2018),
and the bottom-right panel is for Ho et al. (2017). We can see
that although there are some differences, for the overall trend
the consistency is acceptable. Similarly, the first four panels of
Figure 12 show the mass comparisons for other works. The left
column is compared to Yu et al. (2018), the right column is
compared to Ho et al. (2017), the top row is for LS-mass, and
the bottom row is for RC-mass; all are matched well with some
reasonable difference.

Compared with the APOGEE high-quality data we could
claim for this work, the precision of RC-age could reach 18%
(top left of Figure 11) and by matching with the high-precision
Kepler asteroseismology data we can claim that our uncertainty
of RC-mass could reach 9% (bottom left of Figure 12).
Meanwhile, the precision of LS-mass could be 13% (top left of
Figure 12). All these final precisions are based on the final
relative error analysis using a high-precision asteroseismology
data set and we frankly admit that the systematics might be
ignored so more work on this is needed in the future.

Moreover, we also compare the open cluster (OC) age using
our final sample; the OC is chosen by the spatial locations,
kinematics (line-of-sight velocity, proper motions) and metal-
licity-clustering distributions. As we can see in Figure 13 the
relative errors are NGC 6811: 9.1%, NGC 2420: 9.3%, NGC
6819: 23.4%, NGC 2682: 9.5%, NGC 6791: 2.7%, and Be 17:
33.5%. The final median relative error is 9.5%, which strongly
supports our final conclusions. Notice that we use our final
LAMOST RC catalog to select OC memberships and then
compare these with literature values. In our final RC catalog,
the stellar number of memberships for these open clusters
mentioned above is NGC 6811: 2, NGC 2420: 1, NGC 6819: 6,
NGC 2682: 2, NGC 6791: 2, and Be 17: 4.
We also explore the relationship between RC-age relative

error and signal-to-noise ratio (S/N; the ratio of the intensity of
a signal to the background noise detected by a measuring
instrument for spectra used for estimation of LAMOST stellar
parameters). As shown in Figure 14, the relative error tends to
be stable with the increase of S/N. The distributions of the
relative errors of mass and age for our test data set with stellar
parameters Teff, log g, and [Fe/H] are also displayed in
Figure 15, which shows the robustness of our method with a
small dispersion.

Figure 9. The relationship between the predicted age and [C/N]. The black line is the median value in each bin with Poisson error.

Figure 10. The comparison between the mass and age we predict and the reference values we use during this work, where the number marked on the figure represents
the median value of relative error for our method. It consists of the common stars of LAMOST data we predict and APOKASC-2 in this work. The purpose here is
method validation and since we use APOKASC-2 to predict our sample, the precision is naturally quite good for the data set since we use the APOKASC-2 data for
training.

6 Age is not shown clearly in the paper but it is determined simultaneously.
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Figure 16 shows the age distribution on each panel of
different stellar parameters. From top left to bottom left these
are: Δν versus [Ti/Fe], [C/Fe] versus [N/Fe], [Mn/Fe] versus
Teff, [Ba/Fe] versus [Mg/Fe], [Na/Fe] versus log g, [Ni/Fe]
versus [Co/Fe], [α/Fe] versus ΔP, [Ca/Fe] versus [Si/Fe],
[O/Fe] versus [Cr/Fe], and [Fe/H] versus [α/Fe]. These
panels show that all of them have a correlation, more or less,
with age, either positive or negative. In particular for the last
one, [α/Fe] and [Fe/H], we can see a thick-disk population
with the red patch and a thin-disk population with the blue
patch.

As we mentioned, almost all of the parameters are correlated
with age, but why do we only choose the first six to nine
parameters for our method and why do the other parameters
shown in Figure 2 not have a high importance? The reason is
that we find they are related to the properties of the RF method.
This means that when there are correlations for multiple
features, the RF will extract the one with the greatest
contribution, and then the importance of other features might
become not very relevant artificially (e.g., [Fe/H]).

As a test, we attempt to use the first six stellar parameters in
importance to independently predict other stellar parameters in

the RC-age sample and check the predicted results. As shown
in Figure 17, we find that other stellar parameters can be
predicted by using the first six stellar parameters. Because the
first six features are more or less related to other features, the
importance of the other features is not as significant when we
make the related analysis.
Conversely, we also randomly choose several other relevant

stellar parameters to empirically predict age in order to
compare with our previous results, as shown in Figure 18.
Obviously, we find that even though we use other parameters to
predict the age, a similar precision could be reached. All of
these results show that our method for age and mass estimation
is reasonable and we could make full use of many parameters
to estimate age and mass for other catalogs, even though we are
lacking some chemical stellar parameters.

5. Discussion

5.1. Comparisons for Age Prediction Using Different Catalogs

In this paper, we choose the RC-age of APOKASC-2 as the
training data set because it is a high-resolution asteroseismol-
ogy sample. In order to compare the age based on APOKASC-

Figure 11. Comparing our predicted age with other works using LAMOST, APOGEE, and Gaia data. On the top left is the age of APOGEE data using a different
method (Ting & Rix 2019), the top-right panel is the age of LAMOST data (Ting et al. 2018), the bottom-left panel is the age of Gaia data (Sanders & Das 2018), and
the bottom-right panel is Ho et al. (2017). The median value of relative error is shown on the top left and the consistency is acceptable. We have fewer stars around
2 Gyr in the training data set so there are apparently disconnected features.
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Figure 12. The figure shows the mass comparisons between this work, Yu et al. (2018), and Ho et al. (2017). The median value of relative error is shown on the top
left of each panel and the consistency is acceptable.

Figure 13. Open-cluster comparisons for our determinations and literature values based on Bragaglia et al. (2006), Geller et al. (2008), Grundahl et al. (2008),
Jacobson et al. (2011), Janes et al. (2013), Brewer et al. (2016), Stello et al. (2016), and references therein. The comparison is quite good except for the older last
cluster, and the error bars are calculated by the Gaussian dispersion or literature values.
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2 and APOGEE (Ting et al. 2019), we use these two different
catalogs to predict age, as shown in Figure 19. In the figure, the
x-axis is age trained by APOGEE and the y-axis is trained by
APOKASC-2; they have a different stellar number. We find
that for older stars, the age predicted by APOKASC-2 is
systematically higher than for the stars predicted by APOGEE,
which is possibly caused by the different precision of the data
sets. And as can be seen from Figure 20, showing the relative
error analysis for these two catalogs, the age based on
APOGEE is systematically smaller than that based on
APOKASC-2. With the increase of age, the difference becomes
more and more obvious, however for the overall trend almost
of all difference is within 10%, which is acceptable and implies
that the precision of the prediction is dependent on the quality
of the data set.

5.2. Comparison of Common Stars between Two Different
Mass Predictions in This Work

We have predicted the mass of two groups of samples, the
LS-mass with the convex-hull algorithm and the RC-mass
without the convex-hull algorithm. After crossmatching we
find 155,532 common stars and then we compare the two
slightly different mass prediction methods.
As can be seen from Figure 21, the value of relative errors is

8%, which shows that the mass difference predicted by the two
methods is small and self-consistent.

5.3. Comparison of Different Machine-learning Methods

Different machine-learning methods used in this work have
their own characteristics but there should be no absolute

Figure 14. The relative error of RC-age vs. S/N in this work; the error bars represent the standard deviation in each bin.

Figure 15. The distribution of relative errors of LS-mass and RC-age for our test data set we predict along with Teff (kelvin), log g (dex), and [Fe/H] (dex).
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difference for the advantages and disadvantages, which are
dependent on the specific purposes. The reason why we choose
RF is that after many attempts, we find that it is better in line
with our expectations. The quantitative comparison of the six

machine-learning methods including Bayesian linear regression
(BYS), gradient-boosting decision tree (GBDT), multilayer
perceptron (MLP), multiple linear regression (MLR), RF, and
support vector regression (SVR) is shown in this subsection.

Figure 16. The distribution of our predicted ages over every two stellar parameters. From top left to bottom left these are:Δν vs. [Ti/Fe], [C/Fe] vs. [N/Fe], [Mn/Fe]
vs. Teff, [Ba/Fe] vs. [Mg/Fe], [Na/Fe] vs. log g, [Ni/Fe] vs. [Co/Fe], [α/Fe] vs. ΔP, [Ca/Fe] vs. [Si/Fe], [O/Fe] vs. [Cr/Fe], and [Fe/H] vs. [α/Fe].
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Figure 22 shows the relation between the number of features
used in the training model and the median relative error in different
machine-learning methods. Meanwhile, Figure 23 shows the age
prediction of different methods for the test data set. Based on the
value labeled in the panels of these two figures, we can clearly see
that BYS and MLR are relatively worse because both of them have
a higher median relative error of ∼28% and larger dispersions of
0.97 Gyr, which might be caused by our prediction of RC stars
being nonlinear, whereas BYS and MLR are linear models.

Among the other nonlinear methods, MLP is difficult to
adjust during our experiments and the performance is hard to

keep stable: the median relative error is 13% and the
dispersion is 0.73 Gyr. The median relative error and
dispersion of SVR are 14% and 0.74 Gyr, respectively. We
can see from Figure 22 that the precision of GBDT is similar
to RF with a median relative error of 10% and a dispersion of
0.68 Gyr, but more features of GBDT (10) are needed than
RF (6) when the median relative error is becoming stable. In
order to make our trained model applicable to more stars
with fewer features, we decide to choose the RF for this
work. More introductory text about the six machine-learning
methods will be presented in the Appendix.

Figure 17. The predicted results for some chemical parameters using the first six stellar parameters shown in feature importance in Figure 2. The consistency is quite
good and from top left to bottom left these are: [Ba/Fe], [Mg/Fe], [Na/Fe], log g, [Ni/Fe], [Co/Fe], [α/Fe], ΔP, [Ca/Fe], [Si/Fe], [O/Fe], [Cr/Fe], and [Fe/H].
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6. Conclusions

In this paper, with the help of LAMOST, APOGEE, and
asteroseismology data, we use RF to predict the mass of
948,216 large-sample stars, and the mass and age of 163,105
RC stars. We select stellar parameters with high correlation
with mass and age to construct a training model, then we use
these features, a convex-hull algorithm, and the RF method to
determine the age and mass of the larger sample.

We find that the precision of the mass for large-sample
stars could reach 3%, for RC stars it could reach 4%, and for

RC-age precision it could be 7% for the test data set (shown
in Figure 8). Compared with other high-quality samples, the
precision for mass of large-sample stars could reach 13%, the
mass precision of RC stars could reach 9%, and the age
precision of RC stars could reach 18% for the median relative
error. In general, our results could be compared well to recent
works, in particular for open clusters, which could reach 9.5%
for median relative error, so this strongly implies that we
could make full use of this method in the future.
We also explore the performance of different machine-

learning methods for the first time, in particular for age.

Figure 18. Age determination of RC stars for testing, with six empirical stellar parameters shown in the top of each panel. We can see the precision is almost the same.

Figure 19. Comparison of age predictions using two different age catalogs. The x-axis is age trained by APOGEE and the y-axis is trained by APOKASC-2; the figure
is colored by star counts.
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There should be no absolute advantages and disadvantages
between different machine-learning methods, and each
method has its own applications dependent on purpose.
After comparisons, we find that the nonlinear model is more
in line with our expectations than the linear model, and the
GBDT and RF are better. In order to make the model
suitable for more stars, we choose the RF, which needs

fewer feature numbers to achieve our scientific target in
this work.
To some extent, this paper could be considered as the first

paper of our series of works and the catalog is available at doi:
10.5281/zenodo.6949334. This method will be widely used for
the other catalogs or surveys and we will also attempt to consider
systematics and possible zero-points for age in the future.

Figure 20. The relative age error of APOGEE and APOKASC-2 along with the age for common stars. We use two catalogs to make the prediction and find that the
older the star, the more obvious the difference. The error bars are Poisson noise.

Figure 21. The comparison of common stars between the LS-mass and RC-mass.
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Figure 22. The relations between the number of training features and the mean relative error of the test data set for the six prediction models. Different panels are different
machine-learning methods and different color lines are training and test data sets, respectively. The horizontal dashed lines are used to guide our eyes to the stable pattern.
Notice that it is the minimum value that is labeled but it is not the final feature we adopt; we choose final features shown in Figure 23 empirically and reasonably.

Figure 23. The comparison between our predicted ages and the true values we use in the catalog. Different panels are different machine-learning methods and the
dispersions are labeled in each panel and diagonal lines are used for comparison. The final number of features (corresponding to Figure 2) we adopt to train each model
is marked at the top of each panel.
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Appendix
Machine-learning Methods Introduction

MLR is a linear model assuming that there is a simple
weighted summation relation between the variable and the
predicted parameter. It has good performance in some cases
although the assumption is strong. BYS is applied Bayesian
inference to the linear regression model. The parameters in the
linear model are regarded as random variables and then we can
calculate the posterior distribution; it has the basic properties of
a Bayesian statistical model. In this experiment the data will be
repeated and the overfitting will be prevented effectively, but it
is computationally expensive. To be more specific for some
details, in this work we do not change most of the default
parameters in the sklearn software for MLR and the parameter
fitintercept is set to be true, which means we could calculate
the intercept value for this model. For BYS, we set the
parameter niter= 30 and tol= 1 × 10−3, the meaning of niter is
the maximum number of iterations and the tol setting could
stop the algorithm if it has been converged.

Both RF and GBDT are based on decision trees, the difference
is that the former uses bagging and the latter uses boosting. The
final predicting result is dependent on the decision trees and is

random due to the random sampling at the beginning. The
correlation between different parameters can be easily identified
with the help of information gain when we are training the model.
Moreover, both of these methods have good robustness and
overfitting could be avoided. Because of the good robustness,
sometimes standardization or normalization might not be needed.
Good robustness means that the machine-learning model could
have good precision for parameters. For RF, we set the
parameters nestimators= 2000, njobs=−1, maxfeatures= auto, and
minsamples−leaf= 1. Here nestimators means the number of trees in
the forest, njobs can change the number of jobs in order to run in
parallel, maxfeatures defines the maximum number of features of
each tree, and minsamples−leaf is the minimum number of samples
required at the node. For GBDT, we set the parameter
nestimators= 2000, learningrate= 0.1, subsample= 1.0, loss= ls,
maxfeatures= none, and minsamples−leaf = 1. The nestimators means
the number of boosting parameters, learningrate is the weight
contribution of each tree, subsample defines the stellar fraction
used for fitting the individual learners, the loss setting could
optimize the loss function, and ls means least-squares regression
in the method.
MLP is a neural-network model consisting of an input layer,

hidden layer, and output layer. Each layer is closely connected
to the neurons. It is sensitive to overfitting and it difficult to
adjust its parameters with the computer time being proportional
to the networks. SVR’s regression is dependent on the
hyperplane constructed from the data sets. Since a super-
vised-learning method is based on the symmetric loss function
for training, one of the advantages is that the computational
complexity does not depend on the dimension of the data, but
when the dimensions are more than the number of data points
the results might not be acceptable. For MLP, we set the
parameter hidden-layer sizes= 147; this means there is only
one hidden layer with 147 neurons because we found that
networks that were too complex would not improve the
prediction performance. For SVR, the Gaussian kernel has been
used, and we set the parameter C= 15 (regularization
parameter). Notice that if “C” is too large or too small, the
prediction performance will be reduced. More details could
be found in the Scikit-learn publicly available package (Anghel
et al. 2019; Mediratta & Oswal 2019; Florescu & England
2020).
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