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ABSTRACT

Context. Numerical integration ephemerides are widely used in research and engineering for their high precision. However, subject
to their finite available time spans, their use is limited in theoretical research, such as the studies of rotation and evolution. Previously,
we successfully experimented on the analytical representation of the mean longitude of Titan of the Jet Propulsion Laboratory (JPL)
ephemeris, as a function of combinations of proper frequencies, and related the results with what is given in the synthetic ephemerides
obtained by the Théorie Analytique des Satellites de Saturne (TASS).
Aims. In this study, the analytical representations of the other osculating elements of the JPL Titan ephemeris are accomplished in
order to construct the new synthetic representations, which have the advantages of both systems: long-lasting stability, the system
details of TASS, and the high precision of JPL.
Methods. A frequency analysis process was used to obtain the proper frequencies, amplitudes, and phases of the two ephemerides
in the short term and the semi-long terms. For the proper frequency of the ascending node of Titan, which has a very long period,
it is challenging to acquire the exact value, and the formula of TASS was used. The amplitude and phase of long terms were further
calculated by a least-squares procedure.
Results. Thanks to the accomplishments of the new synthetic representations of the JPL ephemeris, we report the complete combina-
tions of the osculating elements of Titan. These combinations contain important dynamical information such as the proper frequencies.
They will be useful in the theoretical research.

Key words. ephemerides – celestial mechanics – methods: numerical – methods: analytical – planets and satellites: individual: Titan

1. Introduction
The numerical integration ephemerides of natural satellites are
widely used for their high precision. However, this advantage
does not promote their use in the scientific studies of rotation
and evolution as their finite time spans place serious restrictions
on obtaining the motion details from the ephemerides. We work
to represent the numerical integration ephemerides in the form of
combinations of related proper frequencies, called the analytical
representation, which have the advantages of long-lasting stabil-
ity and high precision. This representation explicitly describes
the motion details of the planet system.

In our previous work (Xi & Vienne 2020; hereafter Paper I),
we successfully obtained the representation of the mean lon-
gitude of the JPL Titan ephemeris (Giorgini et al. 1996).
Meanwhile, we obtained the proper frequencies involved using
TASS as a template (Vienne & Duriez 1995). The representation
included the mean motion, the constant term, and the ampli-
tudes and phases of eight periodic and quasi-periodic terms. The
mean residuals between JPL and our representation was about
–13.27 m, and the standard deviation was about 26 km. Encour-
aged by these satisfactory results, we extend our study to the
other orbital elements of Titan.

As in Paper I, here we take the TASS ephemerides as
a template to successfully demonstrate how to obtain the

representations of the JPL Titan ephemerides. We work on the
analytical representations of the other five orbital elements:
the eccentricity and the pericentre z6 : e6 · e

√−1$6 ; the incli-
nation and the ascending node ζ6 : sin i6

2 · e
√−1Ω6 ; and the

semi-major axis a6. The elements z6 and ζ6 are complex, hence
each corresponds to two elements.

In Sect. 2, we give some important additional information on
the JPL ephemerides and the update in early 2020. In Sect. 3,
we report the short terms and semi-long terms of ζ6 and z6
by frequency analysis. They are later removed to simplify the
calculation.

A nominal value of the proper frequency for the ascending
node of Titan Ω∗6, according to a TASS formula, is adopted from
Paper I. This nominal value plays an important role in the ana-
lytical representation of ζ6 in this study. The discussion related
to ζ6 is presented in Sect. 4.

Our experience with ζ6 promotes us to further analyse the
residuals in order to find the additional short-term components.
These terms usually have very small amplitudes, one or two
orders of magnitude less than the major ones. Thus, they exist but
are hidden in the residuals. The representation of z6 is displayed
in Sect. 5.

The representation of the semi-major axis a6 (Sect. 6), which
involves numerous short-period terms, and the updated mean
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longitude λ6 (Sect. 7) are conducted in this study. The latter now
has 15 instead of 8 components, as well as a smaller standard
deviation.

Put together, we can report the representations of all the ellip-
tic elements of Titan (Sect. 8). The representations have almost
the same precision as the original Titan ephemeris of JPL with
the same time duration. However, the dynamic information that
they contain can be used over a much longer time period. All the
derived equations used in the study are listed in the Appendix. A
more detailed description of the synthetic representation of the
motion can be found in Paper I.

2. Ephemerides information

It is necessary to mention some information on the ephemerides.
As was done in Paper I, each orbit of the satellites in this study
is described by the osculating elements p, λ, z, and ζ, following
the work of Duriez (Duriez 1979, 1977):

a = A(1 + p)−2/3 ⇐⇒ n = N(1 + p),
λ = Nt + λ0 + r,

z = e exp
√
−1$, (1)

ζ = sin
i
2

exp
√
−1Ω.

The JPL ephemerides are presented in either the classical
elliptic element form as (a, e, i, ω,$, M) or the position–velocity
form in the ecliptic plane. The quantity µ in Kepler’s third law
n2a3 = µ used in this study is

µ = 1.129767089077 × 10−2(au3 y−2). (2)

Here, au means astronomical units and y is year.
All motions refer to the Saturnicentric ring plane in which

the origin corresponds to the node with the mean ecliptic J2000.
The node and the inclination refer to the equinox and ecliptic
J2000 system and are then defined as

Ωa = 169.5291◦,
ia = 28.0512◦. (3)

The orbital elements of JPL are transformed into the same form
as (a, λ, z, ζ) on the Saturn ring plane with Eqs. (2) and (3).

An update was made by JPL to the ephemerides of its
Saturnian satellites in early 2020 based on the final Cassini com-
prehensive reconstruction. However, the available time span of
the new version is about 500 yr, which does meet our computa-
tion requirements. In this research we use the same ephemeris
of Titan as in Paper I, which was first published in 2016 with
an official accuracy of 10 km. The corresponding ephemeris
is available upon request. All the physical parameters of the
Solar System were downloaded from the JPL official website in
2019.

For simplicity, we abbreviate some of the repeated concepts
in this study. We refer to the TASS template as TASS-t (see
Paper I), which corresponds to the representations of all the
orbital elements of TASS, with all the proper frequencies of the
Saturn system. Similarly, XA-JPL represents all the parameters,
proper frequencies, and representations of the JPL ephemerides.
FA is the abbreviation for frequency analysis, and LSM for the
least-squares method.

The proper frequencies related to the representations are the
following:

Table 1. Values of the proper frequencies of TASS and JPL.

ID TASS-t XA-JPL
(radian year−1) (radian year−1)

λ∗2 1674.867298497696 1674.862700502130
λ∗3 1215.663929056177 1215.662981284389
λ∗4 838.510870359548 838.522569478004
λ∗6 143.924047849167 143.924045534754
λ∗5 508.009320172829 508.009309199013
$∗6 0.008933864296 0.008922847882
$∗8 0.001974690829 0.001974690829
Ω∗5 −0.175467623487 −0.175359995366
Ω∗6 −0.008931239595 0.008935057595
Ω∗8 −0.001925543593 −0.001925543593
λ∗s 0.213382895534 0.213342329926
λ∗J 0.529690977758 0.529673420072
Λ6 0.006867993783 0.006867993783
ω6 3.583299718564 **

λ∗2 the mean longitude of Enceladus;
λ∗3 the mean longitude of Tethys;
λ∗4 the mean longitude of Dione;
λ∗5 the mean longitude of Rhea;
λ∗6 the mean longitude of Titan;
λ∗s the mean longitude of the Sun;
$∗6 the pericentre of Titan;
$∗8 the pericentre of Iapetus;
Ω∗5 the ascending node of Rhea;
Ω∗6 the ascending node of Titan;
Ω∗8 the ascending node of Iapetus;
Λ6 an undefined frequency used in TASS;
ω6 the libration argument of the Titan-Hyperion resonance.

The proper frequencies of TASS and JPL relative to this work
can be found in Table 1. The superscript asterisk (∗) indicates
a corresponding argument to the proper frequencies. Proper fre-
quencies are the physical characteristics, thus their values remain
constant throughout the corresponding dynamical system. How-
ever, readers can find small differences in their values between
Table 1 and the other tables. For example, we see the different
values of λs in Table 1, Table 7, and Table 11. The value of λs
in Table 7 and Table 11 are thought to be influenced by some
long-period perturbations. However, the perturbation changes
too slowly to be identified, for instance about 10−4 radian per
year in Table 7. Therefore, we represent this component just as
λs and ignore the perturbation.

The argument ω6 is associated with the 3:4 resonance rela-
tion between Titan and Hyperion, which leads to a libration of
the angle 3λ6 − 4λ7 +$∗7. We can use ω6 to take the place of $∗7.
More details on this can be found in Vienne & Duriez (1991).
The lack of this resonance argument limits us to obtain the value
of ω6 from JPL. The TASS-t value is used in this work.

The osculating elements can be documented as the sum
of finite integer combinations of the proper frequencies. Sim-
ilar components between different ephemerides are compared
repeatedly. To make the comparisons more intuitive and under-
standable, we change the units of amplitudes from radians to
kilometres, by multiplying the corresponding amplitudes by the
mean value of the semi-major axis of Titan, 1221870.0 km.

More details on the synthetic representation of motion can
be found in Paper I, and is not further discussed here. We report
the equations of our method in the Appendix.
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Table 2. Short terms and semi-long terms of z6 in JPL.

ID Frequency Amplitude Phase
(radian year−1) (km) (radian)

2λ∗s −$∗6 0.417768526306 91.50 −0.73810267
λ∗6 143.924045533325 81.89 −0.56569307
λ∗5 508.009309191022 11.38 0.21320802
3λ∗s −$∗6 0.631043871764 11.57 −1.48047273

Table 3. Short terms and semi-long terms of ζ6 in JPL.

ID Frequency Amplitude Phase
(radian year−1) (km) (radian)

2λ∗s 0.426696791114 138.74 2.04928518
−λ∗s −0.213245071964 23.70 0.80734540
3λ∗s 0.639979694841 17.88 1.30707517
λ∗s 0.213248348339 14.47 2.30454997

3. Determination of the short terms and semi-long
terms

The short terms and semi-long terms are predetermined by
TASS-t combinations, and are obtained by frequency analysis.
These terms are removed later to simplify the subsequent cal-
culations. They are given in Table 2 for z6 and in Table 3 for
ζ6.

After removing the components motioned above, we used the
LSM to determine the amplitude and phase of the long terms.
The short terms and semi-long terms of the two ephemerides are
not exactly the same, especially those with amplitudes of less
than 10 km. We list all the obtained short terms and semi-long
terms of ζ6 and z6 in Sects. 4 and 5.

4. Representation of the inclination and ascending
node of Titan ζ6 of JPL

In TASS-t, there is a constant-like component with null fre-
quency. However, the finite time span of JPL limits us to
distinguishing this term from the major period term, which is
associated with the ascending node Ω6. Unfortunately, the LSM
cannot make the differentiation. The difference in the constant-
like component value between TASS-t and the LSM over the
same time span (10 000 yr) is important, about 165.1 km, which
is much greater than the 20 km difference in ζ6 between JPL and
TASS at the J2000.0 epoch.

Similarly, the obtained value of 1000 yr for TASS is also
not acceptable. Therefore, we chose the TASS-t value for the
constant-like component of JPL. The results are reported in
Table 4.

In Paper I, we use a nominal value for the proper frequency
of the ascending node of Titan Ω6. It works well in the represen-
tation of the mean longitude. A proper frequency as the physical
characteristic should remain constant throughout the system. We
bring separately the nominal value and the TASS-t value in the
calculations of the representation of ζ6 in order to verify the
correction and its wide application.

We report the comparison of presentations between TASS
and JPL in Table 5. The solution of the four major terms, for
which the TASS-t value of Ω∗6 is adopted, is listed in Table 6.

Table 4. Value of constant-like component in ζ6 in different time spans
of TASS.

Time span Method
(radian) (years)

−0.005583725984 10 000 FA
−0.005448610014 10 000 LSM
−0.005793205614 1000 LSM

Table 5. Comparison of the solutions of ζ6 between TASS and XA-JPL.

ID Frequency Amplitude Phase
(radian year−1) (radian) (km) (radian)

−0.000000000000 0.0056023641 ** −3.06168702 TASS-t

Ω∗6
−0.008931239594 0.0027899429 3408.95 −0.25711520 TASS-t
−0.008935057595 0.0027364047 3343.53 −0.27676016 XA-JPL

Ω∗8
−0.001925543576 0.0001312363 160.35 −1.27742697 TASS-t
−0.001925543593 0.0002822330 344.85 −0.32079820 XA-JPL

2Ω∗8
−0.003851087191 0.0000094698 11.57 −2.63456161 TASS-t
−0.003851087186 0.0000387493 47.35 2.27501684 XA-JPL

2λ∗J − 5λ∗s
−0.006831187831 0.0000110589 13.51 −2.60258392 TASS-t

2 × (2λ∗J − 5λ∗s )
−0.014731799789 0.0000076539 9.35 2.83771472 XA-JPL

−Ω∗8 + L

0.002172687403 0.0001672175 204.32 −2.78725535 XA-JPL

2λ∗s
0.426598241223 0.0001125670 137.54 2.04979896 TASS-t
0.426696791114 0.0001137550 138.99 2.04928518 XA-JPL

−λ∗s
−0.213299120064 0.0000191667 23.42 0.82899234 TASS-t
−0.213245071964 0.0000193978 23.70 0.80734540 XA-JPL

3λ∗s
0.639897360235 0.0000149794 18.30 1.30207992 TASS-t
0.639979694841 0.0000146349 17.88 1.30707517 XA-JPL

λ∗s
0.213299120067 0.0000114462 13.99 2.28081791 TASS-t
0.213248348339 0.0000118455 14.47 2.30454997 XA-JPL

The first part of Table 5 shows the long terms relative to the
representation of ζ6, labelled XA-JPL, and the related TASS-t
terms. They are Ω∗6, Ω∗8, 2Ω∗8, and 2λ∗J − 5λ∗s . There is a slight
difference in component values in 2λ∗J − 5λ∗s and 4λ∗J − 10λ∗s
when comparing TASS and XA-JPL. The representation of JPL
in Table 5 is the solution of the nominal value.

Likewise, we list the solution of ζ6 in Table 6, for which the
TASS-t value of Ω∗6 is adopted. A small difference between Ω∗6
in TASS-t and JPL makes no influence on the solution of Ω∗6
itself. It clearly only affects the solutions of the long terms Ω∗8,
2Ω∗8, and 2 × (2λ∗J − 5λ∗s ). In addition, it interferes with the value
−Ω∗8 + L, listed in the second part of Table 5. Its frequency is
closed to Ω∗8, which is considered a combination of −Ω∗8 and a
very long period perturbation L (about 1 Myr ). Its amplitude is
about 205 km. It is the third huge term of the representation of ζ6.
The absence of this term brings a misfit and causes the residuals
between this solution and JPL to increase with time, as we see in
Fig. 1.

Finally, we obtain the representation of the inclination and
ascending node ζ6 for JPL. The mean of the residuals between
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Table 6. Solutions of ζ6, with Ω∗6 of TASS-t.

ID Frequency Amplitude Phase
(radian year−1) (radian) (km) (radian)

Ω∗6
−0.008693210604 0.0027079315 3347.68 −0.29529223

Ω∗8
−0.001925543593 0.0001535753 192.42 0.24761346

2Ω∗8
−0.003425316835 0.0001294861 158.22 2.64543722

2 × (2λ∗J − 5λ∗s )
−0.013799613776 0.0000877907 107.30 0.15295797

Table 7. Inclination and ascending node of Titan from JPL in the form
ζ6 =

∑nt
i=1 Ai cos(ωit + φi) + ı ×∑nt

i=1 Ai sin(ωit + φi).

n◦ Frequency Amplitude Phase ID
(radian year−1) (radian) (km) (radian)

−0.000000000000 0.0056023641 −3.06168702

1 −0.008935057595 0.0027364047 3343.53 −0.27676016 Ω∗6
2 −0.001925543593 0.0002822330 344.85 −0.32079820 Ω∗8
3 0.002172687403 0.0001672175 204.32 −2.78725535 −Ω∗8 + L

4 0.426696791114 0.0001137550 138.99 2.04928518 2λ∗s
5 −0.003851087186 0.0000387493 47.35 2.27501684 2Ω∗8
6 −0.213245071964 0.0000193978 23.70 0.80734540 −λ∗s
7 0.639979694841 0.0000146349 17.88 1.30707517 3λ∗s
8 0.213248348339 0.0000118455 14.47 2.30454997 λ∗s
9 0.010884230625 0.0000080643 9.85 0.11060790 $∗6 −Ω∗8
10 −0.014731799789 0.0000076539 9.35 2.83771472 4λ∗J − 10λ∗s
11 −0.426738184583 0.0000056202 6.87 −1.93783340 −2λ∗s
12 −0.019169988641 0.0000024381 2.98 0.00180791 −2$∗6 − 2Ω∗8
13 −0.175339675092 0.0000021008 2.57 2.27751400 Ω∗5

X.J. Xi and A. Vienne: Analytical representation for the numerical ephemeris of Titan within short time spans

mean value of the semi-major axis of Titan, 1221870.0 kilome-
tres.

More details on the synthetic representation of motion can
be found in Paper I, and is not further discussed here. We report
the equations of our method in the Appendix.

3. Determination of the short terms and semi-long
terms

The short terms and semi-long terms are predetermined by
TASS-t combinations, and are obtained by frequency analysis.
These terms are removed later to simplify the subsequent calcu-
lations. They are given in Table 2 for z6 and in Table 3 for ζ6.

Table 2. Short terms and semi-long terms of z6 in JPL.

ID Frequency Amplitude Phase
(radian/year) (km) (radian)

2λ∗s −ϖ∗6 0.417768526306 91.50 -0.73810267
λ∗6 143.924045533325 81.89 -0.56569307
λ∗5 508.009309191022 11.38 0.21320802

3λ∗s −ϖ∗6 0.631043871764 11.57 -1.48047273

Table 3. Short terms and semi-long terms of ζ6 in JPL.

ID Frequency Amplitude Phase
(radian)/year (km) (radian)

2λ∗s 0.426696791114 138.74 2.04928518
−λ∗s -0.213245071964 23.70 0.80734540
3λ∗s 0.639979694841 17.88 1.30707517
λ∗s 0.213248348339 14.47 2.30454997

After removing the components motioned above, we used
the LSM to determine the amplitude and phase of the long terms.
The short terms and semi-long terms of the two ephemerides are
not exactly the same, especially those with amplitudes of less
than ten kilometres. We list all the obtained short terms and semi-
long terms of ζ6 and z6 in Sect. 4 and Sect. 5.

4. Representation of the inclination and ascending
node of Titan ζ6 of JPL

In TASS-t there is a constant-like component with null fre-
quency. However, the finite time span of JPL limits us to dis-
tinguishing this term from the major period term, which is asso-
ciated with the ascending node Ω6. Unfortunately, the LSM can-
not make the differentiation. The difference in the constant-like
component value between TASS-t and the LSM over the same
time span (ten thousand years) is important, about 165.1 kilome-
tres, which is much greater than the 20 kilometre difference in ζ6
between JPL and TASS at the J2000.0 epoch.

Similarly, the obtained value of one thousand years for TASS
is also not acceptable. Therefore, we chose the TASS-t value for
the constant-like component of JPL. The results are reported in
Table 4.

In Paper I we use a nominal value for the proper frequency
of the ascending node of Titan Ω6. It works well in the represen-
tation of the mean longitude. A proper frequency as the physical

Table 4. Value of constant-like component in ζ6 in different time spans
of TASS.

Time span Method
(radian) (year)

-0.005583725984 10,000 FA
-0.005448610014 10,000 LSM
-0.005793205614 1,000 LSM

Fig. 1. Residuals of ζ6 between the solution of TASS-t Ω∗6 and JPL.

characteristic should remain constant throughout the system. We
bring separately the nominal value and the TASS-t value in the
calculations of the representation of ζ6 in order to verify the cor-
rection and its wide application.

We report the comparison of presentations between TASS
and JPL in Table 5. The solution of the four major terms, for
which the TASS-t value of Ω∗6 is adopted, is listed in Table 6.

The first part of Table 5 shows the long terms relative to the
representation of ζ6, labelled XA-JPL, and the related TASS-t
terms. They are Ω∗6, Ω∗8, 2Ω∗8, and 2λ∗J − 5λ∗s. There is a slight
difference in component values in 2λ∗J − 5λ∗s and 4λ∗J − 10λ∗s
when comparing TASS and XA-JPL. The representation of JPL
in Table 5 is the solution of the nominal value.

Likewise, we list the solution of ζ6 in Table 6, for which the
TASS-t value ofΩ∗6 is adopted. A small difference betweenΩ∗6 in
TASS-t and JPL makes no influence on the solution of Ω∗6 itself.
It clearly only affects the solutions of the long terms Ω∗8, 2Ω∗8,
and 2×(2λ∗J−5λ∗s). In addition, it interferes with the value −Ω∗8+
L, listed in the second part of Table 5. Its frequency is closed to
Ω∗8, which is considered a combination of −Ω∗8 and a very long
period perturbation L (about 1 Myr ). Its amplitude is about 205
kilometres. It is the third huge term of the representation of ζ6.
The absence of this term brings a misfit and causes the residuals
between this solution and JPL to increase with time, as we see in
Figure 4.

Finally, we obtain the representation of the inclination and
ascending node ζ6 for JPL. The mean of the residuals between
the XA-JPL and JPL ephemeris is about 360.97 metres, and the
standard deviation is about 5.76 kilometres.

5. JPL representation of the eccentricity and the
pericentre of Titan z6

The calculation for z6, the eccentricity and pericentre of Titan, is
simpler than that of ζ6. The involved proper frequencies are more
accurate. As in the previous section, we remove the short terms
and semi-long terms first, and then we determine their long terms
by a simplified LSM. The solution is listed in Table 9. The mean
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Fig. 1. Residuals of ζ6 between the solution of TASS-t Ω∗6 and JPL.

the XA-JPL and JPL ephemeris is about 360.97 m, and the
standard deviation is about 5.76 km.

5. JPL representation of the eccentricity and the
pericentre of Titan z6

The calculation for z6, the eccentricity and pericentre of Titan, is
simpler than that of ζ6. The involved proper frequencies are more
accurate. As in the previous section, we remove the short terms
and semi-long terms first, and then we determine their long terms
by a simplified LSM. The solution is listed in Table 9. The mean
of the residuals between XA-JPL and JPL is about −213.89 m,
and the standard deviation is about 3.53 km.

A comparison between TASS-t and XA-JPL is shown in
Table 8. The biggest difference comes from the major term, the
pericentre of Titan $∗6, of about 86 km in the amplitude. The

other differences are smaller than 10 km. XA-JPL is very close
to TASS on the eccentricity and pericentre z6.

6. JPL representation of the semi-major axis a6 of
Titan

The representation of the semi-major axis a6 is directly obtained
by frequency analysis. The main components of a6 in TASS
and JPL are similar. XA-JPL has numerous small-amplitude
short terms, whose amplitudes reach several hundred metres.
The representation of the semi-major axis is listed in Table 10.

7. Updated JPL representation of the mean
longitude λ6 of Titan

An update of the mean longitude λ6 is calculated, inspired by the
discovery of new small-amplitude short terms listed above. Its
components have increased from 8 to 15 terms, listed in Table 11;
the first eight columns consist of the components reported in
Paper I, and the last seven columns consist of the new terms
obtained in this study.

It is noteworthy that the mean of the residuals between XA-
JPL and JPL increases from −13.27 m to 35.45 m; however,
the standard deviation decreases from 25.59 km to 12.47 km,
compared with the results in Paper I.

8. Synthetic representation of Titan

Here, we give a complete analytical representation of all the
osculating elements of Titan from JPL: a6 is the semi-major axis
in Table 10; λ6 is the mean longitude in Table 11; z6 is the eccen-
tricity and the pericentre in Table 9; and ζ6 is the inclination and
the ascending node in Table 7. The representations of Titan are
composed of all these tables, and are named XA-JPL. The cor-
responding software to compute the orbital elements with these
tables is available on request. The software also can calculate the
orbit in the form of position-velocities referring to the equinox
and ecliptic J2000 system with Eqs. (2) and (3).

9. Conclusions

In this work, we established a connection between the theoreti-
cal ephemerides and the numerical integration ephemerides. We
completed the analytical representations of the osculating ele-
ments of the JPL Titan ephemeris and obtained most of the
proper frequencies related to the representations, consisting of
all the major proper frequencies of Titan, including the mean lon-
gitude and the ascending node of Rhea and the mean longitude
of Enceladus, Tethys, Dione, and Iapetus.

Our representations report the system dynamic information
and the detailed perturbation relationship of JPL, which were
not clearly exhibited before. The standard deviation between XA-
JPL and JPL in position is smaller than 628.19 m, and the mean
residual is only several centimetres.

We expect to make further research on the representations
of other major Saturn satellites, to get more proper frequencies
and dynamic information on the Saturn system. Moreover, we
would like to make a similar study on other Saturnian numerical
ephemerides like NOE (Lainey et al. 2004a,b), and also on the
numerical ephemerides of the satellites of other planet systems,
such as the Martian satellites.
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Table 8. Comparison of the solutions of z6 between TASS and XA-JPL.

ID Frequency Amplitude Phase EPH
(radian year−1) (radian) (km) (radian)

$∗6
0.008933864289 0.0289265365 35344.467153 2.86627922 TASS-t
0.008922847865 0.0288561951 35258.519153 2.86729807 XA-JPL

−$∗6 −0.008933959907 0.0001921234 234.749826 0.42638138 TASS-t
−0.008922847882 0.0001919517 234.539964 0.45372682 XA-JPL

$∗6 + Ω∗8
0.007008286694 0.0000242939 29.683988 −1.64598798 TASS-t
0.006997304289 0.0000295358 36.088945 −0.08850508 XA-JPL

$∗6 −Ω∗8
0.010859401773 0.0000239166 29.222976 −2.06132503 TASS-t
0.010848391475 0.0000189882 23.201104 2.55593623 XA-JPL

$∗8
0.001974774505 0.0000172066 21.024228 −2.82136616 TASS-t
0.001974690829 0.0000239209 29.228280 −2.66393868 XA-JPL

−$∗6 + 2λ∗s
0.417664365570 0.0000744656 90.987283 −0.72852474 TASS-t
0.417768526921 0.0000747215 91.299928 −0.73810273 XA-JPL

λ∗6
143.924047290026 0.0000668787 81.717077 −0.56432198 TASS-t
143.924045533834 0.0000670170 81.886073 −0.56569312 XA-JPL

λ∗5
508.009320171889 0.0000101008 12.341865 0.21391389 TASS-t
508.009309191028 0.0000093102 11.375878 0.21320802 XA-JPL

−$∗6 + 3λ∗s
0.630963495932 0.0000096035 11.734229 −1.47873726 TASS-t
0.631043870540 0.0000094202 11.510243 −1.48047261 XA-JPL

Table 9. Eccentricity and pericentre of Titan from JPL in the form z6 =
∑nt

i=1 Ai cos(ωit + φi) + ı ×∑nt
i=1 Ai sin(ωit + φi).

n◦ Frequency Amplitude Phase ID
(radian year−1) (radian) (km) (radian)

1 0.008922847865 0.0288561951 35258.52 2.86729807 $∗6
2 −0.008922847882 0.0001919517 234.54 0.45372682 −$∗6
3 0.006997304289 0.0000295358 36.09 −0.08850508 $∗6 + Ω∗8
4 0.010848391475 0.0000189882 23.20 2.55593623 $∗6 −Ω∗8
5 0.001974690829 0.0000239209 29.23 −2.66393868 $∗8
6 0.417768526921 0.0000747215 91.30 −0.73810273 −$∗6 + 2λ∗s
7 143.924045533834 0.0000670170 81.89 −0.56569312 λ∗6
8 508.009309191028 0.0000093102 11.38 0.21320802 λ∗5
9 0.631043870540 0.0000094202 11.51 −1.48047261 −$∗6 + 3λ∗s
10 0.204292533874 0.0000055655 6.80 3.10679045 λ∗s −$∗6
11 838.510861768628 0.0000052056 6.36 2.39023743 λ∗4
12 −220.161218121711 0.0000045462 5.55 −1.34459433 −2λ∗6 − λ∗5
13 −143.497357562492 0.0000044228 5.40 2.69551544 2λ∗s − λ∗6
14 −0.325963534329 0.0000039916 4.88 0.25145162 λ∗s − λ∗J −$∗6
15 0.015381175333 0.0000035231 4.30 −2.4324747 2$∗6 + Ω∗8
16 1215.663927998115 0.0000033177 4.05 2.59058838 λ∗3
17 −0.003564170042 0.0000031913 3.90 −3.08334138 2Ω∗8
18 287.839169160205 0.0000028229 3.45 2.28446256 2λ∗6 −$∗6
19 −550.662770700905 0.0000023070 2.82 2.76156172 −λ∗4 + 2λ∗6
20 −0.4177851750182 0.0000022342 2.73 −2.25592112 −2λ∗s +$∗6
21 0.221880937275 0.0000020679 2.53 2.24080336 λ∗s + Ω∗6
22 −0.204066424890 0.0000019935 2.44 0.41114421 −λ∗s + Ω∗6
23 0.434415938186 0.0000018714 2.29 −1.36938699 2λ∗s +$∗6
24 −0.020728682845 0.0000018148 2.22 0.30124005 −2$∗6 + 2Ω∗8
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Table 10. Semi-major axis of Titan from JPL in the form a6 = a0 +
∑n

i=1 Ai cos(ωit + φi).

Frequency Amplitude Phase ID
(radian year−1) (au) (km) (radian)

0.000000000000 0.0081682112 1221947.00 0.00000000 a0

n◦ (radian year−1) (au × 107) (km) (radian)

1 −364.085263656371581 1.28608880 19.24 −0.77890118 λ∗6 − λ∗5
2 694.586816233811760 0.66298636 9.92 2.95593059 λ∗4 − λ∗6
3 −1071.739882463474714 0.40390842 6.04 3.12690378 λ∗6 − λ∗3
4 143.915125188810634 0.31540302 4.72 2.85003567 λ∗6 −$∗6
5 −287.421403131497300 0.24036750 3.60 −3.02198337 −2λ∗6 + 2λ∗s
6 1530.943223018746039 0.07645178 1.14 3.04920192 λ∗2 − λ∗6
7 287.208108160346001 0.04627154 0.69 −2.51550026 2λ∗6 − 3λ∗s
8 −220.170140158743123 0.04333216 0.65 2.07124940 2λ∗6 − λ∗5
9 −728.170527313752359 0.03976144 0.59 1.58379043 −2λ∗5 − 2λ∗6
10 −287.848139938724842 0.01345982 0.20 1.31699297 2λ∗6 −$∗6

Table 11. Mean longitude of Titan from JPL in the form λ6 = Nt + λ0 +
∑n

i=1 Ai sin(ωit + φi).

n◦ Frequency Amplitude Phase ID
(radian year−1) (radian) (km) (radian)

143.924045534754 N
5.718878 λ0

1 0.001925543543 0.0015494050 1893.17 −1.745326 −Ω∗8
2 0.008935057595 0.0006308411 770.81 0.343321 −Ω∗6
3 0.426697846565 0.0002067870 252.67 −1.158157 2λ∗s
4 0.213381048936 0.0001830009 223.60 2.420117 λ∗s
5 0.006874219340 0.0000326175 39.85 2.437628 Λ6
6 0.639897726868 0.0000291066 35.56 −1.918137 3λ∗s
7 0.017845695764 0.0000273363 33.40 2.418477 2$∗6
8 364.085261349846 0.0000111378 13.61 0.779460 λ∗5 − λ∗6
9 −3.583073740059 0.0000036207 8.85 −1.792328 ω6
10 694.586816236757 0.0000063831 7.80 2.955931 λ∗4 − λ∗6
11 143.915119280905 0.0000061830 7.55 2.850461 λ∗6 −$∗6
12 −0.436279553701 0.0000056291 6.88 2.955931 −2λ∗s −$∗6
13 287.421403265371 0.0000051500 6.29 −0.119591 2λ∗6 − 2λ∗s
14 0.718183613841 0.0000043221 5.28 2.773366 λ∗s − λ∗J + 2$∗6 − 2Ω∗8
15 0.212813032048 0.0000015001 3.67 1.624010 λ∗s −$∗6
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Appendix A: Extension of the frequency analysis
via the least-squares method

The calculation of ζ6 or z6 is described in this Appendix. It uses
the same method for the λ6 calculation as in Paper I. Considering
an integrable Hamilton system with m degrees of freedom based
on a Hamiltonian H, if the system evolves within the hypothe-
sis of the Arnold-Liouville theorem, there are some coordinates
called action-angles. The action-angle coordinates are intrinsic
to the system. The first derivatives of the action variables give
the proper frequencies ω j.

When a function f (t) describes a mechanical system, for
example, f (t) may stand for one of the variables in Eq. 2, and
it can be written as a series in the form

f (t) =
∑
k∈N

Ak exp iνkt with Ak ∈ C , (A.1)

where ν j are the integer combinations of the proper frequencies
ω j.

In this paper we assume that the system is integrable, or at
least close to integrable. Hence, the corresponding equation of
orbital elements can be written as

Y(t) =

nt∑
i=1

A1,i cos(ωit + φi) + ı ×
nt∑

i=1

A2,i sin(ωit + φi), (A.2)

where Y(t) is the value of ζ6 or z6 at time t and nt is the number
of the terms.

Each frequency ωi can be an integer combination of several
proper frequencies, a single frequency itself, or a multiple of
a single frequency. The series is considered periodic or quasi-
periodic. It is constructed following the D’Alembert rule (Laskar
et al. 1992; Laskar 1993), where φi and Ai are the phase and
amplitude related to ωi.

In the case of the mean longitude, λ6 has only a real part:

Y(t) =

nt∑
i=1

A1,isin(ωit + φi). (A.3)

The complete representation of the mean longitude needs to add
its main slope Nt and initiate λ0:

λ = Nt + λ0 +

nt∑
i=1

A1,isin(ωit + φi). (A.4)

Their unknown amplitudes and phases are determined by the
LSM. The semi-major axis a6 has only a real part. It is not con-
sidered in the LSM as its representation can be obtained directly
by frequency analysis.

With a step of 0.6 days over 1000 year, we have m = 607800
equations for each osculating element of Titan. If we use

sin(ω1ti) = Xi,1

cos(ω1ti) = Xi,2

sin(ω2ti) = Xi,3

· · ·
cos(ωnti) = Xn,n

(A.5)



a1,1 = A1 sin φ1

a2,1 = A1 cos φ1

a1,2 = A1 cos φ1

a2,2 = −A1 sin φ1

a1,3 = A2 sin φ2

a2,3 = A2 cos φ2

a1,4 = A2 cos φ2

a2,4 = −A2 sin φ2

· · ·

(A.6)

then equations are as follows:

X ×A = Y,
X ×A∗ = Y∗. (A.7)

Here X is a [m × n] matrix of equations,A andA∗ are unknown
one-dimensional matrices, nt is the number of terms, and n is
the number of parameters, which is twice nt. The phase and
amplitude remain constant throughout. The difference between
the equations depends on the time t and the corresponding Y(t).
Here

X

=


∑m

i=1 X2
i,1

∑m
i=1 Xi,1Xi,2 · · · ∑m

i=1 Xi,1Xi,n−1
∑m

i=1 Xi,1Xi,n
...

...
...

...∑m
i=1 Xi,nXi,1

∑m
i=1 Xi,nXi,2 · · · ∑m

i=1 Xi,nXi,n−1
∑m

i=1 X2
i,n

 ,

A =


a1,1
...

a1,n

 ,

A∗ =


a2,1
...

a2,n

 ,

Y =


∑m

i=1 X2i−1,1Y2i−1,t2i−1

...∑m
i=1 X2i−1,mYt2i−1

 ,

Y∗ =


∑m

i=1 X2i,1Yt2i

...∑m
i=1 X2i,mYt2i

 .
For λ6 we only use the first equation in Eq. A.7.
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