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ABSTRACT

Due to tidal interactions in the Earth-Moon system, the spin of the Earth slows down and the Moon drifts away. This recession of the
Moon can now be measured with great precision, but it was noticed more than fifty years ago that simple tidal models extrapolated
back in time lead to an age of the Moon that is largely incompatible with the geochronological and geochemical evidence. In order
to evade this problem, more elaborate models have been proposed, taking into account the oceanic tidal dissipation. However, these
models have not been able to fit both the estimated lunar age and the present rate of lunar recession simultaneously. In the present
work, we present a physical model that reconciles these two constraints and yields a unique solution for the tidal history. This solution
fits the available geological proxies for the history of the Earth-Moon system well and it consolidates the cyclostratigraphic method.
Our work extends the lineage of earlier works on the analytical treatment of fluid tides on varying bounded surfaces that is further
coupled with solid tidal deformations. This allows us to take into account the time-varying continental configuration on Earth by
considering hemispherical and global ocean models. The resulting evolution of the Earth-Moon system involves multiple crossings of
resonances in the oceanic dissipation that are associated with significant and rapid variations in the lunar orbital distance, the length
of an Earth day and the Earth’s obliquity.
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1. Introduction

Due to the tidal interplay in the Earth-Moon system, the
spin of the Earth slows down over time and the Earth-
Moon distance increases (Darwin 1879) at a current rate of
3.830 ± 0.008 cm yr−1, measured using Lunar Laser Rang-
ing (LLR; Williams & Boggs 2016). A rich narrative has
been cultivated, exploring the long-term evolution of the
system (Goldreich 1966; Mignard 1979; Touma & Wisdom
1994; Neron de Surgy & Laskar 1997) and the dynamical
constraints on the origin of the Moon (Touma & Wisdom
1998; Ćuk et al. 2019). Overall, it has been established that
simple tidal models starting with the present recession rate
and integrated backward in time predict a close encounter
in the Earth-Moon system within less than 1.6 billion years
(Ga; Gerstenkorn 1967; MacDonald 1967). This assumption
is clearly incompatible with the estimated age of the Moon
of 4.425 ± 0.025 Ga (Maurice et al. 2020), which suggests
that the present rate of rotational energy dissipation is much
greater than it has typically been over the Earth’s history. To
bypass this difficulty, empirical models have been fitted to the
available geological evidences of the past rotational state of
the Earth, (Walker & Zahnle 1986; Waltham 2015), acquired
through the analysis of paleontological data (e.g., Williams
2000), sedimentary records of tidal rhythmites, (Williams
1997, 2000; Sonett & Chan 1998; Eriksson & Simpson
2000; de Azarevich & Azarevich 2017), or Milankovitch
cyclostratigraphic sequences (Meyers & Malinverno 2018;
Huang et al. 2020; Sørensen et al. 2020; Lantink et al. 2021).
However, empirically fitting these geological data brings
little insight into how different physical components have

actually contributed to the evolution of the Earth-Moon
system.

Major progress has been achieved with the elabora-
tion of oceanic tidal models. These models offer a tidal
frequency-dependent dissipation behavior (Longuet-Higgins
1968; Platzman 1984; Müller 2008a) that allows for the
encounter of high-dissipation resonant states over the course of
Earth history (Webb 1980; Auclair-Desrotour et al. 2018; Tyler
2021). However, the literature lacks an effective model stem-
ming from controlled analytical formulations that fits both the
currently measured rate of lunar recession and the estimated age
of the Moon.

Alongside its dependence on the Earth’s rotation rate, the
varying continental configuration has also played a role in
enhancing the oceanic resonances or even exciting additional
ones (Platzman 1983; Ooe 1989; Tyler 2021). Paleo-dissipation
might have also varied significantly during ice ages, as areas of
continental shelves vary with sea level (Griffiths & Peltier 2009;
Arbic & Garrett 2010). However, both ice ages and basin geom-
etry cycles have much smaller periodicities compared to the
Earth’s age (Boulila et al. 2018; Farhat et al. 2022). Moreover,
accurately accounting for such level of realism is hindered by the
accumulating uncertainty in deep-time modeling. It is thus nec-
essary to compromise between the practicality of effective mod-
els with simplified geometries (Webb 1980; Hansen 1982; Tyler
2021) and the realism of costly numerical models that depend on
paleogeographic reconstructions (Green et al. 2017; Daher et al.
2021).

Here, we undertake a systematic exploration of the time-
varying tidal dissipation in the oceans. We propose a physical
model that reconciles the two aforementioned limits, described
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Fig. 1. Temporal evolution of the latitude of the surface “paleo-
barycenter” over the last one billion years. The plate tectonics recon-
struction is adopted from Merdith et al. (2021), which establishes the
first kinematically continuous tectonic motion model across multiple
super-continental cycles. The evolution is smoothed in red using a
moving polynomial regression filter with a window of 200 Myr. In
our effective model, this curve maps the evolution of the center of
the hemispheric continental cap that transitions from being symmetric
about the equator during the Mesozoic, to being almost polar during the
Paleozoic.

in Sect. 2. With a minimum number of free parameters, we con-
strain our model to only fit the two most certain points of lunar
evolution history: the present rate of lunar recession and the
lunar age, presented in Sect. 3. This provides a unique solution
to the Earth-Moon separation history, described in Sect. 4. We
focus on the computation of the tidal response of the Earth, con-
sidering a reconstruction of the continental drift up to one bil-
lion years ago, followed by a smooth transition toward a global
ocean planet. We supplement this computation with a reduced
dynamical model of the system that captures the skeletal struc-
ture of the long-term evolution based on robust features of the
tidal response. However, we anticipate that this model may serve
as the backbone of a fully spatial dynamical evolution in the sys-
tem (more on that in Appendix A). The orbital solution that we
produce demonstrates the robustness of the cyclostratigraphic
machinery and further suggests interesting intervals for future
investigations, as shown in Sect. 5.

2. Oceanic model

In our model, we compute the tidal response of the oceans and
the solid-Earth to luni-solar semi-diurnal forcing, both com-
bined with mimetic continental drift driven by plate tecton-
ics. We focus on the dependence of dissipation on the Earth’s
spin rate. We combine two analytical approaches that describe
long-wavelength barotropic tidal flows over shallow spherical
and hemispherical shells. The spherical shell describes a global
ocean that we assume had existed in the earliest eons of the
lifetime of the Earth (Motoyama et al. 2020). The existence of
an early ocean is supported by evidence from the analysis of
detrital zircon around 4.4 Ga (Wilde et al. 2001), from the inter-
action between the ocean and continental crust 4 billion years
ago (Mojzsis et al. 1996), and from records of the oxygen iso-
tope composition of seawater (Peck et al. 2001; Johnson & Wing
2020). The “globality” of this ocean is justified by the anal-
ysis of continental crust growth curves based on geochemi-
cal evidence in zircon crystallization ages (Dhuime et al. 2012;
Hawkesworth et al. 2020). In compliance with these curves, we
consider that a hemispherical oceanic shell has taken over in the
most recent times. In our model, the center of this hemispheric
continental cap follows the evolution of the paleogeographic

center. In doing so, we emphasize on the role of “continental-
ity” in the tidal response, while avoiding the under-sampling
of geometric scenarios due to theoretical limitations (Hansen
1982; Tyler 2021) or due to uncertainties in plate tectonic models
(Matthews et al. 2016; Daher et al. 2021). To compute this evo-
lution, we adopt the recently developed paleogeographic recon-
structions that cover the past billion years (Merdith et al. 2021).
A postprocessing of these reconstructions allows us to produce
the latitudinal evolution of the center of the continental cap cap-
tured in Fig. 1. The tidal frequencies at which oceanic reso-
nances are excited and the amplitudes of these resonances vary
with the surface position of the hemispherical ocean (Fig. B.1).
Super-continental formations and breakups thus have their mark
on the predicted lunar recession rate.

The dynamical evolution of the Earth-Moon system is cou-
pled to the computation of the tidal flows, which is also depen-
dent on the chosen oceanic geometry. For the global ocean,
the tidal torque is computed by solving the modified Laplace
tidal equation using the Hough functions as eigenfunctions (see
Appendix K and Auclair-Desrotour et al. 2019). The oceanic
dissipation is parameterized by an effective frequency, σR,
which globally models the bottom friction and the conversion
of barotropic flows into internal gravity waves, both mecha-
nisms amounting to ∼91% of the total dissipation (Carter et al.
2008). This frequency, σR, can also be interpreted as the inverse
of a dissipation timescale, τ, that quantifies the time needed
to deplete the kinetic energy budget of tidal oscillations after
switching off the forcing. Although σR is probably a function of
local topography, its spatial variation can be averaged out longi-
tudinally over the Earth’s rotation and latitudinally over preces-
sion and plate tectonics. The second free parameter in our model
is the uniform effective oceanic thickness, H. The imprints of
these two parameters on the tidal response spectrum are dis-
tinguishable: variations in H smoothly shifts the positions of
the resonant peaks while slightly varying their amplitudes. In
contrast, variations in σR can completely reshape the tidal spec-
trum, amplifying the resonant peaks by several orders of mag-
nitude when σR decreases or, otherwise, completely absorbing
the resonant peaks into the background spectrum (Fig. K.1). For
the hemispherical geometry, we adopt the analytical approach
of Webb (1980) (see Appendix E), in which the tidal solu-
tion is expanded in spherical harmonics (Fig. E.1). In both
geometries, we take into account the effect of the deforma-
tion of the solid part of the Earth adopting an Andrade rhe-
ology (Anderson & Minster 1979; Castillo-Rogez et al. 2011;
Lau & Faul 2019; Appendix F).

3. Constraining the effective parameters

Assuming a reduced planar orbital model (described in
Appendix A), we compute the evolution of the Earth-Moon sys-
tem that results from the luni-solar semi-diurnal tidal torque
for ranges of values of our effective parameters (H, σR). We
do so for three models that ascend in realism: a global ocean
model across the full geological history (similar to Tyler 2021);
an “average” hemispherical ocean model across the full geo-
logical history (similar to Webb 1982) for which the response
at any tidal frequency is averaged over all possible oceanic
positions on the sphere; and our combined model that starts
at the present with the hemispherical ocean evolving with the
mimetic continental drift, then switching to the global ocean.
For every constructed history of the Earth-Moon separation, we
compute the chi-squared χ2, taking only two data points into
account: the well-constrained lunar age of 4.425 ± 0.025 Ga
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Fig. 2. Misfit surfaces of χ2 for the three studied geometric models. The past dynamical evolution of the Earth-Moon system is reconstructed for
the shown ranges of our two free model parameters H and σR. The misfit is established using the currently measured lunar recession rate via
LLR, and the lunar age (Appendix C). The three models differ in the imposed geometry of the oceanic shell over the geological history, with the
combined model featuring more physical realism that the other two. The numerical results of this analysis are summarized in (Table C.1). The
dynamical evolution associated with each of the misfit minima is plotted in terms of: the lunar semi-major axis in Fig. 3, length of the day in Fig. 5,
and obliquity and precession frequency in Fig. 6.

(Maurice et al. 2020) and the currently measured rate of lunar
recession of 3.830 ± 0.008 cm yr−1 (Williams & Boggs 2016).
Misfit surfaces of χ2 for the three models are shown in Fig. 2.
Two χ2 local minima exist for the global oceanic response; how-
ever, one of them corresponds to an unreasonably large average
oceanic depth H ≈ 5500 m, leaving us with a global minimum of
(H, log10 σR) = (2273 m,−4.89), where σR is in s−1. The global
minimum in the “average” hemispherical ocean model corre-
sponds to (H, log10 σR) = (3816 m,−4.54), which is close to
the average depth of the Pacific Ocean (Amante & Eakins 2009).
For the combined model, the global minimum corresponds to
(H, log10 σR) = (4674 m,−5.19), where H is the thickness for
the hemispherical phase of the model – which is twice that of the
global ocean phase during earlier eons (Appendix B). The switch
between the two geometries occurs at tswitch, which is implicitly
determined by the dynamical integrator (Appendix B). For the
best-fit solution, we have tswitch = 3.25 Ga, which is in agreement
with assumptions from the literature of the existence of a global
ocean until ∼2.5 Ga (Dhuime et al. 2012; Hawkesworth et al.
2020; Motoyama et al. 2020). If we assume that the oceanic
volume is conserved over time, the best-fit value of H for the
combined model corresponds to a volume of 1.19 × 1018 m3,
which is only 10% off from the currently estimated value of
1.33 × 1018 m3 based on global relief models (Amante & Eakins
2009). The fitted dissipation frequency, σR, corresponds to a
decay time τ = 43.1 h, which is consistent with real oceanic
studies (Garrett & Munk 1971; Webb 1973) that offer a range
between 24 and 60 h (or log10 σR ∈ [−4.93,−5.33]). The best-fit
values for the combined model correspond to a lunar trajectory
characterized by a current rate of recession ȧ0 = 3.829 cm yr−1

and an impact time at 4.431 Ga (Table C.1).

4. Earth-Moon separation: A history of surfing
resonances

For each of the global minima of the misfit parametric stud-
ies, we plot the evolution of the Earth-Moon distance in Fig. 3.

At the top of the evolution, we spread a compilation of geo-
logical proxies from tidal rhythmites (Walker & Zahnle 1986;
Sonett & Chan 1998; Williams 2000; Eriksson & Simpson
2000; de Azarevich & Azarevich 2017) and cyclostratigraphy
(Meyers & Malinverno 2018; Huang et al. 2020; Sørensen et al.
2020; Lantink et al. 2021; Tables D.1 and D.2). The three models
are constrained at the end points, thus differences arise mostly
in between. To better elaborate on the models’ discrepancies,
we plot in Fig. 4 the temporal evolution of the tidal torque
(normalized by its present value) associated with the combined
model. The corresponding evolution of the length of an Earth day
(LOD), precession frequency, and obliquity are plotted in Figs. 5
and 6. As it is directly proportional to tidal dissipation, the long-
term evolution of the torque is characterized by a non-monotonic
increase, characteristic of the shrinking Earth-Moon separation,
that is interrupted by multiple crossings of resonances. The
distribution of resonances in the hemispherical configuration,
t < tswitch, is less regular than that in the global configuration,
t > tswitch, (see also Figs. K.1 and K.2 for a global descrip-
tion of the tidal response spectrum). Each resonance crossing
in the torque generates an inflection point in the evolution of
aM, which depends on the width and to a lesser degree on the
amplitude of the resonance peak (Auclair-Desrotour et al. 2014).
Figure 4 depicts a critical feature of the combined model: start-
ing with the hemispherical geometry at present, the torque is
located around a resonance peak, which provides a higher dis-
sipation rate than for the global ocean configuration. This mod-
els the anomalous present rate of dissipation attributed to the
blocking of westward tidal propagation by the current continen-
tal distribution and the effect of enhanced dissipation by conti-
nental shelves (Arbic et al. 2009). The first phase of the model
involves two major resonances between the present and 700 Ma,
resulting in cascade falls of aM of 2.8RE within 330 Myr. These
resonances are associated with rapid variations of the Earth’s
obliquity (Fig. 6) that could have triggered major climatic events.
We observe that the first resonance overlaps with the Paleozoic
oxygenation event (∼350 Ma), while the second overlaps with
the Neoproterozoic major oxygenation event (∼600 Ma) and
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Fig. 3. Evolution of the lunar semi-major axis over time. The Earth-
Moon separation, aM, is plotted for the three studied models, taking the
best-fit values of the free parameters (H, σR) as described in Fig. 2 and
in the main text. Plotted on top of the evolution curves: Geological infer-
ences of aM from cyclostratigraphy and tidal laminae data (Tables D.1
and D.2). The shaded envelope corresponds to 2σ-uncertainty in the
fitted parameters of the combined model (Appendix C). In the narrow
window, we zoom over the most recent 250 Myr of the evolution and
make a comparison with the evolution corresponding to explicit numer-
ical tidal modeling using paleogeographic reconstructions (Green et al.
2017) and the prediction of the numerical solution La2004 (Laskar et al.
2004). We note that the integration of aE extends to 3RE, but the y-axis
is trimmed to start at 15RE for a better visualization of the geological
data.

the Cambrian Explosion (Wood et al. 2019). Possible correlation
between the Earth’s LOD and the benthic ecosystem should thus
be considered (Klatt et al. 2021). The second resonance peak is
almost half an order of magnitude lower than in the global con-
figuration. This is an essential feature of the combined model
for preserving the lunar angular momentum budget at this stage
to better match the cyclostratigraphic proxy estimates at 1.4 and
2.5 Ga, which clearly cannot be explained by the other, more
dissipative models considered in Fig. 2.

Following these resonances, the torque enters a long non-
resonant interval associated with the intrinsic tidal response
occupying the background of the spectrum (Fig. K.1). This “dor-
mant” torque phase covers the interval of the so-called “boring
billion years” associated with stabilized rates of atmospheric
oxygenation (Alcott et al. 2019). Entering the oceanic global
geometry phase of the combined model occurs at 3.25 Ga,
namely after covering all significant super-continental cycles,
although tswitch is implicitly determined by the dynamical inte-

Fig. 4. History of the tidal torque. The logarithm of the semi-diurnal
tidal torque of the Earth (normalized by its present value: T̃ = T /T (t =
0)) is plotted as a function of time. The solid curve corresponds to the
torque of the combined model that involves three phases: in the first
phase, a hemispherical ocean migrates on the surface of the Earth fol-
lowing the evolution of the continental barycenter of Fig. 1. Given we
lack a continuous plate tectonics model beyond 1 Ga, in Phase 2, we fix
the hemispherical ocean to its configuration at 1 Ga to avoid disconti-
nuities in the modeling. It is noteworthy that the attenuated tidal torque
over this phase is not due to the fixed oceanic position but due to the
tidal response occupying the non-resonant background of the spectrum
for the tidal frequencies associated with this interval. Beyond tswitch, we
enter Phase 3 of the model with the global ocean configuration. The
dashed and dashed-dotted curves correspond, respectively, to the global
and hemispherical oceanic torques that are ignored over the specified
intervals by the selective combined model.

grator (Appendix B). Samples of continental growth curves
predict a fast decay in continental crust volume beyond tswitch
(Sun et al. 2019; Hawkesworth et al. 2020). After switching to
the global ocean response spectrum, the torque passes through a
major resonance around 3.35 Ga, resulting in a significant and
abrupt drop in aM of 6.5RE within 250 Myr. Beyond this age, the
evolution again follows the tidal dissipation background spec-
trum before terminating with the impact.

5. New target for geological studies

In this work, we present the first semi-analytical physical model
that fits the most accurate constraints in the Earth-Moon evolu-
tion: the present tidal dissipation rate and the age of the Moon.
We deliberately avoided fitting our model to any of the avail-
able geological data. The unique solution of our combined model
is a nearly perfect match to a large set of those geological
data (Figs. 3, 5 and 6). This solution will provide a new target
for geological studies, as it clearly validates the cyclostrati-
graphic approach, which estimates the Earth’s precession fre-
quency from stratigraphic sequences (Meyers & Malinverno
2018; Huang et al. 2020; Sørensen et al. 2020; Lantink et al.
2021; Table D.1). In particular, the cyclostratigraphic evalua-
tion of the Earth-Moon distance at 2459 ± 1.3 Ma in the Joffre
banded iron formations (BIF, Lantink et al. 2021) is in remark-
able agreement with our model, compared to the equivalent esti-
mates deciphering tidal rhythmites in the (∼2450 Ma) Weeli
Wooli BIF in Australia (Walker & Zahnle 1986; Williams 2000).
Our target curve can probably now be used to elaborate robust
procedures for the analysis of these tidal rhythmites that led
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Fig. 5. Evolution of the Earth’s length of the day with time. Similar to
Fig. 3, but here for the LOD evolution associated with the three stud-
ied oceanic models. Geological data on the LOD are summarized in
Tables D.1 and D.2. The minimal value reached for the LOD when the
integration is terminated at 3 Earth radii is 5.25 h.

sometimes to divergent interpretations (Walker & Zahnle 1986;
Sonett & Chan 1998; Williams 2000; Table D.2).

We obtained a striking fit with the estimate of aM at 3.2 Ga
obtained through the analysis of the Moodies group rhythmites
(Eriksson & Simpson 2000; de Azarevich & Azarevich 2017),
but we do not deny that this agreement could be coincidental and
a new analysis of these sections in association with cyclostrati-
graphic estimates is certainly welcome. We expect that substan-
tial progress will be made in the near future with the analysis
of many cyclostratigraphic records, which could then be used to
further constrain our physical model. The sequences that occur
during the resonant states (or in their vicinity), corresponding to
the steep slopes in Fig. 3, are of particular interest. Finally, as
this model provides a coherent history of the Earth-Moon dis-
tance, it can also be used to constrain the timescale of the lunar
formation scenario (Ćuk et al. 2016). This coherence between
the geological data and the present scenario for the Earth-Moon
evolution will also promote the use of these geological data and,
in particular, the cyclostratigraphic geological data as a standard
observational window for recovering the past history of the solar
system.
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Fig. 6. Evolution of the Earth’s obliquity, precession frequency, and
precession period with time. The evolution of aM (Fig. 3) and LOD
(Fig. 5) are used to compute the evolution of obliquity and precession by
Eqs. (A.6) and (A.7). The geological data of the precession frequency
from tidal rhythmites and cyclostratigraphy are also plotted on top of
the curve (Tables D.1 and D.2). We note that the precession frequency
is the directly measured observable in cyclostratigraphy.
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Appendix A: Orbital dynamics

For the reconstruction of the Earth-Moon distance, we used a
reduced secular dynamical model describing the exchange of
angular momentum between the Earth’s rotation and the lunar
orbital motion, ignoring the Earth’s obliquity, lunar eccentric-
ity, and lunar inclination, and mainly focusing on terrestrial
tides. This simplification allows for a systematic understand-
ing of the hierarchically complex contributions of multiple inter-
vening players. In particular, the contribution of the eccentricity
tides becomes significant when the orbit of the Moon was highly
eccentric. Accounting for lunar tides and lunar core-mantle
boundary dissipation would counteract the effect of terrestrial
tides and increase the lunar eccentricity when going backwards
in time, but only to moderate values (e ≤ 0.1) (Daher et al.
2021). By attaining a highly eccentric lunar orbit, is possible
through evection resonance1. Touma & Wisdom (1998) studied
this regime and showed that capture into such a resonance could
have been encountered for aM ≈ 4.6RE, exciting the lunar eccen-
tricity to e ≈ 0.5. However, the timescale of capture and escape
from this evection resonance is 104 ∼ 105 yr, after which the
lunar orbit tends to circularization again (Rufu & Canup 2020).

Dissipation within the moon is also rendered significant at
the early stage of the system with the Earth fully molten and the
moon having little to no atmosphere, forcing it to quickly cool
into a highly dissipative body. However, this also occurs over
a relatively short time interval – specifically, when aM < 20RE
(Zahnle et al. 2015). The timescale of these mechanisms is much
smaller than that associated with the long-term tidal evolution
that we model in this work. Furthermore, a key feature of the
lunar distance evolution is the runaway effect, with aM drop-
ping rapidly from 30RE to the formation site, slightly beyond the
Roche limit, within few million years (see Figure 3). The same
figure shows that the Moon spends 97% of its lifetime with aM >
30RE. Thus, as much as early stage mechanisms are essential
to constrain the formation scenarios of the system, the robust-
ness of the runaway evolution beyond 30RE renders the reduced
dynamical model a safe and sufficient approach for the long-
term study. This model should provide the skeleton of the secular
evolution in the system around which full spatial dynamics can
flesh; the latter would require us to extend the oceanic tidal
model also to the obliquity component, which could be the
task of a next stage of this work. Other effects such as cli-
mate friction (Levrard & Laskar 2003) and core-mantle coupling
(Neron de Surgy & Laskar 1997; Touma & Wisdom 2001) are
ignored, as well as halts of tidal interaction due to Laplace plane
transitions (Ćuk et al. 2016).

Under these assumptions, the governing dynamical system
of equations is expressed as:

dLΩ

dt
= − (TM + TS) , (A.1)

dLM

dt
= TM , (A.2)

where TM is the lunar semi-diurnal tidal torque coupling
between the oceanic and the solid response of the Earth, and
TS is its solar counterpart. The orbital angular momentum of
the Moon LM = β

√
G(ME + MM)aM, where β = MEMM/(ME +

MM) is the Earth-Moon system’s reduced mass. The rotational
angular momentum of the Earth is defined as LΩ = C(Ω)Ω,
with the time-varying principal moment of inertia given by

1 occurs when the precession period of the perigee of the Moon equals
1 year, the orbital period of the Earth.

(Goldreich 1966)

C(Ω) = C(Ω0) +
2k f

2 R5
E

9G
(Ω2 −Ω2

0). (A.3)

Here, k f
2 is the second-degree fluid Love number of centrifu-

gal/tidal deformation and G is the gravitational constant. The
differential equation is integrated backwards in time using the
Runge-Kutta 9(8) method, starting from the present and stop-
ping at aM = 3RE. The tidal torque computation is coupled to the
orbital integrator and is computed simultaneously at each step.
It takes the model parameters (H, σR) as input, and the system’s
variables, aM and Ω, to compute the tidal frequency and, conse-
quently, the coupled tidal response.

Once the lunar semi-major axis (aM) and the rotation speed
of the Earth (Ω) are determined, we compute the obliquity of
the Earth (ε) and the precession frequency (p) as derived quan-
tities (Laskar et al. 2004). Starting with Equations (40) and (46)
from Correia & Laskar (2010) in the case of zero eccentricity,
we obtain:

dε
dt

=
Kn

C(Ω)Ω
sin ε

(
Ω

2nM
cos ε − 1

)
, (A.4)

and

daM

dt
=

2K
βaM

(
Ω

nM
cos ε − 1

)
, (A.5)

that is

dε
daM

=
βnMaM

4C(Ω)Ω
sin ε

Ω cos ε − 2nM

Ω cos ε − nM
. (A.6)

We note that the tidal response parameter, K, disappears from
the equations. This would also be the case if K depended on Ω.
The obliquity evolution equation (A.6) is integrated using the
values of aM and Ω that result from the tidal flows and orbital
dynamics coupled system. The precession frequency, p, is then
derived using Equations (6) and (8) from Laskar et al. (2004)
with zero eccentricity and inclination, that is:

p =
3
2

GMS

a3
E

+
GMM

a3
M

 Ed(Ω0)
Ω

Ω2
0

cos ε. (A.7)

In (A.6) and (A.7), the constant values taken for the Earth’s
radius RE, the gravitational constant of the Moon GMM, and
the Sun GMS, the mass ratio ME/MM, the rotational veloc-
ity Ω0, the Earth’s semi-major axis aE, and the inertia param-
eter C(Ω0)/MER2

E are adopted from INPOP21 (Fienga et al.
2021). The dynamical ellipticity at the origin of date, Ed(Ω0) =
0.003243, is determined from the initial conditions for the obliq-
uity (ε0) and precession (p0) adopted from the La2004 solution
(Laskar et al. 2004). All the values of applied parameters are
summarized in Table D.3.

This derivation of the obliquity and precession frequency
evolutions is only valid in the limit of a distant Moon, that is,
when the Moon is beyond its Laplace radius (Boué & Laskar
2006; Farhat & Touma 2021) and its Laplace plane is the ecliptic
rather than the Earth’s equatorial plane (Tremaine et al. 2009).
In our aM evolution of Figure 3, the Laplace regime transition
occurs very early in the evolution (t > 4Ga); thus, in Figure
6, we plot the evolution of the precession frequency and obliq-
uity between the present and 3.5 Ga. We also add the geological
inferences of the precession frequency as scatter on the curve; in
the case of cyclostratigraphy, this is the direct observable (Table
D.1).
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Appendix B: Continental drift and oceanic
geometry shifting

Fig. B.1. Drifting effect of the continental cap on the oceanic response:
the tidal torque of a hemispheric ocean is plotted as a function of the
forcing semi-diurnal frequency for different positions of the center of
the ocean. With longitudinal symmetry, the latter is defined by the lat-
itude of the oceanic center, which evolves according to Figure 1. The
drifting effect on the resonances ranges from position shifting and atten-
uation for small forcing frequencies to major distortion in the spectrum
at larger frequencies. Extreme distortion occurs in the polar oceanic sce-
nario: the major resonance around 11 rad/day reaches a maximum rela-
tive to other configurations and the rest of the resonances are absorbed
into the background leaving a unimodal spectrum. This behavior makes
it important to take into account the position of the hemispherical cap
into the model (Figure 1).

Our dynamical integrator allows for variations in the oceanic
geometry, be it a variation in the position of the oceanic hemi-
sphere or a shift between the hemispheric and global oceanic
configurations. In the combined model, the first phase (Figure 4)
starts with the center of the continental cap following the evo-
lution of the geographic center over the recent billion years. For
this purpose, we adopted a recent model that reconstructs a kinet-
ically continuous history of plate tectonics (Merdith et al. 2021).
The geographic center is traced by computing the surface pro-
jection of the “barycenter” of the continental distribution. This
allows for a higher level of realism in oceanic modeling. Beyond
1 Ga (in part due to the lack of plate tectonic data), the model
continues with the position of the ocean at 1 Ga. To postpro-
cess the continental drift evolution and to produce the time-sliced
sketches of Figure 1, we used the GPlates open-source recon-
struction software (Boyden et al. 2011; Gurnis et al. 2012).

At 1.5 Ga, the integrator starts computing simultaneously
the tidal response of a global oceanic geometry, with uniform
thickness Hglobal = H/2, in order to guarantee oceanic volume
conservation when we switch between the geometries. However,
the hemispherical response remains the one that is accounted
for in the dynamical evolution. While simultaneously comput-
ing both, the code detects when they equate, and switches to the
global configuration identifying this time as tswitch. The phys-
ical outcome of this process is guaranteeing a better compli-
ance with continental crust growth curves (Dhuime et al. 2012;
Hawkesworth et al. 2020), thus avoiding effects arising from
blocking of westward tidal propagation or enhanced continental

dissipation at continental shelves (Arbic et al. 2009). The math-
ematical outcome of this process is evident in Figure 4 in terms
of guaranteeing a smooth dynamical evolution of aM (Figure 3)
without any discontinuities and modeling artifacts. For the misfit
minimum of our combined model, we have tswitch = 3.25 Ga.

Appendix C: Parameter fits

To construct the misfit surfaces of Figure 2, we computed the
evolution for each pair of (H, σR) on the two-dimensional grid.
The present rate of lunar recession, ȧ0, and the impact time, tf ,
are then extracted for each evolution sample and the mean square
weighted deviation, χ2, (Table 1) is then computed as:

χ2 =
1
2

 ȧ0 − ȧLLR
0

σLLR

2

+

 tf − tgeo
f

σgeo

2 , (C.1)

where we use Lunar Laser Ranging (LLR) estimates of lunar
orbital recession (Williams & Boggs 2016): ȧLLR

0 ± σLLR =
38.30±0.08 mm/year; as well as geochemical estimates of lunar
formation time (Maurice et al. 2020): tgeo

f ±σgeo = 4.425±0.025
Ga. The maximum likelihood detection problem is further opti-
mized by fitting the surface around the minimum by a parabola
to avoid a limitation of the grid resolution.

Table C.1. Misfit analysis summary.

Model Global Ocean Hemispherical Ocean Combined Model

σR [ s−1] 1.2770 × 10−5 2.8860 × 10−5 6.4417 × 10−6

H [ m ] 2273 3816 4674
ȧ0[cm yr−1] 3.833 3.828 3.829
tf [ Ga ] 4.422 4.432 4.431
χ2 0.0775 0.0705 0.0345

Notes. Best-fit values of the two free parameters, σR and H, for each of
the three studied models are shown, along with the corresponding value
of χ2, as well the resulting lunar recession rate at the present ȧ0 and the
impact time, tf .

We evaluated the uncertainties on the fitted parameters from
those on the observables following the standard propagation
of uncertainty method. Because of the absence of correlation
between the two data ȧ0 and tf , the entries of the variance matrix,

Σ =

 var(H) cov(H, σR)

cov(H, σR) var(σR)

 , (C.2)

are given by

var(H) =

(
∂H
∂ȧ0

)2 (
σLLR

)2
+

(
∂H
∂tf

)2 (
σgeo)2 , (C.3a)

var(σR) =

(
∂σR

∂ȧ0

)2 (
σLLR

)2
+

(
∂σR

∂tf

)2 (
σgeo)2 , (C.3b)

cov(H, σR) =
∂H
∂ȧ0

∂σR

∂ȧ0

(
σLLR

)2
+
∂H
∂tf

∂σR

∂tf

(
σgeo)2 . (C.3c)

The partial derivatives entering in these formulae are com-
puted numerically from the fit of (ȧ0±σLLR, tf) and (ȧ0, tf±σgeo).
The marginal uncertainties on parameters H and σR are σH =
var(H)1/2 = 32.75 m and σσR = var(σR)1/2 = 0.2631 × 10−6

s−1, respectively. We used the variance matrix Σ to evaluate the
2σ-confidence ellipsoid around the best-fit parameters (H, σR).
The Earth-Moon distance, aM, and the length of the day LOD
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have been integrated for 25 pairs of parameters (H, σR) cho-
sen at the boundary of this 2σ-confidence region. Their enve-
lope represents the 2σ-uncertainty area plotted in shaded blue in
(Figure 3) and (Figs. 5 and 6).

Appendix D: Geological data

In tables D.1 and D.2, we compile geological data sets that pro-
vide historical snapshots of the past rotational state of the Earth
and the lunar orbital distance.

Table D.1. Cyclostratigraphic data.

dataset Reference T [ Ga ] p [ arcsec/yr ] aM [ RE ] aM [ km ] LOD [ hr ]

IC Laskar et al. (2004) 0.000 50.467718 60.142611 383598 24.00
Walvis Ridge Meyers & Malinverno (2018) 0.055 51.28± 1.02 59.94 ± 0.26 382284 ± 1650 23.80 ± 0.24
Lucaogou(a) Huang et al. (2020) 0.268 57.01± 1.37 58.57 ± 0.31 373538 ± 2000 22.56 ± 0.27
Lucaogou(b) Huang et al. (2020) 0.270 55.36± 0.51 58.95 ± 0.12 375967 ± 750 22.90 ± 0.11
Yangtze Block Zhong et al. (2020) 0.445 57.19± 0.53 58.52 ± 0.12 373277 ± 750 22.53 ± 0.10
Alum shale Sørensen et al. (2020) 0.493 60.11± 1.59 57.88 ± 0.34 369153 ± 2200 21.99 ± 0.28
Luoyixi Fang et al. (2020) 0.500 61.06± 0.94 57.67 ± 0.20 367854 ± 1300 21.82 ± 0.16
Xiamaling Meyers & Malinverno (2018) 1.400 85.79± 2.72 53.27 ± 0.41 339777 ± 2600 18.70 ± 0.25
Joffre Lantink et al. (2021) 2.460 108.91± 8.28 50.24 ± 0.96 320452 ± 6100 16.98 ± 0.50

Notes. In boldface, we display the direct observables we used: the precession frequency p in arcsec/yr. The time of observation, T, is in the second
column. The semi-major axis of the Moon (aM) given in Earth radius (RE) or in km, and the length of the solar day (LOD), in hours, are derived
from the observed quantities using the model that is presented in the text. These values may thus differ from the corresponding values published
in the referenced publications; IC denotes the initial conditions (Laskar et al. 2004). The two values (a,b) for the Lucaogou data set correspond to
different analyses (a): TimeOptMCMC (Meyers & Malinverno 2018); (b) obliquity and precession cycle counting (Huang et al. 2020). Whenever
it is specified in the original publication, the uncertainty in p is set to 2σ. The uncertainty of the other variables is propagated through the nominal
solution of the present study.

Table D.2. Tidal rhythmites data.

dataset Reference T [ Ga ] smo/yr p [ arcsec/yr ] aM [ RE ] LOD [ hr ]

IC Laskar et al. (2004) 0.000 13.4289 50.467718 60.142611 24.00
Mansfield Sonett & Chan (1998) 0.310 13.86 ± 0.21 55.60 ± 2.55 58.89± 0.59 22.85 ± 0.52
Elatina Sonett & Chan (1998) 0.620 14.93 ± 0.01 69.24 ± 0.13 56.04± 0.03 20.56 ± 0.02
Elatina Williams (1997, 2000) 0.620 14.10 ± 0.10 58.55 ±1.24 58.22± 0.28 22.27 ± 0.23
Cottonwood Sonett & Chan (1998) 0.900 15.33 ± 0.60 74.68 ± 8.32 55.06± 1.44 19.87 ± 0.99
Weeli Wolli Williams (1990, 2000) 2.450 16.70 ± 1.10 94.71 ± 17.19 52.01± 2.29 17.95 ± 1.32
Weeli Wolli Walker & Zahnle (1986) 2.450 15.50 ± 0.50 77.04 ± 7.03 54.66± 1.18 19.59 ± 0.79
Moodies Group Eriksson & Simpson (2000) 3.200 148.36 ± 18.61 46.45± 1.50 15.17 ± 0.65

de Azarevich & Azarevich (2017)

Notes. In boldface, we display the observables. In general, the observable is the number of synodic lunar months per year or in an equivalent
way, as quoted here, the number of sidereal lunar months per year (col. 3). The values are issued from the referenced publications (col. 1). For
the Moodies Group, we could not infer this quantity from the original publication, and the corresponding estimate of the lunar semi-major axis
was taken from de Azarevich & Azarevich (2017). The semi-major axis, aM, is obtained through Kepler’s law (n2

Ma3
M = G(MM + ME)). As for

the cyclostratigraphic data (Table.D.1), all other quantities (p, LOD) are derived from the observed quantities using the model that is presented in
the text. These values may thus differ from the corresponding values published in the referenced publications. The uncertainty of the observables
are propagated to the derived variables through the nominal solution of the present study. The values at the origin (T = 0) are from Laskar et al.
(2004). It should be noted that the present value of sidereal lunar months per year and lunar semi-major axis provided here for T = 0 differs
from some published value because here we consider averaged values, which should be the case for such long-term studies (see Figure 18 from
Laskar et al. (2004)).
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Table D.3. Values of constant parameters used in the numerical implementation of the theory.

Parameter Value

Surface gravitational acceleration (g) 9.81 m s−2

Earth radius (R) 6378.1366 km
Solar gravitational constant (GMS) 2.959122082853813556248×10−4 AU3 day−2

Earth-Moon gravitational constant (G[ME + MM]) 8.997011395221144381906×10−10 AU3 day−2

Earth to Moon mass ratio (ME/MM) 81.30056789872074318737
Uniform oceanic density (ρoc) 1022 kg m3

Andrade characteristic time (τA) 2.19 × 104 yr
Andrade rheological exponent (αA) 0.25
Average rigidity of the deformable mantle (µE) 17.3 × 1010 Pa
Average viscosity of the deformable mantle (ηE) 3.73 × 1021 Pa s
Present day mean lunar semi-major axis (a0) 60.142611 RE
Present day mean sidereal length of the day (LODs) 23.934468 hr
Present day mean obliquity (ε0) 23.2545◦

Present day mean precession frequency (p0) 50.467718 arcsec yr−1

Earth’s semi-major axis (aE) 1.495978707 × 108 km
Earth’s inertia parameter (C0/(MER2)) 0.3306947357075918999972
Earth’s fluid Love number (k f

2 ) 0.93

Notes. Astronomical values are adopted from INPOP21 (Fienga et al. 2021). Oceanic and rheological parameters are adopted
from Auclair-Desrotour et al. (2019) and Gerkema & Zimmerman (2008). The average rigidity is computed from the PREM model
(Dziewonski & Anderson 1981), while the average viscosity is computed from mantle viscosity inversions in Lau et al. (2016b). The initial condi-
tions of the orbital integration are the mean elements from the La2004 astronomical solution (Laskar et al. 2004).

Appendix E: Tidal response of a hemispherical
ocean

This appendix is aimed at obtaining a computation of the
tidal response of a hemispherical ocean on the surface of
the Earth. The formalism is heavily based on earlier works
(Longuet-Higgins & Pond 1970; Webb 1980) describing the free
oscillations and the tidal response of a hemispherical ocean sym-
metric about the equator; we expand upon it here by adopting
the true polar wander scenario (Webb 1982) to solve for a gen-
eral oceanic position. We note that the mathematical formulation
of the referenced works (Longuet-Higgins & Pond 1970; Webb
1980, 1982) contains several misprints that we correct here.

In the co-planar problem under study (ignoring the Earth’s
obliquity and the lunar orbital inclination), we define a frame
of reference co-rotating with the Earth, with a spin vector of
Ω = Ωẑ, Ω being the Earth’s spin rate and ẑ as the unit vector
along its figure axis. In this frame, we used the spherical coor-
dinates (r, θ, λ) denoting the radius, the co-latitude, and the lon-
gitude respectively, and their corresponding unit vectors (r̂, θ̂, λ̂).
We start with the linearized system of equations that describe the
conservation of momentum and mass in a tidally forced shallow
oceanic layer (Matsuyama 2014):

∂tu + σRu + f × u + g∇ζ = g∇ζeq, (E.1a)
∂tζ + ∇ · (Hu) = 0, (E.1b)

where u = uθθ̂ + uλλ̂ is the horizontal velocity field, g is the
gravitational acceleration at the surface, ζ is the oceanic depth
variation, ζeq is the equilibrium depth variation, H is the uni-
form oceanic thickness (the first of only two free parameters

in our model), and σR is the Rayleigh (or linear) drag fre-
quency (Matsuyama 2014; Auclair-Desrotour et al. 2018); the
latter is an effective dissipation parameter characterizing the
damping of the oceanic tidal response by dissipative mecha-
nisms (the second free parameter in our model). On Earth, σR
mainly accounts for the conversion of barotropic tidal flows
into internal gravity waves, which represents nearly 85% of the
total dissipation for the actual lunar semi-diurnal oceanic tide
(see, e.g., Carter et al. 2008). For this mechanism, the Rayleigh
drag frequency can actually be related to physical parame-
ters such as the Brunt-Väisälä frequency, which quantifies the
stability of the ocean’s stratification against convection (see,
e.g., Gerkema & Zimmerman 2008), or the length-scale of topo-
graphical patterns at the oceanic floor (Bell 1975; Palmer et al.
1986). In Eq. (E.1), the Coriolis parameter f is given by:

f = 2Ω cos θr̂, (E.2)

the horizontal gradient operator ∇ is defined as:

∇ = R−1
[
θ̂∂θ + λ̂ (sin θ)−1 ∂λ

]
, (E.3)

and the horizontal divergence of the velocity field ∇ · u as:

∇ · u = (R sin θ)−1 [∂θ (sin θuθ) + ∂λuλ] , (E.4)

with R being the Earth’s radius. Finally, we remark that the inter-
action of tidal flows with the mean flows of the oceanic circula-
tion are ignored in the momentum equation, namely, Eq. (E.1a).

For u = ∂t x, where x is the horizontal tidal displacement
field, we have:
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[
∂2

t + (σR + f×)∂t

]
x + g

(
∇ζ − ∇ζeq

)
= 0. (E.5)

Following Proudman (1920b), we use Helmholtz’s theorem at
this step (e.g., Arfken & Weber 1999, Chapter 1) to decompose
the horizontal displacement vector field into:

x = ∇Φ + ∇Ψ × r̂, (E.6)

where ∇Φ is a curl-free vector field (∇× (∇Φ) = 0) and ∇Ψ × r̂
is a divergence-free vector field (∇ · (∇Ψ × r̂) = 0). In the
above equation, we introduce the divergent displacement poten-
tial Φ and the rotational displacement streamfunction Ψ (e.g.,
Gent & McWilliams 1983; Webb 1980; Tyler 2011), with the lat-
ter accounting for the vortical component of the tidal displace-
ment field (e.g., Vallis 2017). As discussed by Fox-Kemper et al.
(2003), while the Helmholtz decomposition is unique for infi-
nite domains, this is not true for bounded domains such as hemi-
spherical oceanic shells due to lack of additional physical con-
straints on the boundary conditions for either of the components
of the sum. There are boundary conditions only on the total flux
at coastlines. Impermeability is a typical boundary condition:
the net flux normal to the coast is zero, which is expressed as
x · n̂ = 0, where n̂ designates the outward pointing unit vector
defining the normal to the coast. Following Webb (1980, 1982),
we assume that both components of the flux satisfy this condi-
tion, namely:

n̂ · ∇Φ = 0, n̂ · (∇Ψ × r̂) = 0. (E.7)

We note that the second condition of the above equation can be
rewritten as (r̂ × n̂) · ∇Ψ = 0, which implies that Ψ is constant
along the coastline (in the following, we set Ψ = 0 at the oceanic
boundary). This condition thus means that the coastline corre-
sponds to a closed streamfunction contour, which depicts a dis-
tinct gyre of the tidal flow.

Although arbitrary, the assumption that both compo-
nents of the flux satisfy the impermeability condition has
been widely used to study the dynamics of ocean basins
because of its convenience relative to other possible conditions
(e.g., Gent & McWilliams 1983; Watterson 2001; Han & Huang
2020). In particular, this assumption provides a unique decompo-
sition apart from an arbitrary additive constant to each function,
Φ and Ψ. Moreover, the second condition given by Eq. (E.7)
enforces the orthogonality of the curl-free and divergence-free
components of the tidal flow. By combining together the iden-
tity ∇ · (Φ∇Ψ × r̂) = (∇Ψ × r̂) · ∇Φ and Gauss’ theorem (e.g.,
Arfken & Weber 1999):∫
O
∇ · (Φ∇Ψ × r̂) dA =

∮
∂O

Φ (∇Ψ × r̂) · n̂ d`, (E.8)

with dA and d` being the infinitesimal area element of the hemi-
spherical oceanic domain,O, and length element of the coastline,
∂O, respectively, we obtain∫
O

(∇Φ) · (∇Ψ × r̂) dA =

∮
∂O

Φ (∇Ψ × r̂) · n̂ d`. (E.9)

As the second condition of Eq. (E.7) enforces (∇Ψ × r̂) · n̂ = 0
along the coastline, it follows that∫
O

(∇Φ) · (∇Ψ × r̂) dA = 0, (E.10)

meaning that the components ∇Φ and ∇Ψ× r̂ each belong to one
of the two orthogonal subspaces that form the space of horizontal

displacements satisfying the assumed boundary conditions. We
remark that the orthogonality of the Helmholtz decomposition
is not necessarily verified in the general case since it is itself a
consequence of the specific boundary condition chosen for the
divergence-free component of the tidal flow.

The functions Φ and Ψ are expanded in terms of complete
sets of eigenfunctions over the domain, O, such that

Φ(θ, λ, t) =

∞∑
r=1

pr(t)φr(θ, λ), (E.11)

Ψ(θ, λ, t) =

∞∑
r=1

p−r(t)ψr(θ, λ). (E.12)

The eigenfunctions (φr, ψr) satisfy, over the oceanic domain (O),
the Helmholtz equations (e.g., Riley et al. (1999), Chapter 21):

∇
2φr + µrφr = 0, (E.13)

∇
2ψr + νrψr = 0, (E.14)

and, along the coastline (∂O), the boundary conditions given by
Eq. (E.7):

n̂ · ∇φr = 0, ψr = 0, (E.15)

where we introduced the horizontal Laplacian:

∇
2 = (R sin θ)−2 [sin θ ∂θ (sin θ ∂θ) + ∂λλ] , (E.16)

and the real eigenvalues, µr and νr, associated with the eigen-
functions φr and ψr, respectively. We note that the eigenfunctions
are normalized such that∫
O
φrφsdA =

∫
O
ψrψsdA = δrs, (E.17)

where the notation δrs referring to the Kronecker δ-symbol is
δrs = 1 for r = s and 0 otherwise. Using these conditions, the
eigenfunctions are defined as:

φr =
αn,m

R
Pm

n (cos θ) cos mλ, (E.18)

ψr =
αn,m

R
Pm

n (cos θ) sin mλ, (E.19)

with eigenvalues of µr = νr = n(n + 1)/R2 and the normalization
coefficient of:

αn,m =

√
2n + 1
π

(n − m)!
(n + m)!

1
1 + δm0

. (E.20)

In Eqs. (E.18) and (E.19), each harmonic index, r, of the eigen-
functions is associated with a degree, n, and order, m, and
the expansion functions are the associated Legendre functions
(Abramowitz et al. 1988). In the definition of φr Eq. (E.18),
n ∈ N and m = 0, 1, ..., n while in the expression of ψr Eq. (E.19),
n ∈ N∗ and m = 1, 2, ..., n. By convention, we set ψ0 = 0
hereafter. Figure E.1 shows the eigenfunctions φr and ψr for
1 ≤ m ≤ n ≤ 4 and the streamlines of the associated tidal flows.

The eigenfunctions (φr, ψr) can be split into two sets describ-
ing tidal solutions that are symmetric or anti-symmetric about
the equator, and thus one can decide, based on the symmetry of
the tidal forcing, on the associated set of eigenfunctions that need
to be considered using a classification scheme (Longuet-Higgins
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{φr} {ψr}
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Fig. E.1. Eigenfunctions φr (left) and ψr (right), and the associated tidal flows. The eigenfunctions defined by Eqs. (E.18) and (E.19) are plotted
over the hemispherical oceanic domain for 0 ≤ n ≤ 4 (from top to bottom) and 0 ≤ m ≤ n (from left to right). Bright or dark colors designate
positive or negative values of the eigenfunctions, respectively. Streamlines indicate the tidal flows corresponding to ∇φr for the set {φr} and to
∇ψr × r̂ for the set {ψr}.

1968; Longuet-Higgins & Pond 1970) for the pairs (n,m). How-
ever, in our model, where the ocean is no longer symmetric about
the equator, both symmetric and anti-symmetric eigenfunctions
are required. In substituting the definitions of Eqs. (E.11), (E.12),
and (E.13) into the continuity equation (E.1b), we find that

ζ = H
∞∑

r=1

µr prφr. (E.21)

What is left to complete the solution is finding the coeffi-
cients pr and p−r by substituting the series expansions in the
momentum equation (E.1a) and multiplying by ∇φr and ∇ψr× r̂,
then integrating over the oceanic area. Starting with the former,
we get

∞∑
s=0

(
∂2

t ps + σR∂t ps + gHpsµs − gζeq,s

)
∇φs · ∇φr

+
(
∂2

t p−s + σR∂t p−s

)
(∇ψs × r̂) · ∇φr

+ ∂t ps ( f × ∇φs) · ∇φr + ∂t p−s
[
f × (∇ψs × r̂)

] · ∇φr = 0.
(E.22)

The product of the gradients of two eigenfunctions is computed
using Green’s first identity (e.g., Strauss (2007), Chapter 7):∫
O
∇φs · ∇φrdA =

∫
∂O
φs (∇φr · n̂) d` −

∫
O
φs∇

2φrdA. (E.23)

The first term on the right-hand side vanishes as it includes the
boundary condition at the coast (Eq. E.15). The second term is

computed using the eigenvalue equation (Eq. E.13) and the nor-
malization condition, thus:∫
O
∇φs · ∇φrdA = µrδrs. (E.24)

Rearranging the other terms using vector identities, we can write
Eq.(E.22) as:

∞∑
s=0

(
∂2

t ps + σR∂t ps + gHpsµs − gζeq,s

)
µrδr,s

+
(
∂2

t p−s + σR∂t p−s

) ∫
O

(∇ψs × r̂) · ∇φr dA

+ ∂t ps

∫
O

f · (∇φs × ∇φr) dA

+ ∂t p−s

∫
O

( f · r̂) (∇φr · ∇ψs) dA = 0. (E.25)

The third term vanishes due to orthogonality (see Eq. (E.10)) and
upon replacing the Coriolis term by its definition in Eq. (E.2), we
are left with(
∂2

t pr + σR∂t pr + gHprµr − gζeq,r

)
µr

− 2Ω

∞∑
s=1

∂t ps

∫
cos θr̂ · (∇φr × ∇φs) dA

+ 2Ω

∞∑
s=1

∂t p−s

∫
cos θ (∇φr · ∇ψs) dA = 0. (E.26)

L1, page 12 of 20



M. Farhat et al.: The resonant tidal evolution of the Earth-Moon distance

To close the system, we multiply the momentum equation with
∇ψr × r̂ to get

∞∑
s=0

(
∂2

t ps + σR∂t ps + gHpsµs − gζeq,s

)
∇φs · (∇ψr × r̂)

+ ∂t ps ( f × ∇φs) · (∇ψr × r̂) + ∂t p−s
[
f × (∇ψs × r̂)

] · (∇ψr × r̂)

+
(
∂2

t p−s + σR∂t p−s

)
(∇ψs × r̂) · (∇ψr × r̂) = 0. (E.27)

Integrating Eq. (E.27) over the area of the ocean and using basic
vector product identities, we get

∞∑
s=0

(
∂2

t ps + σR∂t ps

) ∫
∇ψs · ∇ψrdA

− ∂t ps

∫
( f · r̂) (∇φs · ∇ψr) dA

− ∂t p−s

∫
( f · r̂) r̂ · (∇ψr × ∇ψs) dA = 0, (E.28)

where upon replacing the Coriolis term as before we
have

∂2
t p−r + σR∂t p−r − 2Ω

νr

∞∑
s=1

∂t ps

∫
cos θ (∇φs · ∇ψr) dA

− 2Ω

νr

∞∑
s=0

∂t p−s

∫
cos θr̂ · (∇ψr × ∇ψs) dA = 0. (E.29)

We identify in Eqs. (E.26) and (E.29) the so-called “gyroscopic
coefficients" (e.g., Proudman (1920a,b)) that are defined as

βr,s = −
∫
O

cos θ r̂ · (∇φr × ∇φs) dA,

βr,−s =

∫
O

cos θ∇φr · ∇ψsdA,

β−r,s = −
∫
O

cos θ∇ψr · ∇φsdA,

β−r,−s = −
∫
O

cos θ r̂ · (∇ψr × ∇ψs) dA, (E.30)

with β−s,r = −βr,−s. These coefficients carry the effect of rota-
tional distortion to the tidal waves and the boundary conditions
imposed by the coastlines. Using these definitions, Eqs. (E.26)
and (E.29) form an infinite linear system in the coefficients pr(t)
and p−r(t) that is expressed as:

∂2
t pr +σR∂t pr + gHµr pr − gζeq,r +

2Ω

µr

s=∞∑
s=−∞

βr,s∂t ps = 0, (E.31)

∂2
t p−r + σR∂t p−r +

2Ω

νr

s=∞∑
s=−∞

β−r,s∂t ps = 0. (E.32)

This system will be transformed to the frequency domain (F),
and then truncated and solved spectrally as a function of the tidal
forcing frequency. However, we shift here to extend the theory to
the effects of self-attraction and loading between the ocean and
the deforming mantle in order to have a complete self-consistent
tidal response of the Earth.

Appendix F: Coupling the hemispheric oceanic
response with solid deformation

In the tidal theory under study, the solid component of the Earth
is subject to viscoelastic deformation as a result of three con-
tributions: the direct tidal effect of the tidal perturber, the load-
ing effect of the perturbed oceanic shell, and the effect of grav-
itational self-attraction between the oceanic shell and the solid
part (Farrell 1972; Zahel 1980). If we were to take these into
account when studying oceanic tides, ζ becomes a function of
two moving surfaces: the free oceanic surface, ζos, and the verti-
cally deforming solid surfacem ζss.

In the frame co-rotating with the Earth as defined in
Appendix E, the gravitational potential is expressed as (e.g.,
Auclair-Desrotour et al. 2019)

U(r, r ′) =
GM
|r − r ′| −

GM
r′ 2

r cos θ , (F.1)

where G is the gravitational constant, M is the mass of the tidal
perturber (the Sun or the Moon), and r′ is the distance between
the Earth and the perturber. In the shallow ocean approximation,
the tidal potential at the Earth’s surface (r = R) is:

UT(θ, λ, r ′) = U(R, θ, λ, r ′) − GM
r′

, (F.2)

where a constant offset was removed as it does not contribute to
the tidal force. In the frequency domain, the tidal potential UT

is expanded spectrally in Fourier series and spatially in spheri-
cal harmonics, with complex coefficients Um;s

n , as (Kaula 2013;
Auclair-Desrotour et al. 2019):

UT =

∞∑
n=2

n∑
m=−n

∞∑
s=−∞

Um;s
n Pm

n (cos θ) exp
{
i(σs

mt + mλ)
}
, (F.3)

where s is an integer and the tidal forcing frequency σs
m = mΩ−

snorb, the frequency norb being the orbital mean motion of the
tidal perturber. In the absence of obliquity, the nth harmonic of
the tidal potential Um;s

n is given by (Ogilvie 2014):

Um;s
n =

GM
a

(R
a

)n

An,m,s(e), (F.4)

where a is the semi-major axis of this perturber and An,m,s(e)
are dimensionless functions of the orbital eccentricity of the per-
turber e computed via the Hansen coefficients (Laskar 2005;
Correia et al. 2014). In our study, we restricted the tidal poten-
tial to the dominant contribution of the semi-diurnal component
identified by n = m = s = 2 and corresponding to the tidal fre-
quency σ2

2 = 2(Ω − norb). For this component, while neglect-
ing the small orbital eccentricity of the Sun and the Moon,
A2,2,2(0) =

√
3/5. Hereafter, we use UT

n to represent a single
harmonic (n,m, s) of the tidal potential. This harmonic of degree
n is defined as

UT
n = Um;s

n Pm
n (cos θ) exp

{
i(σs

mt + mλ)
}
. (F.5)

Moreover, in the following, we write σ instead of σs
m to simplify

the notation. Subject to UT
n only, the equilibrium oceanic depth

would be ζ̄ = UT
n /g. However, the loading effect of the deform-

ing oceanic shell adds to the tidal potential and they both affect
the ocean surface ζ̄os and the ocean floor corresponding to the
solid surface ζ̄ss. The former is expressed as (Matsuyama 2014):

ζ̄os =
hT

n UT
n

g
+

∑
l

3ρoc

(2l + 1)ρse
hL

l ζl, (F.6)
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where ρoc and ρse stand for the uniform oceanic and solid Earth
densities, respectively. In this equation, the oceanic depth varia-
tion, ζ, is decomposed into spherical harmonics defined over the
full sphere as:

ζl(θ, λ, t) =

l∑
m=−l

ζm
l (t)Pm

l (cos θ) exp(imλ) . (F.7)

Although ζ given in (E.21) is only defined over the oceanic hemi-
sphere, this decomposition over the whole sphere is required
when applying the Love numbers. Using the orthogonality of
spherical harmonics, and the fact that ζ(θ, λ, t) = 0 over the con-
tinental hemisphere, Eq. (F.7) can also be expressed as:

ζl(θ, λ, t) =
1
2

l∑
m=0

α2
lm

∫
O
ζ(θ′, λ′, t)Pm

l (cos θ)Pm
l (cos θ′)

× cos
(
m(λ − λ′)) dΩ , (F.8)

where the integral is computed over the solid angle 2π spanned
by the ocean. The second contribution to the equilibrium tide,
which is due to the solid redistribution of mass, is

ζ̄ss = (1 + kT
n )

UT
n

g
+

∑
l

3ρoc

(2l + 1)ρse
(1 + kL

l )ζl. (F.9)

In equations (F.6) and (F.9), we used the tidal Love numbers
kT

n and hT
n , and the surface-loading Love numbers kL

n and hL
n ,

where the first of each set is the transfer function corresponding
to the gravitational response, and the second codes for the ver-
tical displacement. We emphasize that here the Love numbers
are defined in the Fourier domain, therefore, they correspond to
the intrinsic mechanical impedances of the solid part that relate
its visco-elastic tidal response to tidal forcings in the permanent
regime and they characterise both the elastic deformation of the
body and its anelastic deformation resulting from energy dissipa-
tion due to viscous friction in the Earth’s interior. In the general
case, the four Love numbers (kT

n , h
T
n , k

L
n , and hL

n ) can be computed
from internal structure models (e.g., Tobie et al. (2005, 2019),
Bolmont et al. (2020)). In the present study, for the sake of sim-
plicity, we use the closed-form solutions derived for a uniform
solid interior (Munk & MacDonald 1960):

{
kT

n , h
T
n , k

L
n , h

L
n

}
=

1
(1 + µ̃n)

{
3

2(n − 1)
,

2n + 1
2(n − 1)

,−1,−2n + 1
3

}
,

(F.10)

where µ̃n is a complex dimensionless effective shear modu-
lus, with a form that is dependent on the chosen solid rhe-
ology (Efroimsky 2012; Renaud & Henning 2018). To specify
µ̃n, we consider an Andrade rheology (Andrade 1910;
Bagheri et al. 2019), which has an advantage over the commonly
used Maxwell rheology in attenuating the rapid decay of the
anelastic component of the deforming solid Earth for high tidal
frequencies (Castillo-Rogez et al. 2011; Auclair-Desrotour et al.
2019). This is particularly useful with regard to avoiding an over-
estimation of the tidally dissipated energy of the solid part dur-
ing early eons. For this rheology, µ̃n takes the following form
(Findley et al. 1977; Efroimsky 2012):

µ̃n =
4(2n2 + 4n + 3)πR4

3nGM2
E

µE

1 + (iστA)−αAΓ(1 + αA) + (iστM)−1 ,

(F.11)

where ME is the mass of the Earth, µE its average rigidity,
and Γ is the gamma function (Abramowitz et al. 1988); αA is a
dimensionless rheological exponent determined experimentally
(Castelnau et al. 2008; Petit & Luzum 2010); τA is the anelastic
Andrade timescale; and τM the Maxwell relaxation time defined
as the ratio of viscosity to rigidity. For a volumetric average of
the mantle’s shear modulus µE = 17.3 × 1010 Pa, and volumet-
ric average of viscosity deduced from inversions of Lau et al.
(2016b), we have τM = 685 yrs. The values αA = 0.25 and
τA = 2.19 × 104 yrs that we use in our model are adopted from
Auclair-Desrotour et al. (2019). All the applied parameter values
are summarized in Table D.3.

Taking the effect of solid Earth deformation into account, we
replace the equilibrium tide ζeq in the momentum equation (E.1a)
by the difference ζ̄os − ζ̄ss of Eqs.(F.6) and (F.9) and we resolve it
in the Fourier domain using the forcing tidal frequency, σ. The
modified momentum conservation equations is now expressed
as:

iσu + σRu + f × u = −g∇
−γT

n ζ̄ +
∑

l

γL
l ζl

 , (F.12)

with ζ̄ = UT
n /g, and where the loading and tidal tilt factors are

defined as (Matsuyama 2014):

γT
n = 1 + kT

n − hT
n ; γL

l = 1 − 3ρoc

(2l + 1)ρse
(1 + kL

l − hL
l ). (F.13)

Just like the Love numbers, γT
n and γL

l are complex in the general
case and tend toward unity as the deformability of the solid and
oceanic layers decreases. Now we get to the added contribution
of the ocean-solid coupling to the linear system of pr and p−r.
Multiplying the added contribution of loading and self-attraction
effects by ∇φr and ∇ψr × r̂, then resolving the added terms in
the frequency domain, after a number of manipulations, we can
finally re-write the expression of the system of Eqs. (E.31) and
(E.32) as:

−σ2 pr − iσσR pr + gHµr

(
1 − γ

L
r

2

)
pr − gγT

n ζ̄r

−2iσΩ

µr

s=∞∑
s=−∞

βr,s ps − 1
2
gH

∞∑
s′=1
s′,r

µs′F s′
r ps′ = 0, (F.14)

−σ2 p−r − iσσR p−r − 2iσΩ

νr

s=∞∑
s=−∞

β−r,s∂t ps = 0, (F.15)

where we define

F s′
r = 4αn,mαn′,m′

∑
p

∑
q

γL
pq2α2

p,q
On,m

p,qOn′,m′
p,q

(q2 − m2)(q2 − m′2)
, (F.16)

with On,m
p,q corresponding to the Gram matrix of the ALFs,

Ou,v
n,m =

∫ 1

−1
Pm

n (µ)Pv
u(µ)dµ, (F.17)

for which the method of computation is detailed in Appendix H.
Coupled to the orbital dynamical evolution, the tidal frequency
σ is determined at each point in time in the hemispherical phase
of the model, then the system is truncated at rmax and solved

L1, page 14 of 20



M. Farhat et al.: The resonant tidal evolution of the Earth-Moon distance

numerically (see Appendix J). We re-write the linear system as:

(a(1) + a(2)
r )pr + a(3)

r

s=∞∑
s=−∞

βr,s ps + a(5)
∞∑

s′=1
s′,r

µs′F s′
r ps′ = cr, (F.18)

a(1) pr + a(4)
r

s=∞∑
s=−∞

βr,s ps = 0, (F.19)

where the first equation is for r > 0 and the second is for r < 0 –
and where we have introduced the coefficients:

a(1) = −σ2 − iσσR, a(2)
r = gHµr(1 − γL

r /2),

a(3)
r = −2iσΩµ−1

r , a(4)
r = −2iσΩν−1

−r ,

a(5) = −1
2
gH, cr = gγT

n ζ̄r. (F.20)

Appendix G: Gyroscopic coefficients

The gyroscopic coefficients introduced in Eq. (E.30) charac-
terize the rotational distortion of tidal waves via the Coriolis
force term and the effect of boundary conditions imposed by
the oceanic geometry. This coupling is dependent on the posi-
tion of the ocean on the sphere and the relative position of the
tidal perturber with respect to the tidally forced ocean. Since we
are after a generic configuration describing the response of the
oceanic hemisphere at any position, the expressions of Eq. (E.30)
should be written for any frame rotating with the ocean. We start
with the definition of the ALFs (Chapter 8 of Abramowitz et al.
(1988)):

Pm
n (µ) =

(−1)m

2nn!
(1 − µ2)m/2∂n+m

µ (µ2 − 1)n, (G.1)

which are solutions to the Legendre equation,

∂µ
[
(1 − µ2)∂µPm

n

]
+

[
n(n + 1) − m2

1 − µ2

]
Pm

n = 0. (G.2)

Following differentiation, we obtain

∂µPm
n = − mµ

1 − µ2 Pm
n −

Pm+1
n√

1 − µ2
. (G.3)

Substituting Eq. (G.3) in Eq. (G.2) we get the recurrence relation

Pm+2
n − 2mµ2(m + 1)

1 − µ2 Pm
n − 2µ(m + 1)∂µPm

n

+ (n(n + 1) − m(m + 1))Pm
n = 0, (G.4)

which gives the useful relation

µ∂µPm
n =

Pm+2
n

2(m + 1)
+

[
n(n + 1) + m(m + 1)

2(m + 1)
− m

1 − µ2

]
Pm

n . (G.5)

From Eqs. (G.1-G.5), it is straightforward to obtain the ALFs
recurrence relations that are necessary to compute the integral
equations of the gyroscopic coefficients,
µPm

n√
1 − µ2

= − 1
2m

(
Pm+1

n + (n − m + 1)(n + m)Pm−1
n

)
, (G.6)

Pm
n√

1 − µ2
= − 1

2m

(
Pm+1

n−1 + (n + m − 1)(n + m)Pm−1
n−1

)
, (G.7)√

1 − µ2∂µPm
n = −1

2
Pm+1

n +
1
2

(n + m)(n − m + 1)Pm−1
n , (G.8)

(1 − µ2)∂µPm
n =

1
2n + 1

(
(n + 1)(n + m)Pm

n−1−n(n−m +1)Pm
n+1

)
.

(G.9)

O

x̂
ŷ

ŝ

x̂′

ŷ′α
α

x̂′′

ŝ′′

β

β

Fig. G.1. Adopted transformation scheme that allows recovering the
tidal response of a hemispheric ocean with an arbitrary center on the
sphere. We use an Eulerian transformation of the form R3(α)R2(β)R3(γ)
with γ = 0, allowing us to shift the latitude of the oceanic center O by
shifting the spin axis from ŝ to ŝ′′ in a true polar wander scenario (Webb
1982).

The theory of the hemispherical tidal response is based on
an ocean bound by two meridians. Thus for an oceanic center
moving on the sphere, we instead rotate the spin axis relative to
the center of the ocean, and accordingly the frame of the tidal
perturber to maintain the coplanar configuration of the dynam-
ical system. These rotations will enter the system through the
Coriolis term, specifically through the gyroscopic coefficients,
along with the tidal forcing term. We define an arbitrary rota-
tion {θ, λ} → {θ′, λ′} using an Eulerian rotation matrix of the
form R3(α) R2(β) R3(γ), with (0 ≤ α ≤ 2π) and (0 ≤ β ≤
π), and we fix γ = 0 (see Fig. G.1). For a vector J defined
as:

J = R3(α)R2(β)
(
0 0 1

)T

=
(
sin β cosα sin β sinα cos β

)T
, (G.10)

the transformed gyroscopic coefficients are:

R2

αrαs
βr,s = Jz β

(1)
r,s + Jx β

(2)
r,s + Jy β(3)

r,s , (G.11)

R2

αrαs
βr,−s = Jz β

(1)
r,−s + Jx β

(2)
r,−s + Jy β

(3)
r,−s, (G.12)

R2

αrαs
β−r,−s = Jz β

(1)
−r,−s + Jx β

(2)
−r,−s + Jy β

(3)
−r,−s, (G.13)

β−r,s = −βs,−r, (G.14)

where, for r associated with the harmonic pair of inte-
gers (n,m) and s associated with (u, v), we introduce the
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coefficients:

β(1)
r,s =

2
m2 − v2

∫ [
v2Pv

u∂µPm
n + m2Pm

n ∂µPv
u

]
µdµ, (G.15)

β(2)
r,s =

π

4

∫ [
mK(1)

m,vP
m
n ∂µPv

uµ̄
1/2 − vK(2)

m,v∂µPm
n Pv

uµ̄
1/2

]
dµ,

(G.16)

β(3)
r,s =

∫ [
mK(3)

m,vP
m
n ∂µPv

uµ̄
1/2 − vK(4)

m,v∂µPm
n Pv

uµ̄
1/2

]
dµ, (G.17)

β(1)
r,−s =

−2v
m2 − v2

∫ [
∂µPv

u∂µPm
n µµ̄ + m2Pm

n Pv
u
µ

µ̄

]
dµ, (G.18)

β(2)
r,−s =

π

4

∫ [
K(2)

m,v∂µPm
n ∂µPv

uµ̄
3/2 − mvK(1)

m,vP
m
n Pv

uµ̄
−1/2

]
dµ,

(G.19)

β(3)
r,−s =

∫ [
K(4)

m,v∂µPm
n ∂µPv

uµ̄
3/2 − mvK(3)

m,vP
m
n Pv

uµ̄
−1/2

]
dµ, (G.20)

β(1)
−r,−s =

2mv
m2 − v2

∫ [
Pv

u∂µPm
n + Pm

n ∂µPv
u

]
µdµ, (G.21)

β(2)
−r,−s =

π

4

∫ [
vK(1)

m,v∂µPm
n Pv

uµ̄
1/2 − mK(2)

m,vP
m
n ∂µPv

uµ̄
1/2

]
dµ,

(G.22)

β(3)
−r,−s =

∫ [
vK(3)

m,v∂µPm
n Pv

uµ̄
1/2 − mK(4)

m,vP
m
n ∂µPv

uµ̄
1/2

]
dµ, (G.23)

with µ̄ = 1 − µ2 and

K(1)
m,v = (1 + δv,0)δm−v,1 − δm−v,−1, (G.24)

K(2)
m,v = K(1)

v,m, (G.25)

K(3)
m,v = m

(
1

m2 − (v2 + 1)2 +
1

m2 − (v2 − 1)2

)
, (G.26)

K(4)
m,v = K(3)

v,m. (G.27)

Under the terms of this transformation, the latitude of the center
of the ocean in the rotating frame is given by:

cos θ′ = cos θ cos β + sin θ sin β cos(λ − α). (G.28)

To compute the integrals involved in the gyroscopic coef-
ficients, we make use of the essential condition1 (e.g.,
Longuet-Higgins & Pond (1970))

Pm
n Pv

u

∣∣∣
µ=±1 = 0, (G.29)

and we use the overlap integral of two ALFs (Eq. F.17), which
we compute using the closed form relations provided in the fol-
lowing section. Now we have at hand all the elements to com-
pute the gyroscopic coefficients harmonically. The final form of
the three coefficients with superscript (1) are identical to those in
Webb (1980) and similar to those in Longuet-Higgins & Pond
(1970) up to certain misprints. For the rest of the terms, the
expressions given in Webb (1982) involve numerous typograph-
ical errors and inconsistencies, so we provide here the full set
of the gyroscopic coefficients. The coefficients β(1)

r,s and β(2)
r,s are

expressed as:

β(1)
r,s =

[
u(u + 1) + v(v + 1)

v + 1
− 2v

n(n + 1) − u(u + 1) + v

m2 − v2

]
Ou,v

n,m

+
1

v + 1
Ou,v+2

n,m , (G.30)

1 we note that this general condition is invalid in the case where n =
m = u = v = 0. However, this case is excluded here by the definition of
the eigenfunctions in Eqs. (E.18) and (E.19).

β(2)
r,s =

π

4

[
mK(1)

m,v

∫
Pm

n ∂µPv
uµ̄

1/2dµ − vK(2)
m,v

∫
∂µPm

n Pv
uµ̄

1/2dµ
]
,

(G.31a)

=
π

8

{
mK(1)

m,v

[
(u + v)(u − v + 1)Ou,v−1

n,m − Ou,v+1
n,m

]
− vK(2)

m,v

[
(n + m)(n − m + 1)Ou,v

n,m−1 − Ou,v
n,m+1

]}
,

(G.31b)

where we used Eq. (G.8) for each integrand in Eq. (G.31a) to
obtain Eq. (G.31b). The coefficients β(3)

r,s , β(1)
r,−s, and β(2)

r,−s read
as:

β(3)
r,s =

1
2

{
mK(3)

m,v

[
(u + v)(u − v + 1)Ou,v−1

n,m − Ou,v+1
n,m

]
− vK(4)

m,v

[
(n + m)(n − m + 1)Ou,v

n,m−1 − Ou,v
n,m+1

]}
,

(G.32)

β(1)
r,−s =

−2v
(m2 − v2)(2n + 1)

{
(n + 1)(n − 1)(n + m)Ou,v

n−1,m

+ n(n + 2)(n − m + 1)Ou,v
n+1,m

}
, (G.33)

β(2)
r,−s =

π

4

[
K(2)

m,v

∫
∂µPm

n ∂µPv
uµ̄

3/2dµ − mvK(1)
m,v

∫
Pm

n Pv
uµ̄
−1/2dµ

]
,

(G.34a)

=
π

4

[
K(2)

m,v

∫
∂µPm

n µ̄∂µPv
uµ̄

1/2dµ − mvK(1)
m,v

∫
Pm

n Pv
uµ̄
−1/2dµ

]
,

(G.34b)

=
πK(2)

m,v

8(2n + 1)

{
(n + 1)(n + m)

[
(u + v)(u − v + 1)Ou,v−1

n−1,m − Ou,v+1
n−1,m

]
+ n(n − m + 1)

[
Ou,v+1

n+1,m − (u + v)(u − v + 1)Ou,v−1
n+1,m

] }
+
πvK(1)

m,v

8

{
Ou,v

n−1,m+1 + (n + m − 1)(n + m)Ou,v
n−1,m−1

}
,

(G.34c)

where we used the recurrence relations of Eq. (G.8) and
Eq. (G.9) to compute the first integral of Eq. (G.34b), and the
relation of Eq. (G.7) to compute the second integral. Finally,
the remaining terms β(3)

r,−s, β
(1)
−r,−s, β

(2)
−r,−s, and β(3)

−r,−s are expressed
as:

β(3)
r,−s =

K(4)
m,v

2(2n + 1)

{
(n + 1)(n + m)

[
(u + v)(u − v + 1)Ou,v−1

n−1,m − Ou,v+1
n−1,m

]
+ n(n − m + 1)

[
Ou,v+1

n+1,m − (u + v)(u − v + 1)Ou,v−1
n+1,m

] }
+
vK(3)

m,v

2

{
Ou,v

n−1,m+1 + (n + m − 1)(n + m)Ou,v
n−1,m−1

}
,

(G.35)

β(1)
−r,−s =

−2mv
m2 − v2Ou,v

n,m, (G.36)
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β(2)
−r,−s =

π

8

{
−mK(2)

m,v

[
(u + v)(u − v + 1)Ou,v−1

n,m − Ou,v+1
n,m

]
+ vK(1)

m,v

[
(n + m)(n − m + 1)Ou,v

n,m−1 − Ou,v
n,m+1

]}
,

(G.37)

β(3)
−r,−s =

1
2

{
−mK(4)

m,v

[
(u + v)(u − v + 1)Ou,v−1

n,m − Ou,v+1
n,m

]
+ vK(3)

m,v

[
(n + m)(n − m + 1)Ou,v

n,m−1 − Ou,v
n,m+1

]}
.

(G.38)

Appendix H: Overlap integral Ou,u
n,m

Here, we provide a closed form solution for the computa-
tion of the overlap integral of Eq. (F.17). The procedure
is assimilated from tools of angular momentum quantization
(Varshalovich et al. 1988). Following Dong & Lemus (2002)
and introducing the notation q = v − m, we have:

Ou,v
n,m = Cu,v

n,m

∑
l

(2l + 1)D(|q|, l) ·
(
n u l
0 0 0

) (
n u l
−m v m − v

)
,

(H.1)

where the factors Cu,v
n,m are given by:

Cu,v
n,m = (−1)κ2|q|−2|q|

√
(n + m)!(u + v)!
(n − m)!(u − v)! , (H.2)

and the coefficientsD(|q|, l) by

D(|q|, l) =
[
1 + (−1)l+|q|] √

(l − |q|)!
(l + |q|)!

Γ(l/2)Γ((l + |q| + 1)/2)
((l − |q|)/2)!Γ((l + 3)/2)

.

(H.3)

We note here that the phase κ introduced in Dong & Lemus
(2002) as

κ =

{
m if v ≥ m,
v otherwise,

(H.4)

corrects the phase given in Mavromatis & Alassar (1999) and
Crease (1966), where the latter was used for the computation of
the gyroscopic coefficients in Longuet-Higgins & Pond (1970)
and Webb (1980, 1982).

In Eq. (H.1), the summation over l runs for |n − u| ≤ l ≤
(n + u); l ≥ |q|; and |l + n + u| is even. Finally, the Wigner 3-jm
symbols are determined from Varshalovich et al. (1988) by(
a b c
d e f

)
=(−1)R21+R31+R32

[
R31!R32!R33!R13!R23!

(J + 1)!R11!R12!R21!R22!

]1/2

×
∑

z

(−1)z (R21 + z)!(R11 + R31 − z)!
z!(R31 − z)!(R23 − z)!(R13 − R31 + z)!

,

(H.5)

where J = a + b + c, and Ri j are the elements of the so-called
Regge R-symbol (Regge 1958) defined as

R11 = −a + b + c, R12 = a − b + c, R13 = a + b − c,
R21 = a + d, R22 = b + e, R23 = c + f ,
R31 = a − d, R32 = b − e, R33 = c − f .

(H.6)

The summation in Eq. (H.5) runs over all integer values of z for
which all the factorial arguments are non-negative. Finally, we
note that using Eq. (H.1), Ou,v

n,m = 0 when v = m. In that case, we
alternatively use

Ou,m
n,m =

2
2n + 1

(n + m)!
(n − m)!

δn,u . (H.7)

This method for the computation of the overlap integral was ver-
ified numerically using MATLAB’s ALFs package.

Appendix I: The tidal forcing term ζ̄r

As in Webb (1980), considering the equilibrium tide ζ̄ to have a
unit root mean square amplitude, and to be driven by a spherical
harmonics term:

Yq
p(θ, λ) =

√
2p + 1

4π
(p − q)!
(p + q)!

Pq
p(cos θ) exp(iqλ) , (I.1)

with angular frequency σ, we have:

ζ̄ =
√

2πYq
p(θ, λ) exp(iσt). (I.2)

Under the rotation of the coordinate system described by the
Euler angles (α, β, γ) (see Appendix G and Fig. G.1), the spheri-
cal harmonics transform as (Varshalovich et al. 1988):

Y s
p(θ′, λ′) =

p∑
q=−p

Yq
p(θ, λ)Dp

s,q(α, β, γ), (I.3)

or

Yq
p(θ, λ) =

p∑
s=−p

Y s
p(θ′, λ′)Dp∗

s,q(α, β, γ), (I.4)

where Dp
q,s designate the Wigner D-functions. These functions

are themselves the product of three functions (Varshalovich et al.
1988), each depending on one argument: α, β, or γ,

Dp
s,q(α, β, γ) = e−iqαdp

sq(β)e−isγ. (I.5)

In this expression, the functions dp
sq(β) are given by

dp
sq(β) = (−1)p−s [(p + q)!(p − q)!(p + s)!(p − s)!

]1/2

×
∑

j

(−1) j (cos β/2)q+s+2 j(sin β/2)2p−q−s−2 j

j!(p − q − j)!(p − s − j)!(q + s + j)!
, (I.6)

with j running over all integer values for which the factorial
arguments are positive. This sum involves N + 1 terms, where N
is the minimum of (p+q), (p−q), (p+s), and (p−s). Since we are
studying the semi-diurnal tide (p = q = 2), we are left with one
term only. Expanding the harmonic factor Y s

p(θ′, λ′) of Eq. (I.4)
in terms of the basis eigenfunctions, we get the expression of
the equilibrium oceanic depth variation in the rotated frame of
reference,

ζ̄ =

√
πR2

2
exp(iσt)

p∑
s=−p

Dp∗
s,q(α, β, γ) (1 + δs,0)1/2

[
φs

p + iψs
p

]
.

(I.7)

Then, invoking the definition of the component ζ̄r,

ζ̄r =

∫
O
φr ζ̄dA, (I.8)
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we get its expression in the rotated frame of reference,

ζ̄r =

√
πR2

2
exp(iσt)

p∑
s=−p

Dp∗
s,q(α, β, γ) (1 + δs,0)1/2

×
[ ∫
O
φs

pφ
m
n dA + i

∫
O
ψs

pφ
m
n dA

]
, (I.9)

where the dot products of the eigenfunctions are simplified as:

∫
O
φs

pφ
m
n dA =


δn,p, if s = m,
(−1)mδn,p, if s = −m,
0, otherwise,

(I.10)

and∫
O
ψs

pφ
m
n dA =

0, if m + s = even,

αp,s αn,m
2s

s2 − m2On,m
p,s otherwise.

(I.11)

We note that as the index s takes negative values, we use

P−s
p = (−1)s (p − s)!

(p + s)!
Ps

p (I.12)

in the overlap integral of Eq. (F.17).

Appendix J: Tidal torque of a hemispherical ocean

Once the gyroscopic coefficients are computed, the linear system
of the coefficients (pr, p−r) in Eq. (F.18) is truncated and solved
numerically. What we are after is the tidal torque that enters in
the dynamical equations of the Earth-Moon system. Two torques
are involved as explained in the main text, and they depend
on the rotational angular velocity of the Earth and the orbital
frequency of the tidal perturber. Defining the tidal torque trans-
ferring power from the Earth’s rotational momentum to the per-
turber’s orbital angular momentum by T , the power lost by the
Earth would be TΩ, and the power gained by the perturber is
T norb. The difference between them is the dissipative work of
the total tidal mass redistributionWdiss, thus

T =
Wdiss

Ω − norb
. (J.1)

The total dissipative work is the sum of two contributions: the
dissipative work of oceanic tidal currents,Woc

diss, and dissipation
in the deforming viscoelastic mantle. In the formalism estab-
lished thus far, we calculated the self-consistently coupled tidal
responses of the ocean and solid part for the Earth’s half host-
ing the hemispherical ocean, which corresponds to the effec-
tive tidal response of the planet for this hemisphere. The tidal
response of the continental hemisphere is simply described by
the solid Love numbers introduced in Eq. (F.10), since there
is no oceanic tide in that case. The coupled solid-oceanic tidal
response accounts for both the direct gravitational tidal forcing
generated by the perturber on the solid part and ocean and the
mutual forcings of the two layers through the variations of the
loading exerted by the latter on the former, and the variations
of the Earth’s self-gravitational potential due to mass redistribu-
tion. For simplicity, we ignore the energy dissipated in the solid
part in the calculation of the tidal torque and we only consider
that which is occurring within the oceanic shell, namely,Woc

diss.
This is justified by the predominance of the oceanic response
over the solid part over the time interval covered by the hemi-
spherical ocean configuration in our model. This hierarchy of

Fig. J.1. Numerical analysis on the dependence of the tidal response
computation on the truncation order rmax. The response is quantified by
the root mean square tidal amplitude, ζrms, (Eq. J.5) and the dissipative
work,Woc

diss, (Eq. J.2), and plotted for three tidal frequencies: 7.3, 11.4,
and 22 rad/day that correspond to the vicinity of a tidal resonance, the
peak of a resonance, and the background spectrum respectively.

contributions is only jeopardized by the emerging significance
of the solid dissipation when moving backwards in time and
increasing the Earth’s rotational velocity Ω. Solid Earth dissi-
pation would also be amplified with an early less viscous mantle
due to higher Hadean-Archean temperatures (Ross & Schubert
1989). Eventually, a regime transition may lead to the predomi-
nance of the mantle’s elastic response (Lau et al. 2015, 2016a).
In our nominal model of the main text, the switch from the hemi-
spherical ocean configuration to the global ocean configuration
occurs mid-Archean, beyond which we self-consistently account
for the dissipative contribution of the solid part (Appendix K).
Thus, we have only ignored the dissipative contribution of the
mantle when it is insignificant.

The oceanic dissipative work is given by (Webb 1980):

Woc
diss =

〈∫
O

u(t) · σRu(t)dA
〉

=
1
2
σRσ

2
∞∑

r=1

(
µr pr p∗r + νr p−r p∗−r

)
, (J.2)

where 〈〉 denotes time averaging over the tidal period. This work
should be equal to the work done by the tidal force on the ocean:

Woc
tide =

〈
ρocgH

∫
O
∇ζ̄(t) · u(t)dA

〉
=

1
2
ρocgHσ Im

 ∞∑
r=1

prµr ζ̄
∗
r

 . (J.3)

Hence, the tidal torque associated with the lunar semi-diurnal
frequency σ = 2(Ω − nM), nM being the lunar mean motion, is

TM = ρocgH Im

 ∞∑
r=1

prµr ζ̄
∗
r

 , (J.4)

and we obtain a similar expression for the solar tides TS when
solving the system with the solar tidal frequency component σ =
2(Ω−nS), nS being the solar mean motion that generates the solar
tidal work.
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Besides the tidal torque, the tidal response can also be quan-
tified by the root mean square tidal height variation, ζrms, given
as

ζrms =

√√
H
πR2

∞∑
r=1

µ2
r p∗r pr. (J.5)

As these quantities are computed numerically, a truncation order,
rmax, is required. In Fig. J.1, we show the numerical dependence
of the tidal response on rmax. Since the response is dominated
by gravity modes, the tidal solution converges fast enough with
rmax. To avoid any truncation effect in our computation, and to
properly account for the resonances, we adopted rmax = 50.

Appendix K: Modeling the tidal response of a
global ocean

When the global oceanic geometry is encountered in our model,
the tidal response is computed based on the analytical formalism
described in Auclair-Desrotour et al. (2018, 2019). We refer to
these references for a complete development of the theory and
we only offer a brief here on the essential steps that lead to a
computation of the tidal response described in the main text2.
In this approach, solving the governing system in Eq. (E.1) is
done by expanding the velocity field, the tidal elevation, and the
forcing gravitational tidal potential in Fourier series of time and
longitude, with the tidal frequency serving as the expansion fre-
quency. Thus, we have:

u =
∑
m,σ

u m,σ(θ) exp{i(σt + mλ},

ζ =
∑
m,σ

ζ m,σ(θ) exp{i(σt + mλ},

ζeq =
∑
m,σ

ζ m,σ
eq (θ) exp{i(σt + mλ}. (K.1)

Defining the complex tidal frequency σ̃ and the complex spin
parameter ν̃ as in Auclair-Desrotour et al. (2018) by:

σ̃ = σ − iσR and ν̃ =
2Ω

σ̃
, (K.2)

and replacing the tidal quantities by their expansions, the gov-
erning system reduces to an eigenvalue-eigenfunction problem,
known classically (when ignoring friction) as the Laplace tidal
equation (Lee & Saio 1997). We assume that the Fourier com-
ponents can be expanded spatially using a set of the latitudinal
complex Hough functions (Hough 1898) {Θ

m,ν̃
n (θ)}, associated

with a set of eigenvalues {Λ
m,ν̃
n }. To compute these functions

and their associated eigenvalues, we adopt the method developed
in Wang et al. (2016), where Hough functions are expanded in
terms of Associated Legendre Functions

Θm,ν̃
n (θ) =

∑
m≤l

Am,ν̃
n,l Pm

l (cos θ),

Pm
l (cos θ) =

∑
n

Bm,ν̃
l,n Θm,ν̃

n (θ), (K.3)

2 We remind the reader that we can proceed with this theory as such
only because we are studying dynamics in the coplanar setting. The the-
ory requires further development if one were to account for the Earth’s
obliquity and lunar inclination.

with Am,ν̃
n,l and Bm,ν̃

l,n being complex change of basis coefficients.
Using the change of basis coefficients Am,ν̃

n,l , the tidal displace-
ment solution is expressed as:

ζm,σ
l =

∑
n

Am,ν̃
n,l ζ

m,σ
n , (K.4)

where the components ζm,σ
n are solutions to the linear algebraic

system
σσ̃IN −



σ2
1,1 . . . σ2

1,n . . . σ2
1,N

...
. . .

...
...

σ2
n,1 . . . σ2

n,n . . . σ2
n,N

...
...

. . .
...

σ2
N,1 . . . σ2

N,n . . . σ2
N,N







ζm,σ
1
...

ζm,σ
n
...

ζm,σ
N


=



F m,σ
1
...
F m,σ

n
...
F m,σ

N


.

(K.5)

In this linear system, IN denotes the identity matrix of size
N × N, the forcing terms of the studied tidal potential Um,σ

l (Eq.
F.3) are expressed as

F m,σ
n = −HΛ

m,ṽ
n

R2

∑
m≤l

Bm,ν̃
l,n γ

T
l Um,σ

l , (K.6)

and the complex characteristic frequencies σn,k as

σn,k =

√
gHk̂2

n

∑
l≥m

γL
l Am,ν̃

k;l Bm,ν̃
l,n , (K.7)

where the horizontal wave-number of the degree-n mode k̂n =√
Λ

m,ν̃
n /R, and the coupling coefficients γT

l and γL
l are defined in

Eq. (F.13). Once the solution of this algebraic system is obtained,
the self-consistent tidal response of the Earth is quantified by
the total frequency dependent complex Love number defined, for
each order, m, and degree, l, as

k
m,σ
l = kT

l +
(
1 + kL

l

) 3g
2l + 1

ρoc

ρse

ζm,σ
l

Um,σ
l

. (K.8)

The first term of the above expression accounts for the direct
tidal gravitational forcing of the solid part by the perturber. The
second term is related to the oceanic tidal response, which is
coupled to that of the solid part through gravitational and sur-
face loading interactions. We remark that the effective Love
number characterizing the full tidal response of the planet (Eq.
K.8) depends on both the latitudinal and longitudinal harmonic
degrees, l and m, in contrast with the solid Love number, kT

l .
This results from the fact that Coriolis forces alter the oceanic
tidal response, which is not the case for the solid tidal response.
The contribution of the component Um,σ

l of the tidal potential
to the total tidal torque exerted on the Earth scales as the imag-
inary part of the associated Love number and is expressed as
(Efroimsky & Williams 2009; Correia et al. 2014)

T m
l =

3
2

GM2 R5

a6 Im
{
k
m,σ
l

}
. (K.9)

Since we restricted our analysis to the study of the dominant
semi-diurnal tide, we only consider the quadrupolar potential
with l = m = 2.

In Fig. K.1, we compute the tidal torque for both the hemi-
spheric and global oceanic geometries for a fixed value of H
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Fig. K.1. Tidal torque between the Earth and the Moon corresponding to the coupled oceanic-solid response in two configurations: a global
oceanic shell of thickness H = 4000 m (shown in red), and a hemispherical ocean with the same thickness, symmetric around the equator and
bounded by longitudes λ = 0 and λ = π (in blue). Energy dissipation is quantified by the linear Rayleigh drag frequency σR. The logarithm of the
torque is plotted as a function of the normalized frequency ω = (Ω − norb)/Ω0, where the Earth’s spin rate varies with the tidal forcing frequency
Ω = norb + σ/2 at fixed norb, and Ω0 being the present spin rate of the Earth.

Fig. K.2. Similar to Fig.K.1, but comparing the torque of the hemispherical ocean model between a pure oceanic response, and the response of the
ocean when accounting for loading and self-attraction effects arising from solid Earth deformation assuming an Andrade rheology. The procedure
of this coupling for the hemispheric configuration is detailed in Appendix F. We recall that the energy tidally dissipated in the solid part is ignored
in the hemispherical configuration.

and different orders of magnitude of σR. We consider the semi-
diurnal lunar gravitational forcing exerted on the Earth. The
spectrum of the torque is plotted against the normalized fre-
quency ω = (Ω − norb)/Ω0, where Ω0 is the present spin rate
of the Earth. The distribution of resonances associated with
surface-gravity modes distorted by rotation is clearly visible for
both geometries. In the global ocean case, these resonances are
each characterised by the pair of complex frequencies given by
(Auclair-Desrotour et al. 2018)

σ±n = i
σR

2
±

√
gHk̂2

n −
(
σR

2

)2
, (K.10)

which depicts explicitly the predominance of friction over the
rotational distortion of tidal waves in a strong friction regime.
This can be verified by visual inspection of Fig. K.1. The spectral
coverage of the non-resonant background of the torque increases
with increasing σR. In the opposite limit, resonant peaks are
spelled out intensifying in amplitude as friction is weakened.
Besides, when σR → 0, the frequenciesσ±n become real and pos-
itive, and we recover the eigenfrequencies of high-wavelength
surface gravity modes travelling around the sphere. It can be also
clearly seen from the high friction regime that the torque of the
global ocean is twice that of the hemispherical one, consistent
with the simple argument of dissipation increasing proportion-

ally with oceanic area. The same can be deduced if we consider
the non-resonant background of the weak friction regime. Com-
paring the two spectra in this limit reveals the highly irregular
nature of the waveforms in the hemispheric response against the
fairly regular resonance periodicity in the global configuration.
Several resonances can be encountered in the hemispherical con-
figuration spectrum in between two resonant peaks of the global
configuration. Applied to the Earth-Moon system evolution stud-
ied in the main text, we start at the present with a hemispheric
ocean, then we switch to a global one. The fitted parameters of H
and σR would place the present torque around a resonant peak,
then multiple resonances are crossed before settling into the non-
resonant background of the hemispherical ocean response. The
switch between the configurations occurs right before surfing the
next major resonance.

In Fig. K.2, we plot the torque of the hemispheric config-
uration for two scenarios: accounting for the oceanic response
only and accounting for both the oceanic and solid responses
self-consistently. As explained in Appendix F, the effects of self-
attraction and loading interactions between the solid mantle and
the oceanic shell are evident in attenuating the amplitude of the
response and slightly shifting the position of resonances. This
delay effect is due to the influence of this coupling on the phase
of resonance depths of near-resonant free oscillations (Müller
2008b).
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