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ABSTRACT

Close-in planets undergo strong tidal interactions with the parent star that modify their spins and orbits. In the two-body problem, the
final stage for tidal evolution is the synchronisation of the rotation and orbital periods, and the alignment of the planet spin axis with
the normal to the orbit (zero planet obliquity). The orbital eccentricity is also damped to zero, but over a much longer timescale, that
may exceed the lifetime of the system. For non-zero eccentricities, the rotation rate can be trapped in spin–orbit resonances that delay
the evolution towards the synchronous state. Here we show that capture in some spin–orbit resonances may also excite the obliquity
to high values rather than damp it to zero. Depending on the system parameters, obliquities of 60◦−80◦ can be maintained throughout
the entire lifetime of the planet. This unexpected behaviour is particularly important for Earth-like planets in the habitable zone of
M-dwarf stars, as it may help to sustain temperate environments and thus more favourable conditions for life.

Key words. planet-star interactions – planets and satellites: dynamical evolution and stability – planets and satellites: terrestrial
planets – celestial mechanics – astrobiology

1. Introduction

The discovery of a large number of exoplanets over recent
decades shows that they are common around main sequence
dwarf stars (e.g. Winn 2018). The most abundant planets are the
super-Earths, that is, planets with greater masses than that of the
Earth and smaller than Neptune (e.g. Schlichting 2018). How-
ever, there exists an observational bias towards large masses, and
so the population of Earth-mass planets is also expected to be
large, as shown by formation studies (e.g. Schlecker et al. 2021).
The fact that Earth-like planets may exist around other stars
offers a great opportunity to explore the possibility of having
life as we know it outside the Solar System.

A configuration like the Earth around the Sun is ideal when
searching for habitable worlds. However, researchers have shown
interest in studying systems where the host stars are smaller than
our Sun, the M-dwarfs. These stars are the most abundant in
the Milky Way, representing ∼70% of all stars (Bochanski et al.
2010), and the occurrence rate of planets is higher than around
other main sequence stars (Tuomi et al. 2019). Formation studies
also show that temperate, Earth-sized planets are most frequent
around early M-dwarfs (Burn et al. 2021). Moreover, these stars
are perfect for detecting low-mass planets via radial velocity and
transit techniques (Tuomi et al. 2014; Shields et al. 2016) because
of their smaller mass and size. Indeed, several planets in the hab-
itable zone of M-dwarfs have already been discovered, some of
which are promising candidates to harbour life (e.g. Anglada-
Escudé et al. 2013, 2016; Dittmann et al. 2017; Gillon et al. 2017;
Bonfils et al. 2018; Reiners et al. 2018; Zechmeister et al. 2019).

Searching for habitable worlds around M-dwarfs has some
advantages. Because of their lower luminosities, the region
where planets can sustain liquid water, usually called the habit-
able zone (Kasting et al. 1993), is closer to the star. In addition,
these are the longest-living stars in the Universe, which provides

enough time for planetary and biological development (Shields
et al. 2016). However, it also has some disadvantages. M-dwarfs
stars are very active stars, especially in their earlier lifetime,
which drives atmospheric escape (e.g. France et al. 2020). The
only possibility to avoid this is the presence of a strong magnetic
field on the planets (Lammer et al. 2007), or a late formation of
secondary atmospheres (Kite & Barnett 2020). Another concern
is that, as the habitable zone is closer to the star, the planets
undergo strong tidal effects, which modify their spins and orbits.

The spin (rotation and obliquity) and the orbit (semi-major
axis and eccentricity) of a planet are very important for habit-
ability, because they control the heat distribution on the surface
of the planet, known as insolation (e.g. Milankovitch 1941; Ward
1974). The stellar flux is inversely proportional to the square of
the semi-major axis, and so this parameter is used to define the
limits of the habitable zone. High eccentricities also change the
stellar flux on average, because of the different distances at
the pericentre and appocentre (e.g. Dobrovolskis 2007). There-
fore, planets with eccentric orbits in the habitable zone may not
be able to sustain liquid water on the surface for the whole orbital
period (Bolmont et al. 2016).

The rotation rate of a planet affects the day–night cycle, but
also the atmosphere through the Coriolis effect. For instance,
for slow-rotating planets (like Venus) this effect is weak, which
promotes the creation of thick stationary clouds in the substel-
lar region, reflecting the solar rays (e.g. Kumar Kopparapu et al.
2019). On the other hand, for fast-rotating planets (like the Earth)
this effect is stronger and the clouds are in bands on the tropics,
which in turn reduces the albedo (e.g. Yang et al. 2014).

The obliquity controls the insolation distribution for a given
latitude, and is therefore the main driver of the seasons. High
obliquities promote a more balanced distribution of the stel-
lar flux on the planet surface, and thus extend the size of the
habitable areas. Indeed, for obliquities of around 50◦ and 130◦,
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the equatorial and polar regions receive identical amounts of
insolation on average, while for obliquities close to 90◦ the polar
regions receive as much insolation as the equatorial regions
when the obliquity is 0◦ (e.g. Dobrovolskis 2021). Moreover,
global climate model simulations show that high-obliquity plan-
ets are hotter than their low-obliquity counterparts because of
ice–albedo feedbacks for cold climates, which extends the outer
edge of the habitable zone (Armstrong et al. 2014; Colose et al.
2019).

The final state of tidal evolution corresponds to circular
orbits, zero obliquity, and synchronous rotation (Hut 1980;
Adams & Bloch 2015). In this configuration, the rotation period
is equal to the orbital period, implying that one side of the
planet always faces the star and becomes extremely hot, while
the other side becomes very cold. Though not impossible, this
extreme environment is not suitable for the development of
life as we know it (Wordsworth 2015; Turbet et al. 2016).
However, the eccentricity of planets in the habitable zone of
M-dwarfs is expected to evolve slowly, which allows the emer-
gence of spin–orbit resonances that delay the evolution to the
synchronous state (Makarov et al. 2012; Correia et al. 2014).
Moreover, for multi-planet systems, the eccentricity is excited
by mutual perturbations and can keep a non-zero value (Laskar
et al. 2012; Barnes 2017). In multi-planet systems, the obliquity
can also be locked in a ‘Cassini state’, where it retains a non-
zero value (Colombo 1966). These equilibria occur more often
for low obliquities, but they can also reach high values for sys-
tems with companions of large mass or high mutual inclination
(Correia 2015). Resonant spin–orbit coupling can also trigger
large chaotic variations of the obliquity (Laskar & Robutel 1993;
Su & Lai 2022a).

Although high obliquities are possible in multi-body sys-
tems, for Earth-like close-in planets in the habitable zone of
M-dwarfs, non-zero equilibrium states can be easily broken
and evolve to a near-zero obliquity value (Levrard et al. 2007;
Millholland & Laughlin 2019; Su & Lai 2022b). In this paper
we describe a new mechanism that can stabilise the obliquity
of these planets at high values, which is valid in the two-
body problem and does not require perturbations from other
companions.

In Sect. 2, we present a general model to study the tidal evo-
lution of close-in planets obtained in Correia & Valente (2022).
In Sect. 3, we analyse the secular evolution of the rotation and
obliquity in a very general framework, and show under which
circumstances the obliquity is allowed to grow to high values. In
Sect. 4, we apply our model to an Earth-mass planet in the hab-
itable zone of an M-dwarf star, Ross 128 b (Bonfils et al. 2018),
and confirm the predictions from our model. Finally, in the last
section we summarise and discuss our results.

2. Model

We consider a system in a Keplerian orbit, composed of a star
and a planet, with masses M and m, respectively. The orbital
energy and angular momentum are respectively given by (e.g.
Murray & Dermott 1999)

Eorb = −
GMm

2a
, and H = βna2

√
1 − e2 k, (1)

where G is the gravitational constant, a is the semi-major axis,
e is the eccentricity, n = [G(M + m)a−3]1/2 is the mean motion,
β = Mm(M + m)−1 is the reduced mass, and k is the unit vector
along the direction of H, which is normal to the orbit. The star
is a point-mass object, while the planet is an extended body with

radius R, that can be deformed under the action of tides. The
planet rotates with angular velocity ω = ω s, where s is the unit
vector along the direction of the spin axis. We assume that s is
also the axis of maximal inertia (gyroscopic approximation), and
so the rotational angular momentum is simply given by

L = Cω , (2)

where C = ξmR2 is the principal moment of inertia of the planet
and ξ an internal structure constant.

2.1. Tidal torque and power

Estimations of the spin and orbital evolution of the planet are
based on a very general formulation of the tidal potential initi-
ated by Darwin (1879). Tidal effects arise from differential and
inelastic deformations of the planet due to the gravitational per-
turbations from the star. The distortion of the planet gives rise to
a tidal potential (e.g. Lambeck 1980),

V(r) = −k2
GM

R

(R
r

)3 (
R
r⋆

)3

P2(r̂ · r̂⋆), (3)

where r is the distance measured from the planet centre of mass,
r = ||r|| is the norm, r̂ = r/r is the unit vector, r⋆ is the position
of the star, and P2(x) = (3x2 − 1)/2 is a Legendre polynomial. k2
is the second Love number for potential; it is a complex number,
and depends on the frequency of the perturbation, σ. We can
decompose k2 in its real and imaginary parts as

k2(σ) = a(σ) − i b(σ). (4)

This partition is very useful when we write the equations of
motion (see Sect. 2.2), because the imaginary part characterises
the viscous phase lag of the material and is therefore directly
related to the amount of energy dissipated by tides. In gen-
eral, the deformation lags behind the perturbation and therefore
the imaginary part is always negative, hence the minus sign in
expression (4).

The tidal potential (Eq. (3)) creates a differential gravita-
tional field around the planet given by

g(r) = −∇rV(r). (5)

The star itself interacts with this field; with mass M and located
at r = r⋆, it exerts a torque on the planet that modifies its spin
and orbit. In an inertial frame we have

Ḣ = T = M r⋆ × g(r⋆), (6)

and, owing to the conservation of the total angular momentum,

L̇ = −Ḣ = −T. (7)

The evolution of the orbital energy (power) is given by

Ėorb = M ṙ⋆ · g(r⋆). (8)

2.2. Secular equations of motion

In general, tidal effects slowly modify the spin and the orbit of
the planet, in a timescale much longer than the orbital and pre-
cession periods of the system. We can then average the torque
(Eq. (6)) and the power (Eq. (8)) over the mean anomaly and the
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argument of the pericentre, and obtain the equations of motion
for the secular evolution of the system.

We let (p, q, s) be a cartesian reference frame, such that

p =
k × s
sin θ

, q =
k − cos θ s

sin θ
, cos θ = k · s, (9)

where p is aligned with the line of nodes between the equator
of the planet and the orbital plane, and θ is the angle between
these two planes, also known as the obliquity. Following Correia
& Valente (2022), for the average torque, we therefore have〈
T
〉
= Tp sin θ p+ Tq sin θ q + Tss, (10)

and for the average power〈
Ėorb

〉
= n TE , (11)

with1

Tq =
3K
32

+∞∑
k=−∞

{
3 b(−kn)

(
1 − x2

) [ (
X−3,2

k

)2
−

(
X−3,−2

k

)2
]

+ 2 b(ω − kn)
[

(1 + x)2 (2 − x)
(
X−3,2

k

)2

− 4x3
(
X−3,0

k

)2
− (1 − x)2 (2 + x)

(
X−3,−2

k

)2
]

+ b (2ω − kn)
[
− 4x

(
1 − x2

) (
X−3,0

k

)2

+ (1 + x)3
(
X−3,2

k

)2
− (1 − x)3

(
X−3,−2

k

)2
]}
,

(12)

Ts =
3K
32

+∞∑
k=−∞

{
2 b(ω − kn)

(
1 − x2

) [
4x2

(
X−3,0

k

)2

+ (1 + x)2
(
X−3,2

k

)2
+ (1 − x)2

(
X−3,−2

k

)2
]

+ b(2ω − kn)
[
4
(
1 − x2

)2 (
X−3,0

k

)2

+ (1 + x)4
(
X−3,2

k

)2
+ (1 − x)4

(
X−3,−2

k

)2
]}
,

(13)

TE =
K

64

+∞∑
k=−∞

k
{

b(−kn)
[
4
(
1 − 3x2

)2 (
X−3,0

k

)2

+ 9
(
1 − x2

)2
((

X−3,−2
k

)2
+

(
X−3,2

k

)2
) ]

+ 12 b(ω − kn)
(
1 − x2

) [
4x2

(
X−3,0

k

)2

+ (1 − x)2
(
X−3,−2

k

)2
+ (1 + x)2

(
X−3,2

k

)2
]

+ 3 b(2ω − kn)
[
4
(
1 − x2

)2 (
X−3,0

k

)2

+ (1 − x)4
(
X−3,−2

k

)2
+ (1 + x)4

(
X−3,2

k

)2
]}
,

(14)

1 We do not provide the expression for Tp, because in our case this
component changes neither the norm of the angular momentum vec-
tors nor the angle between them (Sect. 2.3). This is also why we do
not take into account the effect of the rotational deformation, as it only
contributes to the torque with a component along p (e.g. Correia 2006).

Table 1. Hansen coefficients X−3,0
k (e) and X−3,2

k (e) up to e6.

k X−3,0
k (e) X−3,2

k (e)

−6 3167
320 e6 −

−5 1773
256 e5 −

−4 77
16 e4 + 129

160 e6 4
45 e6

−3 53
16 e3 + 393

256 e5 81
1280 e5

−2 9
4 e2 + 7

4 e4 + 141
64 e6 1

24 e4 + 7
240 e6

−1 3
2 e + 27

16 e3 + 261
128 e5 1

48 e3 + 11
768 e5

0 1 + 3
2 e2 + 15

8 e4 + 35
16 e6 −

1 3
2 e + 27

16 e3 + 261
128 e5 − 1

2 e + 1
16 e3 − 5

384 e5

2 9
4 e2 + 7

4 e4 + 141
64 e6 1 − 5

2 e2 + 13
16 e4 − 35

288 e6

3 53
16 e3 + 393

256 e5 7
2 e − 123

16 e3 + 489
128 e5

4 77
16 e4 + 129

160 e6 17
2 e2 − 115

6 e4 + 601
48 e6

5 1773
256 e5 845

48 e3 − 32525
768 e5

6 3167
320 e6 533

16 e4 − 13827
160 e6

7 − 228347
3840 e5

8 − 73369
720 e6

Notes. X−3,−2
k (e) = X−3,2

−k (e). The exact expression of these coefficients
is given by X−3,m

k (e) = π−1
∫ π

0
(a/r)3 exp(imυ) exp(−ikM) dM.

where K = GM2R5a−6, x = cos θ, and X−3,m
k (e) are the Hansen

coefficients, which depend only on the eccentricity (see Table 1).
Throughout this work, we consider only terms with |k| ≤ 20,
because for the maximal adopted eccentricity (e = 0.2), we get
an error smaller than e20 ≈ 10−14, which corresponds to the
computer precision that we have in our simulations.

2.3. Orbital and spin evolution

The secular evolution of the orbital elements is obtained from
the orbital energy and angular momentum (Eq. (1)) as

ȧ
a
=

2a
GMm

〈
Ėorb

〉
=

2
√

1 − e2

H
TE , (15)

ė =
(1 − e2)

2e
ȧ
a
−

√
1 − e2

βna2e
〈
T
〉
· k

=
1 − e2

He

(
TE

√
1 − e2 − Tq sin2 θ − Ts cos θ

)
,

(16)

with H = ||H||. Similarly, the secular evolution of the rotation is
obtained from the rotational angular momentum (Eq. (2)) as

ω̇

ω
= −

1
Cω

〈
T
〉
· s = −

Ts

L
, (17)

with L = ||L||, while the secular evolution of the obliquity is
obtained from cos θ = k · s = H · L/(HL) as

θ̇ =

[(
1
L
+

cos θ
H

) 〈
T
〉
· k −

(
1
H
+

cos θ
L

) 〈
T
〉
· s

]
csc θ

=

[(
1
L
+

cos θ
H

)
Tq −

Ts

H

]
sin θ.

(18)
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In general, we have L ≪ H (Eq. (23)), and therefore the previous
expression for the obliquity can be simplified as

θ̇ ≈
Tq

L
sin θ. (19)

2.4. Maxwell rheology

The tidal deformation is characterised by the Love number
(Eq. (4)), which depends on the internal structure of the planet
and is therefore subject to large uncertainties. For this reason, in
order to compute k2(σ) we need to adopt some rheological model
for the deformation. A large variety of models exist, but the most
commonly used are the constant−Q (e.g. Munk & MacDonald
1960), the linear model (e.g. Mignard 1979), the Maxwell model
(e.g. Correia et al. 2014), and the Andrade model (e.g. Efroimsky
2012). Some models appear to be better adapted to certain situa-
tions, but there is no model that is globally employed. However,
viscoelastic rheologies are usually accepted as more realistic for
rocky planets, because they are able to simultaneously reproduce
the short-time and the long-time responses (e.g. Remus et al.
2012). A review of the main viscoelastic models can be found in
Renaud & Henning (2018).

We adopt here a Maxwell viscoelastic model, which is par-
ticularly well suited to reproducing the long-term deformation
of the planets. A material is called a Maxwell solid when it
responds to stresses like a massless, damped harmonic oscillator
(e.g. Turcotte & Schubert 2002). It is characterised by a rigidity
µ (or shear modulus), and by an effective viscosity η. Over short
timescales, the material behaves like an elastic solid, but over
long periods of time it flows like a fluid. The Love number for
the Maxwell model is given by (e.g. Darwin 1908)

k2(σ) = kf
1 + iστe

1 + iστ
, with τ = τe + τv, (20)

where τ, τv, and τe = η/µ are the total, the viscous, and the
Maxwell relaxation times, respectively. Here, kf = k2(0) is the
fluid Love number, which corresponds to the maximal deforma-
tion that is attained for long-term perturbations. Similarly, we
can also define an elastic Love number, ke = k2(∞) = kf τe/τ,
which corresponds to the deformation for short-time perturba-
tions. Both kf and ke depend only on the internal structure
of the planet, and can usually be measured for Solar Sys-
tem rocky planets from the rotational and tidal deformations,
respectively (e.g. Correia & Rodríguez 2013). Therefore (Eqs. (4)
and (20)),

b(σ) = kf
στv

1 + (στ)2 = (kf − ke)
στ

1 + (στ)2 . (21)

For the Earth, we have ke = 0.295 and kf = 0.933 (Yoder 1995).
The total relaxation time can be obtained as τ = τe kf/ke ≈ 3η/µ.
The rigidity of the Earth’s mantle is relatively well constrained,
µ ≈ 80 GPa (Karato & Wu 1993). However, the average effec-
tive viscosity is much more uncertain, η ∼ 1021 Pa s (Karato &
Wu 1993), which gives τe ∼ 400 yr. Indeed, the viscosity may
vary by many orders of magnitude, depending on the depth and
temperature (e.g. Kirby & Kronenberg 1987). In the case of the
Earth, the surface post-glacial rebound due to the last glacia-
tion about 104 yr ago is still ongoing, suggesting that the Earth’s
mantle relaxation time is τe ≈ 4400 yr (Turcotte & Schubert
2002). On the other hand, for slightly warmer planets we may
have lower values, such as τe ∼ 50 yr (e.g. Makarov et al. 2012).

3. Spin dynamics

In this section, we analyse the dynamics of the system provided
by the secular equations (Sect. 2.3). The main goal is to describe
the possible equilibria and evolutionary paths for different tidal
regimes (different τ values).

Regardless of the tidal model that we adopt, the final state of
tidal evolution corresponds to circular orbits, zero obliquity, and
synchronous rotation (Hut 1980; Adams & Bloch 2015). How-
ever, the evolution timescales for the orbit and spin are quite
different. Indeed, from expressions (15)−(19), we have

ȧ
a
∼ ė ∼

K

H
≪

ω̇

ω
∼ θ̇ ∼

K

L
, (22)

since (Eqs. (1) and (2))

L
H
=

Cω

βna2
√

1 − e2
≈
ω

n

(R
a

)2

≪ 1. (23)

As a result, the spin evolves much faster than the orbit and is
allowed to reach metastable or pseudo-equilibrium states as long
as the eccentricity is not completely zero. Therefore, in this sec-
tion we assume a constant value for the semi-major axis and
eccentricity, and solely study the spin evolution.

We limit our analysis to positive rotation rates (ω > 0), but
we can easily extend it to negative rotations with the symmetry
(ω, θ)⇔ (−ω, π − θ). These two points do not correspond to the
same physical state, but are equivalent from a dynamical point
of view (Correia & Laskar 2001).

We also note that the secular evolution of the spin (Eqs. (17)
and (19)) depends only on four parameters: the rotation ratio,
ω/n, the obliquity, θ, the eccentricity, e, and the relative relax-
ation time, nτ (Eq. (21)). The amplitude K/L can change the
evolution rate, but does not modify the spin dynamics.

3.1. Equilibrium rotation

The final evolution of the spin has zero obliquity (θ = 0), which
is also an equilibrium point (Eq. (19)). Therefore, for simplicity
previous studies usually fix θ = 0, that is, they adopt a planar
model (e.g. Makarov et al. 2012; Ferraz-Mello 2013; Correia
et al. 2014). This is equivalent to setting x = 1 in expression (13),
and thus expression (17) simplifies as

ω̇

ω
= −

3K
2L

+∞∑
k=−∞

b(2ω − kn)
(
X−3,2

k (e)
)2
. (24)

In Fig. 1, we plot the above expression as a function of ω/n
for different values of the eccentricity and nτ. The interception
with the horizontal dotted line ω̇ = 0 gives all the equilibria for
the rotation rate. Negative slopes correspond to stable equilib-
ria, where the rotation can remain locked for a given value of
eccentricity. We adopt a maximal eccentricity e = 0.16, because
in this study we are only interested in close-in planets with small
eccentricities. Similar figures for higher eccentricity values can
be found in Correia et al. (2014) and Ferraz-Mello (2015).

For nτ ≲ 1, we observe that a single stable equilibrium point
exists, close to synchronous rotation. Indeed, for small tidal fre-
quencies (nτ ≪ 1), the Maxwell model behaves as the linear
model, and expression (24) becomes (e.g. Correia 2009)

ω̇

ω
≈ −

3K
L

(kf − ke) nτ
(

f1(e)
ω

n
− f2(e)

)
, (25)
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k (e) are truncated at |k| ≤ 20.

with f1(e) ≈ 1 + 15e2/2, and f2(e) ≈ 1 + 27e2/2. The exact
equilibrium, obtained when ω̇ = 0, is then given by

ω

n
=

f2(e)
f1(e)

≈ 1 + 6e2, (26)

which is also known as the pseudo-equilibrium rotation.
For nτ ≫ 1, we observe that additional stable equilib-

ria appear. They cluster around values ω/n ≈ k/2, because
expression (24) has extrema at these values:

ω̇

ω
≈ −

3K
4L

(kf − ke)
nτ

+∞∑
k=−∞

(
X−3,2

k (e)
)2

ω/n − k/2
. (27)

For all k/2 values, ω̇ undergoes some oscillation, and its ampli-
tude depends on X−3,2

k (e). The rotation is locked whenever the
oscillation amplitude surpasses the line ω̇ = 0. These new
states occur at almost semi-integer values (k ∈ Z), and they are
usually called spin–orbit resonances (e.g. Goldreich & Peale
1966; Correia & Delisle 2019). The number of these equilibria
increases with nτ, but also with the eccentricity value, because
the amplitude of the Hansen coefficient X−3,2

k (e) increases with
e (Table 1). We note that, except for the synchronous resonance
(k = 2), for the remaining stable equilibria with k > 2, we have
ω̇ = 0 for a rotation rate that is slightly smaller than the exact
resonant value, that is, for ω = kn/2 − |δω|, with |δω/n| ≪ 1.
Indeed, as the oscillation in the torque introduced by the syn-
chronous resonance has the largest amplitude (see Table 1), the
average of the oscillations in the resonances with k > 2 is shifted
to a negative value. In Fig. 2, we show an example for the 5/2 res-
onance with different eccentricities. For e = 0.11, the torque
is always negative, and therefore capture cannot occur in this

0

2.495 2.5 2.505
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nτ=103

d
ω
/d

t

Fig. 2. Variation of dω/dt with ω/n around the 5/2 resonance for nτ =
103 and four different eccentricities: e = 0.11 (blue), e = 0.12 (green),
e = 0.13 (orange), and e = 0.14 (red). We adopt θ = 0, and the Hansen
coefficients X−3,2

k (e) are truncated at |k| ≤ 20.

resonance. For e ≥ 0.12, the torque surpasses the line ω̇ = 0,
and the rotation can stabilise at the value with negative slope,
which occurs for ω/n = 5/2 − |δω/n|.

Immediately after their formation, the planets are supposed
to rotate fast (e.g. Kokubo & Ida 2007), that is, ω/n ≫ 1. There-
fore, we can write b(2ω − kn) ≈ b(2ω) and expression (24)
simplifies as

ω̇

ω
= −

3K
2L

b(2ω) f1(e). (28)

As a consequence, we always have ω̇ < 0, which can also
be seen in Fig. 1 for ω/n = 4. We thus approach the equi-
libria while decreasing from fast rotations (right hand side in
Fig. 1), and higher order spin–orbit resonances are encountered
first.
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In Fig. 1, we observe that for the same nτ-value, stabili-
sation can occur at different spin–orbit resonances, depending
on the eccentricity. We are assuming here that the eccentricity
is constant, but in reality it also slowly evolves (Eq. (22)). As
the eccentricity decreases, the higher order spin–orbit equilib-
ria become unstable, and the rotation is sequentially captured in
lower order resonances, until it reaches its final possibility for
synchronous rotation (see Sect. 4). Therefore, the asynchronous
equilibria are only metastable; however, depending on the sys-
tem parameters, they can persist for a time longer than the age of
the system.

The general expression for the equilibria of the rotation rate
(Ts = 0) depends on the obliquity value (Eq. (13)). For non-zero
obliquities, the possible equilibria for the rotation rate remain
at the semi-integer values ω/n = k/2, because they correspond
to the zeros of the b(σ) functions. However, as for the eccen-
tricity, non-zero obliquities can also modify the amplitude of
the torque and therefore lead to a different distribution of the
available states for a given initial condition.

3.2. Equilibrium obliquity

Although θ = 0 is always an equilibrium point (Eq. (19)), it is not
necessarily stable. For Tq > 0 (Eq. (12)), this point is unstable
and the obliquity is allowed to grow. Therefore, in this section
we linearise expression (19) for θ = δθ ≪ 1 in order to determine
when the planar approximation is no longer valid. We get

θ̇ ≈
3K
4L

+∞∑
k=−∞

{
b(ω − kn)

[ (
X−3,2

k (e)
)2
−

(
X−3,0

k (e)
)2

]
+ b(2ω − kn)

(
X−3,2

k (e)
)2

}
δθ.

(29)

In Fig. 3, we plot the previous expression as a function of ω/n
for different values of the eccentricity and nτ. For θ̇/δθ < 0, we
have stable equilibrium at θ = 0, while for θ̇/δθ > 0, this point
is unstable. For initial fast rotations (ω/n ≫ 1), we can simplify
expression (29) as (Correia & Valente 2022)

θ̇ ≈
3K
4L

b(2ω) f1(e) δθ. (30)

We conclude that we always have θ̇/δθ > 0, which can also be
seen in Fig. 3 for ω/n = 4. Therefore, θ = 0 is an unstable
equilibrium point, and the obliquity increases to higher values.
However, as the rotation slows down owing to tides, we may
have θ̇/δθ = 0 for one or more ω/n values, which represents a
transition in the stability of the point θ = 0.

For nτ ≲ 1, we observe that a single transition point exists,
close to ω/n = 2. In the linear model approximation (nτ ≪ 1),
expression (29) becomes (e.g. Correia 2009)

θ̇ ≈
3K
L

(kf − ke) nτ
(

f1(e)
ω

2n
− f2(e)

)
δθ, (31)

which gives for the exact position of the transition point,

ω

n
= 2

f2(e)
f1(e)

≈ 2 (1 + 6e2). (32)

This value is two times larger than the equilibrium rotation
(Eq. (26)). As a result, although θ = 0 is initially unstable and
the obliquity allowed to grow, it becomes stable as the rotation
approaches its equilibrium value.

For nτ ≫ 1, we observe that multiple transition points are
present, introduced by an oscillation of the torque around the
spin–orbit resonances ω/n = k/2, corresponding to the zeros of
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the b(σ) functions. As a result, the equilibrium at θ = 0 tog-
gles between unstable and stable, and the transition points almost
coincide with the spin–orbit resonances (Fig. 1). In general, the
torque on the obliquity (Eq. (29)) is negative for ω/n < k/2 and
positive for ω/n > k/2 (Fig. 3). Therefore, for spin–orbit reso-
nances, the obliquity θ = 0 is usually stable, because for k > 2,
the equilibrium rotation occurs for ω/n = k/2 − |δω/n| < k/2
(Fig. 2). Nevertheless, there are a few exceptions, namely when-
ever the amplitude of the oscillation is not large enough to
descend below the horizontal line with θ̇ = 0. In those cases, the
torque is always positive, and θ = 0 remains unstable. In Fig. 3,
we observe that this is always the case for ω/n = 7/2, and it also
occurs for ω/n = 5/2 for some eccentricities and nτ-values. We
therefore expect that the obliquity grows when the rotation rate
is captured in these two specific spin–orbit resonances.

When the obliquity increases, expression (29) and Fig. 3 are
no longer valid. θ = π is also an equilibrium point, because
sin π = 0 (Eq. (19)), but additional equilibria at intermediate
obliquities may exist. As the expressions of Tq (Eq. (12)) and Ts
(Eq. (13)) are very sensitive to the value of ω/n, the additional
equilibria for a given eccentricity and nτ-value can only be found
numerically by determining the pair (ω/n, θ) that simultaneously
satisfy Tq = Ts = 0. In Fig. 4, we compute the high-obliquity
stable equilibria as a function of the eccentricity for different nτ-
values. We find that for ω/n ≈ 5/2 and ω/n ≈ 7/2, there exist
high-obliquity states. These states do not directly depend on the
value of nτ, but they become unstable below a critical eccen-
tricity, which depends on nτ. We observe that as we increase the
nτ-value, the critical eccentricity becomes smaller. For nτ = 105,
the obliquity can therefore reach nearly 80◦ in the 5/2 resonance
and 65◦ in the 7/2 resonance. These interesting high-obliquity
stable equibria were previously unknown, and in principle can
be attained for some evolutionary paths of the spin.

3.3. Global spin evolution

The rotation rate and the obliquity evolution cannot be dissoci-
ated as they progress at a similar pace (Eq. (22)). Therefore, the
exact evolution of the spin can only be obtained by simultane-
ously integrating Eqs. (17) and (19). This allows us to confirm
the analytic predictions from Sects. 3.1 and 3.2, in particular, the
existence of non-zero obliquity equilibria.

In Fig. 5, we show some trajectories for the spin in the
plane (ω/n, θ) for different values of nτ (between 10−2 and

105) and constant eccentricity2 (we adopt 0.05 ≤ e ≤ 0.16,
because close-in Earth-like planets around M-dwarfs are usu-
ally observed with small eccentricities). We start the integrations
with ω/n = 3.93 and different obliquity values. As tidal effects
initially decrease the rotation rate (Eq. (28)), the evolutionary
paths must be followed for decreasing values of ω/n, until they
reach an equilibrium position. Final metastable states (i.e. fixed
points for a constant eccentricity) are marked with a black dot. To
better understand the obliquity behaviour, segments with θ̇ < 0
are plotted in red (the obliquity is damped), while segments with
θ̇ > 0 are plotted in blue (the obliquity grows).

For nτ ≲ 1, the system is in the linear regime. For initial
small obliquities and ω/n > 2, the obliquity increases (Eq. (30)).
However, as the rotation rate decreases, θ = 0 becomes stable
(Eq. (32)). There are no other stable equilibrium points for the
obliquity in this regime, and therefore all trajectories evolve to
zero obliquity in the end. The final rotation rate is given by the
pseudo-rotation equilibrium (Eq. (26)).

For nτ ≫ 1, multiple resonant equilibria exist at ω/n = k/2
(k ∈ Z), even for almost zero eccentricity. In general, the number
of possibilities increases with the eccentricity and nτ (Fig. 1),
but also with the obliquity (Eq. (12)). The resonant entrapments
are well visible by vertical lines, because although the rotation
is stalled, the obliquity continues to evolve. Most of these lines
are in red, meaning that the obliquity decreases for those reso-
nances. In some of them, the obliquity is able to reach θ = 0,
where the rotation rate stabilises (black dot). In other cases (e.g.
for ω/n = 3 with nτ = 102), as the obliquity decreases, the reso-
nance becomes unstable, and the rotation decreases into a lower
order resonance.

As nτ increases, more resonant equilibria become available
(Fig. 1). For nτ ≳ 103, the obliquity is able to grow at some
resonances (blue vertical lines). This behaviour is observed for
ω/n = 5/2 and 7/2, because the torque on the obliquity can be
always positive for those resonances (see Sect. 3.2 and Fig. 3).
In some cases, the high obliquity ends by destabilising the res-
onant equilibrium3, and the rotation rate decreases to a lower
order spin–orbit resonance. More interestingly, however, we con-
firm that it is possible to stabilise the spin in a high-obliquity
state (Fig. 4). In Fig. 5, these stable high-obliquity equilibria
are observed for (ω/n ≃ 5/2, θ ≃ 65◦−80◦) when e = 0.16 and
nτ = 103, e = 0.12 and nτ = 104, or e = 0.09 and nτ = 105, and
for (ω/n ≃ 7/2, θ ≃ 65◦) when e = 0.16 and nτ = 105.

As we start the simulations with ω/n ≈ 4, most trajecto-
ries are initially captured in the nearby 7/2 and 3/1 spin–orbit
resonances. Nevertheless, lower order resonances can still be
attained when the 3/1 resonance becomes unstable for low obliq-
uity. Lower order resonances can also be directly attained for
initial obliquities higher than 150◦, although in this case the
initial obliquity has to be finely adjusted. For nτ = 102, we
observe that initial obliquities higher than 165◦ evolve into 180◦,
while the rotation rate becomes negative. These simulations are
continued at θ = 0 with the rotation rate increasing into the syn-
chronous state, because from a dynamical point of view, the pair
(−ω, θ = π) is equivalent to the pair (ω, θ = 0).

2 Figure 5 in this paper is similar to Fig. 2 in Boué et al. (2016), who
adopted nτ ≤ 102 and different eccentricities (e = 0.0, 0.3 and 0.6).
These choices did not allow us to spot some interesting behaviours, such
as the stable non-zero obliquity equilibrium states.
3 A short-term small obliquity excitation in the 7/2 resonance was
originally reported by Boué et al. (2016) while using nτ = 102 and
e = 0.3. The obliquity climbs during about 15 Myr up to θ ≈ 15◦, after
which the 7/2 resonance becomes unstable.
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Table 2. Parameters of the Ross 128 system (Bonfils et al. 2018).

Parameter Value

M 0.168 M⊙
m 1.35 M⊕
a 0.0496 au
age ≳5 Gyr

R 1.12 R⊕
ξ 0.330
ke 0.295
kf 0.933

Notes. R is estimated from m assuming an Earth-like density. ξ, ke and
kf are equal to the Earth’s values (Yoder 1995).

In Fig. 5, we observe that there is a large variety of evo-
lutionary scenarios for the spin of close-in planets that depend
on the initial obliquity, eccentricity, and relaxation time. For
instance, for e = 0.09 and nτ = 104, trajectories with initial
obliquity lower than 150◦ are at first captured in the 3/1 spin–
orbit resonance, where the obliquity decreases until it reaches
a value close to zero. At this point, the 3/1 resonance becomes
unstable, and the rotation decreases. Subsequently, capture in the
5/2 resonance occurs, but here the obliquity increases. When the
obliquity reaches about 40◦, the 5/2 resonance becomes unsta-
ble, and the rotation rate finally evolves into the 2/1 spin–orbit
resonance, where it stabilises with zero obliquity.

The different evolution scenarios depicted in Fig. 5 are com-
pletely general, as they do not depend on the semi-major axis, the
radius, or the masses. These parameters appear in K/L and thus
only modify the spin evolution timescale (Eq. (22)). In theory,
for a given nτ-value, it is therefore possible to predict the present
spin-state of a close-in Earth-like planet solely from knowledge
of its current eccentricity.

The spin evolution is also affected by the orbital evolution,
because the eccentricity is not constant (Eq. (16)). The eccen-
tricity generally decreases over a longer timescale, and so Fig. 5
can still be used to predict the long-term evolution of the system.
Each panel can be seen as a snapshot at a given eccentricity,
evolving from the right-hand side to the left. As a result, the sta-
ble black dots only correspond to metastable states, because they
disappear for decreasing eccentricity. For small eccentricities
only low-order spin–orbit resonances persist, and for zero eccen-
tricity only the synchronous rotation is possible for all nτ-values
(see Fig. 5 in Correia et al. 2014).

4. Application to Ross 128 b

To get the complete spin and orbital evolution of a system over
time, we need to attribute specific values to all orbital and phys-
ical parameters. One good candidate for habitability studies is
Ross 128 b, an exoplanet with a minimal mass of m = 1.35 M⊕
in a 9.86-day orbit around a ∼5 Gyr-old M-dwarf star with
M = 0.168 M⊙ (Bonfils et al. 2018). Although the planet is much
closer to its host star (a ≈ 0.05 au) than the Earth is to the Sun,
because of the much smaller luminosity of M-dwarfs, it only
receives about 1.4 times as much flux as the Earth from the Sun.
Ross 128 b is therefore likely to be situated at the inner edge of
the habitable zone (Bonfils et al. 2018; Souto et al. 2018). In this
section, we adopt the parameters listed in Table 2, and follow the
tidal evolution of this planet by integrating the full set of secular
equations of motion (15)−(18) for 10 Gyr.

The initial spin state of Earth-like planets is unknown. A
small number of large impacts at the end of their formation can
modify the rotation period and the axis orientation (Dones &
Tremaine 1993; Kokubo & Ida 2007). However, as planets con-
tract from a larger protoplanet, in general it is expected that they
rotate fast. For simplicity, here we assume in all simulations that
the initial rotation period of Ross 128 b is 24 h, which gives an
initial rotation rate of ω/n = 9.86. This value is not critical,
because the rotation rate rapidly decreases and evolves into an
equilibrium value (Sect. 3.1). We also assume the same initial
obliquity θ = 10◦ in all simulations, because obliquities smaller
than 150◦ are expected to behave in a similar way (Fig. 5). More-
over, by adopting a small initial obliquity value, it is possible to
make the obliquity growth stand out.

The semi-major axis does not change much over the course
of the simulations, even for nτ = 102. Indeed, owing to the con-
servation of the orbital angular momentum (Eq. (1)), the final
semi-major axis is given by a f ≈ a(1 − e2), which results in a
variation of only 4% for e = 0.2. In addition, the semi-major axis
only impacts the evolution timescale through the parameters K
and H (Eq. (22)). Therefore, the choice of the initial semi-major
axis is not critical, and so for simplicity we adopt the present
value as the initial one.

The present eccentricity of Ross 128 b is not very well con-
strained from the observations, e = 0.12 ± 0.09 (Bonfils et al.
2018), that is, it is compatible with zero, but it can also be higher
than 0.2. However, this parameter is critical for the spin evolution
of the planet (Fig. 5). Therefore, we run our simulations adopt-
ing different values for the initial eccentricity from 0.01 to 0.20
in order to explore all the different behaviours.

Finally, although Ross 128 b is slightly more massive than the
Earth, we assume a similar rheology for tides. For the density,
structure constant, and Love numbers, we adopt those from the
Earth (Table 2). As discussed in Sect. 2.4, the relaxation time is
poorly constrained, but a typical adopted value is τe ∼ 400 yr,
which gives nτ ∼ 105. However, this nτ-value leads to almost
no orbital evolution over gigayear timescales, and therefore in
order to get a more complete view of the possible spin evolutions,
we run our simulations using different values, from nτ = 102

to 105.
The results of the simulations for the tidal evolution of

Ross 128 b are plotted in Figs. 6–9, one for each value of nτ.
We show the eccentricity (top), the ω/n ratio (middle), and
the obliquity (bottom) as a function of time for different ini-
tial eccentricities. For reasons of clarity, we only show six
trajectories per plot, which illustrate all the important observed
evolutions.

In Fig. 6, we adopt nτ = 102, which corresponds to the high-
est tidal dissipation, because ω̇ ∝ τ−1 (Eq. (27)). As a result, the
rotation rate reaches the spin–orbit resonance regime in less than
1 Myr, and the orbit circularises in about 5 Gyr. We zoom into
the early evolution (<1 Myr), for a clearer view of the initial
spin evolution (left hand side of Fig. 6). We observe that for ini-
tial e = 0.2, the rotation rate is captured in the 5/2 resonance,
for initial e = 0.1, it is captured in the 3/2 resonance, while
for the remaining eccentricities between these two, all trajec-
tories were captured in the 2/1 resonance. As expected, higher
initial eccentricities foster capture in higher order spin–orbit res-
onances (Fig. 1). Before resonance entrapment, the obliquity
increases for all simulations (Eq. (30)). However, as soon as cap-
ture in resonance occurs, the obliquity drops quickly to zero,
except for the 5/2 resonance, where it continues to increase.
After the obliquity surpasses a certain value (∼35◦), the 5/2 res-
onance becomes unstable, and the rotation decreases to the
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Fig. 6. Secular evolution over time of Ross 128 b with nτ = 102 and
some initial eccentricity values between 0.10 and 0.20. We show the
eccentricity (top), the ω/n ratio (middle) and the obliquity (bottom). In
all simulations, the initial rotation period is 24 h (ω/n = 9.86), and the
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2/1 resonance, where the obliquity is brought to zero. We limit
the final evolution to 0.5 Gyr (right hand side of Fig. 6), because
as the eccentricity decreases, all spin–orbit resonances become
unstable one by one, until the rotation finally synchronises.
Beyond that date, the eccentricity decays exponentially to zero,
while the rotation remains synchronous and the obliquity at zero
degrees.

In Fig. 7, we adopt nτ = 103. We observe that, although the
tidal dissipation is about ten times weaker than for the case with
nτ = 102 (Eq. (27)), the rotation rate evolution does not differ
much. It is initially trapped in some spin–orbit resonance, but as
the eccentricity decreases, they all become unstable one by one.
All trajectories finally end in the synchronous resonance before
5 Gyr (the present estimated age of the star). After that point,
the eccentricity decreases very slowly, remaining above zero for
at least 50 Gyr. One difference with respect to the case with
nτ = 102 is that the resonance entrapment persists for a much
longer time, because the eccentricity is also damped much more
slowly. Another difference is that for the trajectories captured
in the 5/2 resonance, the obliquity is able to grow to a steady
threshold around 65◦ (Fig. 4). As the eccentricity decreases, the
equilibrium obliquity slightly increases, until the 5/2 resonance
is destabilised. At this stage, the rotation rate decreases until
it is captured in the lower order 2/1 resonance and the obliq-
uity damps to zero. We observe that the obliquity growth in the
5/2 resonance is very consistent. For initial eccentricities higher
than 0.16, the rotation is initially captured in the 3/1 resonance
and the obliquity becomes very close to zero. However, as the
3/1 resonance becomes unstable, the rotation rate is trapped in
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Fig. 7. Secular evolution over time of Ross 128 b with nτ = 103 and
some initial eccentricity values between 0.10 and 0.20. We show the
eccentricity (top), the ω/n ratio (middle) and the obliquity (bottom). In
all simulations, the initial rotation period is 24 h (ω/n = 9.86), and the
initial obliquity is θ = 10◦. We note the break in the timescale.

the 5/2 resonance, where the obliquity rises again and settles in
the 65◦ threshold. The high obliquity state is maintained as long
as the eccentricity is above its critical value e ≈ 0.15 for nτ = 103

(Fig. 4).
In Fig. 8, we adopt nτ = 104. The evolution of the spin is

similar to the previous case with nτ = 103, but the evolution
timescale is about ten times longer. The eccentricity therefore
varies very slowly and does not change much over the 10 Gyr
of the simulation. As a consequence, capture in each spin–orbit
resonance can last for several gigayears and only trajectories
with initial e < 0.1 evolve into the synchronous rotation before
10 Gyr. For trajectories captured in the 5/2 resonance, the obliq-
uity grows to nearly 75◦ and can remain there up to 3 Gyr.
These high-obliquity states are very robust, as they correspond
to fixed points and can only be destabilised when the eccentric-
ity descends below the critical value of e ≈ 0.11 (Fig. 4). Large
nτ-values permit capture in high-order spin–orbit resonances
(Fig. 1), which includes the 7/2 resonance when nτ = 104. In this
resonance, the obliquity is also allowed to grow to high values. In
our simulations, this scenario is observed for initial e = 0.20, but
the obliquity cannot stabilise, because the critical eccentricity for
this resonance is e ≈ 0.21 for nτ = 104.

In Fig. 9, we finally adopt nτ = 105, which corresponds to the
more realistic value of nτ for Earth-like planets (see Sect. 2.4).
In this case, tidal dissipation is so weak that the initial eccen-
tricity almost does not change over the 10 Gyr of the simulation.
As a result, the evolution of the spin can be depicted from the
general evolution map shown in the last row of Fig. 5. Indeed,
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Fig. 8. Secular evolution over time of Ross 128 b with nτ = 104 and
some initial eccentricity values between 0.05 and 0.20. We show the
eccentricity (top), the ω/n ratio (middle) and the obliquity (bottom). In
all simulations, the initial rotation period is 24 h (ω/n = 9.86), and the
initial obliquity is θ = 10◦. We note the break in the timescale.

most trajectories remain throughout the simulation in the spin–
orbit resonance where they were initially captured, except for a
few cases (e = 0.08 and e = 0.14). For the trajectories that were
captured in the 5/2 and 7/2 resonance, the obliquity is allowed
to grow and stabilise at 79◦ and 66◦, respectively (Fig. 4). For
nτ = 105, we also observe one capture in the higher order 4/1
spin–orbit resonance for e = 0.2. This trajectory is not covered
by the possibilities shown in Fig. 5, but in the 4/1 resonance the
obliquity also evolves to zero.

Evolution trajectories for nτ > 105 are not shown, because
the eccentricity is already nearly constant for nτ = 105. We
expect that the number of spin–orbit resonances increases for
larger values of nτ (beyond the 4/1 resonance), which remain
stable throughout the entire lifetime of the system. High-
obliquity states are also possible and persist for long timescales,
as they require lower eccentricities to become unstable (Fig. 4).

In this section, we present the results for Ross 128 b, but we
also run simulations for other Earth-like planets in the habit-
able zone of M-dwarf stars, such as Proxima b (Anglada-Escudé
et al. 2016) and Teegarden’s c (Zechmeister et al. 2019). We
observed similar results, which confirms that the general anal-
ysis described in Sect. 3 is robust and independent from a fine
tuning of the system parameters.

5. Discussion and conclusions

Earth-like rocky planets in the habitable zone of M-dwarfs, such
as Ross 128 b, are expected to present a viscoelastic rheology
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Fig. 9. Secular evolution over time of Ross 128 b with nτ = 105 and
some initial eccentricity values between 0.05 and 0.20. We show the
eccentricity (top), the ω/n ratio (middle) and the obliquity (bottom). In
all simulations, the initial rotation period is 24 h (ω/n = 9.86), and the
initial obliquity is θ = 10◦. We note the break in the timescale.

with relaxation times such that nτ ≫ 1. In this regime, a mul-
titude of spin–orbit resonances arise, where the spin can be
temporarily trapped. Large nτ-values increase the number of
possible resonances, but also their lifetime, because the eccen-
tricity damping timescale is longer. In addition, for the 5/2 and
7/2 resonances, the obliquity can grow to high values of between
60◦ and 80◦, which can be maintained for several gigayears.
These results are extremely important regarding the habitabil-
ity of these planets, because the rotation period and the obliquity
determine the insolation distribution on the surface of the planet
(e.g. Milankovitch 1941). The rotation rate controls the length of
the day–night cycle through the synodic day period:

Psyn =
2π
ω − n

=
Porb

ω/n − 1
. (33)

For synchronous rotation (ω/n = 1), we have Psyn = ∞, and
so one side of the planet always faces the star and becomes
extremely hot, while the other side becomes very cold. There-
fore, synchronous rotation is usually evoked as one of the major
obstacles for the habitability of planets around M-dwarfs. How-
ever, in a 2/1 resonance, we have Psyn = Porb, which corresponds
to Psyn = 9.86 day in the case of Ross 128 b, while for the
7/2 resonance, we get Psyn = 3.94 day. The obliquity impacts
the insolation distribution for a given latitude. It is responsible
for the seasons, and therefore, even for synchronous planets, high
obliquities can also mimic day–night cycles with the duration of
one year (Dobrovolskis 2009), which corresponds to 9.86 days in
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the case of Ross 128 b. The combination of asynchronous rota-
tion with extreme obliquities may thus help to sustain temperate
environments and more favourable conditions for life.

Our results were obtained with a very general formalism,
and are therefore not restricted to the study of rocky planets.
They can be extended to other tidal regimes (different nτ-values)
or to other rheologies by simply modifying the Love number
(Eq. (20)). In our analysis (Sect. 3), we already considered relax-
ation times such that nτ ≲ 1, which are expected for gaseous
planets (e.g. Correia et al. 2014). In this regime, the Maxwell
model behaves as the linear model, and the results are well
known from previous studies (e.g. Correia & Laskar 2010): the
rotation rate evolves to the pseudo-synchronous value (Eq. (26)),
while the obliquity evolves to zero. These results are less interest-
ing from a habitability point of view, but can still be used to put
constraints on global atmospheric circulation models for planets
in this regime, such as hot Jupiters or warm Neptunes.

In the two-body problem, tides damp the eccentricity, which
in turn destabilises the different equilibria for the spin. However,
low-mass planets in the habitable zone of M-dwarfs are usually
found in multi-planet systems (e.g. Dressing & Charbonneau
2015). As a result, the eccentricity can be excited by mutual
perturbations and keep a non-zero value despite the tidal dissipa-
tion (Laskar et al. 2012; Barnes 2017). In multi-planet systems,
the obliquity can also be locked in a Cassini state where it
retains a non-zero value (Colombo 1966). Strong tidal effects
usually destabilise high-obliquity Cassini states (e.g. Levrard
et al. 2007), but in the peculiar 5/2 and 7/2 resonances the tidal
torque can help to sustain those equilibria.

The tidal equilibria for the spin (ω/n, θ) depends only on
two key parameters: the eccentricity, e, and the relative relax-
ation time, τ. The eccentricity is a parameter that we can already
access with the current observational techniques, in particu-
lar for planets detected with the radial-velocity method. τ is
therefore the only totally unknown parameter, and needs to be
explored in order to put constraints on the possible spin state
of a close-in planet. Inversely, if we are able to measure the
spin of a given planet, we can put constraints on τ. Although
not possible at present, a new generation of instruments, such as
the ELT-METIS integral field spectrograph (Quanz et al. 2015;
Brandl et al. 2021), will combine high-contrast imaging with
high-resolution spectroscopy, and allow us to determine the spin
state of these planets.
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