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Abstract. Although airborne optical array probes (OAPs)
have existed for decades, our ability to maximize extrac-
tion of meaningful morphological information from the im-
ages produced by these probes has been limited by the lack
of automatic, unbiased, and reliable classification tools. The
present study describes a methodology for automatic ice
crystal recognition using innovative machine learning. Con-
volutional neural networks (CNNs) have recently been per-
fected for computer vision and have been chosen as the
method to achieve the best results together with the use of
finely tuned dropout layers. For the purposes of this study,
The CNN has been adapted for the Precipitation Imaging
Probe (PIP) and the 2DS Stereo Probe (2DS), two commonly
used probes that differ in pixel resolution and measurable
maximum size range for hydrometeors. Six morphological
crystal classes have been defined for the PIP and eight crys-
tal classes and an artifact class for the 2DS. The PIP and
2DS classifications have five common classes. In total more
than 8000 images from both instruments have been manually
labeled, thus allowing for the initial training. For each probe
the classification design tries to account for the three primary
ice crystal growth processes: vapor deposition, riming, and
aggregation. We included classes such as fragile aggregates
and rimed aggregates with high intra-class shape variability
that are commonly found in convective clouds. The trained
network is finally tested through human random inspections
of actual data to show its real performance in comparison to
what humans can achieve.

1 Introduction

Accurately representing ice clouds in radiative transfer mod-
els is extremely challenging due to the high diversity of the
crystal habits present in these clouds (Yi et al., 2016). Thus,
improving the general understanding of ice–cloud feedback
in the climate system requires a better understanding of the
processes occurring in these clouds (Wyser, 1999). In addi-
tion, the impact of atmospheric conditions on microphysical
processes and resulting crystal morphologies cannot be stud-
ied without having reliable measurements of crystal habits
inside ice clouds.

The qualitative observation of ice crystals in clouds in the
20th century has led to numerous attempts toward their clas-
sification into multiple crystal habit categories. For example,
Nakaya (1954), Magono and Lee (1966), and more recently
Kikuchi et al. (2013) have produced general classifications
for natural ice and snow crystals, the latter including 130
sub-classes, reflecting the high diversity in shapes one can
expect from ice crystals. Related to the classification method-
ology, scientists have identified three primary pathways of
ice crystal growth, namely vapor deposition, riming, and ag-
gregation (Pruppacher and Klett, 2010). The respective role
of each of the three processes in the formation of different
types of ice crystals has been frequently addressed, for exam-
ple for vapor deposition (Bailey and Hallett, 2009), graupel
(Sukovich et al., 2009), and aggregation (Hobbs et al., 1974).
However, since accurate and reliable in situ measurements
of natural ice crystal morphology has been very challeng-
ing in ice clouds, the processes associated with the formation
and evolution of atmospheric ice are still poorly understood
(Baumgardner et al., 2012).

Optical array probes (OAPs) are high-frequency airborne
imagers commonly used for in situ observation of ice crystals
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in clouds. They produce large numbers of ice crystal images
with counting statistics that allow establishing particle size
distributions within seconds.

Since OAPs were developed in the 1970s (Knollenberg,
1970), several attempts have been made to produce high-
performance classification algorithms based on morphologi-
cal descriptors. While mathematically simple, the feature ex-
traction for pattern recognition of 2D hydrometeor images
developed by Rahman et al. (1981) and Duroure (1982) gives
insight on how morphological image analysis is useful to
automatically categorize OAP images into different classes.
Their approach works well with synthetic images of singu-
lar crystals that exhibit completely unambiguous orientations
and idealized shapes (see Rahman et al., 1981). In practice,
the overwhelming majority of observed ice crystals are not
perfectly oriented, undergo multiple microphysical processes
at different levels including aggregation, and show natural ir-
regularities. Such methods are also limited by the pixel ren-
dering of edges from the probes, which diminishes their per-
formance. These limits were identified and reported in Ko-
rolev and Sussman (2000) wherein a feature-based classifica-
tion technique was applied to 2DC data. More recently, this
technique has been applied to images from the Cloud Parti-
cle Imager (CPI), an imager based on a charge-coupled de-
vice (CCD) with finer resolution and grayscale levels (Law-
son et al., 2006; Lindqvist et al., 2012; Woods et al., 2018)
based on criteria for 2D pattern recognition. Finally, Praz
et al. (2018) used features from these previous studies and
from Praz et al. (2017) in a new methodology called multi-
nomial linear regression (MLR) to classify images from two
different OAPs (2DS and HVPS) and the CPI. This classifica-
tion tool has brought the feature-based approach to its highest
maturity but is still very limited in its ability to quickly pro-
cess and classify images. Furthermore, it was only roughly
evaluated on two 1 min flight periods of the OLYMPEX cam-
paign (Houze et al., 2017). In conclusion, the feature-based
approach in its ultimate form is not only slow and trained
specifically for a given context, but it also operates in a very
distant manner to the way our brain identifies shapes and ob-
jects, potentially creating bias from feature definitions.

Considering the fact that computer vision has advanced
in a way that today it can emulate the human brain’s ability
to recognize shapes and objects (Russakovsky et al., 2015),
a different approach to the classification problem was fa-
vored in the present study. Instead of relying on designed
features, a widespread and well-known method called con-
volutional neural network (CNN) (Krizhevsky et al., 2012;
He et al., 2016) reproduces the human ability to identify
complex shapes and objects and develops hierarchical sets
of features from raw labeled data. During the time when the
presented work was under development, CNN classification
tools emerged for the CPI (Xiao et al., 2019; Przybylo et al.,
2021); however, they still need to be adapted for OAP im-
age data. In general, OAP images lack textural information
(legacy data sets comprise black and white images, while

newer probes have a maximum of four levels of gray) and
also exhibit much coarser resolution (64/128 photodiode ar-
ray compared to a 1 megapixel camera), but they have the
advantage of continuously imaging the sample volume be-
tween the probe arms, which is not the case when relying on
a particle detector with comparably few CCD high-resolution
grayscale images. As a result, the use of OAP instruments in
airborne campaigns produces a more quantitative and statis-
tically meaningful representation of the cloud microphysical
state but with diminished morphological information (3D ob-
ject projected to binary 2D image).

In Sect. 2 of this study, the OAP data and chosen morpho-
logical classes are presented. Then the CNN methodology for
the automatic classification of ice crystals for the 2DS and
the PIP probes is detailed in Sect. 3, together with the de-
scription of the training process and evaluations of the fully
trained networks on the test set. Section 4 presents an evalu-
ation of the performance of the two classification tools with
random visual inspections. The conclusions are summarized
in Sect. 5.

2 Data Description (training data)

The very first step of the convolutional neural network
methodology is to build a database wherein images are as-
sociated with labels by an operator. This procedure implies
that classes have to be defined beforehand. In the context
of defining morphological classes, three items are mentioned
and shortly discussed here.

1. The primary goal of our habit classification is to re-
veal ice crystal growth mechanisms inside a cloud. The
designed classes in this study are rather comparable
to those used in Praz et al. (2018) (shown in Fig. 1),
which were themselves inspired by the pioneering work
of Magono and Lee (1966). The chosen morphological
classes primarily account for the three ice growth mech-
anisms of vapor deposition, aggregation, and riming.
All possible crystal shapes are included in a rather lim-
ited number of classes without trying to implement the
130 classes (basically high-resolution grayscale CCD
images) from Kikuchi et al. (2013).

2. The two probes’ technical details are presented in Table
1. For the image analysis, only non-truncated images
with maximum dimensions Dmax > 300 µm (30 pix-
els, for 2DS) and Dmax > 2 mm (20 pixels for PIP)
have been classified. Below 300 µm, 2DS images are
frequently distorted by diffraction effects (e.g., Vail-
lant de Guélis et al., 2019). This effect persists above
this threshold to a lesser extent and led to the defini-
tion of a dedicated artifact class for the 2DS, labeled
as diffracted particles (Dif). Heavily rimed aggregates
are rather large and thus rarely observed in 2DS im-
ages, since they are most likely truncated and thus auto-
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Figure 1. Illustration of ice crystal habits from Praz et al. (2018) for different cloud-imaging probes.

matically discarded. Moreover, looking at the 2DS im-
ages, strikingly well-detailed combinations of columns,
plates, and dendrites were found. Although sometimes
it is not clear whether aggregation may have occurred
during their formation, the absence of riming and the
influence of diffusional growth are undeniable. The cor-
responding class for those images is denoted complex
assemblages of plates, columns, or dendrites (complex
assemblages, CAs). The coarse resolution of the PIP
makes it practically impossible to discern details such
as transparency and sharp edges associated with the dif-
fusional growth. For this reason mixed combinations of
columns, plates, and dendrites (CAs) cannot be clearly
distinguished from what is designated as fragile aggre-
gates (FAs). Due to the lower threshold of utilized PIP
images of 2 mm, capped columns and water drops are
scarce in our training database and thus were not consid-
ered morphological classes for PIP images in this study.

3. The data used were observed during several airborne re-
search campaigns. Initially, HAIC (Dezitter et al., 2013)
and EXAEDRE (Defer et al., 2015) were the main data
sources for OAP images. Selecting data and labeling
images manually, although being mandatory for a su-
pervised classification scheme, is a long and strenuous
process. Some classes were harder to find in these cam-
paign data and motivated the use of two further cam-
paigns (AFLUX and EUREC4A) to speed up filling
these less populated habit classes (see Table 2).

Traditionally, the training set is comprised of randomly
chosen images from the whole available database. Since all
the classes are not represented equally in crystal numbers, an
adjustment in the loss function should be made to account
for the classes with lower representation. Still, an operator
in charge of classifying these images would face the diffi-
culty of classifying particles from images that stand between

multiple classes or that are not identifiable because of am-
biguous random projections. Defining a class dedicated to ir-
regular crystals has been avoided, since we believe that, with
the high variability associated with crystal shapes, it would
be very dependent on the appreciation of the operators, who
could eventually fit too many images into this “irregular”
class. Moreover, the nature of the output of a CNN makes
it possible to produce non-categorical results in order to ex-
press some level of ambiguity between two or more classes
instead of simply stating its inability to identify the image.

The overview of the nine microphysical habit classes ac-
counted for in this study is presented in Table 3 and discussed
below. Overall, nine morphological classes have been de-
fined; five are common to the two probes: compact–graupel
(CP), fragile aggregates (FAs), columns (Co), combination
of columns and bullets (CBC), and hexagonal planar crystals
(HPCs). Moreover, one class specific to the PIP consists of
rimed aggregates (RAs), and three specific classes are added
for the 2DS, namely water droplets (WDs), capped columns
(CCs), and an artifact class (Dif) for out-of-focus images.
Co, CCs, and HPCs are singular, unrimed crystal images that
originated solely from diffusional growth. CBCs and CAs
have mostly grown by deposition of water vapor and may
result from aggregation of more than one particle but remain
unrimed. FAs are products of aggregation of several unrimed
or lightly rimed particles, while RAs show an evident fluffy
aspect, characteristic of the collection and freezing of super-
cooled droplets on the crystal’s surface. Finally, CPs are ice
particles with the highest degree of riming, in which the con-
tribution of the two other processes is invisible. In every case,
growth by vapor diffusion cannot be ruled out as it continu-
ously contributes to ice production in a cloud.

Some images obtained with OAPs are commonly found
to be ambiguous in the sense that they do not clearly be-
long to exactly one class. One could justify the inability of
non-ambiguous classification of every image with two inde-
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Table 1. Optical array probe technical specifications.

Specifications 2DS PIP

Frequency Depends on aircraft speed Depends on aircraft speed
Resolution 10 µm per pixel 0.1 mm per pixel
Number of photodiodes 128 64
Particle size range 10–1280 µm 0.1–6.4 mm
Image type Black and white Black and white
Selected range for classification 300–1280 µm 2–6.4 mm

Table 2. All the PIP images in the original data set originate from two events in the EXAEDRE campaign and three events of the HAIC
campaign. The context of these events are thunderstorms in the Mediterranean Sea for EXAEDRE and mesoscale convective systems in
French Guiana for HAIC. Most of the 2DS data also originate from the same events. The AFFLUX campaign data were extracted from a
single flight in stratiform clouds in the Arctic to provide more Col, CBCs, and HPCs of various sizes. Finally, all the water droplets of the
2DS data set were captured during a single flight in liquid water clouds in the Caribbean Sea during the EUREC4A project.

EXAEDRE HAIC AFLUX EUREC4A

Reference Defer et al. (2015) Dezitter et al. (2013) not available yet Bony et al. (2022)
OAPs deployed 2DS and PIP 2DS and PIP 2DS 2DS
Crystal habits found All All Col, CBC, HPC WD

pendent explanations. First of all, OAPs are 2D binary low-
resolution imagers. Random orientations combined with the
lack of surface information and the low number of pixels oc-
casionally hide important features that are required to iden-
tify certain crystal types. For example, a plate seen from the
side could be strictly impossible to differentiate from a col-
umn. Secondly, the definition of crystal habit classes is lacu-
nar by design, and it is unavoidable that some crystals might
be found not to belong to any class or to belong to more than
one class. As a matter of fact, the classes defined here or in
general in the literature (Kikuchi et al., 2013 or Magono and
Lee, 1966) are only landmarks for local clusters in a con-
tinuous multivariate space wherein ice crystals happen to be
moved by the microphysical processes that are active in their
respective environment during their lifetime. Taking into ac-
count these two factors, it was decided in the process of form-
ing the initial labeled data set for each probe that only un-
ambiguous images were selected for the test, validation, and
training sets rather than randomly selected images from the
available data and trying to classify all of them. Since the
classification is meant to be applied to actual data, it is im-
portant that we provide a way to quantify its performance and
the uncertainty associated with it (discussed in Sect. 4).

3 CNN methodology

This section presents the classification methodology that was
applied to the two OAPs. First some insight is given on
the implemented convolutional neural network (CNN) tech-
nique. Then the training methodology is detailed. Finally, the

quality of the training is evaluated with independent test sets,
and the results are discussed.

3.1 Convolutional neural network, general principles

CNN and similar deep learning techniques are largely used
in medical image analysis (Tajbakhsh et al., 2016; Gao
et al., 2019), but are also emerging in other research fields,
for example in biology for plankton image analysis in Luo
et al. (2018). Especially in medical image analysis, the suc-
cess of CNN algorithms is evident. They are highly reliable
and have, by design, the ability to learn hierarchically built
complex features from raw data. CNN is therefore an in-
credibly pertinent technique for image analysis in general
(Krizhevsky et al., 2012). The following architecture descrip-
tion presents the algorithm in its working state (for further
information see Goodfellow et al., 2016), and its training for
each of the two probes will be described in the next subsec-
tion.

When applied to computer vision, CNN algorithms con-
sist of two parts: a feature extractor and a classifier (see
Fig. 2a). Both of these have large sets of trainable parameters,
which will be updated during the learning phase through gra-
dient backward propagation. The feature extractor is hierar-
chically built with two initial building blocks: convolutional
layers (Convlayers) and subsampling layers (maxPooling in
our case) – both are illustrated in Fig. 2b and c, respectively.
Convlayers can be seen as filters or masks. In practice, it is a
square matrix with trainable values. The size of these filters is
called their receptive field (here 3 by 3), and they are applied
through a dot product to each pixel and all the pixels around
in the receptive field. After normalization and use of an ac-
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Table 3. The nine microphysical classes used in the classifications. Green circles mean the microphysical process recently played a role in
the particle’s growth. Red circles mean the microphysical process certainly did not occur in the particle’s growth. The gray circle means the
microphysical process might have happened at some point, but there is no evidence of it happening recently. In parentheses is the number of
images used in the original labeled database for each class. ∗ Images shown for combinations of columns, plates, and dendrites are scaled
down compared to other images so that they fit in the table properly.

tivation function, the convolution of the input by each filter
produces a set of feature maps. They are then subsampled
with a 2 by 2 maxPooling filter. Subsampling diminishes the
noise induced by the previous convolution and summarizes
the information contained for feature maps to its most cru-
cial part. The output obtained from the subsampling layer is
a set of square matrices with dimensions twice as small as the
input. The number of filters of the next convolution step can
therefore be doubled with no increase in computational cost,
increasing the potential complexity of the algorithm and ul-
timately its ability to generalize and infer relevant abstracted
features as we go into the deeper layers. Convlayers and max-
Pooling layers are repeated (see Fig. 2a) in the feature ex-
tracting part until every feature map is reduced to a 1 by 1
size.

Finally, a fully connected perceptron with one hidden layer
serves as the classifier (right side in Fig. 2a) to attribute
a class to the highly abstracted features extracted from the
original input image. In this final stage, for individual im-
ages, probabilities are calculated to belong to any of the el-
igible classes. A minimum threshold (usually of 50 %) can
eventually be applied to segregate images that failed to be
identified by the algorithm. Actual model plots for both
probes (PIP and 2DS) are provided in Fig. A2a and b, re-
spectively.

Three state-of-the-art overfitting countermeasures were
implemented in the initial architecture: namely, dropout lay-
ers were added between the subsampling and convolutional
layers, an early stopping condition was set during the training
phase, and batch normalization was applied.

https://doi.org/10.5194/amt-15-5141-2022 Atmos. Meas. Tech., 15, 5141–5157, 2022
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Figure 2. CNN architecture and building blocks. (a) Simplified architecture of convolutional neural networks. (b) Elementary operation at
the heart of convolutions from http://intellabs.github.io/RiverTrail/tutorial/ (last access: 7 September 2022). (c) Illustration of maxPooling,
found at https://medium.com/mlearning-ai/images-from-the-convolutional-world-596b4aa6cdae (last access: 7 September 2022).

The use of dropout allows training very complex models
with a limited number of training data without overfitting
(Srivastava et al., 2014). This method is applied only dur-
ing training to the fully connected layer and to the convo-
lutional layers (Park and Kwak, 2016, proved dropout use-
fulness on convolutions). An exponential number of shallow
models sharing weights are improved during training. As a
result, multiple confirmation paths emerge, each one of them
focusing on essential features. The trained model becomes
much more robust to noise and translations. The effect of
dropout adds to the data augmentation layer, an early stop-
ping condition, and the batch normalization to ensure that
overfitting will not happen and that the ability of the model
to generalize is enhanced as much as possible.

3.2 Training

An overview of the training methodology is given in Fig. 3.
After labeling the data, the images are padded to the same
size and randomly split into three subsets: test (20%), vali-
dation (16%), and training (64%). The training set is used
to teach the model. The feature extractor and the classifier
presented in the previous subsection can be trained at the
same time using the feed forward–backward error propaga-
tion scheme as represented in Fig. A1. After every epoch,
which is completed when all the training data have been used

to update the trainable parameters, the model is evaluated on
the validation set to monitor its improvements and whether
or not overfitting is occurring. Whenever the loss function
computed on the validation set fails to improve five epochs
in a row, the training is stopped. If the validation loss and ac-
curacy are judged to be satisfactory, we proceed to evaluate
the model with the test set. This last step produces the per-
formance metrics shown in Fig. 4 (precision is the fraction
of detections reported by the model that were correct, recall
is the fraction of true events that were detected, and the f1
score is the harmonic mean of precision and recall (Goodfel-
low et al., 2016)).

3.3 Training evaluation: results on test sets

Hyperparameter tuning was performed using the Keras built-
in random search functionality (Chollet et al., 2015) and re-
sulted in the values presented in Table A1. Other hyperpa-
rameters (dropout values and the number of neurons in the
fully connected layer) also required tuning.

The PIP CNN model (Fig. A2a) was trained using stochas-
tic gradient descent (SGD) with a batch size of 16 and a
decay rate of 10 % every five epochs applied to the learn-
ing rate. Weights were initialized using the Glorot initializa-
tion with a uniform distribution (these are the default set-
tings when using the Keras library; Chollet et al., 2015). The

Atmos. Meas. Tech., 15, 5141–5157, 2022 https://doi.org/10.5194/amt-15-5141-2022

http://intellabs.github.io/RiverTrail/tutorial/
https://medium.com/mlearning-ai/images-from-the-convolutional-world-596b4aa6cdae


L. Jaffeux et al.: Ice crystal images from optical array probes 5147

Figure 3. Overview of training methodology.

Figure 4. Evaluation of training for each probe with an independent test set. (a) Left, classification report (PIP) obtained for the corresponding
test set. Right, confusion matrix (PIP) obtained for the corresponding test set; values on the diagonal correspond to samples correctly
classified. (b) Left, classification report (2DS) obtained for the corresponding test set. Right, confusion matrix (2DS) obtained for the
corresponding test set. The matrix values are normalized so that they sum up to 100 %.
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use of a RandomFlip layer (only active during training) as
a first layer drastically improved the quality of the training.
This layer randomly flips the input image horizontally (left–
right flip), vertically (top–bottom flip), both ways, or not at
all (with all four possibilities having the same probability)
and thus produces more variety in orientations in the training
data. An early stop condition was used in order to end the
training, under the condition that the validation loss function
did not improve in five epochs. In total, 1 634 438 parameters
were trained to obtain this model. The performance of the
model for the test set is described in Fig. 4a. Performance
is high in general with an overall f1 score above 91.1%.
The worst recognizable class is HPCs with an f1 score of
81.08%. The confusion matrix indicates some porosity be-
tween HPCs and RAs: eight RAs were identified as HPCs
in the test set (1.22 % of the total). These results are hardly
comparable with any results found in the literature, since PIP
images are not usually used in classification algorithms.

The model corresponding to the 2DS (Fig. A2b) was
trained using the same SGD approach as the PIP model, with
a batch size of 16 and a decay rate of 10 % every five epochs
applied to the learning rate. The same weight initialization
method as the PIP model was performed and the same Ran-
domFlip data augmentation layer was used during training.
Finally, the same early stop condition terminated the training
phase. The main difference between the two models was the
input size increasing from 110 by 110 for PIP to 200 by 200
for the 2DS (Fig. A2b) and the depth of the first convolutional
layer (64 filters for the 2DS against 32 for the PIP). As a re-
sult, an additional combination of the convolutional layer and
subsampling layer (and dropout during training) had to be
implemented and the size of the fully connected layer of the
classifier had to be increased, taking into account that there
are now 2048 1 by 1 cells in the final feature map array at
the end of the feature extractor (512 for the PIP). 26 397 129
parameters were determined during the training. The obser-
vation of the classification report (left panel of Fig. 4b) in-
dicates that some classes are very well identified, which are
CBCs, Co, CPs, Dif, and WDs, while the remaining classes
are less well recognized in the test set. Most of the confu-
sion seems to result from images being misclassified in the
CA class: 18.5% of all CCs (1.32% of the total), 11.4% of
all HPCs (0.92% of the total), and 9.9% of all FAs (1.22%
of the total) (see right panel of Fig. 4b). These results ex-
hibit the difficulties we faced in defining a set of exhaustive
classes with as few overlaps as possible. When looking at the
image examples in Table 3, one can easily notice how CC,
HPC, and CBC classes share similarities in their shapes with
the CA class, which has much higher internal variability. The
most comparable results we can relate to in the literature are
those of Praz et al. (2018). They obtained an overall accuracy
of 93.4 % for this probe but had two fewer classes, namely no
comparable class to CC and one common class merging CA
and FA. If we put together the CA and FA classes in the con-
fusion matrix, considering that the images confused between

the two classes are correctly identified (1.22 % and 0.41 % of
the total), and ignore every image that was either identified
or labeled as a capped column (9.15 % of the total), the to-
tal accuracy reaches 91.1 %, which mainly reflects how class
definitions can affect the results, since the original databases
had quite different origins.

4 Random inspections: assessing performance,
understanding the results, and improving training
data

First, the motivations for performing random inspections are
given, then the methodology is discussed. Finally, the results
are presented for both probes in the two last subsections.

4.1 Motivations and methodology for random
inspections

Random inspections have two benefits. The primary benefit
is to be able to compare the variability among human predic-
tors and, particularly, between human predictors and the net-
work. A secondary benefit is simply to produce more man-
ually labeled data. In the case of misclassified images, the
newly labeled data can be used to increase intra-class vari-
ability and the overall performance of the network.

In order to compare the implemented CNN algorithm with
human performance, 10 scientists from the Laboratoire de
Météorologie Physique were gathered and given the keys to
recognizing the ice crystal classes during two meetings (one
for each probe), wherein they were presented with all mor-
phological classes and given a subset of images from each
class from the training data as a reference point. At the end
of each meeting they were tested on other images from the
training data and assisted with the correction of their tests.
This exercise was thought of as a way to improve their skills
and as an opportunity to clear up some of the confusion that
could remain; the results were nonetheless recorded.

Using data from the recent ICE-GENESIS campaign, 400
images were randomly extracted for the PIP and 500 for the
2DS. An html form was designed and shared with all the
participants. They had to attribute a single class associated
with a degree of confidence (not taken into account in the
scoring) to each image, one after the other. Time spent on
each image was recorded.

4.2 Results

4.2.1 PIP

On average, each participant spent 1 h and 10 min complet-
ing the PIP form. Figure 5 details the overall results of the
random inspections, and Fig. 5a displays all 4000 responses
from the 10 operators, which are normalized, while Fig. 5b
shows how the 400 images are classified by humans and the
network in numbers. In this second case a majority rule is
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Figure 5. Comparison between human and CNN results. (a) Confusion matrix (PIP); identification threshold at 50% for the CNN results.
(b) Mean confusion matrix (PIP) in numbers; identification threshold at 50% for the CNN and human results. Overall, the agreement between
them is 50.7%. The expected porosity between CP and RA and between FA and RA seems to appear and is investigated in Fig. A3. Every
one of the 40 images considered unidentified by the algorithm shows its highest score in the CP class.

used to determine the class attributed by humans; if the ma-
jority (50 %) is not reached for a given image then the image
is considered unidentified by humans. The inspected images
belong mostly to the CP, RA, FA, and Col classes accord-
ing to human inspection and CNN. Humans classified many
more particles as RAs than the algorithm. Most of the images
classified as RAs by humans and not by the CNN are either
classified as CPs or FAs by the CNN. This confusion was ex-
pected since with randomly picked images, the chances were
high to find ice crystals between those classes. When com-
paring the images for which the CNN and humans agree and
disagree, respectively, for the three classes RA, FA, and CP
(Fig. A3), it appears that the CNN has developed more con-
sistent class definitions and is therefore superior to the hu-
mans in discriminating between the three classes. 25 images
remain unidentified for the CNN and are classified as RAs
by the humans (Fig. A4). Looking at their scores, the CNN
is undecided about whether to classify them either in RA or
CP, with neither of the two probabilities above 50%. There-
fore, one might want to merge RA and CP before applying
the identification threshold in order to have the full estimate
of the importance of riming. The porosity between RA and
FA is somewhat less evident with the sampled images. Nev-
ertheless, in order to have a better estimate of the importance
of aggregation a similar approach could be applied.

4.2.2 2DS

On average, each participant spent 1 h and 18 min completing
the confusion matrix (2DS), with the identification threshold
at 50% for the CNN results. DS forms (three forms were

provided this time on demand by the participants) were also
completed. Figure 6 details the overall results of the random
inspections (same as Fig. 5 but for the 5000 responses and
500 images of the 2DS inspection data set). The inspected
images belong mostly to WD, CP, Dif, and Col classes ac-
cording to both humans and the CNN. With a limited num-
ber of classes present in the sample (only four out of nine),
general agreement is found between the CNN and humans
(58.2%). The confusion matrices reveal that the Dif class
is the most problematic class for the CNN. Indeed, the net-
work spreads Dif between HPC and WD or does not manage
to identify them. Additionally, despite being able to iden-
tify almost every WD as such, the algorithm puts some CPs
in this class in addition to the aforementioned Dif. This
can be explained by all three classes consisting of possi-
bly small quasi-spherical or spherical particles. Humans and
the CNN identified some CCs. When looking in more de-
tail, it seems that both humans and the CNN were confused
by small, sometimes diffracted sheaths and needles. Three
out of 10 participants reported difficulties in classifying “H-
shaped” images (shown in Fig. A5) that we would interpret as
small diffracted columns (see Vaillant de Guélis et al., 2019).
The CNN exhibits this issue as well and shows a lack of such
particles in the original training database for the Dif class.

5 Conclusions

An automatic classification tool has been developed for two
OAPs that are routinely used aboard research aircraft in the
cloud observation community in general (Leroy et al., 2017;
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Figure 6. Comparison between human and CNN results. (a) Confusion matrix (2DS); identification threshold at 50% for the CNN results.
(b) Mean confusion matrix (PIP) in numbers; identification threshold at 50% for the CNN and human results. Overall, the agreement between
them is 58.2%. The expected porosity between CP and RA and between FA and RA seems to appear and is investigated in Fig. A3. Every
one of the 40 images considered unidentified by the algorithm shows its highest score in the CP class.

Defer et al., 2015; Houze et al., 2017; McFarquhar et al.,
2011). Both probes, namely the 2DS and the PIP, produce
2D binary images at high frequency in different size ranges.
Because of the inability to recognize ice crystal morphol-
ogy from images with a limited number of pixels, the chosen
ranges of 300–1280 µm for the 2D-S and 2000–6400 µm for
the PIP do not overlap. Still, they provide us with comple-
mentary information and therefore the classification model
for both probes is a strong asset for understanding cloud mi-
crophysical growth processes. The methodology presented
in this paper was adapted from the most widespread im-
age recognition technique, which attempts to reproduce the
human brain’s ability to learn and recognize shapes: the
convolutional neural network. Two of these networks have
been successfully trained for the two probes and were con-
fronted with inspections by humans of unknown image data.
The present study utilized image data from the HAIC and
EXAEDRE projects in tropical and midlatitude convection
(with pronounced crystal growth contributions from aggre-
gation and riming), the AFLUX Arctic project to add vapor-
diffusion-dominated growth images, and precipitating drops
gathered within the EUREC4A project in the Caribbean Sea.
By intention, we did not tune the methodology for a partic-
ular type of cloud, nor was it a goal to add contextual in-
formation (dynamic, thermodynamic, microphysical, or pre-
sumed morphological information on crystal populations) to
the classification. The human inspection, rarely performed in
the scope of applied artificial intelligence, provides a credible
evaluation of the CNN tool’s performance. The main conclu-
sions of this study are the following.

1. Despite the low number of pixels of OAPs and their bi-
nary nature, it is possible for CNNs to learn features
associated with the classes defined in Sect. 2.

2. The PIP CNN algorithm proved to be more reliable than
humans for some classes that see a lot of porosity in
field data (e.g., rimed aggregates, compact particles, and
fragile aggregates).

3. Data assimilation has been made possible by running
random inspections and should be used for both probes,
especially for the 2DS, to increase the intra-class vari-
abilities of the few represented habits.

4. Random inspections should be part of the classification
routine (see Fig. A6), since this allows quantifying its
performance, better understanding its results, and ac-
quiring more labeled data, improving the representation
of individual classes.

In summary, this study describes a new methodology for
ice crystal morphological recognition from OAP images and
a way of assessing its performance. Indeed, a systematic
and consistent classification of OAP data can provide im-
proved quantitative information on crystal habits by applying
the presented methodology. In the near future, this should
facilitate improved detailed microphysical studies, for ex-
ample targeting habit-specific mass relationships (e.g., from
Leinonen et al., 2021). Similar classification tools can easily
be developed for other OAP probes, for example the cloud-
imaging probe (CIP), the four-level grayscale CIP, and the
high-volume precipitation spectrometer (HVPS). The CIP
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(pixel resolutions of 15 and 25 µm) mainly overlaps the 2DS
size range, while the HVPS (up to 1.92 cm) would extend the
maximum hydrometeor size for the morphological analysis
compared to the PIP. Last but not least, common effort could
be made in the global atmospheric sciences community in or-
der to gather a common image database for each instrument,
thereby agreeing on defined classes, so that we can develop
and test universal future classification algorithms.

Appendix A

Table A1. Hyperparameter tuning results for each probe.

Hyperparameter/layer Value for PIP model Value for 2DS model

dropout 0.1 0.3
dropout_1 0.1 0.25
dropout_2 0.3 0.25
dropout_3 0.4 0.15
dropout_4 0.15 0.05
dropout_5 0.3 0.5
dropout_6 0.25
Number of unit in dense layer 128 768
Learning rate 8.031 × 10−4 5.055×

−4

Figure A1. The three steps leading to parameter improvement. (1) Forward pass: the image is passed through the network and an output is
obtained. (2) An error is computed between this prediction and the target output. (3) This error is propagated by gradient descent back into
the network to update the trainable parameters in the model.
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Figure A2. Model plot for each probe: PIP (a) and 2DS (b).
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Figure A3. Confusion between humans (majority rule) and the CNN for the RA, FA, and CP classes. The CNN predictions are more
consistent than those of humans.

Figure A4. Images identified as RAs by participants and unidentified by the algorithm. The algorithm gave all these images a high score in
both RA and CP.
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Figure A5. Images from the random inspections identified as capped columns by either the CNN or humans.

Figure A6. Ideal use of the algorithm, which allows for improvements of the training set over time and performance evaluation.
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