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1.  Introduction
Monitoring the Earth's radiation budget is a key aspect in understanding the anthropogenic contribution to climate 
forcing (Kren, 2015). Total solar irradiance (TSI) is Earth's dominant energy input. Global temperature and TSI 
are linked by the energy equilibrium equation for the Earth system. As summarized by Schmutz  (2021), the 
derivation of this equation with respect to a variation of the solar irradiance has two terms: a direct forcing term, 
which can be derived analytically and quantified accurately from the Stefan-Boltzmann law, and a second term, 
describing indirect influences on the surface temperature. If a small TSI variation should force a large temper-
ature variation, then it has to be the second indirect term that strongly amplifies the effect of the direct forcing. 
This amplification mechanism has been debated in the scientific community for the past two decades (Egorova 
et al., 2018; Rind et al., 2014; Schmutz, 2021; Shapiro et al., 2017), because it will most likely call for a strong 
modification of the models that describe the Earth's climate response to variations in the solar radiative output. 
On shorter time scales (e.g., weekly), the existence of trend in the measurements could on a longer timescale 
(e.g., yearly) significantly bias the analysis of a solar phenomena (e.g., estimation of a new solar minima). There-
fore, it is important to produce robust and reliable TSI composite time series using all the observations available 
recorded by successive space instruments spanning 4 decades. Satellite measurements show that TSI varies on 
all timescales with a pronounced quasi-periodicity signature of approximately 11 years (Fröhlich et al., 1997; 
Kopp, 2016). Timescale variations can be classified in subdaily (minutes to hour), daily to weekly, and yearly to 
one solar cycle. Major mechanisms, such as the evolution of magnetic features on the solar surface, which domi-
nate each timescale are complex and still under investigation within the solar physics community (Xiang, 2019; 
Yeo et al., 2017). Several studies (Fontenla et al., 2009; Kopp & Lean, 2011; Yeo et al., 2021) have shown that 
TSI variations on timescales of hours are a combination of sunspot blocking and an intensification due to bright 
faculae, plages and other elements. This makes forecasting and modeling the solar cycle more difficult. As all 
satellite observations are limited in time, constructing composites is a key aspect to the investigation of TSI 
over several decades. Merging all these observations is a difficult exercise with both a scientific and a statistical 
challenge (Dudok de Wit et al., 2017). Previous approaches (Fröhlich & Lean, 2004; Mekaoui & Dewitte, 2008; 
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TSI composite time series with a Generalized Gauss-Markov model to help describe an observed flattening 
at high frequencies. It allows us to fit a linear trend into these TSI time series by joint inversion with the 
stochastic noise model via a maximum-likelihood estimator. Our results show that the amplitude of such trend 
is ∼−0.004 ± 0.004 W/(m 2yr) for the period 1980–2021. These results are compared with the difference of 
irradiance values estimated from two consecutive solar minima. We conclude that the trend in these composite 
time series is mostly an artifact due to the colored noise.
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Wilson,  1997) produced TSI composite time series by daisy chaining all the available TSI observations, but 
without including any models of the stochastic noise properties. The first methodology which relied on some 
knowledge of the underlining noise characteristics was developed by Dudok de Wit et al.  (2017), including a 
data-driven noise model and a multiscale decomposition. An approach along these lines was also employed by 
(Schöll et al., 2016) and (Haberreiter et al., 2017). The authors made use of all available solar spectral irradiance 
datasets.

Here, we present a different statistical approach, which is based on three key steps. The first step relies on data 
fusion of multiple observations based on a Bayesian framework and Gaussian processes. Our composite span-
ning the last 4 decades is obtained in the second step by daisy chaining the sub-time series resulting from the 
first step. The last step is the application of wavelet filtering to correct some unwanted correlations in the fused 
observations (i.e., bandwidth noise). The robustness of our approach is guaranteed via careful modeling of the 
TSI observations during the data fusion process. Various assumptions formulated by data scientists, can introduce 
biases in the data analysis. Some algorithms (Fröhlich & Lean, 2004; Mekaoui & Dewitte, 2008; Wilson, 1997) 
based on daisy chaining the raw TSI observations required the choice of the most trustworthy instrument, hence 
introducing a bias toward preconceived ideas of how the TSI should vary. Note that our data fusion process 
merges datasets from subsequent solar missions based on a few stochastic noise assumptions. It circumvents 
the weakness of choosing the most trustworthy instrument when performing the daisy chain on the TSI obser-
vations from various instruments, which could influence toward preconceived ideas of how the TSI should vary 
(Dudok de Wit et al., 2017).

The motivation to develop our new methodology is to advance the data-driven approach first adopted by 
Dudok de Wit et al. (2017). Our resulting TSI composite corresponds with the instrument-driven approach by the 
late Dr. Claus Fröhlich (Fröhlich, 2006) when calibrated in a similar way. We use his composite (Fröhlich, 2006) 
as a baseline for other aspects as well (i.e., Step 3 of the algorithm). However, the TSI community consensus 
composite developed by Dudok de Wit et al. (2017), is the reference time series against which our new results 
are compared.

Finally, recent studies (Dudok de Wit & Kopp, 2020; Scafetta et al., 2020; Schmutz, 2021) have debated about the 
existence of a trend in the TSI composite time series. If it exists, the origin of this trend in the TSI observations 
is unknown: one could speculate that it could be caused by a drift in the peak amplitude of solar cycles while the 
minima could all remain at the same level. Another possibility is the presence of an unknown diffusion process 
which could generate a transient signal making variations in the solar minima. One possibility could be that the 
brightness of the quiet Sun shows a trend, as suggested by Shapiro et al. (2011). Dudok de Wit and Kopp (2020) 
argue in favor of an artifact generated by unwanted noise looking at the difference between consecutive solar 
minima. Here, we go further by performing a time-frequency analysis of various TSI composite time series 
produced with various techniques, including our new product. We focus on describing the stochastic noise prop-
erties within these 40-year long time series. We use this knowledge to model the TSI composites and to conclude 
on the existence of a long-term trend.

2.  Description of the Raw Datasets
Table 1 displays the instruments and the processing centers providing the observations relative to the various 
missions used in this study. The data processing, including corrections for all a priori known influences such as 
the distance from the sun (normalized to 1 AU), radial velocity of the sun, and thermal, optical, and electrical 
corrections, are usually implemented by each processing center, leading to level-1 time series. Most of these 
instruments observe on a daily basis, with occasional interruptions and outliers. Usually, one to three of them 
operate simultaneously, although some days are devoid of observations. Note that PMODv21a is the new VIRGO/
SOHO data set released in March 2021 by PMOD using a new software described in Finsterle et al.  (2021). 
PREMOS (v1) is the released version described in Schmutz et al. (2013). ERBE/ERBS and HF/NIMBUS-7 ERB 
datasets are retrieved from the PMOD archive and the corrections made by C. Fröhlich, which are explained in 
Fröhlich (2006).

Figure 1 displays the observations from each mission spanning a specific period of time. All space missions have 
provided TSI observations with a different sampling rate. Recent instruments make several observations per day 
(with a cadence of up to 50 s for TIM/SORCE). Earlier radiometers such as ERBE/ERBS observes the sun once 
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every 14 days for 3 min on average, so that the stochastic noise properties 
of such sensors are different to those with a higher recording rate. Note that 
active in Table 1 means that the instrument is still operating. The data set 
from these missions ends in March 2021 for this study.

3.  The 3-Step Method to Produce the 41-Year Long TSI 
Composite
3.1.  Step 1: Merging Multiple Datasets With Data Fusion

Data fusion is the process of integrating multiple data sources to produce 
more consistent, accurate, and useful information than that provided by 
each individual data source alone. The process has found many applications 
in various areas ranging from industry to geosciences and solar science 
(Cocchi, 2019).

Let us call the observations to merge a(ti), b(ti), c(ti) (with {i = [1, n]}), which 
are recorded using three different instruments. The noise for each observa-
tion is additive and uncorrelated between the instruments. The model of the 
observations is defined such as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�(��) = �(��) + ��(��) , ��(��) ∼ 
(

0, �2
�
)

�(��) = �(��) + ��(��) , ��(��) ∼ 
(

0, �2
�

)

�(��) = �(��) + ��(��) , ��(��) ∼ 
(

0, �2
�
)

� (1)

where ϵa, ϵb and ϵc are zero-mean Gaussian distributed random variables (with variance 𝐴𝐴 𝐴𝐴
2

𝑎𝑎 , 𝐴𝐴 𝐴𝐴
2

𝑏𝑏
 and 𝐴𝐴 𝐴𝐴

2

𝑐𝑐  respec-
tively) modeling the noise properties intrinsic to each instrument. The data fusion algorithm aims to merge the 
observations available at each epoch ti in order to get a reliable estimate of the true signal s, that is, the solar 
activity (Feynman, 1982). We formulate the following assumptions: (a) the solar cycle is an unknown process 
(i.e., not a perfect sinusoidal signal with a 11.5 years cycle) and its variations are random (no a priori knowl-
edge). Physically, it means that two or more radiometers monitor the solar activity from a different distance 

Mission/experiment/instrument Version Start date End date

HF/NIMBUS-7 ERB – 11/1978 1/1993

ERBE/ERBS – 10/1984 8/2003

VIRGO/SOHO PMODv21a 01/1996 Active

PREMOS/PICARD v1 06/2010 03/2014

ACRIM1/SMM 1 2/1980 7/1989

ACRIM2/UARS 7/14 10/1991 9/2000

ACRIM3/ACRIMSAT 11/13 04/2000 11/2013

TIM/SORCE 19 02/2003 02/2020

TIM/TCTE 4 12/2013 05/2019

TIM/TSIS 3 11/01/2018 Active

Table 1 
Overview of the Datasets Used in This Study Including the Start and End 
Dates for Each Mission and the Latest Version Released by the Various 
Centers

Figure 1.  Various satellite missions which have conduscted total solar irradiance (TSI) observations since the late 1970s. We 
perform the fusion using the observations included in each box (dash lines).
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due to different orbits, but monitoring the same underlying information on the solar cycle. The model of s is a 
Gaussian process (GP) with zero mean and a covariance function kθ (or kernel). A GP can be generally defined 
as a finite sum of random variables normally distributed where the overall distribution is a multivariate normal 
distribution (Kolar et al., 2020); (b) we consider the noise on the measurements zero-mean Gaussian distributed. 
We can then estimate the parameters of the model of s(t) via a maximum likelihood estimator (MLE). Therefore, 
we have � ∼ ��

(

0, �� (��, ��){�=[1,�]}
)

 , with n the number of samples in the various measurements a, b and c. The 
parameters of s(t), expressed in θ, are selected by maximizing the log-marginal likelihood log  p(y|x), where y 
and x are the corrected observations, that is, y = [a(ti), b(ti), c(ti)], and the corresponding time, that is, x = [ti, 
ti]. The main limitation of GPs is that given n observations, the inverse of the n-by-n covariance matrix must be 
computed. Time complexity of such operation is of the order of O(n 3), which is computationally expensive for 
long records. Some of these missions have been recording data over two decades, which has generated large data-
sets. To overcome this limitation, we approximate the exact GPs by utilizing sparse Gaussian processes, yielding 
a maximization problem of the lower bound of log  p(y|x) following Bauer et al. (2016):

log 𝑝𝑝(𝐲𝐲|𝐱𝐱) ≥ −
1

2
𝐲𝐲𝑇𝑇

(
𝐐𝐐𝜃𝜃 + 𝜎𝜎

2𝐈𝐈
)−1

𝐲𝐲 −
1

2
log |𝐐𝐐𝜃𝜃 + 𝜎𝜎

2𝐈𝐈| − 𝑛𝑛

2
log(2𝜋𝜋) −

1

2𝜎𝜎2
𝑡𝑡𝑡𝑡 (𝑘𝑘𝜃𝜃(𝐱𝐱, 𝐱𝐱) −𝐐𝐐𝜃𝜃)� (2)

where tr is the trace operator, Qθ = kθ(x, u)kθ(u,u) −1kθ(u, x), u is a vector of inducing points to learn about the 
stochastic properties of the data, which allows to take into account long-term and short-term correlations in 
the observations and are a reasonable approximation of s. This subset of observations is used to estimate the 
initial parameters in θ. I is the identity matrix, with σ 2I the noise component of the covariance matrix (assuming 
uncorrelated measurements) formulated as 𝐴𝐴 diag

([
𝜎𝜎
2
𝑎𝑎 , 𝜎𝜎

2
𝑏𝑏
, 𝜎𝜎

2
𝑐𝑐 , 𝜎𝜎

2
𝑎𝑎 , 𝜎𝜎

2
𝑏𝑏
, 𝜎𝜎

2
𝑐𝑐 ,…

])
 . Next, we estimate the kernel kθ by 

maximizing the right-hand-side of Equation 2 with respect to u and θ. Further mathematical simplifications to 
estimate the kernel are voluntarily left out for clarity, but readers can refer to Kolar et al. (2020). We also define 
comprehensively what is a GP and its application to TSI time series (including the Bayesian framework) in 
Appendix D. We emphasize that the number of inducing points defines the size of the matrix Qθ which must be 
inverted in the maximization of Equation 2. A large number of points is necessary to avoid completely smooth-
ing the short-term and long-term correlations due to the difference in the recording rate of the instruments. The 
computational complexity is on the order of O(nm 2) (with m the number of inducing points, m ≪ n ). Therefore, 
we are limited by the computing resources available when dealing with a large matrix (i.e., over m = 3,000). Now, 
the number of inducing points vary due to the size of the input datasets (i.e., size of the boxes defined in Figure 1). 
Appendix C further documents the influence of this parameter on the quality of the fused time series. We chose 
2000 points, which provides a good balance between computational time and accuracy. Now, most of the sub-time 
series have a length greater than 7 years, therefore one can select 2,500 points or more if necessary. The shortest 
time series is when fusing PREMOS/PICARD, VIRGO/SOHO and TIM/SORCE (box 7), where we have ∼1,400 
observations. In this case, we use 1,300 points. Note that the number of inducing points for the fusion of TIM/
TSIS and VIRGO/SOHO is also constrained for the same reasons.

As described in Section 2, each instrument records the data with a different sampling rate. The fusion requires 
regularly sampled records with no gaps. We first regrid all the datasets with a sampling rate of 1 day. The datasets 
recorded with a lower rate are (linearly) interpolated. Note that the starting date of the composite time series is 
defined by the fusion between HF/NIMBUS-7 ERB and ACRIM1/SMM which is February 1980.

Nonetheless, events resulting from short-term variations in solar activity lasting less than a few days are relatively 
difficult to fuse. The radiometers on board of the various missions at time ti may not have recorded exactly the 
same event due to different distances (i.e., different orbits) and also because of differences in the observation time 
(i.e., sampling rate). The fusion of these short-term solar variations generally results in keeping only major events 
or underlying long-term solar events recorded by all the instruments at a specific time (ti).

Last, we should distinguish in the following between stochastic and solar noise in order to avoid any confusion. 
We refer to stochastic noise as the statistical definition of random processes which includes short and long-term 
correlations (i.e., white and colored noise). Solar noise results from photospheric activity associated with gran-
ules varying at different timescales over a few hours (e.g., sunspots) to a decade (e.g., solar cycle), which generate 
fluctuations in the recorded irradiance values. Further discussions are included in Appendix D.
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3.2.  Step 2: Producing the 41-Year Composite Time Series With a Modified Adaptive Filter

To perform the data fusion, we first select all the periods where at least two missions overlap for more than 
6 months (see boxes in Figure 1). With a shorter overlapping time, simulations have shown that the fusion is not 
optimal due to the limited number of inducing points. For each overlapping period, we fuse the time series corre-
sponding to different missions/instruments together in order to obtain the sub-time series.

We produce q partially overlapping composite time series (yq) with associated uncertainties 𝐴𝐴
(
𝛼𝛼
2

𝑞𝑞

)
 . We use a modi-

fied adaptive algorithm (Haykin, 2004) to daisy-chain all the sub-time series and build the 41-year composite as 
follows:

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑦𝑦 (𝑡𝑡𝑖𝑖) = 𝑦𝑦1 (𝑡𝑡𝑖𝑖)𝑤𝑤 (𝑡𝑡𝑖𝑖) + 𝑦𝑦2 (𝑡𝑡𝑖𝑖) (1 −𝑤𝑤 (𝑡𝑡𝑖𝑖))

𝑤𝑤 (𝑡𝑡𝑖𝑖) = 𝛼𝛼
2
1
(𝑡𝑡𝑖𝑖) ∕

(
𝛼𝛼
2
2
(𝑡𝑡𝑖𝑖) + 𝛼𝛼

2
1
(𝑡𝑡𝑖𝑖)

)

̄
𝛼𝛼
2
1
≤

̄
𝛼𝛼
2
2

𝛼𝛼
2 (𝑡𝑡𝑖𝑖) = 0.5

(
𝛼𝛼
2
2
(𝑡𝑡𝑖𝑖) + 𝛼𝛼

2
1
(𝑡𝑡𝑖𝑖)

)

� (3)

with ti the time spanning the period 1978–2021 and daily sampling. The two overlapping time series are y1 and y2 
and associated uncertainties 𝐴𝐴 𝐴𝐴

2

1
 and 𝐴𝐴 𝐴𝐴

2

2
 respectively. 𝐴𝐴

̄
𝛼𝛼
2

1
 , 𝐴𝐴
̄
𝛼𝛼
2

2
 are the average of the uncertainties over the overlapping 

time for y1 and y2. Note that y1 is chosen in order to satisfy the condition 𝐴𝐴
̄
𝛼𝛼
2

1
≤

̄
𝛼𝛼
2

2
 . This condition is necessary to 

guarantee that w is in the interval [0, 1]. We define w using the denominator 𝐴𝐴 𝐴𝐴
2

2
(𝑡𝑡𝑖𝑖) + 𝛼𝛼

2

1
(𝑡𝑡𝑖𝑖) in order to avoid any 

divergence. We exclude the case for which 𝐴𝐴 𝐴𝐴
2

1
(𝑡𝑡𝑖𝑖) = 𝛼𝛼

2

2
(𝑡𝑡𝑖𝑖) = 0 .

The mean value of each sub-time series resulting from the data fusion process is relative to the lowest mean 
value of the input TSI datasets. We end up with a different mean value for each sub-time series. Before applying 
the modified adaptive algorithm on two consecutive time series, we scale the second sub-time series using the 
common period between the two time series. It results in a TSI composite time series with an arbitrary mean 
value. To obtain the correctly scaled TSI composite, we employ the TSI value defined by Prša et al.  (2016), 
which was derived as the averaged TSI value over Solar Cycle 23. This approach is also applied here, that is, we 
determine the average TSI for Solar Cycle 23 of the new composite and scale it to the nominal TSI value. As 
such the new TSI composite is consistent with the nominal TSI of 1361 W/m 2 as recommended by the IAU 2015 
Resolution B3. Finally, the last step includes a wavelet filter in order to smooth the correlations introduced by 
the data fusion. The effect of these correlations in time and frequency domains is discussed in the next section.

3.3.  Step 3: Filtering the Composite With a Wavelet Filter

The data fusion process results in a filtering of the high frequency area of the spectrum of the composite time 
series. This is similar to the effect of a low pass filter, which would let the low frequencies pass through. Possible 
reasons are to be associated with the number of inducing points or other parameters as discussed in Section 3.1. 
This drawback is unwanted: (a) it may mask some peaks at high frequencies linked with daily components; (b) the 
solar minimum can be affected in the time domain by the presence of long-term correlations. Unfortunately, this 
effect is theoretically unpredictable. Here we propose to make use of a wavelet filter to generate our final product. 
We intend to reconstruct empirically the high frequencies of our fused composite time series with respect to a 
reference one. We have chosen the one released by Fröhlich (2006), based on its properties in the time domain, 
discussed in the next section. To that end, the wavelet variance (WV) provides a robust mathematical framework 
to perform the rescaling of the high frequency noise of the composite time series (Abry & Veitch, 1998). More 
specifically, we decompose the time series into an ensemble of records whose spectral content is concentrated in 
a specific frequency band. We make use of the maximum overlap discrete wavelet transform (MODWT), which 
has some advantages over the usual discrete wavelet transform: it avoids a downsampling process, unfavorable in 
some analyses(Percival & Guttorp, 1994).

In the input parameters, we choose the least asymmetric wavelet (LA(4)) with 8 scales which provides coeffi-
cients that are approximately uncorrelated between scales and reduces the impact of boundary conditions (see 
the Appendix B). For each of the 8 levels (or wavelet bands), one WV is estimated. We perform an analysis of 
WV versus scale in a log-log diagram following Abry and Veitch (1998) to identify the bandwidth noise at high 
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frequency. In our case, this corresponds to the three first levels of decomposition, which are mostly affected by 
the data fusion process. The same WV decomposition is applied to the reference time series. The coefficients of 
the input time series are then rescaled with the WV ratio between the wavelet coefficients of the two time series. 
No assumption has to be made regarding the noise structure, for example, it may be a power-law or quantization 
noise. Intuitively, this is similar to adding the right amount of white noise in the right frequency band and does 
not distort the underlying signal. Finally, we reconstruct the time series by inserting the rescaled coefficient in the 
inverse of the decomposition function, that is, the inverse MODWT. A comprehensive description of the wavelet 
filter is given in Appendix B.

4.  Results and Discussions
4.1.  Time-Frequency Analysis of the Composite Time Series

To perform a time-frequency analysis on the 41-year TSI composite, we first produce our time series with the 
3-step method. The previous products released by Dudok de Wit et al. (2017), Dewitte and Nevens (2016) and 
Fröhlich (2006) are called respectively Composite 1 (C1), Composite 2 (C2) and Composite 3 (C3) in the follow-
ing text. Note that we do not include the ACRIM composite for the sake of clarity in this study. The ACRIM 
composite (Wilson, 1997) was shown to differ substantially with C1, C2 and C3, as discussed in Dudok de Wit 
et al. (2017). Thus, it should also differ with our new composite and lead to the same conclusions. The new TSI 
composite is named Composite PMOD- Data Fusion (CPMDF). In Appendix B, we discuss the composite with-
out applying the wavelet filter. Figure 2 displays the composite time series overlaying C1 and C3. The estimation 
of TSI at the solar minimum across the various solar cycles from 1980 to the present is estimated in Table 2.

Note that the solar minima are underlined in Figure 2 (see SM - yellow boxes). The solar minimum periods are 
chosen according to Dudok de Wit et al. (2017) and Finsterle et al. (2021) by looking at the lowest value in the 
yearly-averaged sunspot number. We then average the irradiance values over a 1-year interval centered on that 
date to produce the corresponding solar minimum value. The associated uncertainty is the variance of the meas-
urements over the same period. When comparing the mean difference between the product and our time series 

Figure 2.  New composite Composite PMOD- Data Fusion (CPMDF, orange) based on merging 41 years of total solar irradiance (TSI) measurements. For comparison, 
C3 (Fröhlich, 2006) and C1 (Dudok de Wit et al., 2017) are also shown (gray line). A 30-day running mean of CPMDF is shown as a yellow/purple dashed line. The 
orange boxes are associated with the solar minima (SM) for each solar cycle described in Table 2. For context, the monthly sunspot number is also displayed.
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over the various solar minima, the new composites agree with C1 at 0.09 ± 0.04 W/m 2, C2 at 0.08 ± 0.06 W/m 2, 
and C3 at 0.03 ± 0.01 W/m 2. The difference is marginal for C1, C2 and C3. Note that C2 is rescaled to the nomi-
nal TSI value of 1361 W/m 2 adopted by the IAU 2015, averaged over Solar cycle 23. By applying this process, 
the calculated offset is equal to 2.44 W/m 2, which is due to the calibration based on the absolute level estimated 
from DIARAD/SOVIM. C1 and C3 are near the nominal TSI value (below 0.1 W/m 2 ) averaged over Solar cycle 
23, due to their intrinsic processing.

Now, we analyze the Power Spectrum Density (PSD) of the composite time series CPMDF displayed in Figure 3. 
We can underline the four frequencies (11.5 years, 27, 9 and 7 days ) related to solar activity and described 
by Fröhlich et  al.  (1997). The frequency associated with 11.5  years is the Schwabe cycle. The quasi 27-day 
solar cycle is caused by the sun's differential rotation (presumably first observed by Galileo Galilei or Christoph 
Scheiner in the first half of the 17th century) (von Savigny et  al.,  2019). The spectrum is divided into three 
areas (i.e., box A, B and C). The definition of the three areas follows the description of the photospheric activity. 
The latter associated with granulation, super-granulation and meso-granulation (Andersen et al., 1994; Fröhlich 
et al., 1997) generates fluctuations in TSI at different timescales. Due to our daily resolution, frequencies asso-
ciated with phenomena lasting a few hours or less (i.e., granulation - (Fröhlich et al., 1997)) cannot be observed. 
Note that the instrumental effects due to the recording of the observations cannot be ignored, but it is difficult to 
decorrelate it from the other noise sources.

Box A shows a flattening of the curve at high frequencies. The PSD of the products C1 and C3 experience the same 
flattening at high frequencies. For comparison, Appendix C.4 displays the PSD of data recorded by the VIRGO/
SOHO radiometer (PMO6V) for the degradation corrected TSI observations on the main channel (VIRGO-A), 
released in PMO6v21 (Finsterle et al., 2021) at a 1-min sampling rate. We can observe that the flattening effect 
disappears in the sub-daily frequency band. Shapiro et al. (2017) discuss that the high frequencies are associated 
with the radiometer technical characteristics and satellite movements (i.e., open/close shutter, orbit revolutions). 
Andersen et al. (1994) and Fröhlich et al. (1997) also show that the solar noise flattens in this frequency band. 
We can then conclude that the flattening curve of the PSD is due to the low-sampling rate in the TSI composites.

Box B is the power-law or the frequency ramp (between 0.06 and 0.25 day −1). This phenomenon is due to the 
existence of correlations in the observations. It is arguable that this power-law describes the long-term correla-
tions (i.e., over years), due to the ramp spanning frequencies over only a few days (4–20 days). Therefore, we can 
only speculate what underlying process could generate it. For example, it could be an unknown diffusion process 
associated with the sun's activity which could be modeled with a specific colored noise called Matérn process. 
Nonetheless, the steepness of this ramp shows the degree of correlation or the type of stochastic noise within the 
time series, by fitting a power-law model such as S(f) ∼ 1/f β. The exponent β defines the type of colored noise: 

TSI level (μ ± σ [W/m 2])

Composite name

C1 C2 C3 CPMDF

μ σ Μ σ μ σ μ σ

Solar Cycle 21/22 Minimum (SM1) 1360.51 0.13 1360.39 0.13 1360.59 0.12 1360.56 0.13

ΔI21/22−20/21 – – – – – – – –

Solar Cycle 22/23 Minimum (SM2) 1360.69 0.14 1360.46 0.16 1360.57 0.15 1360.55 0.13

ΔI22/23−21/22 0.18 0.25 0.07 0.28 −0.02 0.27 −0.01 0.26

Solar Cycle 23/24 Minimum (SM3) 1360.53 0.04 1360.44 0.04 1360.42 0.06 1360.46 0.04

ΔI23/24−22/23 −0.16 0.18 −0.02 0.18 −0.15 0.21 −0.09 0.17

Solar Cycle 24/25 Minimum (SM4) – – 1360.43 0.07 – – 1360.39 0.07

ΔI24/25−23/24 – – −0.01 0.11 – – −0.07 0.11

Note. The new TSI composite is abbreviated to (CPMDF). The difference in irradiance between solar minima (SM) from 
consecutive solar cycles (e.g., ΔI22/23−21/22) is also displayed with the uncertainties (bold text).

Table 2 
Estimation of Total Solar Irradiance (TSI) at Solar Minimum (Minimum) Over the Last 41 Years From TSI Time Series 
(Mean μ and Standard Deviation σ) Released by Dudok de Wit et al. (2017) (C1), by Dewitte and Nevens (2016) (C2) and 
by Fröhlich (2006) (C3)
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flicker noise corresponds to β equal to 1, a random walk to β equal to 2, and white noise with β equal to 0 (J.-P. 
Montillet et al., 2021).

Moreover, in C1, C2 and C3, the stochastic noise properties include the correlation from the stochastic part of the 
solar cycle. In Dudok de Wit et al. (2017), the authors subtracted various TSI time series from different missions 
(i.e., ACRIM1/SMM, ACRIM2/UARS, ACRIM3/ACRIMSAT, TIM/SORCE) in order to eliminate the solar 
cycle, resulting with the stochastic properties only, that is, a mix of noises between the two instruments. Figure 4 
displays the PSD of the difference of the 41-year TSI composite. The frequency ramp is mostly attenuated. We 
can compare its steepness with the various power-law models, hence concluding that the difference composite 
time series have an exponent β within the interval ]1, 1.5]. The power-law model is not limited anymore to box 
B and it includes Box C which advocates for long-term dependencies over years, mainly associated with photo-
spheric activity. This result supports the conclusions in Dudok de Wit et al. (2017). Note that we cannot exclude 
the short/long-term correlations due to instrumental effects.

Finally, box C is associated with the low frequencies (0.06–0.00015  day −1). They are assumed to be mostly 
related to the deterministic part of the solar cycle and the long-term correlations (i.e., lasting up to years), includ-
ing perhaps also some long-term instrumental artifacts. In the appendices, Figure Appendix C.3 shows the spec-
trum of C1 with and without the solar cycle. To remove the general trend of this cycle, we subtract the time 
series using a running mean with a 5-day window. We clearly see that the low frequencies in box C have the 
lowest power in the PSD after subtracting the running mean, hence supporting our assumption. In addition, this 
frequency band also contains some of the colored noise linked to long-term correlations (over years). Previously, 
we have discussed the analysis of Figure 4 when subtracting two TSI composites. We have concluded that the 
power-law can be extended within Box C, highlighting the long-term correlations due to the sun's activity.

Figure 3.  Power Spectrum Density (PSD) of total solar irradiance (TSI) C1 (Dudok de Wit et al., 2017), C3 (Fröhlich, 2006), together with the new TSI 
composite produced with the current method Composite PMOD- Data Fusion (CPMDF). The (*) means that the time series are shifted by rescaling the amplitude 
by −4 W 2 m −4 day in the log-log plot. Box A, B and C refer to the different sections of the PSD: A is centered on the high frequency (∼3 days) showing the flattening 
of the PSD; B is the power-law which is mainly due to colored noise (correlations between 20 and 6 days) within the time series; C emphasizes the low frequency 
associated with the stochastic and deterministic parts of the solar cycle and long-term correlations. The dashed lines are the various power-law models when varying the 
exponent, which are only shown for context. The vertical doted lines (black) mark the frequencies at 11.5 years, 27, 9 and 7 days (left to right).
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4.2.  Investigating the Solar Minimum Variations

Once the 41-year TSI composite time series is obtained, we can study the existence of variations in the solar 
minima. There are two approaches: (a) the variations between consecutive solar minima, and (b) the global fluc-
tuations (general trend) over the duration of the time series.

The estimation of the variations between two consecutive solar minima is challenging based on the PSD analy-
sis of the composite time series. In order to be statistically robust, one needs to take into account the long-term 
correlations generated by the colored noise. Therefore, we follow the same methodology as in (Dudok de Wit 
et al., 2017), where we differentiate the estimated irradiance at solar minima between four consecutive cycles. 
The results are shown in Table 2 (see e.g., ΔI22/23−21/22). Overall, the fluctuations of the solar minima between 
Solar Cycle 21/22 and 22/23 (ΔI22/23−21/22) do not agree between the composites. For example, the difference is 
positive for the C1 and C2, whereas it is negative for the other composites. This disagreement could be due to the 
processing of the TSI observations for the first missions (e.g., HF/NIMBUS-7 ERB, ERBE/ERBS) discussed in 
Section 3.1. The fluctuation between the other solar cycles (i.e., Solar Cycle 22/23, 23/24, 24/25) is more homo-
geneous in terms of the sign value (i.e., negative for all of them). The averaged value is −0.10 ± 0.37 W/m 2 and 
−0.04 ± 0.15 W/m 2 for ΔI23/24−22/23 and ΔI24/25−23/24, respectively. However, any trend or large-scale fluctuation 
is downplayed by the large uncertainties associated with the difference between solar minima - up to 4 times the 
value.

For the study of the global trend (large-scale fluctuation) over the entire TSI composite time series, our approach 
is inspired by the estimation of a tectonic rate in geodetic time series (Davis et al., 2012; Montillet & Bos, 2020). 
The problem is formulated into a joint estimation of functional and stochastic models. The functional model is 
composed of two terms a linear trend and a periodic signal with 4 frequencies (11.5 years, 27, 9 and 7 days) based 
on our PSD analysis. Because of the flattening experienced by the TSI composite time series at high-frequency 
(see above discussions - Box A), the use of the General Gauss-Markov model (GGM) with white noise is appro-
priate in order to model the frequency ramp feature of the PSD (i.e., Box B). The justification of the model and the 
estimation of the parameters (using a MLE) are described in the appendices. Now, all the composite time series 

Figure 4.  Power Spectrum Density of the difference of composite time series including C3 - Composite PMOD- Data Fusion (CPMDF), C1 -C3. The vertical doted 
lines (black) mark the frequencies at 11.5 years, 27, 9 and 7 days (left to right).

 21698996, 2022, 13, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021JD

036146 by Portail B
ibC

N
R

S IN
SU

, W
iley O

nline L
ibrary on [31/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

MONTILLET ET AL.

10.1029/2021JD036146

10 of 19

experience a much lower solar minima at the end of cycle 21 around 1986, it 
renders the fitting of the deterministic part of the solar cycle difficult with a 
periodic signal. That is why we perform this study by splitting the compos-
ite time series into two time intervals 1980–2021 (including cycle 21) and 
1987–2021 (starting at cycle 22). The analysis of the functional model fitting 
the residual shows that the model fits best when using the period 1987–2021. 
This confirms our previous study where the exclusion of solar cycle 21 allows 
the trend between the difference in solar minima to be debated.

Table 3 displays the results for each TSI composite time series. C3 has the 
largest trend for both periods 1980–2021 and 1987–2021 compared with C1 
and C2. The trend of the new product CPMDF is larger than the previous 
product for the period 1980–2021. However, it is the same order of magni-
tude as C3 for the second period.

Averaging the estimated trend for all the previous products gives 
−0.005  ±  0.003  W/(m 2yr) and −0.005  ±  0.004  W/(m 2yr) for the periods 
1980–2021 and 1987–2021, respectively. When we include the new product, 
the average trend is −0.004 ± 0.003 W/(m 2yr) and −0.004 ± 0.004 W/(m 2yr) 
for the same periods. The overall estimate, using the results from all the TSI 
composite time series and both periods, is equal to ∼−0.004  ±  0.004  W/

(m 2yr). Overall for each product, the uncertainty associated with the estimated trend is large, mostly larger than 
the amplitude of the trend. This result means that the estimated amplitude is statistically insignificant: the stochas-
tic properties of the composite time series are likely the source of the variations. This corroborates the previous 
results based on the estimation of the variations between two consecutive solar minima. Both are showing the 
same pattern after cycle 21. Note that these conflicting decadal trends exhibited by the previous TSI composites 
(C2 and C3) are discussed by Yeo et al. (2014) using proxy data. Furthermore, most of the estimated amplitudes 
are negative. This has a certain significance related to the solar noise which describes the solar activity, hence 
meaning that over the last 41 years there has been a slowly decreasing solar activity. This result is supported by 
several studies focusing on the forecast of the sun's activity over the next 80 years (Steinhilber & Beer, 2013; 
Velasco Herrera et al., 2015).

5.  Conclusions
We have merged 41 years of satellite observations using data fusion in order to produce a TSI composite time 
series, which can be used to study the solar cycle modulation and the Earth's energy budget. We have performed 
a time-frequency comparison of our new TSI composite with previous releases, including the TSI commu-
nity consensus time series C1. The results show that the mean value of the difference over the solar minima is 
below the 1 sigma confidence interval of 0.2 W/m 2, that is, a maximum of 0.09 W/m 2 for C1 and a minimum 
of 0.03 ± 0.01 W/m 2 for C3. In terms of comparing the frequency spectrum, we observe a flattening at high 
frequencies for all products which is linked to the various instrumental noises and the low sampling rate (1 day). 
We expect that future TSI composite time series including observations recorded from future missions will be 
produced with a higher time resolution (i.e., hourly, sub-hourly) in order to include the meso-granulation, granu-
lation and p-modes frequency bands.

Second, the power spectrum experiences a power-law between 4 and 20  days which could correspond to an 
unknown diffusion process. When removing the solar cycle by differencing two TSI composite time series, a 
frequency ramp (power-law noise) is observed over the whole frequency band. The power-law exponent varies 
within [1, 2]. It highlights the presence of long-term correlations from solar noise and perhaps instrumental noise.

Finally, our approach permits the estimation of a trend in the 41-year composite TSI time series which could reflect 
variations in the solar activity. The analysis of the irradiance difference (ΔI) estimated at two consecutive solar 
minima in order to detect a trend is inconclusive due to large uncertainties. Our results using a joint inversion of 
both a functional and stochastic noise models, show that the estimated amplitude is below ∼−0.004 ± 0.004 W/
(m 2yr) based on the analysis of all the 41-year TSI composite time series used in this study. This number is not 
statistically robust due to the large uncertainties. Therefore, it is impossible to reach any conclusions about the 

TSI level (μ ± σ [W/(m 2yr)])

1980–2021 1987–2021Period

Amplitude solar trend μ σ μ σ

  C1 −0.004 0.006 −0.001 0.009

  C2 −0.001 0.006 −0.003 0.007

  C3 −0.009 0.006 −0.011 0.009

  CPMDF −0.014 0.004 −0.010 0.006

Note. CPMDF, Composite PMOD- Data Fusion; GGM, General Gauss-
Markov model; MLE, maximum likelihood estimator; TSI, total solar 
irradiance. Two different time periods are chosen. yr means year.

Table 3 
Estimation of the Linear Trend (Mean μ and Uncertainty σ) via MLE 
Using the GGM Model Together With White Noise for the TSI Composite 
Time Series Released by Dudok de Wit et al. (2017) (C1), Dewitte and 
Nevens (2016) (C2), Fröhlich (2006) (C3) and by Applying (i.e., CPMDF) 
the Wavelet Filter
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existence of a linear trend in the TSI composite time series. Any visual effects or short-term trends are most likely 
related to the colored noise rather than a physical phenomenon generated by the sun's activity, corroborating 
previous discussions (Dudok de Wit & Kopp, 2020) and supporting recent analysis (Schmutz, 2021).

Appendix A:  Model Descriptions for Estimation of the Linear Trend
Following the discussion in Section 4, the stochastic noise model of the total solar irradiance (TSI) time series is 
described by the variance (Williams et al., 2004):

�
{

���
}

= �2
��� + �2

���(�)� (A1)

where E{.} is the expectation operator. The vector ψ = [ψ(t1), ψ(t2), …, ψ(tL)] is a multivariate continuous-time 
stochastic process. At each time step, we define ψ(ti) = ψwn(ti) + ψpl(ti), with ψwn(ti) and ψpl(ti) the white Gaussian 
noise (zero mean) and the colored noise (or power-law noise) sample respectively. T is the transposition operator, 
I the identity matrix, 𝐴𝐴 𝐴𝐴

2

𝑝𝑝𝑝𝑝
 the variance of the power-law noise and J(β) the covariance matrix of the power-law noise 

(β > 0). The definition of J depends on the assumptions of the type of colored noise (e.g., flicker, random-walk).

The functional model s0(t) (at epoch t) is based on the polynomial trigonometric method (Williams et al., 2004; 
Montillet & Bos, 2020).

𝑠𝑠0(𝑡𝑡) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 +

𝑁𝑁∑

𝑗𝑗=1

(𝐺𝐺𝑗𝑗cos (𝐷𝐷𝑗𝑗𝑡𝑡) + 𝐸𝐸𝑗𝑗sin (𝐷𝐷𝑗𝑗𝑡𝑡))� (A2)

with a and b the coefficients of the linear rate; the deterministic part of the solar cycle is modeled by a sum of cos 
and sin functions with coefficients Gj and Ej. Note that Dj (2πfqj) and fqj are different frequencies (e.g., 11.5 years, 
27, 9 and 7 days) which are determined by analyzing the frequency spectrum of the TSI composite time series 
(see Section 4). We perform a joint estimation of the functional and stochastic models based on a MLE. To recall 
Bos et al. (2020), the log-likelihood for a time series of length n can be rewritten as:

ln(𝐿𝐿𝐿𝐿) = −
1

2

[
𝑛𝑛ln(2𝜋𝜋) + ln(det(𝐂𝐂)) + (𝐱𝐱𝟎𝟎 − 𝐀𝐀𝐀𝐀)

𝑇𝑇𝐂𝐂−1 (𝐱𝐱𝟎𝟎 − 𝐀𝐀𝐀𝐀)
]

� (A3)

This function must be maximized. Assuming that the covariance matrix C is known, then it is a constant and does 
not influence finding the maximum. C is equal to E{ψ Tψ} as defined by Equation A1. The term (x0 − Az) repre-
sents the TSI observations minus the fitted model. Note that (Az) is the matrix notation of s0. The last term can 
be written as x TC −1x and it is a quadratic function, weighted by the inverse of matrix C. To select the functional 
model of the solar signal, and therefore estimate the associated parameters, we have formulated the assumptions 
in Section 3 and the time-frequency analysis in Section 4. The value of n is here equal to the number of observa-
tions in the TSI composite time series (∼15,330 observations).

The particularity of the TSI composite frequency spectrum has been discussed above, and in particular its flatten-
ing at high frequencies. Therefore, a simple power-law noise model as described in Section 3 with the covariance 
J(β) is not appropriate for our ML estimation. Instead, we use the General Gauss-Markov model (GGM) noise 
model which has the advantage of flattening at high frequencies. The power spectrum density (PSD) of the GGM 
noise is defined by Bos et al. (2020) as:

𝑆𝑆(𝑓𝑓 ) =
2𝜎𝜎2

𝑓𝑓
2
𝑠𝑠

[
1 + 𝜙𝜙

2 − 2𝜙𝜙cos

(
2𝜋𝜋

𝑓𝑓

𝑓𝑓𝑠𝑠

)]−𝛽𝛽∕2
� (A4)

where ϕ is an important parameter to decide when the flattening occurs in the PSD. In our study with TSI time 
series, we have fixed ϕ to 1.0699 following the recommendation of He et al. (2019). Also from Equation A4, if 
ϕ is set equal to 1 then the PSD is similar to an approximation of the power-law model. For more information 
and discussions about this model, we invite the reader to refer to Bos et al. (2014). Note that we use the Hector 
package to do the joint model estimation.
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Appendix B:  Description of the Wavelet Filter
This section comprehensively describes the wavelet filter proposed in Section 3.3. We discuss the steps to correct 
some of the long-range dependency introduced by the data fusion process to generate the final TSI CPMDF. In 
this section, let us call CPMDFa, the composite time series before applying the wavelet filter.

B1.  Methodology

The method for rescaling the high-frequency power of CPMDF can be divided into 4 steps:

�1.	� The MODWT decomposition : discrete versus maximum overlap discrete wavelet transform
The first step of the wavelet filter is the wavelet decomposition of CPMDFa itself. To that end, the time series is 
usually broken down into a scaled and shifted version of a chosen mother wavelet. Because the sample size of the 
orthogonal discrete wavelet transform (DWT) is limited to a power of 2, the number of scaling and wavelet coef-
ficients at each level of resolution decreases by the same factor. Unfortunately, this results (i) in a loss of informa-
tion as the level of decomposition increases, as well as (ii) in the introduction of ambiguities in the time domain. 
These effects are unwanted when performing a scale-by-scale variance analysis. We circumvent the drawback 
of the DWT by using the maximal overlap discrete wavelet transform (MODWT, (Cornish et al., 2006)), which 
carries out the same steps as the DWT without a sub-sampling process. Mathematically, the MODWT is a convo-
lution operation that can be formulated as circular filter operations of the original time series using two quad-
rature mirror filters, Therefore, the decomposition at each scale can be understood as a bandwidth filtering of 
the original time series in the frequency domain with various high and low-pass filters. The MODWT is known 
as a shift-invariant wavelet transform. It is a highly redundant version of the DWT and is considered ideal for 
time-series analysis, as it accommodates any sample size. In this contribution, we use the MATLAB wavelet 
package from Mathworks (https://ch.mathworks.com/).

Whereas low scales of the MODWT decomposition are related to long periodic behavior, high scales focus on brief 
phenomena. The proposed wavelet filter aims to rescale the power of the high frequencies of CPMDFa, which are 
filtered out by the data fusion, and recompose the obtained time series: the choice of the wavelets should take this 
application into consideration. Here, we follow the work of Cornish et al. (2006) who proposed to use the least asym-
metric (LA) wavelets. These wavelets exhibit near symmetry about the filter midpoint which allows a good alignment 
of the reconstruction with the original time series by circularly sifting the coefficients. More specifically, we use 
the LA(4): this wavelet has a nearly linear phase response and is optimal for reconstruction. Compared to the Haar 
wavelet, it has less leakage, which makes it more appropriate to rescale the variance of the chosen levels of decom-
position (see step 2). Here the band-pass filtering is more accurate and allows a better control over the rescaled levels 
of decomposition at high frequencies. We further note that the 4 vanishing moments produce wavelet coefficients 
vectors that are nearly stationary; this is favorable to analyze the variance. We then chose to decompose the signal 
into 8 levels, which we justify by our specific focus on the high frequency domain. The low frequencies do not need 
particular attention and should be kept intact with the purpose of not losing information from the data fusion.

�2.	� The wavelet variance (WV) decomposition
In a second step, we compute the variance of each decomposition level time series, on a scale-by-scale basis. The 
variances are called the wavelet variances (WV). The WV can be interpreted as the variance of a process after 
filtering by a wavelet bandpass filters (Percival & Guttorp, 1994). Our method to rescale the WV is based on an 
unbiased wavelet estimator developed by McCoy and Walden (1996) and Abry and Veitch (1998) for correlation 
analysis. The WV multiscale analysis provides an efficient and highly robust estimator of the fractal parameter 
of a process. We recall that fractal processes have a power of the form 1/f β for a range of frequency f close to 0. It 
can be shown that the WV versus its scales have a logarithmic linear relationship for such processes: the slope in 
a log2-diagram is related to the power law of the process and can be estimated by ordinary least-squares (Abry & 
Veitch, 1998). Here, we propose to use the WV to eliminate the correlations at high frequencies induced by the 
windowing used to fuse TSI from different datasets.

�3.	� Rescaling the WV
The procedure is inspired by the work of Guerrier et al. (2013) on composite stochastic processes and is based 
on the standardized distance between the WV of a reference process and that under consideration. When dealing 
with a mix of unknown bandwidth fractal noises, the scales at which a given noise is present have to be identified 
in a first step in the log2-diagram WV versus scales. As an example, a white noise exhibits a slope of −1, flicker 
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noise has a slope of 0 and, a random-walk has a slope of 1. An alignment of the WV versus a given number of 
scales is linked with a bandwidth fractal noise. Here, we want to identify the correlated noise introduced by data 
fusion, which was shown to be found in the high frequency domain. We illustrate our decorrelation or rescaling 
procedure using C3. Figure B1.A is a log2-diagram showing the WV versus scales. Our reference time series 
is marked with blue dots, together with the fused time series before (green) and after (pink) filtering. The WV 
of both time series lies on a straight line. For the reference time series, the slope approximately corresponds 
to a coefficient equal to −3 in the WV log2-diagram. The first WV contains most probably an additional WV 
component as it is slightly over the line drawn from scale 2 and 3. From scale 4, the WV spectrum clearly changes 
its shape, which corresponds to the Matérn process (saturation at low frequency). This visual analysis of the 
log2-diagram shows that the sought after high frequency correlated noise is present between the scales 1 and 3. 

Figure B1.  (top) Wavelet Variance (WV) decomposition of C3 (blue), CPMDFa (green) and the filtered time series (pink). 
The X-axis is the level of decomposition, whereas the Y-axis is the WV value on a log scale. (bottom) Effect of applying the 
wavelet filter in the frequency domain: without CPMDFa (gray) and with CPMDF (orange).
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Here we propose to rescale the WV of CPMDFa in order to fit the reference one (i.e., C3). The resulting WV 
spectrum is shown in the green dots in Figure B1.A. Intuitively, we have re-introduced high frequency noise to 
obtain the reference decay of the WV spectrum (or similarly that of the power spectral density).

�4.	� Recomposition of the rescaled TSI
Finally, we recompose the filtered time series by using the inverse function inserting our new WV values. Note that 
we use the function called Inverse MODWT, abbreviated as IMODWT, which is also included in the MATLAB 
wavelet package. Our new time series is comparable to both C1, C2 (after shifting of ∼−2.44 W/m 2), C3 and 
CPMDFa, well within the interval of confidence of the reconstruction (0.2 W/m 2) as discussed in Section 4. Note 
that the MODWT and IMODWT require O(n. log2.n) multiplications (Percival & Walden, 2000).

B2.  Discussion of the Effect of Applying the Wavelet Filter

It is worth showing the impact of applying the wavelet filter on the TSI time series composite. Figure B1.B 
displays the PSD of the time series before and after the filter. The difference can only be seen in Box B. The 
steepness of this ramp is more accentuated for CPMDFa than in CPMDF. The power-law is between 2.5 and 
3 for the previous releases C1, C2, C3 and CPMDF, but between 3 and 3.5 for CPMDFa. This increase steep-
ness is a weakness of the data fusion process as discussed in Section 2, which can smooth the short-term and 
long-term correlations. It is a nonlinear effect of the input parameters (e.g., inducing points). Increasing this 
number decreases the steepness to a certain extend. This problem is intractable when using GPs with a very large 
number of inducing points (e.g., 2000 points) due to computational complexity. Nevertheless, the implementation 
of a wavelet filter has shown that we can efficiently reconstruct the high frequency bandwidth, hence having a 
PSD comparable with previous products and without the cost of increasing the processing time.

Appendix C:  Additional Figures and Remarks
C1.  Remarks on the Inducing Points

Figure  C1 shows the variations in both time and frequency when fusing VIRGO/SOHO, TIM/SORCE and 
ACRIM3/ACRIMSAT (box 8 in Figure 1). Figure C2 displays the associated PSD. It is difficult to find an opti-
mal number, because above 1500 points the time fluctuations do not show many differences (i.e., continuity of 
the spectrum, amplitude of the frequencies associated with the solar cycle).

Figure C1.  Time series of C3 (Fröhlich, 2006) and the sub-time series in Box 8 (see Figure 1) fusing VIRGO/SOHO, ACRIM3/ACRIMSAT and TIM/SORCE using 
various numbers of inducing points (500, 2,000). The sub-time series are aligned on C3.
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C2.  Additional Figures

The following figures (C2, C3 and C4) illustrate the dicussions in Section 4.

Figure C2.  Power Spectrum Density (PSD) of total solar irradiance (TSI) C3 (Fröhlich, 2006) and the sub-time series in Box 8 fusing VIRGO/SOHO, ACRIM3/
ACRIMSAT and TIM/SORCE using various numbers of inducing points (500, 1,800). Box A, B and C refer to the different sections of the PSD: A is centered on the 
high frequency (∼3 days), which shows flattening of the PSD; B is the power-law which is mainly due to colored noise (correlations between 20 and 6 days) within the 
time series; C emphasizes the low frequency associated with the stochastic and deterministic parts of the solar cycle and long-term correlations, as well as instrumental 
artifacts. The dashed line is the power-law model when varying the exponent (shown for context).

Figure C3.  Power Spectrum Density (PSD) of total solar irradiance (TSI) C3 (Fröhlich, 2006) with and without partially 
removing the solar cycle via a running mean (with a 5-day window). Boxes A, B and C refer to the different sections of the 
PSD. The dash-dotted lines are the various power-law models when varying the exponent. The vertical dotted lines (black) 
mark the frequencies at 11.5 years, 27, 9 and 7 days. The purple dash-dotted lines highlight the change of power in box C 
before and after removing the solar cycle.
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Appendix D:  Assumptions and Discussion About the Data Fusion Algorithm
To further clarify the assumptions in order to fuse the various observations in Step 1 in Section 3.1, we discuss in 
details how the Gaussian processes are applied in the specific case of the TSI data. We also define the Bayesian 
framework used to perform the fusion based on Kolar et al. (2020). The notations in Section 3.1 are used in this 
appendix.

Let us define the notion of Gaussian process as used to model the solar cycle and its variations at various scales. 
According to Rasmussen and Williams (2006), a Gaussian process is a generalization of the Gaussian probability 
distribution. A probability distribution describes random variables which are scalars or vectors (for multivariate 
distributions). One can loosely think of a function as a very long vector, each entry in the vector specifying the 
function value at a particular input (e.g., time). A Gaussian Process is a flexible distribution over functions, with 
many useful analytical properties. In other words, a Gaussian process is a finite linear combination of random 
variables with a multivariate normal distribution, completely defined by the first and second-order statistics—the 
mean μ and the covariance matrix - or kernel- kθ(x, x). The kernel can be defined by the addition or multiplication 
of other kernels (periodic, linear, white, Matérn …). We assume μ to be zero, without loss of generality. The 
covariance function determines properties of the functions, such as smoothness, amplitude, and so on.

Let us model the function of interest, that is, the solar cycle s in our TSI data set, using a GP prior, noisy obser-
vations and the associated time for each observation such as � ∼ ��

(

0, �� (��, ��){�=[1,�]}
)

 . s is not a deterministic 
signal (i.e., perfect sinusoid with an 11-year cycle) and its variations are random (no a priori knowledge). In terms 
of probability distribution, we can state:

�(�) = (�; 0, ��)�

�(�|�) = Π�
�=1

(

��; ��, �2)�

p(s) is the probability distribution of s. p(y|s) is the conditional probability of s knowing y = [yi]. In Section 3.1, 
the observation yi is not a scalar, but a vector due to the number of input TSI time series to fuse, that is, yi = [a(ti), 
b(ti), c(ti)] with an uncorrelated noise σ 2I. The functions a, b and c are defined in the model of the observations in 
Equation 1. σ 2I is (assuming uncorrelated measurements) formulated as 𝐴𝐴 diag

([
𝜎𝜎
2
𝑎𝑎 , 𝜎𝜎

2
𝑏𝑏
, 𝜎𝜎

2
𝑐𝑐

])
 . Now, the covariance 

matrix of y is defined as kθ(x, x) + σ 2I. x = [ti, ti] is the concatenation of times associated with each input time 

Figure C4.  Power Spectrum Density (PSD) of various products: VIRGO/SOHO with degradation correction (VIRGO-A) 
from PMO6v21 with 1-min and daily sampling rate. C3 is the total solar irradiance (TSI) composite produced by 
Fröhlich (2006). Composite PMOD- Data Fusion is our new TSI composite including the wavelet filter. Note that for clarity 
the different spectra have been rescaled by multipying them by −6, −6, −4 and −8.5 W 2 m −4 day following the order of the 
legends from the top. Boxes A, B and C refer to the different sections of the PSD. The dash lines are the various power-law 
models when varying the exponent (shown for context). The vertical dashed line emphasizes the 11.5 years peak.
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series. All the hyperparameters defining the kernel are in the vector θ. The common approach is to estimate these 
hyperparameters to model the desired signal using a (marginal) MLE:

𝜃𝜃
∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜃𝜃

𝑝𝑝(𝐲𝐲|𝜃𝜃)�

and the estimation of s (s*) via:

𝑝𝑝 (𝐲𝐲∗|𝐲𝐲) =
𝑝𝑝 (𝐲𝐲∗, 𝐲𝐲)

𝐩𝐩(𝐲𝐲)
=
∫

𝑝𝑝 (𝐲𝐲∗|𝐬𝐬∗) 𝑝𝑝 (𝐬𝐬∗|𝐬𝐬) 𝑝𝑝(𝐬𝐬|𝐲𝐲)𝑑𝑑𝐬𝐬𝑑𝑑𝐬𝐬∗�

Note that * means the estimated parameter or signal. While the marginal likelihood, the posterior and the predic-
tive distribution all have closed-form Gaussian expressions, the cost of evaluating them scales as O(n 3) due to the 
inversion of kθ(x, x) + σ 2I, which is impractical for large datasets. To overcome this limitation, we approximate 
the kernel matrix kθ(x, x) with a low-rank matrix Qθ described in Section 3.1 as Qθ = kθ(x, u)kθ(u,u) −1kθ(u, x). u 
is a vector of inducing points. It is important to underline that the vector of inducing points u introduced in this 
approximation is crucial. A proper training procedure (size of the vector of inducing points) permits us to learn 
about the stochastic properties of the data at various scales, which allows long-term and short-term correlations 
to be taken into account. Various methods exist to perform the MLE using the low-rank matrix with additional 
assumptions. Readers can refer to Bauer et al. (2016) for a comprehensive description on this topic. Here, we use 
the maximization of the lower bound derived from the log-marginal likelihood log  p(y|x) based on the variational 
free energy method developed in Bauer et al. (2016) and discussed in Kolar et al. (2020). With this approxima-
tion, one needs to consider s as a sparse GP, a special class of GPs. With many data sample (i.e., >10 3), the error 
due to the approximating the GP as a sparse GP tends to 0 according to Kolar et al. (2020).

The first test of data fusion was carried out when fusing the data recorded by the radiometer PMO6V on board 
of the SOHO/VIRGO mission from the two channels VIRGO/PMO6V-A and VIRGO/PMO6V-B described in 
Finsterle et al. (2021). Kolar et al. (2020) optimzed the data fusion process using dedicated simulations. The latter 
were similar when more channels/observations were analyzed. We spare the patience of the Reader by describing 
redundant simulations.

Finally, we would like to comment further on the difference of definitions between the stochastic and solar noises 
described in Section 3. In our work, solar noise is defined to cover solar activity and the small-timescale processes 
which produce short-term variations. The stochastic noise takes into account both the instrumental effect and the 
small-timescale solar activity. That together produces the random variability (i.e., white noise) in time at a small 
scale. The instrumental noise defines all the short-term and small amplitude solar variations which cannot be 
properly observed by the radiometer due to its characteristics (observation rate, distance to the event, …). Statis-
tically, it is an uncorrelated zero-mean Gaussian noise. On a large scale, the stochastic noise can be modeled as 
having a power law dependency with respect to frequency, which could be related to diffusive effects. We are here 
speaking about the long-term correlations. It is related to the solar noise with the diffusion effects within the solar 
cycle, the sun's rotation period, … and so on.

Data Availability Statement
The new composite CPMDF can be obtained from the open archive repository www.astromat.org (J. Montillet 
et al., 2022). It is also presented on www.pmodwrc.ch/en/?s=TSI+Composite (last accessed 07 June 2022) for 
additional information. The TSI composite C1 is available for downloading at http://www.issibern.ch/teams/
solarirradiance (last accessed 07 June 2022). The data related to the monthly/daily mean sunspot numbers are 
retrieved from http://www.sidc.be/silso/datafiles (last accessed 07 June 2022). TIM/SORCE, TCTE/TIM and TIM/
TSIS time series are downloaded from https://lasp.colorado.edu/home/sorce/data/tsi-data (last accessed 07 June 
2022). PREMOS (v1) can be accessed at http://idoc-picard.ias.u-psud.fr/sitools/client-user/Picard/project-index.
html (last accessed 07 June 2022). PMODv21a is available at https://www.pmodwrc.ch/en/research-develop-
ment/space/soho/ (last accessed 07 June 2022).
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