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1 Abstract

Maintaining the global warming well below 2�, as stipulated in the Paris

Agreement, will require a complete overhaul of the world energy system.

Hydrogen is considered to be a key component of the decarbonization strategy

for large parts of the transport system, as well as some heavy industries. Today,

about 96% of current hydrogen production comes from the steam reforming of

coal or natural gas (labeled Black and Grey hydrogen, respectively). If hydro-

gen is to become a solution, then Black and Grey hydrogen need to be replaced

by a low-carbon option. One method that has received much attention is to

produce so-called Green hydrogen by coupling water electrolysis with renew-

able energies. However, green hydrogen is expensive and energy intensive to

produce. In this communication, we explore an alternative option and high-

light the bene�ts of rock-based hydrogen (White and Orange) compared with

classic electrolysis-based technologies. We show that the exploitation of native
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2 Orange hydrogen is the new Green

hydrogen and its combination with carbon sequestration has the potential to

fuel a large part of the energy transition without the substantial energy and

raw material cost of Green hydrogen.

2 Main

To meet the Net Zero Emission Scenario (NZE) of the International Energy

Agency [1], about 17,000 TWh of hydrogen-based energy will be consumed

in the world in 2050. This hydrogen is usually seen as being provided by

large facilities using renewable electricity to convert water to hydrogen through

electrolysis (Green hydrogen). The energy cost for hydrogen production is

related to the splitting of the water molecule into hydrogen and oxygen:

H2O
energy−−−−→ H2 +

1

2
O2 (1)

and is directly calculated from the Gibbs energy of formation of water (120

MJ/kgH2
at 25� � THERMODDEM database [2]). Considering an 80% e�-

cient electrolyser, this corresponds to about 400 Mt of hydrogen, or about �ve

times the amount consumed in 2020 [1]. These 17,000 TWh represent more

than the electricity produced by both China and the USA in 2020, about 63%

of the world's electricity production, and more than twice the current world-

wide production of electricity from renewable energies. Meeting this �gure will

then require an unprecedented upscaling of both electrolysis and renewable

energies.

Blue hydrogen does not fare better due to the extra cost related to CCS

and is probably only a temporary solution [3]. Some authors are even more

critical, arguing that the imperfect capture of CO2 associated with methane

losses along the whole chain leads to increased greenhouse gas emissions with

only little bene�ts from pure Grey hydrogen [4]. Another critical shortcoming
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of Blue hydrogen is the continued reliance on fossil fuel. This last issue also

impacts an emerging production technique, sometimes referred to as Turquoise,

and which consists in producing H2 from methane but with graphite-C and

not CO2 as a resulting product. This technology is still in development but

could also play a key role in the coming years.

3 A greener hydrogen

The Earth's subsurface is a giant and undervalued hydrogen factory. Long

considered anecdotic, the current estimations give a rough estimate of 20 Mt

of native hydrogen escaping from the surface towards the atmosphere each

year [5]. Estimates vary widely but everything suggests that the subsurface

is actually producing signi�cantly more, and that this value is just the tip of

the iceberg. Natural hydrogen is most commonly produced by the reduction

of water to hydrogen following the anoxic and abiotic oxidation of ferrous iron

to the orange-coloured ferric iron [6]:

2 FeO + H2O = Fe2O3 + H2 (2)

This oxidation occurs, for example, under the ocean �oor [7, 8], where

peridotites � magnesium silicate rocks which contain up to 10%wt of ferrous

iron � become hydrated at temperatures between 200 and 400� by the per-

colation of seawater. This process, known as serpentinization, also occurs at

lower temperatures and pressures on land-based ophiolite-peridotite massifs

[9]. Serpentinization is estimated to produce around 1-2 Mt of hydrogen per

year [10] at oceanic ridges where it is the most active. However, serpentiniza-

tion is not the only process producing hydrogen and anywhere water meets

reduced iron, there is a possibility to produce hydrogen if the right condi-

tions of temperature, �uid composition and pressure are met (e.g. archean
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4 Orange hydrogen is the new Green

Banded-Iron Formations [11], peralkaline and biotite-rich granites [12, 13]).

On land, numerous native hydrogen seeps (usually mixed with methane [14])

have been localized (e.g. Oman, Japan, New Caledonia, Greece, Spain, Italy,

California) [15], France [16], Australia, Brazil [17], Kansas [18]). Some are even

known since the antiquity such as the Mount Chimaera (Yanarta³, Turkey)

which continuously produces a mixture of 87%vol. CH4 and 10%vol. H2 [14].

Exploitation of this hydrogen o�ers then an interesting alternative to Green

and Blue hydrogen by completely skipping the electrolysis and simply col-

lecting the hydrogen emitted by natural underground processes. This White

hydrogen is already under production in Mali where a well drilled for water

turned out to produce a 98%vol hydrogen stream currently used power the

entire village of Bourakebougou for the last 10 years [19]. The actual source

of the hydrogen remains unknown but chances are that the reduction of iron

is involved deep underground.

4 Orange Hydrogen

It is possible to go even further and go Orange. This color, which refers to

the color of oxidized iron, follows the same principles of White hydrogen and

looks to make the Earth provide most of the work for hydrogen production.

Yet, instead of using a passive approach of exploration/exploitation, Orange

hydrogen follows a proactive way and searches to stimulate the reaction. This

is done by injecting water in situ in identi�ed reactive formations and collect

the hydrogen-saturated water from recovery wells surrounding the injection

point (Fig. 1). This approach can also be adopted for Fe-rich mine wastes and

steel slags [20] in an ex situ surface reactor which has the advantage of being

easier to control and set-up. Additionally, the magnetite particles (Fe3O4)

resulting from the oxidation process have a commercial value, especially in
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the pharmaceutical industry. However, the signi�cantly lower volumes of raw

materials available for ex situ Orange Hydrogen and the prohibitive �nancial

and environmental cost of extracting and grinding new feedstock makes the ex

situ solution less attractive than the in situ one.

In situ Orange hydrogen requires more energy than White hydrogen pro-

duction, but the outputs will be signi�cantly higher, while production costs

will likely remain under Blue/Green ones. An average peridotite can provide

around 2-4 kgH2
/m3 upon complete oxidation. With 1020 kg of peridotites in

the upper crust (top 7km) [21], there are 100 trillions tons of hydrogen to

be extracted from the subsurface, su�cient for 250,000 years at a rate of 400

Mt/year. This is not even considering that over these timescales, tectonic activ-

ity will refresh the peridotites at a rate of 1012 kg/year [21]. The exploitation

of the whole volume is obviously unrealistic due to technical, economic and

regulatory reasons, but even a small percentage would make Orange hydrogen

a key player in the achievement of the NZE scenario.

The real game-changing impact of Orange hydrogen, is that the very same

formations which naturally produce hydrogen are also the perfect location for

carbon sequestration [22]. These formations are part of the deep carbon cycle,

balancing the concentration of atmospheric carbon dioxide through its reaction

with silicate rocks. This natural weathering has allowed the capture of 99.9%

of the total carbon on Earth as solid, stable carbonates [23], but is now getting

rapidly outpaced by the increase in anthropic emissions since the industrial

era. Matter et al. [24] calculated for example that 30 trillions tons of CO2 can

be stored in the Oman Ophiolite (the largest on-land peridotite massif), and

100 trillions tons globally. For comparison, the CO2 anthropic emissions in

2020 are estimated at 33 billions tons.
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In Iceland, Carb�x, a company built on the results of several European

Union's research projects, has been injecting 72,000 tons of carbon dioxide

in the island basaltic formation for about 10 years with great success [25,

26]. A similar pilot injected 1000 tons of pure liquid CO2 in the Columbia

River Basalts near Wallula (USA). Cores retrieved 2 years after the injection

presented unequivocal evidence of the mineralization of the injected CO2 [27].

However, neither of these large-scale pilots considered the hydrogen production

associated with the CO2 mineralization process despite the iron-rich nature of

the targeted basalts and thus the possibility of coupled production [28].

The list of Orange hydrogen advantages does not end here. In contrast to

electrolysis, where only speci�cally tuned water compositions can be used, nat-

ural oxidation of iron as well as carbon mineralization works very well with

seawater [29] or even wastewater, alleviating signi�cantly the water cost of

hydrogen production. Target formations can also contain elements of economic

interest such as Li, Ni, Co. . . as is usually the case in serpentinite formations

[30]. The dissolution of the primary minerals following the injection will release

these elements in the percolating �uids, which can be extracted in parallel to

hydrogen by fractionated precipitation. Similar processes are currently in use

in Uranium recovery [31] and extraction of Li in parallel to heat is being con-

sidered in geothermal applications [32]. Orange hydrogen di�ers signi�cantly

from the alternatives as it does not rely on critical raw materials as electrolysis

processes, and can even produce them as by-products of the main operation.

Laboratory experiments on the reactivity of magnesium silicates with car-

bon dioxide have shown that a mixture of NaHCO3 and dissolved CO2 can

achieve complete carbonation over the course of a few hours to a few days [33].

Carbonation rate is a direct function of the CO2 partial pressure but the rate

of serpentinization seems either una�ected [34] or slightly accelerated [35] by
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the presence of CO2. Both carbonation and serpentinization reaction rates are

also strongly temperature-dependent, and follow a bell-shaped curve with an

maximum respectively at 185� and between 250 and 280� for serpentiniza-

tion [36, 37]. Maintaining a high rate of H2 production and CO2 mineralization

requires thus a careful control of the downhole temperature. Luckily, serpen-

tinization and carbonation are very exothermic (respectively ∆H = 250 kJ/kg

and ∆H = 760 kJ/kg). Once the process is initiated, the desired temperature

can be obtained through self-heating with a heat production from the chemi-

cal reactions balancing the heat losses through convection and conduction, as

well as the cooling induced by the injection of colder �uids [24, 38]. This self-

heating behavior allows reducing production costs as no surface heating of the

injected �uids is necessary, but requires a careful control of the injection rate.

Interestingly, some of this heat can be extracted from the recovered �uids in a

geothermal-like process and be reused to power the facility with recovered �uid

temperatures up to 200-300� (considering the combined action of exothermic

reaction and formation temperatures e.g. 250� for Carb�x2 [39]).

Kelemen et al. [38] calculate a carbonation rate of 4.109 tCO2
/year for the

stimulation of 1 km3 of peridotite at 185� (5.106 kg/s of carbonation, CO2

partial pressure between 75 and 300 bars). Extrapolating their calculation

with 10%wt FeO, this leads to a rate of 5 MtH2/year for 1 km3 of peridotite

(5.104 kg/s for serpentinization in the same conditions). In Figure 2 are repre-

sented hydrogen production rates from batch [40�42] and reactive percolation

[43] experiments. In all cases, measured hydrogen production is signi�cant

and approaches the maximum production which can be expected from these

rocks. A linear �t of the data gives rates from 0.1 to 3 MtH2/km
3/year, sim-

ilar to the extrapolation from Kelemen et al. [38]. As a result, experimental
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data from laboratory experiments support directly the preliminary estima-

tions. Extra research is however necessary to assess the potential of other types

of formations for hydrogen production combined with carbon sequestration.

This means that, while it is not expected that Orange hydrogen will solely

meet the 400 Mt for the NZE scenario, it has the potential to provide a sig-

ni�cant part of it, at a fraction of the energy and raw/critical mineral cost of

electrolysers. In other words, Orange hydrogen promises to provide abundant,

clean, rock-based, carbon-negative, and price-competitive energy to fuel the

energy transition towards the NZE scenario.

5 Challenges for Orange hydrogen

Developing Orange hydrogen faces numerous scienti�c challenges, which can

be sorted in 3 di�erent categories:

1. Accurate description, quanti�cation and mapping of the resource, taking

into account the iron grade of the targeted rock formation and its technical

and societal accessibility.

2. Identi�cation of the ideal pressure, temperature, �ow rate, �uid composi-

tion for the optimized production of hydrogen and carbon mineralization.

These settings need to account for the precipitation of parasitic minerals

competing with carbonate precipitation, the incorporation of Fe into pre-

cipitating minerals preventing its oxidation and H2 production, as well as

the careful control of porosity to prevent any clogging by the precipitat-

ing minerals. Parasitic reactions are for example at work in the experiment

from Grozeva et al. [41] represented on Figure 2. The injection of a CO2-rich

�uid mid-experiment lead to a decrease in H2 in the reactor. The process

consuming the hydrogen was however, not clearly identi�ed.
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3. Field-scale optimization of the injection and recovery of the �uids to max-

imize the impacted zone and minimize hydrogen losses. This includes

research on reservoir stimulation (hydraulic fracturing and chemical stimu-

lation) and potential induced (micro)-seismicity, as well as the microbiology

of low-temperature reservoirs which, if left unchecked, can consume the

produced H2 and impact signi�cantly the yield.

These challenges cover a wide range of scales and disciplines and require a

combined e�ort to o�er a satisfactory solution. The �rst challenge falls within

the scope of geologists and economists, the second is related to thermody-

namics and geochemistry as well as the physics of coupled processes in porous

media. The third one concerns reservoir engineering and simulations, geotech-

nics and microbiology. Given the scale of the projects, social acceptance will

also be a key point in the development of the technology, in particular in the

case of induced-seismicity.

One example of these multidisciplinary and multiscale challenges is the

proper modeling of the porosity/permeability relationship during the process.

Carbonation of target rocks leads to the precipitation of carbonate minerals

within the porosity as well as the precipitation of serpentine, which is less dense

than the minerals it replaces. As such, the porosity and thus the permeability

of the rock will be a function of the dynamic balance between dissolution of the

primary minerals and the precipitation of the secondary minerals. If the latter

occurs faster, it is likely that some clogging will occur with dramatic e�ects on

the long-term viability of the process. Yet, the only two large-scale pilots for

geological mineralization of CO2 have not evidenced any clogging or permeabil-

ity decrease, even several years after the beginning of the injection in the case

of Carb�x [26]. Moreover, natural settings are proofs that carbonation can be

going on for tens to hundreds of thousands of years without any clogging [44].
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Reaction-induced fracturing, which is often invoked to explain the maintained

permeability during some natural processes despite adverse molar volume evo-

lution is the process during which a growing mineral in a con�ned space is able

to generate large stresses on the surrounding matrix, enough to fracture it and

open new percolation paths for the �uid [45�47]. However, up to date, not only

does the modeling of such fracturing still fail to reproduce the experimental

observations but experiments of reactive percolation where such phenomenon

is expected, usually do not present any evidence that reactive-induced fractur-

ing occurred [43, 48, 49]. The control of reaction-induced fracturing and the

overall control of the reactivity and injectivity during the production of Orange

hydrogen (potentially through targeted hydraulic fracturing) is of paramount

importance for the viability of the process and requires a deeper understand-

ing of the microscopic behavior of dissolution/precipitation as well as a proper

upscaling of these processes to reservoir and �eld scale.

6 Conclusion

We are at a tipping point for the climate, and the exploitation of Orange

hydrogen is an additional technology which could prevent a dramatic evolu-

tion. Hydrogen is nowadays a controversial energy carrier as it is considered

by some as an easy way to transport energy and decarbonize the transporta-

tion sector, while others see it as an unnecessary intermediate and advocate a

full electric switch. This controversy becomes irrelevant if White and Orange

hydrogen are included in the debate. Their production does not require as

much electricity or raw materials as Green hydrogen and Orange hydrogen

o�ers also the possibility to store enough CO2 to curb global warming.
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Fig. 1 The di�erent colors of Hydrogen. Black/Grey H
2
is from steam reforming. It turns

Blue through the addition of CCS, either through permanent storage (e.g. in deep saline
aquifers) or through Enhanced Oil Recovery (EOR). On the other end of the spectrum, Green
hydrogen is produced by electrolysis using renewable energies. White hydrogen corresponds
to the exploitation of subsurface-sourced natural hydrogen. Orange hydrogen is a proactive
take on White hydrogen and consists in injecting in a reactive formation a carbon-enriched
solution. Geochemical reactions lead to the precipitation of solid carbonates while hydrogen
is formed and recovered from the �uid.

In addition to energy considerations, the decarbonization of the world's

energy mix will require an unprecedented upscaling in the production of renew-

able energies and the associated batteries and thus in ore mining, especially

for Nickel-Cobalt (×20 − 25) and Lithium (×40) [50]. Every million tons of

White and Orange hydrogen means at least 120 TJ (or 33GWh) of electricity

saved. This saved electricity as well as the saved critical metals can be used for

more batteries, electric car or wind turbines in order to accelerate the energy

transition. If we add the carbon storage ability of Orange hydrogen, we might

just have the solution for some of the energy problems of the coming decades.
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Fig. 2 Measured hydrogen in both batch and reactive percolation experiments. In con-
trolled conditions, the production of H

2
is signi�cant and reaches values close to the

theoretical maximum. RP = Reactive Percolation
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