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ABSTRACT: We present a multisite evaluation of meteorological variables in the Everest region (Nepal) from
ERA5-Land and High Asian Refined Analysis, version 2 (HARv2), reanalyses in comparison with in situ observa-
tions, using classical statistical metrics. Observation data have been collected since 2010 by seven meteorological sta-
tions located on or off glacier between 4260 and 6352 m MSL in the upper Dudh Koshi basin; 2-m air temperature,
specific and relative humidities, wind speed, incoming shortwave and longwave radiations, and precipitation are con-
sidered successively. Overall, both gridded datasets are able to resolve the mesoscale atmospheric processes, with a
slightly better performance for HARv2 than that for ERA5-Land, especially for wind speed. Because of the complex
topography, they fail to reproduce local- to microscale processes captured at individual meteorological stations, especially
for variables that have a large spatial variability such as precipitation or wind speed. Air temperature is the variable that is
best captured by reanalyses, as long as an appropriate elevational gradient of air temperature above ground, spatiotempo-
rally variable and preferentially assessed by local observations, is used to extrapolate it vertically. A cold bias is still ob-
served but attenuated over clean-ice glaciers. The atmospheric water content is well represented by both gridded datasets
even though we observe a small humid bias, slightly more important for ERA5-Land than for HARv2, and a spectacular
overestimation of precipitation during the monsoon. The agreement between reanalyzed and observed shortwave and
longwave incoming radiations depends on the elevation difference between the station site and the reanalysis grid cell.
The seasonality of wind speed is only captured by HARv2. The two gridded datasets ERA5-Land and HARv2 are appli-
cable for glacier mass and energy balance studies, as long as either statistical or dynamical downscaling techniques are
used to resolve the scale mismatch between coarse mesoscale grids and fine-scale grids or individual sites.

KEYWORDS: Asia; Complex terrain; Glaciers; Automatic weather stations; Surface observations; Statistics;
Reanalysis data; Mountain meteorology

1. Introduction

High-Mountain Asia (HMA), which comprises the Tibetan
Plateau and its surrounding mountain ranges, is referred to as
the water tower of Asia. The cryosphere (i.e., snow, ice, and per-
mafrost) contributes to water storage in this region (Immerzeel
et al. 2010). Observed and projected changes in the cryo-
sphere will affect the magnitude and timing of streamflow, es-
pecially in the upstream area, with large socioeconomic
impacts (Lutz et al. 2014; Pritchard 2019; Bolch et al. 2019;
Immerzeel et al. 2020).

HMA contains the largest concentration of glacier ice out-
side of the polar regions, with nearly 100000 km2 of glacierized
area (Pfeffer et al. 2014). Glaciers have been shrinking at least
since the 1970s except for parts of Karakoram, eastern Pamir,
and western Kunlun (e.g., Bolch et al. 2019; Berthier and Brun

2019). The sea level rise contribution from HMA glacier mass
loss since 2000 is up to ∼0.05 6 0.01 mm sea level equivalent
per year (Brun et al. 2017; Shean et al. 2020). The ice loss
rates are the greatest across Nyainqentanglha, the Himalayas,
and Tien Shan (Shean et al. 2020). Even if global warming
is constrained to the most ambitious target of 1.58C (United
Nations 2015), more than 30% of HMA glacier ice will likely
disappear by the end of this century (Kraaijenbrink et al.
2017; Bolch et al. 2019).

In the central Himalayas, the rate of mass loss is proportion-
ally high (Shean et al. 2020). Several field-based glaciological
studies in Nepal show negative mass balance years, especially
during the last 5–10 years (e.g., Sunako et al. 2019; Sherpa et al.
2017; Wagnon et al. 2020; Stumm et al. 2021). Glacier mass
changes result from climatic forcing and from the mass-balance
sensitivity to meteorological variables such as air temperature
or precipitation (Sakai and Fujita 2017). To examine the rela-
tionship between mass balance and climate, long-term high-
quality meteorological datasets are required. In the upper
Dudh Koshi basin, our region of interest, the first meteorolog-
ical data ever recorded come from the historical mountaineer-
ing expeditions to Everest, back in the 1950s (Pugh 1954), but
continuous and systematic records were not initiated before
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the installation of Pyramid, at the beginning of the 1990s
(Salerno et al. 2015). Since 2010, a network of automatic
weather stations (AWSs) was installed and has been operating
in the upper Dudh Koshi basin, with a focus on glacier areas
and high elevation (.4260 m MSL) (Shea et al. 2015; Sherpa
et al. 2017). The data from these AWSs contributed to better
understand the glacier behavior locally (Sherpa et al. 2017)
but they provide very local information and consequently can-
not be used to analyze regional glacier evolution.

Climate reanalyses provide alternative data for climate and
glacier studies, especially in regions where in situ data are
scarce and discontinuous. The European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis product
ERA-Interim (Dee et al. 2011) has been used for instance to
reconstruct mass balance data in Nepal (Sunako et al. 2019).
In 2017, ECMWF released a fifth generation of reanalysis prod-
uct, ERA5 (Hersbach et al. 2020), with a higher spatial and
temporal resolution than ERA-Interim. ERA5 reanalyses
perform well in the Antarctic and Arctic regions (Wang
et al. 2019; Tetzner et al. 2019). The performance of ERA5
temperature and wind data has been significantly improved
in comparison with ERA-Interim in the Antarctic Peninsula
where ERA5 data have been used to calibrate proxy records
from ice cores (Tetzner et al. 2019). Similarly, in the Indus
basin, ERA5 precipitation data are highly correlated with Asian
Precipitation–Highly Resolved Observational Data Integration
Towards Evaluation of Water Resources (APHRODITE)
data (Baudouin et al. 2020). However, ERA5-Land (ERA5L),
which is a reanalysis product derived by running the land com-
ponent of ERA5 at increased resolution, is not well suited for
permafrost studies because it overestimates soil temperature in
high latitudes and underestimates it in mid–low latitudes (Cao
et al. 2020). Also, the High Asian Refined Analysis, version 2
(HARv2), is another recently published high-resolution data-
set generated by dynamical downscaling of ERA5 reanalysis
data (Wang et al. 2020). Maussion et al. (2011, 2014) provided
a first generation of HAR data and analyzed the precipitation
seasonality and variability over the Tibetan Plateau and sur-
rounding regions. They validated HAR precipitation data
with both rain gauge observations unevenly distributed over
the Tibetan Plateau, and satellite-based precipitation esti-
mates from the Tropical Rainfall Measuring Mission. Based
on their regional dataset, they proposed a classification of gla-
ciers according to their accumulation regimes. Mölg et al.
(2012, 2014) used this dataset and showed that the timing and
amount of snowfall in the early ablation season (May–June) is
a key process controlling the annual mass balance of glaciers
on the southern Tibetan Plateau.

Because of the lack of long-term observation data, the use
of high-resolution reanalysis data is promising in the Nepalese
Himalayas, where in situ data collection is challenging given
the complex topography, remoteness, and data gaps caused
by infrequent maintenance and failure of AWSs. Neverthe-
less, even though those reanalysis products have the best spa-
tiotemporal resolution in the central Himalayas, ERA5L and
HARv2 data have not been validated yet using available in
situ data from high-elevation AWSs located on and off gla-
ciers although such products often need calibration.

In this study, we compare ERA5L and HARv2 reanalysis
data with in situ data from seven AWSs from different glaci-
erized and unglacierized areas since 2010 in the upper Dudh
Koshi basin, which are not assimilated in the reanalysis pro-
cess of ERA5L and HARv2. The main focus of this study is
to assess the performance of ERA5L and HARv2 reanalysis
data at glacier elevations in the central Himalayas. We quali-
tatively discuss whether such data are reliable for glacier mass
and energy balance studies, and we discuss the relevance of
substituting in situ data, if not available, with reanalysis data
for glaciological or hydrological modeling purposes.

2. Study site and climatology

The Nepalese Himalayas are under the influence of the
Indian monsoon originating from the Bay of Bengal. In summer,
large amounts of humid air travel north to northwest and trig-
ger orographic precipitation (e.g., Bookhagen and Burbank
2010; Perry et al. 2020). In the upper Dudh Koshi basin (Fig. 1),
approximately three-quarters of the annual precipitation fall be-
tween June and September (Shea et al. 2015; Sherpa et al. 2017;
Perry et al. 2020). Following previous studies (e.g., Bonasoni
et al. 2010), we divide the year into four seasons: winter
[December–February (DJF)], premonsoon [March–May (MAM)],
monsoon [June–September (JJAS)], and postmonsoon [October–
November (ON)].

3. Data and methods

a. Data

1) AWS DATA

Meteorological observations are collected at various AWSs
off and on glaciers in the upper Dudh Koshi basin at elevations
ranging from 4260 to 6352 m MSL. Precipitation data have
been collected by all-weather rain gauges (Geonor T-200B) at
only three sites (Pyramid and Pheriche since December 2012;
Khare since November 2016). They have been corrected for
undercatch following the method by Førland et al. (1996) and
Lejeune et al. (2007) as a function of wind speed and precipi-
tation phase (liquid or solid) depending on air temperature
(section 1c in the online supplemental material). This correc-
tion results in an approximately 20% increase of the amount
of precipitation originally measured by the gauge, and the
error range is estimated to be 615% (Sherpa et al. 2017). Re-
cords go back to October 2010 at the Changri Nup site,
which makes this dataset one of the longest at high eleva-
tion (5350 m MSL) in Nepal (Fig. 1 and Table 1). Table 1
provides the range of accuracy of every sensor used on those
AWSs, as specified by the manufacturer. However, in such a
harsh environment, measurement errors may sometimes exceed
this error range, even though all datasets have been quality
controlled (see section 1 in the online supplemental material,
where AWS photographs are also available). Temperature/
humidity sensors are artificially ventilated (with an aspirated
Atmos radiation shield, model 43502, maintaining a 5 m s21

ventilation during daytime when clear sky), when installed
over glacierized surfaces, except at Mera Summit. At this
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extremely high site, it is not possible to maintain artificial ven-
tilation and the sensor is thus prone to overheating when
shortwave radiation is large and natural ventilation low. Con-
sequently, observed air temperature at 6352 m MSL is likely
to be overestimated when wind speed is low, mainly during
the monsoon. There are no data at Mera Summit during the
postmonsoon because the AWS has been systematically bur-
ied by monsoonal snowfalls.

2) REANALYSIS DATA

ERA5L (1981–2020) is an ECMWF reanalysis dataset provid-
ing a consistent view of the evolution of land variables at a higher
resolution (0.18 3 0.18) than that of ERA5 (0.258 3 0.258).
ERA5L has been produced by replaying the land component of
the ECMWF ERA5 climate reanalysis (Hersbach et al. 2020).
The HAR (Maussion et al. 2011, 2014) is a regional atmo-
spheric dataset generated by dynamical downscaling using the
Weather Research and Forecasting (WRF) Model as regional
climate model. HARv2 (1991–2020) is a refined version of
HAR data with extended temporal and spatial coverage, using
ERA5 as input data. It will be extended back to 1979 and

continuously updated in the future. It provides gridded meteo-
rological fields at 10-km resolution for the Tibetan Plateau
and surroundings (Wang et al. 2020).

b. Methods of evaluation

The two reanalyses (ERA5L and HARv2) provided from
the nearest grid points to each AWS site are compared with
AWS data to evaluate their performance. In the Khumbu
area (Changri Nup, Pyramid and Pheriche sites), AWSs are
located on two distinct cells of ERA5L and HARv2, whereas
Mera AWSs are located on one single cell of ERA5L and two
neighboring cells of HARv2 (Fig. 1, Table 1). We compare
the temporal variability of 2-m air temperature T, relative hu-
midity RH, specific humidity q, wind speed u, shortwave
(SWin) and longwave (LWin) incoming radiations, and total
precipitation P recorded at the different AWSs with that
of ERA5L and HARv2 reanalysis data. We evaluate the per-
formance of HARv2 and ERA5L reanalysis datasets until
November 2020, over the exact same periods corresponding
to the periods when in situ data are available (Table 1). Consis-
tently, the reanalysis data are converted into Nepal standard

FIG. 1. Map of the study area with the AWSs located on glacier (pink dots) and off glacier
(red dots). The glaciers are represented in blue (ICIMOD inventory 2010), and the grids repre-
sent the reanalysis grid cells (ERA5L in purple; HARv2 in orange). The Dudh Koshi basin is
also delineated (yellow shading and gray line) in the main map and in the inset.
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time (UTC 1 5.75 h) to match the observed data and are re-
moved when there is a gap in the measurements (section 1 in
the online supplemental material).

Four different performance indicators are used to evaluate
daily mean values, of the different reanalysis variables listed
above: Pearson correlation coefficient r, bias, standard devia-
tion (SD), and root-mean-square error (RMSE) (Table 2); r is
a measure of linear correlation between reanalyzed and ob-
served data, bias is the mean value of the difference between
those two sets of data and is also called systematic error, SD
is the dispersion of the error, and RMSE is the standard devi-
ation of the error (Tetzner et al. 2019; Sanz Rodrigo et al.
2013). Also, the subdaily bias for different seasons and the
mean seasonal bias are calculated using hourly data and daily
data, respectively. To mitigate the artificial increase in r when
comparing two series with a strong seasonal cycle, we also cal-
culate series of anomalies as defined in section 3 in the online
supplemental material.

To account for the elevation difference between reanalysis grid
cells and AWS sites (Table 1), we apply various elevational gra-
dients of air temperature above ground from Kattel et al. (2013)
and Immerzeel et al. (2014). They are always shallower than
the standard environmental lapse rate (26.5 3 10238C m21).
The mean seasonal elevational gradients, derived by Kattel
et al. (2013) provide the best match with measurements at
each AWS and are considered in this study. Reanalyzed air
temperature TR (8C) at the elevation of the grid point zgp is
shifted to the elevation of the AWS, zAWS, as

TR(zAWS) � TR(zgp) 1 LR 3 (zAWS 2 zgp), (1)

where LR is the elevational gradient of air temperature
above ground from Table 3 of Kattel et al. (2013). The LR
varies between minimal values of 25.9 3 10238C m21 and
25.3 3 10238C m21 during the premonsoon and the postmon-
soon, respectively, and maximal values of 24.7 3 10238C m21

and25.13 10238C m21 in winter and monsoon, respectively.
We calculate specific humidity both for the observation and

reanalysis datasets. For the AWS measurements, air tempera-
ture T (8C), relative humidity RH (%), and atmospheric pres-
sure Pa (hPa) are used to calculate specific humidity q (g kg21)
for the Mera La and Mera Summit sites. At Naulek and Changri
Nup AWSs where there is no barometer, we use the atmospheric
pressure recorded at Mera La because all three sites are almost

at the same elevation (less than 10 m of difference; Table 1), and
horizontal gradients of atmospheric pressure are small over a
few kilometers (Naulek and Changri Nup are 1.5 and 30 km
away fromMera La, respectively). At each AWS site, q (g kg21)
is calculated as

q � «e
Pa 2 (1 2 «)e 3 1023, (2)

where «, the ratio of molar mass of water to that of dry air, is
equal to 0.622. The actual vapor pressure e (hPa) is calculated
from saturation vapor pressure es (hPa) and RH (%) as

e � RH 3 es
100

, (3)

with

es � 6:1094 exp
17:625T

243:04 1 T

( )
: (4)

For ERA5L, q is calculated from Eqs. (2)–(4), with RH (%)
obtained following Alduchov and Eskridge (1996) using air
temperature T (8C) and dewpoint temperature Td (8C) from
ERA5L:

RH � 100

exp
17:625Td

243:04 1 Td

( )

exp
17:625T

243:04 1 T

( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (5)

For HARv2, q is obtained from the mixing ratio rh (g kg21)
as

q � rh
(1 1 rh)

≈ rh: (6)

To convert the wind fields obtained from the reanalyses to
those comparable to in situ measurements, we use the follow-
ing equation providing the total wind speed u (m s21) as a
function of the zonal (U) and meridional (V) wind velocities:

u �
������������
U2 1 V2

√
: (7)

In addition, to directly compare both datasets, a height adjust-
ment is applied to convert the 10-m reanalyzed total wind

TABLE 2. Statistical metrics used to compare ERA5L and HARv2 reanalysis variables with observed meteorological variables.

Statistical metrics Formulaa Perfect value

Correlation coef (r) ∑n
i�1(xi 2 x)(yi 2 y)

/ ��������������������∑n
i�1 (xi 2 x)2

√ ��������������������∑n
i�1 (yi 2 y)2

√[ ]
21; 1

Bias (1=N)∑N
i�1(yi 2 xi) 0

SD
��������������������������������������������
(1=N)∑N

i�1 [(xi 2 x)2 (yi 2 y)]2
√

0

RMSE
����������������������������
(1=N)∑N

i�1 (yi 2 xi)2
√

0

a The subscript i stands for daily means, obtained from hourly values. When the hourly values from the AWS are missing, the corresponding
hourly values from ERA5L and HARv2 are discarded. The overbar (i.e., x and y) stands for mean values over the entire studied period or
over each season.
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speed to the AWS measurement height, assuming neutral at-
mospheric conditions (e.g., Oke 2002):

uh � u10
ln (zh) 2 ln (z0)
ln (z10) 2 ln (z0)

, (8)

where u10 (m) is the reanalyzed wind speed at z10 = 10 m, uh (m)
is the wind speed at height zh and z0 is the aerodynamic
roughness length [assumed to be 1023 m above snow/ice sur-
faces and 1022 m elsewhere, that is, debris cover or bare rocky
ground (e.g., Miles et al. 2017)]. The assumptions of consider-
ing neutral conditions or using usual roughness lengths over
AWS surfaces are questionable in a mountain environment
because such conditions are seldom encountered or because
roughness lengths may vary in space and time. Nevertheless,
that is the best compromise we can find to adjust the reana-
lyzed wind speed to AWS heights. The resulting decrease in
wind speed is weak (,23% of the 10-m wind speed).

4. Results

a. Meteorology of the upper Dudh Koshi basin

Our dataset corroborates the course of the seasons already
observed previously (Shea et al. 2015; Sherpa et al. 2017). The
winter is cold (T , 288C, above 5350 m MSL) (Figs. 2 and 3),
very dry (q , 1.0 g kg21 and RH , 40% at all sites) (Figs. 4
and 5, along with Figs. S9 and S10 in the online supplemental
material) and windy especially at high elevation (u = 6.5 m s21

at 6352 mMSL) (Figs. 6 and 7). SWin and LWin have their min-
imum annual values (205–223 W m22 and 148–182 W m22,
respectively) (Figs. 8–11), in relation with low solar angle
and the low cloudiness of this high-altitude dry and cold

atmosphere, respectively (Table 3). At all AWS sites, less than
10% of precipitation fall during this season (Table 3; Fig. 12).
At the beginning of March, as the atmosphere starts to slowly
warm up, the moisture content increases, leading to progres-
sively cloudier conditions and more frequent precipitation
events until the monsoon starts in June. During the premon-
soon, wind speed gradually decreases, and SWin is maximal
(254–331 W m22), due to high solar angle and still frequently
clear atmosphere, at least in the morning. The monsoon
is warm (93% of the days have a positive daily air tempera-
ture at 5350 m MSL), constantly humid (q . 6.8 g kg21 and
RH . 85% at 5350 m MSL) and the wind speed remains low
(u is close to 1 m s21 at 5350 m MSL). Permanently overcast
conditions prevail, reducing SWin to the benefit of LWin,
which reaches its maximal values (LWin . 300 W m22 at
5350 m MSL). It rains or snows on 4 of every 5 days. Daily
precipitation exceeds 1 mm water equivalent (w.e.) on ap-
proximately 2 of every 3 days. It is noteworthy to mention
that precipitation occurs mostly during the late afternoon and
night (Perry et al. 2020). Suddenly, in less than 1 week usually
at the end of September, the monsoon stops and conditions
switch to the postmonsoon, warmer and slightly less dry but
otherwise similar to winter, that is, quasi absence of precipita-
tion and strengthening of western winds.

The meteorology at Changri Nup AWS located over the
debris-covered part of west Changri Nup Glacier, in the upper
Khumbu Valley is very similar to that of Mera La or Naulek
AWSs, located over bare ground or over the debris-free abla-
tion zone of Mera Glacier, respectively, in Hinku/Hunku Val-
leys at the same elevation (∼5350 m MSL) (Figs. 2–13, Tables 3
and 4). This means that meteorological conditions are homo-
geneous in both valleys at glacier elevations, more than 30 km

FIG. 2. Mean annual cycle of daily air temperature from ERA5L, HARv2, and AWS at different sites. The referred periods used
to calculate the mean annual cycle are reported with the AWS site name in Table 1. Shaded areas correspond to seasons: winter
(green), premonsoon (blue), monsoon (red), and postmonsoon (yellow).
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apart. The main difference comes from the total amount of
precipitation, ∼30% higher in upper Hinku than in upper
Khumbu because of the orographic effect leading to a
strong negative horizontal gradient of annual precipitation
in south-to-north direction across the range (Sherpa et al.
2017) (Table 4). However, we note that, at similar eleva-
tions, air temperature is on average 1.58C lower and wind
speed is 0.5 m s21 higher over clean-ice glaciers (Naulek)
than over debris-covered glaciers (Changri Nup) or bare
rocky ground (Mera La) (Table 3).

Over the 7-yr (2012–19) period, annual precipitation is 591
and 540 mm w.e. at Pyramid and Pheriche, respectively, with
70% and 62% of precipitation occurring during the monsoon
(Table 4). Between 2016 and 2020, precipitation is higher at
Khare with a mean annual total of 818 mm w.e., 70% of
which falling during the monsoon (Table 4). Pheriche always
receives less precipitation than Pyramid during the monsoon
as well as during the year except for 2012/13 and 2014/15, two

exceptional years, the former impacted by Typhoon Phailin
in mid-October 2013 (Shea et al. 2015), and the latter with
exceptional precipitation events in winter and premonsoon
2014/15, for example, ∼120 km farther west in the Langtang
Valley as already noticed by Fujita et al. (2017). If we discard
the three years 2012–15, three-quarters of annual precipita-
tion falls during the monsoon at Pyramid and Pheriche. The
depletion in precipitation between the upper Hinku Valley
and the upper Khumbu Valley at similar elevations, that is,
Khare (4888 m MSL) and Pyramid (5035 m MSL) sites, re-
spectively, is 28% at annual scale as well as during the mon-
soon (Table 4).

The continuous record of data at Mera La, Pyramid, Pheriche
and Khare without any gaps since November 2013 (November
2016 for Khare) allows for a year-by-year comparison. The years
2015/16 and 2013/14 are the warmest (T =23.08C) and coldest
(T = 24.18C), with 123 and 115 days of daily temperature
above the freezing point at 5350 mMSL, respectively (Table 4).

FIG. 3. Mean diurnal cycle of reanalyzed and observed 2-m air temperature (solid lines) and biases (dotted lines) at different AWS sites
for different seasons.
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The 2020 monsoon is the warmest, with a mean temperature
of 2.38C, 0.58C above the 2013–20 mean. During the warmest
year 2015/16, SWin is the lowest at annual and monsoon time
scale (205 and 152 W m22, respectively) of the 7-yr studied
period, and the annual and monsoonal precipitation is the
highest (633 and 491 mm w.e. at Pyramid, respectively). The
other variables are not significantly different than those of
the other years. The year 2017/18 is the driest of the series,
with only 539 mm w.e. at Pyramid (Table 4). Nevertheless, the
2015 monsoon is the driest of our 7-yr studied period, with
only 332 mm w.e. at Pyramid. The year 2014/15 is unusual,
with only 57% of the annual precipitation during the mon-
soon, due to exceptional events in winter and premonsoon
2014/15 (Fujita et al. 2017).

b. Comparison between reanalysis and observed data in
the upper Dudh Koshi basin

Figures 2, 4, 6, 8, 10, and 12 show the mean annual cycle
of daily in situ and reanalysis data of air temperature,
specific humidity, wind speed, incoming shortwave and long-
wave radiations, and precipitation (at monthly scale for this
latter variable), respectively. The mean annual cycle is ob-
tained by averaging, for each date of the year, the daily values
of this given date of each year of the complete measurement
period. Figures 3, 5, 7, 9, 11, and 13 show the mean daily cycle
during each season. Table 5 provides the values of each statisti-
cal metrics, r, bias, SD, and RMSE obtained by comparing in
situ and reanalysis data at daily time scale, over the total
measuring period for each AWS. Table S1 in the online
supplemental material is the counterpart of Table 5 for the
series of anomalies. Table 6 gives the seasonal bias between
reanalysis and observed data of those six meteorological
variables.

1) AIR TEMPERATURE

Over the whole measuring period, reanalyzed and observed
daily temperatures are highly correlated [r . 0.95, p , 0.001;
r . 0.72 for the anomalies, see section 3b(i) and Table S1,
both in the online supplemental material] whichever sites or
reanalyzed data are considered (Table 5; Fig. 2). Seasonal and
daily cycles of temperature are well reproduced in both re-
analysis datasets (Figs. 2 and 3). Reanalyzed temperatures are
usually lower than in situ data during nonmonsoonal season
(except Mera Summit). This cold bias is less important over
debris-free glacier areas (Naulek and Mera Summit) than over
debris-covered or rocky surfaces (Changri Nup and Mera La,
respectively).

For the four seasons, the reanalyzed data are the closest to
observations in monsoon and the farthest in winter, except at
Naulek for ERA5L, where the reanalyzed data are the closest
to observations during intermediate seasons (Table 6). As for
annual values, the differences between reanalyzed and in situ
temperatures are larger over rocky surfaces (debris-covered
glacier or bare ground), with a negative bias always exceeding
3.28C in winter for ERA5L or HARv2, than over clean glacier
surfaces. The bias over clean-ice surfaces is mostly negative
but does not exceed 1.88C except for HARv2 in winter where
it is positive (3.18C at Mera Summit).

At subdaily time scale (Fig. 3), the differences between re-
analyzed and observed temperatures are very dependent on
whether it is night or daytime. The bias is usually slightly
lower at night than during the day (i.e., monsoon for both re-
analyzed data) but large biases, often negative, can still be ob-
served at night, as in winter for ERA5L and HARv2. It is
noteworthy to mention that at night, the bias may be positive
for HARv2 and at the same time negative for ERA5L as in
winter at Mera Summit (Fig. 3). We usually observe a mean

FIG. 4. As in Fig. 2, but for specific humidity.
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daily cycle of the bias, with a minimum at midday especially
for HARv2 data. When this bias is close to zero or negative at
night, which is often observed, it is strongly negative at day-
time. However, such mean daily cycle of the bias is not always
observed, as for ERA5L in winter or premonsoon, where the
bias passes through a maximum at daytime.

Considering all statistical metrics (Tables 5 and 6; Figs. 2
and 3; Table S1 in the online supplemental material), the per-
formances of ERA5L and HARv2 reanalysis datasets are not
significantly different, but large biases exceeding 48C, mostly
negative, are only encountered for HARv2 at any season and
at all sites except Naulek. Both reanalyzed datasets still tend
to underestimate air temperature at high elevation in the up-
per Dudh Koshi basin, especially over rocky surfaces.

2) SPECIFIC AND RELATIVE HUMIDITIES

At the annual time scale, both reanalyzed and observed daily
specific humidities are very well correlated (r. 0.97, p, 0.001;

r . 0.62 for the anomalies) except at Mera Summit where the
correlation is lower especially for the anomalies (r = 0.92 and
0.93 for ERA5L and HARv2, respectively, p , 0.001; r = 0.27
and 0.42 for the anomalies for ERA5L and HARv2, respec-
tively) and the bias is large (bias . 2.1 g kg21 for both reanaly-
ses) (Table 5, along with Table S1 in the online supplemental
material). The seasonal cycle of specific humidity is well repro-
duced by both reanalyses, with an almost perfect match at
Changri Nup for both reanalyses and at Mera La for HARv2
(Fig. 4; Tables 5 and 6). Looking at the anomalies [sections
3b(ii) and 3b(iii) in the online supplemental material], HARv2
performs slightly better than ERA5L, but both reanalysis prod-
ucts are not very good at Mera Summit, where they predict sat-
uration during the monsoon although this is not the case in
reality (Fig. S9 in the online supplemental material), leading to
an overestimation of specific humidity (Fig. 4). The bias, SD,
and RMSE are higher at Mera Summit than at lower-elevation
AWSs mainly because of the larger difference in elevation and

FIG. 5. As in Fig. 3, but for specific humidity.
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in turn in atmospheric pressure between the AWS and the
grid cells of the respective reanalysis datasets. To a lesser ex-
tent, this is also the case at Mera La and Naulek sites for
ERA5L data, because the gridcell altitude is approximately
700 m below that of the AWSs (Table 1), inducing a higher
surface atmospheric pressure and, as a consequence, higher
reanalyzed specific humidity relative to in situ values.

At the subdaily time scale, we observe a daily cycle of spe-
cific humidity, with most of the time a minimum value in the
early morning, and a maximum in the early afternoon (Fig. 5).
This cycle is well reproduced by the two gridded datasets,
sometimes almost perfectly, as during premonsoon at Changri
Nup. We often observe a slight positive humid bias usually a
little more important in the afternoon, especially for ERA5L
(Fig. 5).

Considering all statistical metrics (Table 5; Figs. 4 and 5;
Table S1 in the online supplemental material), we can con-
clude that the seasonal and the daily cycles of specific humid-
ity are well represented by both gridded datasets, with still a
large humid bias at Mera Summit. Overall, for specific humid-
ity, HARv2 is slightly closer to the observations than ERA5L.

We performed a similar analysis for relative humidity
(see section 2 in the online supplemental material). Relative
humidity is systematically slightly overestimated by reanaly-
sis data, and better represented by HARv2 than ERA5L
when considering the seasonal cycle of RH, and vice versa
when looking at its daily cycle. Nevertheless, the agreement
between observed and reanalyzed relative humidity is still not
very good at high elevation (Mera Summit), except in winter.

3) WIND SPEED

Over the entire measuring period, the correlation between
reanalyzed and observed daily wind speed is very variable,

from low to high [r = 0.15–0.82, p , 0.001; r = 0.13–0.66 for
the anomalies; see section 3b(iv) in the online supplemental
material] (Table 5, along with Table S1 in the online
supplemental material). Those correlations, however, do not
reflect the fact that both reanalyses do not represent well the
local wind speed at all sites, because the wind speed is mainly
controlled by local topography and surface conditions that
cannot be accounted for correctly in reanalysis products.

Overall, HARv2 overestimates wind speed by a factor of
1.5–3 for all sites located at ∼5350 m MSL but is really close
to the AWS measurements at Mera Summit, a high-altitude
open site where conditions are likely close to the free atmo-
sphere. However, even at this very high site, the wind speed is
a little overestimated during the monsoon (bias = 0.5 m s21)
when there are light winds (u = 2.5 m s21), and slightly under-
estimated the rest of the year (Tables 5 and 6; Fig. 6).

On the other hand, ERA5L strongly underestimates wind
speed at all sites, except during the monsoon (bias ranging from
24.0 to21.2 m s21; Table 5). Moreover, ERA5L shows neither
any pronounced seasonality, as at Changri Nup, where wind ve-
locity is almost the same year-round, nor any day-to-day vari-
ability, although this is often observed especially in winter at
all sites (Fig. 6). The only season when ERA5L performs
fairly well is the monsoon, at all sites except Mera Summit,
even though it still fails to reproduce the day-to-day variabil-
ity (Table 6; Fig. 6).

Both reanalysis datasets fail to reproduce the subdaily
cycle of wind speed. We usually do not observe any clear daily
cycle of wind speed, except a slight decrease of wind speed in
the morning or during the daytime, over clean-ice areas, more
pronounced at very high elevation (Mera Summit). This daily
cycle is not reproduced by reanalysis data at all, and HARv2
data even show an opposite cycle, with increasing wind veloc-
ity during the day (Fig. 7).

FIG. 6. As in Fig. 2, but for wind speed.
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In conclusion, none of the reanalysis datasets reproduce ob-
served wind speed at high elevation in this region, partly be-
cause local wind speed is very dependent on local topography
and surface conditions, but not only because the performance
is barely better on high-altitude open sites. HARv2 reprodu-
ces well the seasonality of wind speed observed at AWSs but
tends to overestimate it, and completely fails to reproduce its
observed daily cycle. ERA5L systematically underestimates
the wind speed at all elevations and does not even show any
seasonality.

4) INCOMING SHORTWAVE RADIATION

At annual time scale, reanalyzed and observed daily values
are fairly or well correlated, with r values higher than 0.62
and even often close to 0.77 (Table 5, except Mera Summit).
Even when removing the seasonal cycle, r values stay high
and close to 0.60 [section 3b(v) and Table S1, both in the on-
line supplemental material]. However, these relatively high

correlations should not hide the fact that the reanalyses do
not represent the cloudiness very well, and, as a consequence,
have degraded evaluation metrics during the monsoon. More
precisely, during the winter and the postmonsoon, both reana-
lyzed incoming radiations have a negative bias not exceeding
16 W m22 (winter) or 30 W m22 (postmonsoon), for ERA5L
at all sites (Table 5). However, as soon as it starts to be cloudy
during the premonsoon and the monsoon, this bias tremen-
dously increases especially for HARv2 data (Table 6; Fig. 8).
This bias is most of the time negative and exceeds sometimes
100 W m22 during the monsoon (Table 6; Fig. 8).

Both reanalyses fail to reproduce incoming shortwave radi-
ation at Mera Summit except in winter, although this site re-
ceives the highest solar radiation of all, due to its very high
altitude and large sky view factor. During the monsoon,
HARv2 and ERA5L underestimate SWin by a factor of 6 and
2, respectively. This underestimation is also mainly due to at-
mosphere attenuation given that the elevations of the reanaly-
sis grid cells (4662 m MSL for ERA5L, and 4637 m MSL for

FIG. 7. As in Fig. 3, but for wind speed.
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HARv2) are much lower than the AWS site elevation (6352 m
MSL for Mera Summit) (Table 1). The only site where both re-
analyses are close to the observations is Changri Nup, although
HARv2 is less good than ERA5L, and this time overestimates
SWin during the premonsoon and monsoon (Tables 5 and 6;
Fig. 8). Overall, the performance of ERA5L is slightly better
than HARv2 at all sites but still poor at very high altitude
when there are clouds (premonsoon and monsoon). This per-
formance strongly depends on the elevation difference be-
tween the observed site and the corresponding reanalysis grid
cell.

The mean daily cycle of the bias is sometimes asymmetrical,
negative in the morning and positive in the afternoon, as in
winter at all sites, or on Changri Nup and Naulek, because
those sites are oriented east, and in the shade early in the af-
ternoon (1400–1500 local time) (Fig. 9). The surrounding
complex topography is responsible for some shading effects
blocking direct sunlight at AWS sites, which explains why the
bias between reanalyzed and observed data can be variable
during the day.

5) INCOMING LONGWAVE RADIATION

Over the whole measuring period, daily reanalyzed and ob-
served values are extremely well correlated, with r higher
than 0.89 (p , 0.001) for all sites (Table 5). When removing
the seasonal cycle, this correlation stays high, with r values
higher than 0.70 except at Mera Summit where r drops to 0.55
for ERA5L data [section 3b(vi) and Table S1, both in the on-
line supplemental material]. This is somehow expected be-
cause correlations for T and q are also high. Overall, ERA5L
performs very well at all sites, as shown by the good perfor-
mance of all statistical metrics (Table 5), with a mean bias
usually not exceeding 16.1 W m22 (except Mera Summit

where the bias is as high as 40 W m22), negative at Changri
Nup, positive elsewhere (Table 6; Fig. 10). As for HARv2
data, the bias is most of the time more important, usually ex-
ceeding 20 W m22, positive at Mera Summit, negative else-
where. As for SWin, this bias strongly depends on the
elevation difference between the observation site and the re-
analysis grid cell. For instance, the positive bias at Mera Sum-
mit is mainly explained by elevation difference between the
HARv2 or ERA5L grid point and the observation site located
∼1700 m higher (Table 1).

The seasonality is also very well reproduced. The seasonal bias
between ERA5L and observed LWin is reasonable, and in worst
cases reaches 20–50 W m22, sometimes positive, sometimes neg-
ative, depending on the site and season, as well as the elevation
difference between AWS and grid cell (Table 6; Fig. 10). For
HARv2 data, the bias is usually higher, positive at Mera Summit
mainly due to this elevation difference, and negative elsewhere.

The daily cycle of reanalyzed data agrees usually well with
the observed daily cycle, still with a slight shift of the daily
maximum observed at 1300 LT, but occurring later for
ERA5L, and earlier for HARv2 (Fig. 11).

6) PRECIPITATION

Over the 2012–19 measuring period, daily reanalyzed and
observed precipitation are well correlated (r. 0.60, p, 0.001)
(Table 5). The seasonal distribution of precipitation is well re-
produced. Indeed, observations show that over this 7-yr period,
70% of annual precipitation fall during the monsoon at
Pyramid (62% at Pheriche), while ERA5L and HARv2 give
74% and 65%, respectively (76% and 72%, respectively, at
Pheriche). Similarly, between 2016 and 2020, Khare AWS col-
lected 28% more precipitation than at Pyramid, 70% of which
falling during the monsoon, while ERA5L and HARv2 give

FIG. 8. As in Fig. 2, but for SWin.
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63% and 66% more precipitation than at Pyramid, with 79%
and 75% falling during the monsoon, respectively. However,
both reanalyses strongly overestimate precipitation at all sites,
with a mean positive bias of 0.5–0.9 mm w.e. day21 at Pyramid
for ERA5L and HARv2, respectively, and 2–3 times higher at
Pheriche and Khare, respectively (Table 5). Overall, the an-
nual totals of precipitation estimated by both reanalysis prod-
ucts exceed by a factor of 2–3.5 the observed precipitation,
except for ERA5L at Pyramid where the overestimation is
only 30%. Those biases are even more important during the
monsoon and exceed 1.1 mm day21 at Pyramid or are even
larger at Pheriche or Khare with values reaching 6.5 mm day21

for HARv2 (Table 6).
The comparison at monthly time scale (Fig. 12) confirms

that reanalysis products tend to systematically overestimate
observed precipitation, but the pattern is very dependent on
the site and on the season. At all sites, the agreement is good
during the driest months, that is, during the postmonsoon and

in winter, with still an overestimation of precipitation in
January–February for HARv2 data (Table 6). During the
premonsoon, in the driest part of our studied area (i.e.,
Pheriche and Pyramid), precipitation is well represented by
both reanalysis products. At Khare, precipitation is overesti-
mated by both reanalyses, more importantly by HARv2,
when the monsoon gets closer (April and May). Monsoon is
the season when the positive bias is systematic and the high-
est, with monthly precipitation being often overestimated by a
factor of 1.6–3.8, especially in the wettest part of our studied
area (Khare). Only ERA5L data represent fairly well precipi-
tation recorded at Pyramid, with an overestimation of only
37% during the monsoon.

Figure 13 compares the mean daily cycle of observed
precipitation with that of reanalyzed data, for each season.
Days with less than 1 mm w.e. of observed daily precipitation
are discarded in these daily cycles. As already observed in
other studies (e.g., Ueno et al. 2008; Yamamoto et al. 2011;

FIG. 9. As in Fig. 3, but for incoming shortwave radiation.
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Perry et al. 2020), during the monsoon, precipitation is more
intense at night than during daytime, with a peak of precipita-
tion at sunset at Pyramid or later during the night at the other
sites. The pattern is similar during the premonsoon, but less
clear. During the other seasons, given that there are only a
few days with precipitation exceeding 1 mm w.e. day21, we
cannot extract any clear and representative pattern of daily
distribution of precipitation. Focusing on the two most humid
seasons (i.e., monsoon and premonsoon), both reanalyses are
unable to reproduce the daily cycle of precipitation and are
most of the time out of phase with maximum precipitation in-
tensity at daytime. This is especially true at Khare where strong
precipitation maxima at noon, concomitant to the observed
precipitation minimum, are responsible for large precipitation
overestimations already reported.

Tables 7 and 8 compare the occurrence of precipitation at
AWS sites with that of reanalysis products, at hourly and daily
time scales, respectively, over the entire measuring period
and over the monsoons only. Overall, the agreement between
observed and reanalyzed precipitation occurrences is reason-
able, slightly better for HARv2. Still, 13%–36% of the time
[sum of the false counts in Tables 7 and 8, 13% being for
HARv2 data at Pheriche at hourly time step for the entire
measuring period (Table 7) and 36% being for ERA5L data at
Khare at hourly time step for the monsoons only (Table 7)],
depending on the site and on ERA5L or HARv2, reanalysis
data fail to reproduce precipitation, mostly simulating precipi-
tation while there is none in reality (false positive in Tables 7
and 8), but vice versa also, not only at the hourly time scale
but also at the daily time scale. Looking only at the monsoons,
the days with precipitation are fairly well reproduced with a
percentage of total false values not exceeding 25% (Table 8).
But the agreement is less good while considering the occurrences

of precipitation at hourly time scale when the total percentage
of false values is between 13% and 36% (Table 7).

We also look at the two most important events of our pre-
cipitation record, that is, Typhoons Phailin and Hudhud,
which both occurred in mid-October, in 2013 and 2014, re-
spectively (Shea et al. 2015; Sherpa et al. 2017). Even though
both reanalyzed datasets tend to overestimate precipitation
during those extreme events, especially for HARv2 data, the
daily precipitation distribution is fairly well reproduced over
the three days of each event. For both typhoons, 14 October
was the wettest day, receiving 55%–70% of the total precipi-
tation of each event (Table 9).

5. Discussion

a. Performances of ERA5L and HARv2 reanalyses in
the central Himalayas

We present here a multisite evaluation of meteorological
variables using ERA5L and HARv2 reanalyses in comparison
with in situ observations from seven meteorological stations
located in the upper Dudh Koshi basin, Nepal. It is notewor-
thy to mention that reanalysis data are spatially resolved data
(0.18 3 0.18 for ERA5L and 10 km 3 10 km for HARv2)
whereas in situ observations are point-scale data at AWS
sites. Because of this scale difference, we cannot expect a per-
fect match between datasets, especially when the topography
is complex. The performance of reanalysis data depends on
the meteorological variables, on the geographical context
(Tetzner et al. 2019) and on the surface state. In the upper
Dudh Koshi basin, the 2-m air temperature is the best cap-
tured (r = 0.95–0.97; p, 0.001; RMSE of 28–38C; r = 0.72–0.91
for the anomalies) among all variables by both reanalyses
(ERA5L and HARv2), which are nevertheless usually cold

FIG. 10. As in Fig. 2, but for LWin.
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biased especially over rocky surfaces (bias from 22.28 to
22.48C at Changri Nup) (Tables 5 and 6). This cold bias, typi-
cal of most reanalysis products in this region (Orsolini et al.
2019), is attenuated over glacierized surfaces because they are
themselves colder than the average surfaces. The variations
between AWS and reanalysis data are likely to be attributed
to the elevation difference between the AWS site and the grid
point of the reanalysis (Tetzner et al. 2019). Even though
both reanalysis temperature data are corrected using a sea-
sonal elevational gradient of air temperature above ground
(Kattel et al. 2013), the bias is stronger during the cold sea-
sons of the year (winter and postmonsoon) than during the
humid season and is also more important at daytime than dur-
ing the night. During these cold seasons in this mountainous
environment, an inversion layer may occur. In this case, the
use of a vertical gradient of air temperature is inappropriate
and may be responsible for this cold bias, especially when
the altitude difference between the reanalysis grid cell and the
AWS exceeds a few hundreds of meters. As already pointed

out by Immerzeel et al. (2014) and Steiner and Pellicciotti
(2016) in the nearby Langtang Valley, there is a great spatio-
temporal variability of temperature lapse rates in Himalayan
valleys due to extreme topography and the type of glaciers. In-
stead of a standard environmental lapse rate, it is strongly rec-
ommended to use observed lapse rates usually shallower, at
high temporal resolution, that is, hourly time scale for instance
(Ragettli et al. 2015; Mimeau et al. 2019). A standard correc-
tion method based on spatially and temporally variable lapse
rates should be developed to correct surface temperature re-
analysis data for the central Himalayas, accounting for not
only the season and the hour of the day (Steiner and
Pellicciotti 2016), but also the surface state and the location
of the measurement site as a function of topography (leeward
vs windward for instance).

Specific humidity is directly related to local convection of
the region as well as the monsoonal activity. In the upper
Dudh Koshi basin, the Indian summer monsoon has a signifi-
cant effect from June to September, but local convection

FIG. 11. As in Fig. 3, but for incoming longwave radiation.
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already increases regularly during the premonsoon, leading to
a gradual increase of specific humidity, though it is less pro-
nounced at very high elevation (Mera Summit) (Fig. 4). At
5350 m MSL, q is very well represented by both reanalyses, al-
though the difference in altitude and thus atmospheric pressure
between the reanalysis grid and the AWS induces a wet bias as
for both gridded datasets at Mera Summit, or for ERA5L at
Naulek and Mera La (Fig. 4; Tables 5 and 6). The seasonality
of q at Mera Summit is significantly different from what we ob-
serve at lower elevations. Indeed, at high elevation, the only
humid season is the monsoon even though the atmosphere is
far from being permanently saturated (Fig. S9 in the online
supplemental material), the day-to-day variability is higher
than at lower altitude, and the atmospheric water content
slowly increases during the premonsoon (Fig. 4). It seems that
there is a decoupling of the atmosphere at around 6000 mMSL
during the premonsoon and the monsoon, the lower layers be-
ing much more affected by convection than the higher layers,
more occasionally reached by convective clouds and in turn
much drier. As a consequence, since the reanalysis grid points
for ERA5L and HARv2 are located ∼1700 m lower in eleva-
tion, they cannot reproduce the water content of the atmo-
sphere at Mera Summit.

ERA5L completely fails to reproduce observed wind veloc-
ities at any elevation or over any surfaces. In addition to the
large systematic underestimation of the wind velocity, this

reanalysis product is not able to reproduce its large seasonal
variability, characteristic of high-elevation areas of the central
Himalayas. Probably due to the fact that this product is ob-
tained by dynamical downscaling of ERA5, HARv2 reanaly-
sis performs better, but tends to systematically overestimate
wind speed at lower elevations all year round (Fig. 6). The
only site where HARv2 wind speed agrees well with observa-
tions is Mera Summit, even though wind speed is overesti-
mated during the monsoon, underestimated the rest of the
year and the daily cycle is out of phase (Fig. 7). In mountain
areas, wind results from the interplay of synoptic-scale circu-
lations, like strong westerly winds in winter or during the
postmonsoon, and local circulation, like katabatic winds over
glaciers or valley breeze circulation systems (Bollasina et al.
2002). Consequently, 2-m wind speed is highly heterogeneous
in the central Himalayas at small spatial scale due to the ex-
treme topography, a competition between local and general
circulation systems, and variable land-covered patterns. In
such conditions, the poor performance of reanalysis products
is expected, except at very high-elevation open sites like Mera
Summit, where conditions are closer to the free atmosphere,
that is, less affected by local circulation systems or surface
types. In this study region, only HARv2 reanalysis is able to
represent mesoscale wind speed, but downscaling techniques
are necessary to resolve local-scale wind regimes like anabatic
or catabatic winds. It is also noteworthy to mention that

TABLE 3. Seasonal and annual mean values of meteorological variables observed at different AWS sites, except for precipitation for
which seasonal or annual totals are reported.

Seasonala

AWS site DJF MAM JJAS ON Annual meana/total

T (8C) Changri Nup 210.1 25.5 2.0 25.0 23.9
Mera La 28.9 25.3 1.8 23.6 23.5
Mera Summit 218.3 212.8 22.5 } 211.2
Naulek 210.4 26.8 0.3 26.7 25.4

RH (%) Changri Nup 25 52 85 39 55
Mera La 30 60 91 42 60
Mera Summit 39 55 76 } 56
Naulek 33 56 92 42 61

q (g kg21) Changri Nup 0.8 2.6 7.0 2.1 3.6
Mera La 1.0 3.1 7.5 2.4 3.9
Mera Summit 0.8 1.8 5.1 } 2.5
Naulek 1.0 2.7 6.8 2.3 3.6

u (m s21) Changri Nup 2.9 2.1 1.2 2.3 2.1
Mera La 3.0 2.0 1.1 1.9 2.0
Mera Summit 6.5 4.8 2.5 } 4.6
Naulek 4.6 3.0 1.4 3.3 2.6

SWin (W m22) Changri Nup 205 296 212 230 236
Mera La 223 254 162 234 212
Mera Summit 212 331 315 } 283
Naulek 216 304 222 224 234

LWin (W m22) Changri Nup 173 223 303 199 233
Mera La 182 234 308 209 243
Mera Summit 148 191 272 } 203
Naulek 175 219 300 197 240

P (mm w.e.) Pyramid 39 108 413 32 591
Pheriche 49 115 337 39 540
Khare 78 142 570 28 818

a Seasonal or annual mean values are discarded when data gaps exceed 33% of the time.
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applying a logarithmic profile to compute reanalysis wind
speed at AWS measurement level from 10-m wind is likely to
add further errors. Indeed, a stable stratification is common
over glacier surfaces, which can result in a vertical wind gradi-
ent that is much steeper than a simple logarithmic profile, and
in turn in a more pronounced reduction of wind speed. This
could explain why HARv2 wind speed is often overestimated.

We observe a strong seasonality of incoming shortwave and
longwave radiations, with maximal values of SWin during the
premonsoon, and of LWin during the monsoon because of the
presence of warm air and thick convective clouds. The season-
ality of both incoming radiations is well captured by ERA5L
and HARv2 reanalysis datasets (Figs. 8 and 10). However,
there are sometimes large biases for some sites, mainly due to
the elevation difference between the AWS and the reanalysis
grid point. For some sites like Mera Summit, this elevation dif-
ference is as high as ∼1700 m, explaining why reanalyzed SWin
is negatively biased, especially during the premonsoon and
monsoon when a large part of SWin is reflected by an extra
1700 m of cloud thickness, and why LWin is systematically pos-
itively biased, due an additional longwave emission of this ex-
tra 1700 m thick layer of atmosphere. When the reanalysis
gridpoint elevation is close to that of the AWS, the agreement
between reanalyzed and observed radiations is very good as at
Naulek for HARv2 data. Nevertheless, on each site, ERA5L
performs much better than HARv2. Indeed, HARv2 incoming

shortwave radiation is abnormally depleted during the mon-
soon at all sites except Changri Nup, likely due to an overesti-
mation or an exaggerated reflection of the cloud cover. In
mountain areas with extreme topography, SWin and LWin
are also strongly influenced by local conditions such as slope
or aspect, which contribute to enhance biases. As a consequ-
ence, incoming shortwave and longwave radiations can be re-
constructed from ERA5L reanalysis (and to a lesser extend
also from HARv2 data but with a lower accuracy) as long as a
correction method accounting for the elevation difference
between the reanalysis grid point and the studied site and the
local topography is considered.

Both reanalysis datasets are able to reproduce precipitation
during the dry seasons (postmonsoon and winter, even though
HARv2 precipitation is overestimated in January–February)
but strongly overestimate precipitation when it starts to rain
or snow, in premonsoon, and more evidently during the mon-
soon. Additionally, reanalysis products predict maximum pre-
cipitation intensity at daytime although it occurs at night. The
performance of ERA5L is better than HARv2, but an overes-
timation by a factor of 2–3 is still usual, between June and
September (Figs. 12 and 13). This is all the more problematic
as more than 70% of the annual precipitation is concentrated
in those 4 months. It is interesting to note that a recent study
found different results when comparing HARv2 (at 10- and
2-km resolutions) and ERA5L with three stations located on
the Tibetan Plateau (Hamm et al. 2020). They concluded that
HARv2 had a better ability to represent the orographic effect
on precipitation, and was in better agreement with station
measurements than ERA5L. Multiple reasons could explain
these differences: (i) there is a strong annual variability in pre-
cipitation, which might hinder systematic biases; (ii) the stations
they investigate are located on the northern flank (leeward
side) of the central Himalayas, and consequently the influence
of topography is expected to be different; and (iii) the stations
investigated in this present study are located at higher eleva-
tions than those in Hamm et al. (2020). The comparison with
this study shows that it is difficult to draw general conclusions
from site specific studies, and some conclusions apply only to
specific settings.

It is well known that solid precipitation measurements are
beset with significant inaccuracies, depending on the gauge
catch efficiency (e.g., Kochendorfer et al. 2017). Nevertheless,
our dataset has been corrected for undercatch [Førland et al.
(1996) and section 1c in the online supplemental material] and
the bias is strongest during the monsoon when conditions, that
is, light winds and mostly rain below 5000 m MSL, are favor-
able for an efficient gauge catch. Consequently, we expect our
precipitation measurements not to be underestimated. Any-
way, with such a complex topography, the spatial variability of
precipitation is extreme (Mimeau et al. 2019; Eeckman et al.
2017) and the spatial resolution of reanalysis products, as good
as it is, is still not sufficient to reproduce the observations. The
occurrence of precipitation is reasonably reproduced at least at
daily time scale, but reanalysis products have still a tendency to
simulate precipitation when there is not, mainly at hourly time
scale (Tables 7 and 8). Promisingly, both reanalysis datasets
have well captured the extreme precipitation events due to

FIG. 12. Mean monthly precipitation (mm w.e. month21) at the
Pyramid, Pheriche, and Khare sites. Monthly precipitation has
been calculated over the period 2012–19 for Pyramid and Pheriche
and 2016–20 for Khare. Note the broken scale of the y axis in the
bottom panel, as shown by the double horizontal line.
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Typhoons Phailin and Hudhud, mid-October 2013 and 2014,
respectively, with a moderate overestimation especially for
HARv2 (Table 9).

In general, both gridded datasets are able to well represent
the seasonal cycle of all meteorological variables, except

ERA5L for wind speed. This means that they are able to re-
solve the mesoscale atmospheric processes, but they cannot
be directly used as surrogates for AWS based observations
due to the scale mismatch. For instance, for most of the ana-
lyzed variables, the agreement between reanalysis data and in

FIG. 13. Mean diurnal cycle of reanalyzed and observed total precipitation at AWS sites for different seasons. Only days with ob-
served daily precipitation exceeding 1 mm w.e. day21 are used in these plots. The mean number of days with daily precipitation ex-
ceeding 1 mm day21 w.e. for each season at each site is reported in each panel (i.e., N).

TABLE 4. Monsoonal and annual (after the slash) mean meteorological variables at Mera La and total precipitation at Pyramid,
Pheriche, and Khare. The annual values are calculated from 1 December of one year to 30 November of the following year. Also
shown are the mean value over the entire measuring period and the SD.

Year 2012–13 2013–14 2014–15 2015–16 2016–17 2017–18 2018–19 2019–20 Mean SD

T (8C) } 1.4/24.1 1.5/23.8 1.7/23.0 1.8/23.3 2.0/23.1 1.9/23.9 2.3/23.9 1.8/23.5 0.3/0.5
RH (%) } 91/59 89/60 93/59 92/61 92/60 90/61 93/63 91/60 1.4/1.6
q (g kg21) } 7.3/3.8 7.2/3.8 7.5/4.0 7.5/4.0 7.6/3.9 7.4/3.9 7.9/4.2 7.5/3.9 0.2/0.2
u (m s21) } 1.0/2.0 1.1/1.9 1.0/1.9 1.0/1.8 1.0/1.9 1.1/2.1 1.2/2.1 1.1/2.0 0.1/0.1
SWin (W m22) } 160/214 171/220 152/205 159/212 156/205 172/213 162/213 162/212 7.4/5.1
LWin (W m22) } 305/243 302/239 312/242 309/242 308/242 306/240 311/247 308/243 3.5/2.6
PPyramid (mm) 387/619 397/595 332/585 491/633 416/549 435/539 430/620 } 413/591 49/36
PPheriche (mm) 331/692 334/539 286/611 407/615 351/454 288/361 364/504 } 337/540 43/111
PKhare (mm) } } } } 522/753 542/668 582/862 635/987 570/818 50/138
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situ data decreases when the altitude difference between
the reanalysis grid point and that of the AWS increases. It
is thus impossible to use the same grid point for different
AWSs concurrently, without applying either dynamical or
statistical techniques to downscale the gridded data to local
scale or individual sites.

b. Qualitative relevance for mass and energy balance
studies over glaciers

For energy and mass balance studies over glaciers in the
central Himalayas, several point-scale surface energy balance
studies, mostly conducted in the ablation area, have revealed
that net all-wave radiation is the main energy flux controlling
the melt of clean-ice glaciers (e.g., Kayastha et al. 1999; Litt
et al. 2019) while turbulent fluxes play a secondary role, still
relatively important in the accumulation zone (e.g., Stigter
et al. 2018) or over debris-covered areas (e.g., Steiner et al.
2018; Giese et al. 2020). Solid precipitation with its impact on
albedo and air temperature, with its control on the rain–snow

limit, are therefore very important meteorological variables
influencing the glacier mass balance in the ablation area, while
wind speed, which governs sublimation, is more important in
the accumulation area. When in situ measurements are not
available close to glaciers, SWin and LWin from ERA5L data
should be preferred to those from HARv2, as long as the ele-
vation difference between the reanalysis grid point and the
studied point is accounted for. Reanalyzed air temperature,
from ERA5L or HARv2, are both suited to control the eleva-
tion of the rain–snow limit when using adequate elevational
gradients of air temperature above ground, preferentially cali-
brated with observed records at different elevations in the
studied area. However, both reanalysis datasets largely overes-
timate precipitation records at high elevation and should be
bias corrected, also using in situ measurements. Additionally, a
special attention should be paid for the occurrence of precipi-
tation, not always in phase with observations at high temporal
resolution, that is, hourly time scale. Finally, ERA5L wind
speed totally fails to capture wind speed at high elevation, and

TABLE 5. Values of each statistical metric (r, bias, SD, and RMSE) obtained by comparing in situ and reanalyzed data at a daily
time scale, over the total measuring period for each AWS. Measuring periods at each site are reported in Table 1. All r values
reported in this table have p , 0.001.

ERA5L vs AWS HARv2 vs AWS

Metric r Bias SD RMSE r Bias SD RMSE

Changri Nup
T (8C) 0.97 22.2 2.2 3.1 0.96 22.4 2.3 3.3
RH (%) 0.90 12.2 13.2 18.0 0.90 4.2 12.8 13.6
q (g kg21) 0.98 0 0.4 0.6 0.98 20.1 0.4 0.5
u (m s21) 0.15 21.4 0.9 1.7 0.64 1.1 1.6 2.0
SWin (W m22) 0.76 15.9 46.9 49.6 0.78 21.1 51.1 55.3
LWin (W m22) 0.95 210.7 19.0 21.8 0.93 230.1 22.9 37.8

Mera La
T (8C) 0.95 21.3 2.1 2.4 0.97 21.8 2.1 2.4
RH (%) 0.86 6.4 15.2 16.5 0.93 10.8 11.8 16.0
q (g kg21) 0.97 1.0 0.8 1.3 0.99 0.2 0.5 0.5
u (m s21) 0.69 21.2 0.9 1.5 0.82 2.4 1.4 2.8
SWin (W m22) 0.71 4.0 49.4 49.6 0.77 252.3 63.6 82.3
LWin (W m22) 0.94 7.9 22.1 23.3 0.94 219.0 23.8 30.5

Mera Summit
T (8C) 0.97 0.3 1.8 1.8 0.97 1.0 2.5 2.5
RH (%) 0.59 7.7 22.1 23.4 0.69 15.2 18.3 23.6
q (g kg21) 0.92 2.1 1.7 2.7 0.93 2.6 1.4 3.0
u (m s21) 0.68 24.0 2.3 4.6 0.80 20.3 1.5 1.5
SWin (W m22) 0.47 259.8 72.7 94.1 20.01 2134.6 123.7 182.8
LWin (W m22) 0.89 40.5 30.5 50.7 0.92 39.6 26.8 47.9

Naulek
T (8C) 0.95 0.3 2.1 2.1 0.97 20.2 1.7 1.7
RH (%) 0.87 5.0 14.4 15.0 0.91 10.3 12.1 15.9
q (g kg21) 0.97 1.3 0.9 1.6 0.99 0.6 0.5 0.8
u (m s21) 0.71 21.8 1.4 2.3 0.81 2.1 1.3 2.5
SWin (W m22) 0.73 222.2 49.3 54.0 0.62 279.3 77.6 110.9
LWin (W m22) 0.95 16.1 19.9 25.6 0.96 210.4 21.5 23.8

Pyramid
P (mm day21) 0.63 0.5 3.7 3.7 0.60 0.9 5.2 5.3

Pheriche
P (mm day21) 0.62 1.4 4.6 4.8 0.67 1.1 5.4 5.5

Khare
P (mm day21) 0.68 1.8 6.0 6.3 0.66 2.8 8.8 9.2
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HARv2 wind velocity, even though it is slightly overestimated,
should be considered preferentially to assess sublimation over
glaciers, especially at high elevation where sublimation is an
important component of glacier mass balances. Litt et al.
(2019) have shown that temperature index models, including

or not a shortwave radiation scheme, are suitable to assess
melt in the ablation zone of glaciers in the central Himalayas,
during the monsoon, but are unable to quantify ablation higher
in altitude or during the other seasons, because sublimation
prevails and is unresolved by such models. In turn, air

TABLE 6. Mean seasonal bias between reanalyzed daily data (ERA5L and HARv2) and observed data over different seasons
(DJF = winter, MAM = premonsoon, JJAS = monsoon, and ON = postmonsoon).

ERA5L vs AWS HARv2 vs AWS

AWS site DJF MAM JJAS ON DJF MAM JJAS ON

T (8C) Changri Nup 24.4 22.6 20.7 22.0 25.0 22.3 20.8 22.2
Mera La 23.2 21.5 0.4 21.5 23.4 21.9 20.4 22.0
Mera Summit 1.0 0.1 20.4 } 3.1 0.7 21.0 }

Naulek 21.7 20.1 1.7 1.0 21.8 20.4 0.8 0.6
RH (%) Changri Nup 18.3 13.2 4.6 17.0 13.0 3.1 22.2 7.0

Mera La 8.6 3.3 20.6 22.5 19.0 8.9 3.3 16.6
Mera Summit 21.0 6.6 15.4 } 11.4 15.5 19.4 }

Naulek 4.6 3.7 1.4 20.1 15.3 9.2 3.6 12.5
q (g kg21) Changri Nup 0.2 0.0 20.4 0.4 0.1 20.1 20.3 0.1

Mera La 0.4 0.7 1.3 1.6 0.4 0 0.2 0.5
Mera Summit 0.6 1.9 3.8 } 1.2 2.5 4.1 }

Naulek 0.4 1.0 2.0 1.8 0.4 0.4 0.9 0.7
u (m s21) Changri Nup 22.3 21.5 20.6 21.6 2.2 1.4 0.4 0.6

Mera La 22.0 21.3 20.6 21.2 3.4 2.6 1.7 2.1
Mera Summit 25.8 24.2 22.1 23.6 20.7 20.4 0.5 21.1
Naulek 23.8 22.3 21.0 22.7 2.7 2.3 1.8 1.6

SWin (W m22) Changri Nup 12.3 19.6 27.4 25.0 5.2 33.1 30.2 7.9
Mera La 215.9 30.9 15.0 230.4 224.5 233.8 288.8 245.2
Mera Summit 23.5 240.6 2138.7 } 221.5 2128.1 2257.2 }

Naulek 26.2 212.0 232.4 229.1 216.5 275.7 2137.6 245.2
LWin (W m22) Changri Nup 215.0 218.2 29.4 4.6 220.3 238.5 233.4 224.6

Mera La 21.3 22.8 15.5 22.8 223.2 231.4 26.2 219.7
Mera Summit 29.8 38.4 53.3 } 31.6 37.4 49.9 }

Naulek 2.8 12.2 21.3 29.7 218.2 217.7 0.6 212.9
P (mm w.e. day21) Pyramid 0.4 20.2 1.1 0.1 1.2 0.1 1.6 0.3

Pheriche 0.3 0.1 3.3 0.1 0.5 20.1 2.8 0.1
Khare 0.1 0.7 4.5 0.3 0.3 1.7 6.5 0.2

TABLE 7. Comparison between the occurrence of precipitation observed at AWS and in reanalysis datasets, at hourly time scale. True
positive means that there is precipitation at AWS and in the reanalysis dataset. True negative means that there is no precipitation at AWS
and in the reanalysis dataset. False positive means that the reanalysis dataset simulates precipitation although precipitation is not observed
at AWS. False negative means that the reanalysis dataset does not simulate precipitation although precipitation is observed at AWS.
Values are percentages of hours as a function of the total number of hours. On the one hand, we consider the entire measuring periods
(see Table 1 for those periods), and, on the other hand, we consider only the monsoons. Thus, for each entry in the table, the number in
front of the slash considers the total number of hours of the entire measuring period and the number after the slash considers the total
number of hours of the monsoons only To discriminate hours with or without precipitation, a threshold of 0.1 mm w.e. h21 is used for
AWS data, below which we consider that there is no precipitation. The thresholds for reanalysis data are 1.3–3.5 higher than that of AWS
based on the overall overestimation of the precipitation by reanalysis.

True positive True negative False positive False negative

Pyramid
AWS vs ERA5L 5/9 79/65 11/19 5/7
AWS vs HARv2 4/6 83/72 7/11 6/10

Pheriche
AWS vs ERA5L 4/8 79/64 12/22 5/7
AWS vs HARv2 3/5 84/73 7/12 6/9

Khare
AWS vs ERA5L 7/12 71/52 15/25 7/11
AWS vs HARv2 7/11 74/57 12/20 8/12
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temperature, from both reanalysis datasets, can be used as in-
put variables for those models to assess melt in the ablation
area of glaciers in the monsoon, as long as site- and season-
specific ablation factors are considered (Litt et al. 2019). For
physically based surface energy balance modeling, we suggest
paying more attention to the nonstationary biases in all
variables.

In conclusion, the two gridded datasets ERA5L and
HARv2 are applicable for glacier mass and energy balance
studies, as long as either statistical or dynamical downscaling
techniques are used to resolve the scale mismatch between
coarse mesoscale grids to fine-scale grids or individual sites.
We found biases for some variables, like temperature and pre-
cipitation, and these biases may be nonstationary and vary in
the different seasons. If no AWS measurements are available
in the neighborhood of the studied glacier, the temperature
and precipitation biases can still be corrected by indirect
methods (i.e., Immerzeel et al. 2014; Kraaijenbrink et al.
2017). However, the indirect bias corrections remain less ac-
curate than direct comparisons with AWS, because of equifin-
ality in the glacier mass and energy balance models.

6. Conclusions

Because of the scarcity and discontinuity of long-term ob-
servational data at high elevation in the Himalayas, the main
sources of data for studying climate-glacier relationship at re-
gional scale are the reanalysis datasets. Here, ERA5L and
HARv2 reanalyses, having the best spatial and temporal

resolution available, are compared with in situ meteorological
data to evaluate their performance on the basis of classical
statistical metrics. Observation data have been collected since
2010 by seven AWSs located on or off glaciers above 4260 m
MSL in the upper Dudh Koshi basin (Everest region, Nepal).
2-m air temperature, specific and relative humidities, wind
speed, incoming shortwave and longwave radiations, and pre-
cipitation are considered in this study. Climate reanalyses
show different levels of performance depending on the mete-
orological variables, the geographical context, and the surface
state. Because of the complex topography of this high-altitude
basin, the spatial resolution of reanalysis products is still a
strong limitation to reproduce the observations, especially for
highly spatially variables such as precipitation or wind speed
that need local-scale spatial resolution obtained by further
downscaling (e.g., Mölg et al. 2012). Air temperature is the
best captured by reanalyses, as long as an appropriate eleva-
tional gradient of air temperature above ground, spatiotempo-
rally variable and preferentially assessed by local observations,
is used to extrapolate it vertically. A cold bias is still observed
but less important over clean-ice glaciers than over rocky sur-
faces. For relative and specific humidities, both reanalysis
products perform well except at Mera Summit, but still have a
moderate humid bias, especially during the driest months,
that is, in winter and postmonsoon. ERA5L totally fails to re-
produce wind speed, with a systematic underestimation and
an absence of seasonality. HARv2 performance is better, with
high wind speeds in winter and postmonsoon, and calm condi-
tions during the monsoon in agreement with observations.

TABLE 8. As in Table 7, but at daily time scale. To discriminate days with or without precipitation, a threshold of 0.5 mm w.e. d21 is
used for AWS data, below which we consider that there is no precipitation.

True positive True negative False positive False negative

Pyramid
AWS vs ERA5L 30/53 53/30 10/13 7/4
AWS vs HARv2 23/39 57/37 5/6 15/18

Pheriche
AWS vs ERA5L 28/49 50/26 15/22 7/2
AWS vs HARv2 22/37 60/41 6/7 13/15

Khare
AWS vs ERA5L 35/57 40/17 22/24 3/1
AWS vs HARv2 32/53 52/29 10/12 6/5

TABLE 9. Two 3-day precipitation events captured at Pyramid and Pheriche AWSs during Typhoon Phailin in October 2013 and
Typhoon Hudhud in October 2014, compared with reanalysis data (mm w.e.).

Date Pyramid AWS Pheriche AWS Pyramid ERA5L Pheriche ERA5L Pyramid HARv2 Pheriche HARv2

Typhoon Phailin
13 Oct 2013 13.7 21.4 13.1 13.7 31.1 30.3
14 Oct 2013 58.2 91.1 54.5 57.8 95.1 96.4
15 Oct 2013 14.7 24.4 28.0 32.8 8.8 6.8
Total 86.6 136.9 95.7 104.3 135 133.5

Typhoon Hudhud
13 Oct 2014 5.8 5.9 9.3 9.0 16.4 10.5
14 Oct 2014 27.9 21.9 18.1 19.0 44.9 25.6
15 Oct 2014 5.7 14.7 3.1 3.5 1.2 0.5
Total 39.4 42.5 30.5 31.5 62.5 36.5
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Nevertheless, HARv2 wind speed is systematically overesti-
mated, and its daily cycle is out of phase with the observed
one. The performance of reanalysis datasets for shortwave
and longwave incoming radiations is highly dependent on the
elevation difference between the reanalysis grid point and the
observation site. When the elevation of the grid point is lower
than that of the observation site, the discrepancy between re-
analyzed and observed incoming radiation (underestimation
for shortwave radiation and overestimation for longwave radi-
ation) increases as the additional layer of atmosphere to be
crossed is thicker. A correction procedure to account for the
elevation difference between the reanalysis grid point and
the observation site should be considered to properly reproduce
incoming shortwave and longwave radiations. The seasonality
and the horizontal south-to-north gradient of precipitation
are reasonably captured by these two reanalyses. Neverthe-
less, they tend to highly overestimate precipitation up to a fac-
tor of 3 during the monsoon, ERA5L performing better than
HARv2. The occurrence of precipitation is reasonably repro-
duced at daily time scale but less well at hourly time scale. In
conclusion, the two gridded datasets ERA5L and HARv2
cannot be directly used as surrogates for AWS based observa-
tions. Nevertheless, they are applicable for glacier mass and
energy balance studies, as long as either statistical or dynami-
cal downscaling techniques are used to resolve the scale mis-
match between coarse mesoscale grids to fine-scale grids or
individual sites.

As long as high-quality long-term meteorological records
are not available at high elevation in the Himalayas, reanal-
ysis datasets will not be able to do otherwise than assimilate
data only at lower altitudes. This is problematic for any
studies focusing on climate at high elevation such as glacier
studies. In that case, assessing the performance and ade-
quately correcting the used reanalysis datasets is a prerequi-
site and implies having a weather station running at glacier
elevations for at least one year. In remote mountain areas
like the Himalayas, due to access difficulties, extreme
weather, and complex topography, maintaining continuous
high-quality meteorological records over a long-term is al-
most impossible, and therefore combining in situ data and
various high-resolution reanalyses is highly recommended.
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