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ABSTRACT

Context. Protoplanetary discs are cold, dense, and weakly ionised environments that witness planetary formation. Among these discs,
transition discs (TDs) are characterised by a wide cavity (up to tens of au) in the dust and gas distribution. Despite this lack of material,
a considerable fraction of TDs are still strongly accreting onto their central star, possibly indicating that a mechanism is driving fast
accretion in TD cavities.

Aims. The presence of radially extended ‘dead zones’ in protoplanetary discs has recently revived interest in magnetised disc winds
(MDWs), where accretion is driven by a large magnetic field extracting angular momentum from the disc. We propose that TDs could
be subject to similar disc winds, and that these could naturally explain the fast-accreting and long-lived cavities inferred in TDs.
Methods. We present the results of the first 2.5D global numerical simulations of TDs harbouring MDWs using the PLUTO code.
We imposed a cavity in the gas distribution with various density contrasts, and considered a power-law distribution for the large-scale
magnetic field strength. We assume the disc is weakly ionised and is therefore subject to ambipolar diffusion, as expected in this range
of densities and temperatures.

Results. We find that our simulated TDs always reach a steady state with an inner cavity and an outer ‘standard’ disc. These models
also maintain an approximately constant accretion rate through the entire structure, reaching 10~7 M yr~! for typical surface density
values. The MDW launched from the cavity is more magnetised and has a significantly larger lever arm (up to 10) than the MDW
launched from the outer disc. The material in the cavity is accreted at sonic velocities, and the cavity itself is rotating at 70% of the
Keplerian velocity due to the efficient magnetic braking imposed by the MDW. Overall, our cavity matches the dynamical properties
of an inner jet emitting disc (JED) and of magnetically arrested discs (MADs) in black-hole physics. Finally, we observe that the cavity
is subject to recurring accretion bursts that may be driven by a magnetic Rayleigh-Taylor instability of the cavity edge.

Conclusions. Some strongly accreting TDs could be the result of magnetised wind sculpting protoplanetary discs. Kinematic diag-
nostics of the disc or the wind (orbital velocity, wind speeds, accretion velocities) could disentangle classic photo-evaporation from

MDW models.

Key words. accretion, accretion disks — protoplanetary disks — magnetohydrodynamics (MHD) — methods: numerical

1. Introduction

Transition discs (TDs) are protoplanetary discs exhibiting a
deficit of near-infrared emission, indicating a significant drop in
the abundance of small dust grains in the regions inside a few
tens of au (Espaillat et al. 2014). These objects are believed to be
the intermediate stage between ‘full’ primordial T Tauri discs
and disc-less young stellar objects, hence their name. In this
framework, TDs are the result of an inside-out dispersal process,
which is usually believed to be a combination of viscous accre-
tion, dust growth (Dullemond & Dominik 2005), giant planets
(Marsh & Mahoney 1992), and photo-evaporation (Clarke et al.
2001; Alexander et al. 2014).

Despite their cavities, a large fraction of TDs are accret-
ing onto their protostars. While Najita et al. (2007) quoted a
median accretion rate reduced by one order of magnitude in
Taurus compared to ‘primordial’ discs, more recent studies find
even stronger accretion rates. Fang et al. (2013) showed that
accreting TDs have a median accretion rate similar to normal
optically thick discs. Manara et al. (2014) finds that TDs accrete

* The data underlying this article will be shared on reasonable request
to the corresponding author.

similarly to classic T Tauri stars and that there is no correla-
tion between the accretion rate and the cavity size. The fact that
TDs are accreting systems should not give the impression that
their cavity is depleted only in dust grains: TDs also exhibit
cavities in the gas distribution (Zhang et al. 2014), with gas
surface density increasing with radius (Carmona et al. 2014).
Probing rotational emission of CO, van der Marel et al. (2015,
2016) find a drop in gas surface density by two to four orders
of magnitude, while the drop in dust surface density goes up to
six orders of magnitude. Similar results hold in ro-vibrational
CO lines, probing the cavity further in, leading to a gas drop
of two to four orders of magnitude in the inner (<3 au) regions
(Carmona et al. 2017).

The picture that emerges is that of discs with a drop in gas
surface density by several orders of magnitude, which are accret-
ing similarly to (or slightly less than) primordial discs. There can
be only two explanations for this phenomenon: either accretion
is due to a ‘hidden’ mass reservoir localised close to the star,
and what we observe is the transient accretion of this reservoir,
or gas somehow manages to penetrate the cavity with a much
larger velocity than the usual viscous accretion velocity. In that
case, one typically needs an accretion velocity of the order of
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the sound speed to reconcile the accretion rate with the drop in
surface density (Wang & Goodman 2017).

In the first category of models, we find scenarios involving
photoevaporation combined with an inner dead zone (Morishima
2012; Garate et al. 2021). This inner dead zone, typically extend-
ing between 1 and 10 au, sets the radius of the mass reservoir
and therefore the cavity inner edge. While it predicts a frac-
tion of TDs with accretion rates of M ~ 107 Mg yr™!, it also
predicts a large fraction of non-accreting TDs, which is not
observed (Gdrate et al. 2021). In addition, these models rely
on the Ohmic dead zone model of Gammie (1996), while it
is now understood that dead zones are much more extended
radially because of ambipolar diffusion (Simon et al. 2013), cast-
ing doubts on the applicability of inner dead zone models. The
second type of model requires a mechanism to boost angular-
momentum transport in the cavity. The most studied candidate
for this is planet-disc interaction with planets (typically more
than 3) embedded in the inner cavity. This scenario, however,
finds gaps that are not necessarily sufficiently ‘clean’ (Zhu et al.
2011) and predicts that multiple giant planet systems in reso-
nance are much more common than observed (Dong & Dawson
2016).

It should be noted that all of these scenarios make the explicit
assumption of viscous accretion, the viscosity being due to some
kind of small-scale turbulence, which could be of hydrodynamic
(vertical shear instability or VSI, Nelson et al. 2013) or mag-
netic (magneto-rotational instability or MRI, Balbus & Hawley
1991) origin. It is, however, becoming clear that accretion in the
regions outside of 1 au is probably partially driven by magnetic
winds (Bai & Stone 2013; Lesur et al. 2014; Béthune et al. 2017).
While the accretion rate of viscous models is proportional to the
gas surface density, the accretion rate of magnetohydrodynamic
(MHD) wind-driven models is mostly controlled by the strength
of the large-scale magnetic field, and much less by the sur-
face density (for instance, Lesur 2021b proposes M oc X% B1'6),
Hence, if one carves a cavity in a disc without significantly modi-
fying its magnetic field distribution, one could in principle create
a population of accreting TDs not so different from classical
T Tauri discs in terms of accretion rates. This kind of scenario is
found in secular evolution models that include a realistic depen-
dence of the wind stress on the surface density (e.g. Suzuki et al.
2016, see their -dependent wind torque models). Hence, MHD
winds could, in principle, generate and sustain a fast-accreting
TD cavity.

The idea of having a magnetic wind-driven cavity was first
proposed by Combet & Ferreira (2008). In this work, the cav-
ity (named the jet emitting disc, or JED) is diluted, accreting at
sonic velocities, and it sustains an accretion rate similar to that of
the outer disc. The same angle of attack was more recently tack-
led by Wang & Goodman (2017), who showed that the magnetic
diffusion properties of TD cavities were reminiscent of the mag-
netic wind solutions of Wardle & Koenigl (1993), indicating that
all of the conditions required for efficient magnetic wind launch-
ing were met in TD cavities. While this picture is promising to
explain accreting TDs, no dynamical model exists connecting
an outer ‘standard’ disc to an inner cavity accreting thanks to
magnetised winds.

In this work, we present the first self-consistent (under the
standard MHD assumptions) numerical models of accreting TDs
based on the MHD wind scenario. The model we propose does
not enforce accretion (e.g., with an @ parameter that would be
added by hand). Accretion and the disc equilibrium are natu-
ral consequences of the first principles of MHD, in the sense
that their origins lie within the magnetic stresses arising from
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the initial vertical magnetic field. Our aim is to demonstrate that
a fast accreting cavity can connect to a standard wind-emitting
outer disc, subject to realistic magnetic diffusion, and that the
resulting configuration can be long-lived. Given the richness of
the dynamics, we first concentrated on 2.5D models in this work,
and we will discuss 3D models in a follow-up paper. The paper
is divided as follows. We first introduce the model equations,
physical quantities, and numerical setup. We then discuss an in-
depth investigation of a fiducial model, which possesses a cavity
with a drop of four orders of magnitude in gas surface density.
We finally explore alternative models, varying the cavity depth
and size, and the diffusion coefficients before concluding. We
stress that we focus here on a proof of concept that such a TD
configuration is sufficiently stable to be observable, but we do
not discuss ‘how’ a primordial disc could have ended in such a
configuration. This will be the subject of future work.

2. Physical and numerical setups
2.1. Physical model
2.1.1. Governing non-ideal MHD equations

In the following, we place ourselves in the non-relativistic, non-
ideal MHD regime and consider a thin, locally isothermal disc
to follow the evolution of the gas. The mass and momentum con-
servation equations and the induction equation respectively read

Bip+V-(ou) =0, (1)
6,(pu)+V~(pu®u)=—VP—pV(D*+J>C<B, 2
0,B=-VxE&, (3)

where p, P, u, and B are, respectively, the density, the thermal
pressure, the plasma velocity, and magnetic field. ®, = -GM../r
is the gravitational potential due to the central star of mass M.,
G being the gravitational constant. To close this system of equa-
tions, we assume the plasma follows a non-ideal Ohm’s law
including ambipolar diffusion:

4 N o
E=-uxB- Ly Jxbxb, )
"

where b is a unit vector parallel to B, J is the electric current,
c is the speed of light, and 5, is the ambipolar diffusivity. No
turbulence was added in this model whatsoever. In addition to
these equations, the plasma follows the Maxwell equations:

V-B=0 5
and
J:%VXB. (6)

We place ourselves in a spherical coordinate system (7,0, ¢)
centred on the star. For convenience, we also introduce the
cylindrical coordinates R = r sin 6, ¥ = ¢ and z = r cos 6.

Since we work in a thin disc, the azimuthal angular veloc-
ity Q is expected to be close to the Keplerian angular velocity
Q(r) = (GM,/r)Y2. 1t is therefore useful to introduce a
deviation from the Keplerian velocity v, defined as

v=u-rsindQ(r)e,, (7)
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with Q(r) = Qx(r)/ sin® @. We note that the latitudinal depen-
dence of Q is somewhat arbitrary and need not be a particular
equilibrium state. Here, our choice of Q(r) ensures that our refer-
ence Keplerian velocity has constant specific angular momentum
on spherical shells and eliminates surface terms that are other-
wise present in angular-momentum conservation equations (e.g.
the last term of Eq. (16) in Zhu & Stone 2018). This will simplify
the interpretation of angular-momentum budgets later.

2.1.2. Equation of state and cooling function

As a simplification, we assume the flow follows an ideal equa-
tion of state and is approximately locally isothermal, that is
T =~ Tet.(R) where T is a prescribed radial temperature profile.
This is achieved by solving the energy equation

0P+u-VP+T' PV . u=A, (8)
where we defined a heating and cooling function

_PT-Ty

A ,
T T

®)

where 7 is the cooling time that is set to 0.1 time code unit (see
below) and I' = 1.0001 is the polytropic index of the gas. The
target temperature profile is

-1
Tt (R) = T (i) : (10)

Rint

where T is the midplane temperature at the inner radius Riy.
This choice of cooling function allows us to enforce a chosen
temperature profile that mimics the real radiative equilibrium
and avoid the development of the vertical shear instability (VSI,
Nelson et al. 2013), which would appear in a strictly locally
isothermal approximation.

Since the gas is ideal, we can define an isothermal sound
speed ¢2 = P/p. It can be shown that as a result of the vertical
hydrostatic equilibrium, ¢, and Qx are related to the vertical disc
thickness A(R) through

h(R) = ¢(R)/Qk (R). an

Assuming the disc is at thermal equilibrium (7' = Teg.(R)), we
have ¢, o« R™Y2, and hence the disc aspect ratio € = h/R is
constant. For the following, we chose T in (10) so that £ = 0.1.

2.2. Numerical method and parameters
2.2.1. Integration scheme

The simulations were performed using the PLUTO code
(Mignone et al. 2007) that solves the MHD equations with a
conservative Godunov-type scheme and a second-order Runge—
Kutta time stepping. We used a HLLD type Riemann solver to
compute the intercell fluxes. In order to ensure the solenoidal
constraint (6), we used the constrained transport approach (Kane
1966; Evans & Hawley 1988). The implementation of ambipolar
diffusion in the PLUTO code follows that of Lesur et al. (2014)
and Béthune et al. (2017).

2.2.2. Code units and notations

The internal radius is Ry, = 1, which sets the length code unit
and is chosen to be 1 au while R.,; = 50. The time code unit is
Q' = Qk(Rin)™" = 1, which is set to 1/27 years so that G M, =
1, with M, = 1 My, Mg being 1 solar mass. Therefore, Qg (R) =
Qo (R/Rim)_3/2 = R332, We chose 300gcm‘2 as a unit for the
surface density and express the accretion rate in Mg yr~'. We
denote code units as c.u. hereafter. We use the subscript Xj to
indicate that the quantity X is considered on the midplane (6 =
7/2) and the subscript X, when X is a poloidal quantity.

2.2.3. Dimensionless numbers and definitions

We used the plasma parameter 8 to quantify the disc magnetisa-
tion, which is defined from the midplane properties of the disc
as

81 P,
=2 12)

B2

p.0

When considering the initial state of a given simulation, we refer
to the initial magnetisation inside the cavity as S, and to the
initial magnetisation in the external part of the disc as Sqy. The
second key parameter of this study is the strength of ambipolar
diffusion, quantified with the Elsasser number

)
v
An a_
Qg na

(13)

where vp = B/(4np)'/? is the Alfvén speed. We refer the reader
to Appendix A for detailed information on the justifications of
the model we adopted for Ay and how we modelled its spa-
tial dependencies in our simulations. These two dimensionless
numbers are the main control parameters of our study.

The disc refers to the whole part of the simulation that covers
r € [1;50] and z/R € [-0.3;0.3]. The cavity is the region where
the surface density is reduced by a given factor in the innermost
part of the disc (i.e. from r = 1 to » = 10 in most of the models).
The external part of the disc or so-called outer disc refers to the
region where the disc is full and described by a standard proto-
planetary disc (without a drop in the density profile) and which
extends from r ~ 10 to r = 50. Finally, we refer to the region
defined by r < 1 of our disc as ‘seed’, which is at play in our
simulations through the inner radial boundary condition.

2.2.4. Computational domain

The radial direction is divided into 320 cells that expand from
the inner radius r = R;; to the external one r = Rqy and are uni-
formly meshed on a logarithmically shaped grid. The colatitude
domain is mapped on a stretched grid near the poles (from 6§ = 0
to 8 = 1.279 and from 6 = 1.862 to 6 = &, with 72 cells in each
zone), while the grid is chosen to be uniform around the mid-
plane (from 8 = 1.279 to 8 = 1.862 with 96 cells) for a total
of 240, which increases the precision in the region of interest.
The disc scale height 4 is then covered by 16 points in the case
where ¢ is fixed as constant and equal to 0.1.

2.2.5. Boundary conditions

Outflow boundary conditions are used in the radial direction so
that no matter can come from the inner radius. In addition, we
added a wave-absorbing zone for radii r < 1.5, which dampens
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poloidal motions on an orbital timescale. We detail the impact of
this procedure in Appendix B.

In these 2.5D simulations, axisymmetric conditions with
respect to the polar axis are enough to handle the boundaries
for the colatitude direction. With the aim of reducing the impact
of the outer boundary conditions, we focused on radii lower
than 30.

2.2.6. Initial condition, wind, and cavity

The initial temperature profile is the effective temperature pro-
file given in (10). The initial states for the density and the
azimuthal velocity v, = R Qg mimic those of Nelson et al. (2013)
to account for the hydrostatic equilibrium, while v, = vg = 0
initially. These profiles read, without taking into account the
cavity,

RV QxR R\ 1 1
p(R,2) = po (—) exp[( x() )( )] (14)

Rint cs(R) VRZ + 72 - E
R = @0+ <SRV 114 gy 2B
v(R,z) = vk(R)|(p + ¢ QK(R)R2 ( ) \/RZ—_i_ZZ
(15)

with pg being the density at the internal radius. We chose ¢ = —1
and p = —3/2 for the Egs. (14) and (15), which is consistent with
self-similar stationary disc solutions (Jacquemin-Ide et al. 2021).

The initial vertical magnetic field follows a power law B, «
R (P+9/2 50 that the plasma 8 parameter in the unperturbed disc
is constant. To ensure that V - B = (, we initialised the magnetic
field using its vector potential A, defined so that B = V X A.
Following Zhu & Stone (2018), we chose

1
3 BoR if R < Rine
Ay = Ri2m 1 1 RY' 1 . )
By— (= - +R|— if R > Rint
R \2 m+2 Rine/ (m+2)
(16)

where m = (p +q)/2 = —5/4. This results in a poloidal magnetic
field that depends on the radius only:

R \"
e,.
Rint ) ‘

The initial strength of the magnetic field is controlled by By, SO
that By o 8112,

out
To add a cavity and mimic a TD, we multiplied the density

profile by a function f that depends on the radius only, so that

B =B, ( a7

Z(R) = f(R) X Zp(R), (18)
with
R
f(R) =a (1 — ¢ tanh [b (1 - —)D (19)
Ry

where Zo(R) o RP*! is a standard surface density profile
for a protoplanetary disc. The a, b, and ¢ coefficients are
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defined as
2 (6R\™
b=2|1=
n (RO)
_ ﬁin/ﬁout + tanh(b)
" 1+tanh(h)
1 _ﬁin/ﬁout

= Bin/Bou + tanh(b)

where Ry is the radius of the cavity (in code units), n the number
of cells on which the transition spans, and n 6R the correspond-
ing length in code units. We note that while the density profile
exhibits an inner ‘hole’, the magnetic field distribution is kept
as a power law (17). As a consequence, the initial magnetisation
B(R) also exhibits a jump in the cavity since P oc X(R).

Therefore, Sou/Bin is equal to the contrast in the gas surface
density. In short, the function f creates a cavity in X but does
not affect B,,. As a result, we simulate a TD with a strongly mag-
netised cavity (Bi, = 1). A typical radial profile of the quantities
discussed above is shown in Fig. 1.

2.3. Integration and averages

Several integrations and averages are used throughout the text.
In this manuscript, we use the following proxy for the vertical
integration along 6:

0_
X(r,t) =r f X(r,1)sin 6 do. (20)
9+

0. quantify the integration height as shown in Fig. 2 so that

0_ -0,
2

h;
= arctan (?m) = arctan &y, 21

with hj, being the integration height at radius R given by an
integration effective aspect ratio €i,; = hine/R. We note that this
integration ‘height’ is not necessarily the disc thickness 7. We

introduce 3 as

=2
8mXCsp

'B —2 =2\’
x/ﬂRs(B, +Bg)

(22)

which corresponds to a theta-averaged ‘effective’ midplane 8
plasma parameter. It is defined so that it matches the midplane
B parameter in a hydrostatic isothermal disc. This more general
definition is needed when the disc midplane is displaced verti-
cally such as inside the cavity (see Sect. 3.5.3). Finally, we added
the time average defined by

to+1
X(r) = %f X(r,t)dr. (23)

fo

We ran the 2.5D simulations so that we reach 1000 orbits at
R = 10, which means ~31000 orbits at R;,. If not specified,
time averages were calculated taking into account the whole
simulation without the first 4000 orbits at Rj,; to suppress the
transient state. Otherwise, we indicate our choice of notation
when needed, (X);000 being the time-averaged value of X during
the last 1000 orbits at Ry, for example.
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Fig. 1. Initial and time-averaged profile of X (fop left panel), B (top right), B, o (bottom left), and v, o (bottom right), with respect to R.

disc

Fig. 2. Schematic view of the disc represented in orange. .. define the
vertical integration surface and /;,, is the integration scale height at a
given radius R.

2.4. Simulation table

All the simulations performed are listed in Table 1. The charac-
teristic parameters are the external initial plasma parameter Sy,
the internal initial plasma parameter 3;,, and the initial ambipolar
Elsasser number Ay . Additionally, we performed a conver-
gence test by running a high-resolution (640 x 480) simulation
similar to the fiducial one that exhibits profiles that differ by less
than 8% in the cavity and by less than 1 % when considering the
entire domain.

3. Fiducial simulation

We start this section by describing our fiducial simulation in
detail (Bou: = 104, Bin = 1, A = 1 and Ry = 10), before turning
to an exploration of the parameter space.

3.1. Evolution of surface density and plasma magnetisation

We first look at the temporal evolution of the surface density
(Fig. 3). We find that the cavity stands during the whole simula-
tion as its radius remains close to its initial value. As we show
in Sect. 3.5.1, the cavity tends to expand slightly. The cavity

Table 1. Simulation information. B4BinOAmO is the fiducial simula-
tion.

Name Bow PBin  Aao Ro(aw)
B4Bin0Am0 104 1 1 10
B3Bin0AmO 103 1 1 10
B5Bin0AmO 10° 1 1 10
B4Bin0Am1 10* 1 10 10
B4Binl AmO 10* 10 1 10
B4Bin2 AmO 10  10% 1 10
B4Bin3Am0 10* 103 1 10
B5Binl AmO 10° 10 1 10
B5Bin2AmO 100 102 1 10
B5Bin3AmO0 10° 103 1 10
B5BindAmO 100 10* 1 10
B3Binl AmO 10° 10! 1 10
B3Bin2AmO0 10> 10% 1 10
R20FID ot 1 1 20

Notes. B4Bin0Am1 quantifies the influence of A4 o, while BSBinOAmO
and B3Bin0AmO are the reference runs for By = 10° and By = 10°. All
the runs with Bin # O in their label explore the role of the initial value
of B at Ry,. R20FID is the same simulation as the fiducial one, with a
cavity that is twice as big. The bold font indicates the fiducial simulation
values.

location, defined as the radius where the surface density equals
half of its maximum value, is subject to a small variation of
AR/R = 10.3% over the duration of the simulation. While the
external disc is relatively smooth with respect to time, the cavity
is striped by temporal variations of X, which may suggest that
matter is moving inside the cavity at relatively fast speeds. We
study these stripes in depth in Sect. 3.5.3. A small accumulation
of material is seen close to the inner radius at R < 1.5. We refer
the reader to Appendix B for a quantitative discussion on this
accumulation.

Al7, page 5 of 25
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Fig. 3. Surface density (left panel) and plasma beta parameter 3 (right panel) as a function of R at midplane and time for the fiducial simulation.
The cavity remains during the entire simulation and keeps a relatively strong magnetisation with 8 ~ 1.

x10~2 %1075
F1.75
= (150 5
g .25 2
A) S
F1.00
0.75

14 16 18
Fig. 4. Radial profiles of the surface density and of the vertical magnetic
field in the midplane, time-averaged on the last 1000 orbits at R;,. The
vertical magnetic field is vertically averaged, and both profiles are given

in arbitrary units.

Figure 3 also pictures the evolution of 8, whose results are
similar to the ones for Z. Inside the cavity, 8 exhibits a striped-
like pattern with an accumulation close to the internal radius.
The edge of the cavity is not smooth at all but varies around
its initial value of 10. Though g stays on average around 1 in
the cavity, some low values around 1072 are reached from time
to time. After approximately 4000 orbits at the internal radius,

both X and 3 reach a quasi-stationary state.

Gaps and rings are detected in the outer part of the disc,
in the spatio-temporal diagram of both ¥ and 8 (Fig. 3). We
also emphasise that these structures are observed in all of our
simulations (see Figs. 19, 21, and 25). Regarding the fiducial
simulation, we detect two main gaps after the cavity edge and
before R = 30. For better visibility, we show the surface den-
sity and the vertical magnetic field, time averaged on the last
1000 inner orbits and a focus in the region R = 12—18 au (where
the gaps are detected) in Fig. 4. Gaps are characterised by a drop
of ~5% of the local surface density and their location is corre-
lated with a sharp increase of the vertical magnetic field, which
matches the secular wind instability described by Riols et al.
(2020). These structures are enhanced in the simulation with a
higher ambipolar Elsasser number, as can be seen in Fig. 20. In
addition, we observe the merging of gaps on longer timescales
(Fig. 19) similarly to Cui & Bai (2021). While of interest for
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the dynamics of the outer disc, we did not address the evolution
of these rings and gaps any further and instead focused on the
dynamics of the cavity.

3.2. Disc structure
3.2.1. Magnetic structure

We show the time-averaged magnetic field in Fig. 5. In the cav-
ity, the poloidal magnetic field lines are pinched at the midplane,
but they remain vertical in the outer disc. These two regions
are separated by a transition zone located at the cavity edge
that exhibits a magnetic loop. Inside this loop, the polarity of
the azimuthal component is reversed, with B, > 0 in the upper
hemisphere close to the disc. The poloidal field lines present
an elbow-shaped structure above and below the transition with
significant changes of direction at A;, /R ~ +0.3, +0.6, and +0, 9.

3.2.2. Velocity streamlines

We show the time-averaged density and streamlines in Fig. 6.
The disc clearly appears around the midplane for R > 10, while
the depleted profile in p indicates the cavity for R < 10. We find
that a wind is emitted from the cavity, with poloidal streamlines
approximately parallel to magnetic field lines, as expected from
ideal MHD. A closer inspection of the streamlines, however,
shows that in the regions close to the transition radius R > 8,
matter is falling into the cavity. Figure 6 shows that this material
is actually coming from the outer disc. It is originally ejected
from this disc, before being deflected and accreted into the cav-
ity, generating an elbow-like shape similar to the one found for
magnetic field lines (Fig. 5). This accretion stream then stays
localised close to the cavity midplane down to the inner radius
of the simulation. In the outer disc, the motion of the gas is not
as well organised, though it is approximately symmetric with
respect to the midplane.

3.2.3. Angular-momentum-flux streamlines

In order to deepen the analysis of the role of the magnetic struc-
ture, we concentrated on the time-averaged angular-momentum
flux, defined by

L, =rsinb{pupu,)—rsinf(B, B,). 24)
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Fig. 5. Time-averaged poloidal magnetic field lines and toroidal field
component (B, for the fiducial simulation. We note the peculiar field
topology close to the truncation radius.

The poloidal flux lines associated with this angular-momentum
flux are shown in Fig. 7. It appears that angular momentum is
extracted from the disc midplane and carried both radially and
vertically in a relatively homogeneous manner. In particular, we
note that there is no elbow-like shape for the angular-momentum
flux, in contrast to the magnetic and velocity streamlines, indicat-
ing that the cavity + outer disc system has adapted its magnetic
topology to transport angular momentum homogeneously.

3.3. Accretion theory
3.3.1. Accretion rate

The first step to study the accretion in the disc is to investigate
the accretion rate M defined as
M(R,t) = =21 Rpv,. (25)
The height over which pu; is integrated has a direct influence on
M, mostly because of the elbow-shaped streamlines. It is then
useful to change the thickness of the integration domain, which
is controlled by the parameter &j, = tan[(6; — 6-) /2]. Results
are presented in Fig. 8 for three values of gj,. For &, = 0.3 and
around R = 10, the accretion rate is close to zero, indicating that
the gas does not plunge directly in the cavity from the disc mid-
plane. This radius corresponds to the location of the basis of the
elbow-shaped loop along which the gas is moving. Averaging

\~—

| H/ =Yg &/&‘/
H/R =06 7
H/R=10.9

log({p(R, Z)))

R (au.)

Fig. 6. Time-averaged streamlines and density for the fiducial simula-
tion. We note the peculiar shape of the streamlines around the transition
radius.

higher above the disc allows us to cancel out this effect. Mov-
ing to &, = 0.6 and 0.9, the accretion rates in the disc and in
the cavity eventually match by less than 50%, despite a jump of
more than two orders of magnitude in Z. This clearly indicates
that the accreted material effectively ‘jumps’ above the transition
radius, and that a steady state is reached with the whole system
(cavity + outer disc) accreting at a constant rate.

The fact that the accretion rate is approximately constant
while the surface density decreases by two orders of magnitude
implies that the accretion speed should increase dramatically.
This is clearly visible in Fig. 9, which shows the radial profile
of the accretion speed v, for iy = 0.9, defined by

(M)

2TR(Z) (26)

<Uacc.> =

This velocity profile exhibits a well-defined transition between
subsonic accretion outside the cavity with (vscc.) ~ 1073 {¢s) and
transsonic accretion inside with (vaec. ) ~ {(cs).

3.3.2. Governing equations for accretion

Accretion theory can be understood as the secular evolution of M
and X. In systems driven by MHD processes, these two quantities
are usually supplemented by the magnetic field B, threading the
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R (a.u.)

Fig. 7. Time-averaged angular-momentum-flux streamlines over time-
averaged density for the fiducial simulation. Angular momentum leaves
the disc midplane because of the wind.
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Fig. 8. Accretion rates for different integration height scales with
respect to the radius inside the disc. The higher pv;, is integrated the
closer to a constant value M is in the cavity. The average value inside
the cavity fromR = 1to R = 10)is M = 1.4 + 0.2 x 107 My yr .

disc. We apply the vertical integration procedure to the mass and
angular-momentum conservation equations, which become

1

8 Z—=—8,M = —[sinfpvgll-  (27)
2rr +
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Fig. 9. Accretion speed for &, = 0.9 in units of local sound speed c;.
The profile exhibits a clear transition between subsonic and transsonic
accretion that occurs where the edge of the cavity is located.

Mo, (r? sin> 0 Q(r) = —%a, (7 W) ~Wa,
(28)

0y (r sin va‘p) - %

We defined W,, and Wy, respectively, as the radial and surface
stresses by

W,, =p sinfv, v, —sinf i
o (29)
Wy, = |r sin® 8 pugv _BeB,
Op = P Vg Uy An N

We remind the reader that we use a peculiar definition of the
velocity deviation v so that no additional surface terms appear
in Eq. (28). In order to take into consideration the role of the
magnetic wind, we complete this set of equations by the vertical
magnetic flux conservation

8,Bg.o = %a, (r&.0)- (30)

3.3.3. Mass conservation and mass-loss-rate parameter

The mass conservation equation is given by Eq. (27). Figure 10
shows the mass conservation for &, = 0.9 with time-averaged
quantities. The first information is that inside the cavity, the time
derivative of X is close to zero, meaning the simulation reaches
a steady state up to R = 8. Closer to the cavity edge, we note that
this same term is negative, which is linked to the slow expansion
of the cavity; this is discussed later in Sect. 3.5.1.

The main contribution of the wind mass loss is located in
the cavity at R < 5 and is completely compensated by the radial
derivative of the accretion rate. Additionally, the ‘wind’ mass
flux turns negative around the cavity edge, which is due to matter
being accreted from the outer disc atmosphere (see the ‘elbow-
shaped structure’ in the poloidal streamlines).

In order to quantitatively account for the role of the wind,
we constructed the mass-loss-rate parameter { = £, + - (Lesur
2021b), where .. and _ are defined by

(pv-)(62) {pv, cos 8) — {pvy sin )

=+ 1
oo 0 S

({s) =

+




E. Martel and G. Lesur: Magnetised winds in transition discs. I.

=09

Eint

-2 T T T T T
5 10 15 20 25 30
R (a.u.)
B —— —(=0M) ([sin Opvgly. )

Fig. 10. Mass conservation for &y = 0.9. The time derivative of X
remains perfectly constant and equal to zero inside the cavity and only
becomes moderately negative at the cavity edge R = 10. This suggests
that the simulation indeed reaches a steady state for radii up to ~8. The
mass conservation is also correctly recovered. The three lines do not add
up to zero because we used a moving average for better visibility, and
the quantities are time-averaged on a sample selection of output files
that do not contain all the time steps computed by the code.

and the corresponding quantities are time averaged. The signs
of {. are chosen accordingly so that a positive value of {. cor-
responds to matter leaving the surface at 6.. Since ¢, and {_
are pretty much symmetric with respect to the midplane, we
focus on ¢ only. The results are illustrated in Fig. 11 where both
(¢) and —() are shown. In order to compare with self-similar
models (Lesur 2021b), we studied the values of ({) at zp = 6 A,
which corresponds to &, = 0.6. The mass-loss-rate parameter
is approximately constant in the external part of the disc around
6.2 x 107>, while it peaks at 2.9 x 102 in the inner part. We find
two zones where ({) < 0. One is close to the inner boundary and
probably a boundary condition artefact, while the other extends
from R = 5 to R = 17 au and is related to the material falling
down on the disc around the transition zone, such a contribution
being notably stronger for g, = 0.6.

To compare to self-similar solutions, we show the self-
similar scaling of the mass-loss-rate parameter with respect to
(B) derived by Lesur (2021b), which reads () = 0.24 (8)~0-6.
It comes as no surprise that this fit does not account for negative
values of (£) since these are due to the transition radius, which
is not self-similar.

The wind mass-loss-rate parameter is smaller than the self-
similar scaling in the outer disc by a factor of a few. This
discrepancy is probably due to the influence of the cavity mag-
netosphere that compresses the disc magnetosphere, resulting in
a deviation of ¢ from the self-similar result. Moreover, it seems
that the further we move outward, the closer we are to the self-
similar values, indicating that we recover self-similar scalings far
‘enough’ from the cavity, as expected.

In the cavity, ¢ is significantly weaker than expected from
a naive extrapolation of self-similar scaling laws. This indicates
that the mass-loss rate saturates at 8 ~ 1, a regime which was not
explored by Lesur (2021b).

An alternative model to the self-similar one is used to
describe () with greater accuracy. The self-similar fit is kept for
the external parts of the disc {ex¢ = o, ext (B)*, With aexy = —0.69
and {p et = 0.24. Another one is then calculated for the inner

109977

— (Ot

10721

0.6

Eint =

10 15 20 2% 30
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Fig. 11. ({) parameter for &y = 0.6. The self-similar fit shown here
is for comparison only and was also obtained for &;,, = 0.6. It appears
that it is coherent for the external disc, while it predicts a wind way too
intense in the internal part, therefore, another model is used to describe
() in the whole disc.

part only, ine = £0,int (B, With aiye < 0, so that the final profile
is given by

é’ 0, ext <B>am
1+ o.ext <B>acxl_ainl '

o,int

O = (32)

We obtain aj,, = —0.20 and {pin = 0.018. Such a model, with
Aext — ainy < 0, allows us to recover both of the previous regimes
with a reasonably accurate depiction of the disc. The final profile
exhibits a transition occurring at 8y ~ 5, which is close to the
lowest value of the ones used to build the self-similar fit in Lesur
(2021b). The final curves are rendered in Fig. 11. The fit does not
account for the negative values, but it properly catches both the
inner and external parts of the disc.

3.3.4. Angular-momentum conservation

In Fig. 12, we show the terms involved in the angular-momentum
conservation Eq. (28). These are time averaged and multiplied by
r~3/2 for better readability.

The integration height is €, = 0.9 and chosen so that the
influence of the cavity edge is diminished. In contrast to the
mass-conservation equation, the time derivative is negligible.
The surface stress (‘wind’) removes angular momentum from
the whole disc with a major contribution right after the cavity at
R ~ 13. We also observe that the radial stress is always positive,
except at the cavity edge.

Such a cancellation suggests that two accretion regimes are
observed in the disc, which echoes the radial profile of both the
accretion rate and speed. To characterise the radial stress term,
we introduced the @ parameter of Shakura & Sunyaev (1973). It
must be noted that the origin of this stress is in no way solely
linked to turbulence and is considerably driven by the laminar
structure of the magnetic wind. Appendix D details the origin of
the stress and sheds light on the turbulent versus laminar origin
of @. Nevertheless, the a parameter can still be used in this wind
model, whose definition when time averaged is

(Wyp)
®

(a) = (33)
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Table 2. Transport coefficients for a subset of simulations.

Name M (10_7 Mo yr_l) in (10_2) Lext (10_5) Qin  Qext (10_3) UW,in  UW,ext (10_4)
B4Bin0Am0( 1.4 2.9 6.2 13 4.9 1.0 2.3
B3Bin0AmO 5.1 3.8 14 19 23 1.4 31
B5Bin0AmO 0.27 2.1 4.5 6.6 1.0 0.18 0.19
B4Bin0Aml1 1.2 -1.8 10 2.8 16 0.16 2.7
R20FID 1.1 4.5 5.8 15 2.4 1.2 10

Notes. The accretion rate is calculated inside the cavity. The bold font indicates the fiducial simulation values.

x107°

Fig. 12. Angular momentum conservation multiplied by =/ and time
averaged. Full blue line is (d,(r sinfpv,)) r~*/?, red dot-dashed line is
(0,(r* W,.)y r32, green dashed line is (W) r>/?, and purple dotted
line is —(5=M 0,(r* Q) 32,

The corresponding profile is given in Fig. 13, where gj, = 0.9. In
the external part of the disc, (@) = 49 + 5 x 10~#, while it reaches
a maximum value inside the cavity (@) = 13 + 5.

Following a similar procedure as the one for @, we define a
dimensionless number associated with the surface stress com-
ponent, vy. As for £, we define vw, ., which were chosen to be
positive for angular momentum leaving the disc on both sides:

(Woy)
r{Poy)’

We show the dependence of vy on R in Fig. 13. In the external
disc, (vw) = 2.3+ 1.1x107*, while it rises up to (vw) = 1.0+0.1
inside the cavity. The same observations are drawn for both (a)
and (vw) as for (). Therefore, two separate regimes are at stake
in the disc. The outer disc regime is typical of wind-emitting
protoplanetary discs, with transport coefficients close to the ones
found in self-similar wind models for 8 ~ 104, indicating that
the dynamical properties of the outer disc are not perturbed by
the presence of the cavity. On the contrary, the second regime
describes the inner part of the disc with fast accretion and high
values for @ and vw, which are both of the order of unity. Table 2
displays the transport coefficient values for all the simulations.

(vw) = (vw,+) + (vw,-) = (34)

3.4. MHD wind

It is well known that steady-state MHD winds in ideal MHD can
be characterised by a set of MHD invariants (Blandford & Payne
1982), which are conserved quantities along each poloidal field
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Fig. 13. Time-averaged transport coefficients (@) and (vw) for &y =
0.9.

Table 3. MHD invariants for a subset of simulations, computed with
time-averaged quantities on the last 1000 orbits at Ryy,.

Name Ain Aext Kin Kext Win Wext
B4Bin0Am(0 23 32 22x%x107% 25 067 12
B3Bin0Am0 185 13 3.1x1073 99 064 093
B5Bin0AmO 44 1.2 1.3 18 069 1.1
B4BinOAm1 49 1.5 0.24 50 023 3.6
R20FID 26 21 1.8x102 28 052 14

Notes. The bold font indicates the fiducial simulation values.

line (Fig. 5). In our axisymmetric simulations, a steady state is
approximately achieved above the disc, in the ideal MHD region.
Hence, we can measure these invariants on field lines attached in
the cavity and in the outer disc.

In the following, we select a field line anchored in the
disc midplane at R = R,,. The corresponding Keplerian angu-
lar velocity is €, while By, is the poloidal magnetic field at the
midplane. We then consider the following invariants, built on
time-averaged quantities and listed in Table 3.

The mass-loading parameter accounts for the quantity of
matter that escapes the disc with the wind and is defined as

v, Qw Ry
k= ag DO 20w Bw (35)
B, B,
The rotation parameter is given by
Q k By, B
we 2 kBB (36)
Qy  47pRR, Qy
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Fig. 14. General structure of the wind and MHD invariants. First panel shows the field lines in the internal and external disc. The grey dashed lines
represent the surfaces at 2/R = 0.3; 0.6 and 0.9. The three other plots display the MHD invariants for the internal field line (full, light blue) and
the external one (semi-dashed, dark blue). The invariants are time averaged on the last 1000 orbits.

The magnetic lever arm accounts for the angular momentum that
is removed from the disc by the wind is defined as

QR? RB,

1 - .
Q. R,> RwBwk

(37)

Of course, these invariants echo the transport coefficient def-
initions previously used to describe the disc, and one expects
k=~fBll4ecand A = 1 + evw/{ (Lesur 2021a).

To compute these invariants, we arbitrarily chose one field
line in the cavity (referred to as ‘in’) leaving the midplane at
Ri, = 3.5 au and one in the external disc (referred to as ‘ext’)
leaving the midplane at Rey = 15au (see the first panel of
Fig. 14). We note that the disc thickness affects the MHD invari-
ants since the physical foot points of the field lines are not located
at the midplane but slightly above. Such a limitation especially
concerns the field lines in the external disc, which are subject to
a large-scale oscillation close to the transition radius. Therefore,
the calculated MHD invariants are subject to caution and we only
draw general conclusions regarding the nature of the wind.

We show the invariants along the chosen field lines in
Fig. 14. We find that all of the invariants remain reasonably
constant once high enough above the disc, as expected from a
steady-state ideal MHD flow. The wind launched from the cav-
ity is different from the disc one. The cavity wind has a much
weaker mass loading parameter and a much larger lever arm
(by almost a factor 10). We also find that its rotation param-
eter differs significantly from 1, indicating that field lines are
rotating at 80% of Qg in the cavity. This point is probably
related to the fact that the disc itself is sub-Keplerian in this
region (Fig. 1). Quantitatively, we find «;, = 2.2 X 1072, Kexe =
2.5, Ain = 23 and Ae = 3.2. These values are coherent with
the transport coefficients computed in previous sections. We
also note that the values of x and A in the cavity match some
of the historical solutions of Blandford & Payne (1982) (see
their Fig. 2), which correspond to super-Alfvénic and collimated
outflows. These values are also consistent with the magnetic
outflow solutions of Ferreira (1997) (see Fig. 3). Hence, the cav-
ity we find quantitatively matches the inner JED proposed by
Combet & Ferreira (2008).
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3.5. Temporal evolution

We observe two kinds of time variability in the fiducial simu-
lation: a secular variability responsible for the slow expansion
of the cavity, and a short timescale variability responsible for
the striped patterns observed in space-time diagrams (Fig. 3). At
this point, we started our exploration of time variability by focus-
ing on the secular evolution, beginning with a discussion of the
cavity expansion.

3.5.1. Slow cavity-edge expansion

As previously mentioned, the cavity edge moves slowly out-
wards during the simulation. Neglecting the impact of the wind
in terms of mass-loss rate at the cavity edge location, which is
coherent with Fig. 10, and assuming piecewise constant accre-
tion rates and surface densities across the cavity edge, one
obtains

1 oM
2Ry 0%’

Ry =~ (38)

where Ry is the cavity edge ‘velocity’ and M and 6% are the
jump in accretion rate and surface density at the cavity edge. By
calculating M and X around Ry, we find Ry = 1.8 x 1073 while
directly evaluating the cavity edge motion Ry yields Ry = 1.4 x
107> (both in c.u.). Therefore, the cavity is expanding because of
the slight mismatch in accretion rate observed in Fig. 8.

3.5.2. Magnetic field transport

To interpret the time evolution of the magnetic field, we studied
the transport of magnetic flux inside the disc and defined a flux
function ¢ such that

/2 "
lﬁ(r t) mt f Br(Rinu 0, t) sin6dé — f
0

r=Rint

rBy(r,m/2,t)dr.
(39)

Assuming the total flux is constant with respect to time, the
iso-contours of ¢ describe the motion of the magnetic field lines
in the disc plane. The spatio-temporal diagram for  is shown
in Fig. 15. The magnetic flux is advected slowly towards the star
in the external disc, while it tends to diffuse outwards from the
inner part of the disc to the cavity edge. The poloidal magnetic
field lines in Fig. 5 show that (B, o) < 0 in the transition region
(8 < R < 12) and (B,p) > 0 otherwise. This transition region is
recovered in Fig. 15 as a region where 0,4 < 0.

Overall, we observe that the negative field of the transition
region is diffusing outwards, while the positive field of the outer
disc is advected inwards. We therefore observe a reconnection of
the large-scale field around R =~ 12, which progressively ‘eats’
the negative field of the transition region. In addition to this, we
observe that field lines deep in the cavity also diffuse outwards.

To achieve a quantitative estimate of the field line advection
speed, we first note that the evolution equations for ¢ read

{ Oy(R,1) = —RE,0(R, 1)

: 4
OrY(R, 1) = =R Byo(R, 1) (40)

Following Guilet & Ogilvie (2014), we rewrote these evolution
equations as an advection equation for y :

6;!// + Ulﬁ aR‘,[/ = O,
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Fig. 15. Flux function y/(R, ) for the magnetic field, taking into account
the flux at the surface of the seed and the radial flux. For radii larger than
the one of the cavity, the field lines are advected toward the centre during
the whole simulation. At R ~ 13, the flux accumulates and exhibits a
striped structure for smaller radii.
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Fig. 16. Magnetic-field transport parameter vg as a function of radius.
We note that the outer disc is transporting magnetic field lines inwards
(vg < O)

where we defined the ‘field advection velocity’:

oy = -20BD (42)
Byo(R, 1)

Eventually, we define a dimensionless advection parameter vg =
vy /v, which quantifies the advection speed (Bai & Stone 2017).
In this framework, positive values of vg imply an outward
transport field, while negative values trace inward field transport.

We show the radial dependence of (vg) in Fig. 16. In the
external disc, we find that the magnetic field is advected inwards
with a velocity of v, = —2.6 X 107> vk. v changes its sign multi-
ple times in the cavity, but it remains negative close to the cavity
edge, between R ~ 7 and R ~ 11 au, where vy, = +3.2 X 1073 vk.
Such a result is in accordance with Fig. 15 and indicates that
field lines are converging at the transition radius with opposite
vertical polarity. In the external parts, vg is negative and v, =
—2.6 x 1073 vk so that vertical magnetic field pointing upwards
is advected. We note that this inwards advection of the outer
disc field lines is in sharp contrast to other work that focused
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Fig. 17. Temporal evolution of ¥ in dotted green, M in dashed blue, and B. (vertically averaged) in black (full line) at R = 3 au for the fiducial
simulation. ¢ is calculated at &;,, = 0.3 and shown by a semi-dashed red line with a logarithmic scale on the right of the panels. Apart from ¢, all
the profiles are given in arbitrary units and divided by their maximum value reached during the timescale of the top panel.

on ‘full’ discs (Bai & Stone 2017; Lesur 2021b). We revisit this
discrepancy in the discussion.

3.5.3. Fast variability of the cavity

Up to this point, we mostly considered time-averaged quantities
and ignored fast variability. While our numerical solutions are
quasi-steady if one looks at averages on 100s of orbits, they also
exhibit a fast time variability (see the temporal stripes in Fig. 3),
the origin of which requires clarification.

Figure 17 shows such a temporal evolution of X, M, and B,
at R = 3. These profiles encounter sharp fluctuations chaotically
distributed over time. Therefore, the cavity is subject to bursts
of matter that quickly falls onto the star (the typical width of a
peak is ~5 orbits at Rj,., which is still far larger than our tem-
poral resolution). This variability explains the stripes seen in the
spatio-temporal diagram (Fig. 3).

We focus on a few of these bursts in the bottom panels of
Fig. 17, while instantaneous pictures of the density correspond-
ing to the (b) panel are given in Fig. 18. For these bursts, we see
that the local maximum values of B;, X, and M are correlated.
When an inflow of matter crosses the cavity, X peaks as well as
M, which in turn increases {. In terms of temporal sequence, it
seems that B, increases slightly before ¥ and M, which would
indicate that B, is the driver of these bursts, but we cannot
be definitive on this sequence because of the lack of temporal
resolution. Finally, we observe that ¢ is always clearly delayed
compared to the other quantities, indicating that the wind inside
the cavity ejects more material once the bubble of material has
passed.

For a more precise insight on accretion and temporal vari-
ability, we refer the reader to Fig. 18, which shows the density
and poloidal magnetic field lines at different times. In the first
panel, we see a filament of matter located above the disc that

extends from (R = 10, Z = 5) to (R = 15, Z = 10). This struc-
ture is cut in two on the second panel, revealing two bubbles of
matter, one being about to fall, while the other is about to be
ejected and leave the disc in the wind. Concerning the filament
and the bubble formation, we detect a current sheet at the loca-
tion of the filaments, where the total magnetic field cancels out
(B, = 0 at the edge of the magnetic loop and B, = 0, because
two anti-parallel poloidal field lines meet at the elbow-shaped
structure location). It is therefore a possibility that these struc-
tures form due to magnetic reconnection. Focusing on the falling
material, we see it reaching the edge of the cavity on the third
panel before crossing it on the next one. When the gas crosses
the cavity, the disc oscillates locally above and below the mid-
plane and is therefore highly dynamical. With a slight delay (last
three panels), we see an outflow emerging from the cavity, and
the wind density increases. Such an observation exhibits the link
between wind and accretion (see Fig. 10). The ejection of gas
from the cavity is not constant with respect to time and occurs
occasionally with burst events for which ¢ eventually peaks at
0.1. This explains why the effective value of () is lower than
the one predicted by self-similar models for which the ejection
is continuous with a higher mass-loss rate parameter.

Combining 6 and 18, we unveil a general scheme for feeding
the cavity. First, the gas located inside the outer disc elevates
from the midplane up to approximately two local disc heights
and organises itself in a filamentary way. Then, bubbles of matter
fall and cross the cavity, forming the elbow-shaped structure on
the time-averaged profile.

3.5.4. Magnetic Rayleigh Taylor instability

To account for the formation and stability of the bubbles of mat-
ter at the cavity edge, we explored the possibility of having a
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Fig. 19. X(R, f) and B(R, f) of B4Bin0AmI. The cavity stands throughout the simulation, though its edge falls down to R ~ 2 au during the
transient, before broadening up to R ~ 4 au in a few thousands of orbits at R;,. The profile of 3 is characterised by the presence of gaps in the

external disc.

4. Parameter space exploration
4.1. Ambipolar Diffusion

We checked the influence of Ay ¢ in the simulation B4Bin0Am1.
This simulation is the same as the fiducial one, except for the
initial value of A, which is set to 10.

4.1.1. General structure of the disc and gaps

The spatio-temporal evolution of £ and g are shown in Fig. 19
for Ap = 10. During the transient state, the cavity edge falls
down to R < 2 au before expanding back up to R > 4 au in a
few thousands of orbits at R;,,. Overall, the transient state lasts
for a shorter period of time than in the fiducial run, and the cavity
extension is smaller.

We observe the apparition of gaps in both the profiles of
T and 8 (Fig. 19) located in the external disc and broadening
with time. Such structures are observed in numerous occasions
in protoplanetary discs simulations either with ideal (Jacquemin-
Ide et al. 2021) or non-ideal MHD (Béthune et al. 2017; Suriano
et al. 2019; Riols et al. 2020; Cui & Bai 2021). We observe that
gaps are associated with low 8 regions and are localised rela-
tively far from the disc’s inner boundary. Some gaps merge with
one another, meaning that only three of them remain after 15 000
orbits at Ry, similarly to what was found by Cui & Bai (2021).
We reserve the study of the interaction between these gaps and
the cavity for a future paper.

Figure 20 shows the flow and field topology for Ay = 10
as well as the time-averaged magnetic structure of the disc. The
main features of the fiducial simulation are recovered, namely the
elbow-shaped structure and the associated magnetic loop. These
are, however, located closer to the star, the cavity radius being
smaller in this simulation.

In contrast to the fiducial simulation, the outer disc is this
time top down asymmetric, which has an impact on the shape of
the elbow above and below the disc plane. The elbow is promi-
nent above the disc but almost disappears below it, except for a
small set of streamlines close to the cavity. The magnetic field
lines exhibit a local slanted symmetry in the external disc at
the gaps location. This is similar to the topology observed in
ambipolar-dominated discs (Riols & Lesur 2018, 2019). The gaps
seem to be characterised by small vortices in the (r, 6) plane,

located at the disc surface at the corresponding radii, indicating
a meridional circulation.

4.1.2. Transport coefficients and wind invariants

The accretion rate remains constant in the whole disc with a
value close to 1.2 x 1077 My yr~! and an accretion velocity that
is still subsonic in the outer disc and peaks up to 2 ¢, at the inter-
nal radius. Therefore, the accretion picture is identical to the one
for the fiducial run with an internal transsonic regime connecting
through the cavity edge to a weakly magnetised wind.

Regarding the wind, we obtain a highly mass-loaded field
line in the external disc that removes little angular momentum
(Aext = 1.5 and k5 = 5.0) and a lighter one in the internal disc
that carries a massive load of angular momentum (4;, = 4.9 and
kin = 0.24). We note that the disc wind is overall less magnetised
and more massive, while the general picture of the fiducial run
remains. The rotational invariant contrast is higher than in the
fiducial simulation, its internal value being three times lower and
the external one three times higher.

4.2. Influence of the initial plasma parameter

We studied the impact of the plasma parameter by varying both
its internal B;, and external B, initial value.

4.2.1. Role of the external initial plasma parameter

We explored how the outer disc magnetisation impacts the gen-
eral properties of the system. We varied the initial value of
B between Boy = 10 (run B3Bin0AmO) and Bout = 10° (run
B5Bin0AmO).

With regard to BSBin0AmO, the spatio-temporal evolutions
of X and S are shown in the left panels of Fig. 21. Right at the
beginning of the simulation, a burst of matter appears in the cav-
ity, which is subsequently refilled. Its radius then remains fixed
at ~4 au until other bursts happen at ~17 400 and ~27 000 orbits
at Riy. Such local events do not dramatically change the gen-
eral properties of the disc, which is similar to the fiducial one
overall.

The bursts of matter (at ~17 400 and ~27 000 orbits at Ry,
assuming the first one is due to the initial transient) give the illu-
sion that some gas might be created inside the cavity, challenging
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Fig. 20. Time-averaged structure of the disc for B4BinOAm]1. Left panel: poloidal streamlines and density. Right panel: magnetic structure of the

disc with magnetic poloidal field lines and (B,).

mass conservation. These bursts are actually due to gas accu-
mulating at the boundary of an accretion ‘barrier’. We refer the
reader to Appendix B for a more detailed description of these
bursts. For now, we point out that these bursts highlight a lim-
itation of our model regarding the implementation of the inner
boundary conditions, but they only occur in the weakly magne-
tised (Bou = 10%) simulations. Lastly, we add that estimating R,
for this simulation is too difficult, since the cavity edge barely
moves during the entire simulation.

In contrast to the run BSBinOAmO, the cavity in the simula-
tion B3BinOAmMO quickly expands up to R = 15au and keeps
growing throughout the simulation, faster than in the fiducial
run (see the right panels of Fig. 21). We estimate its velocity
as Ry ~ 3.0 x 1073 c.u., which is about three times faster than the
fiducial run. We obtain 6M ~ 2.3 x 107 and 6 X ~ 4.2 x 1072
(both in code units), so Eq. (38) gives Ry ~ 4.2 x 107 c.u., where
we chose Ry =~ 20. The simple model we used seems to overesti-
mate the widening velocity of the cavity but still gives the correct
order of magnitude.

The time-averaged surface density from the fiducial run,
B3Bin0AmO, and B5SBinOAmO are shown in Fig. 22, which
demonstrates that the size of the cavity is ruled by the initial
external plasma parameter. The lower S, is, the wider the cavity
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gets when the disc reaches a steady state. On the contrary, the
plasma parameter inside the cavity does not depend on its exter-
nal structure and converges to Si, < 1 in all of these simulations
(Sect. 4.2.2 tackles this observation in depth). Once the transient
state is gone, we note that the cavity expands faster for lower Boy.
This can be understood using Eq. (38), which can be recast as

)

where we defined the accretion velocities v, = M/27 Ry X, and
assumed X, > Z;,. The expansion speed is then controlled by
the term in parenthesis, since the accretion velocity in the cavity
is always sonic (see 4.2.2). It is well known that the accretion
velocity in the outer ‘standard’ disc is a decreasing function of 5.
Writing vye. oc 77 with o > 0, Lesur (2021b) proposes o= = 0.78
and Bai & Stone (2013) o = 0.66, which indicates that 0 < o <
1. Assuming that a value f3 exists for which Ry = 0, we obtain
the following scaling:
)1—0':1

{1 . (ﬁgm
2

Zin acc., out

— 4
EOl.ll ( 3)

Ro = vace.,in (

Vacc., in

. 1
Ro = vace.,in 5—

ﬁOth

(44)



E. Martel and G. Lesur: Magnetised winds in transition discs. I.

B5Bin0AmO0

10000 20000

10000 20000 30000

t (orbits at Ryy)

B3Bin0AmO0

An ..ub’li“i!'.‘ ikl

10000 20000 30000

t (orbits at Ryy)

Fig. 21. Spatio-temporal diagrams for £ and 8 for B5Bin0AmO and B3Bin0OAmO. The cavity expands more in B3Bin0AmO but shrinks in
B5Bin0AmO. Bursts of matter occur in BSBinOAmO (see main text for more explanations).
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Fig. 22. Impact of initial external magnetisation on the surface density.
We average the profile on the last 1000 orbits at R;,,. For BSBinOAmO,
we average on 1000 orbits at Ry, occurring between the 2 burst events
seen in Fig. 21.

where we used the fact that i, /Zout = Bin/Bout = ,Bgult in our
setup. The relation (44) shows that for B, < ﬁ, we have
approximately Ry ~ vyec. in Bq» indicating that the cavity expan-
sion speed should increase as S, decreases, which is precisely
what we observe for B3BinOAmO. For B,y > f3, we obtain, on
the contrary, Ry ~ —vaec.in 57! B35, showing a change of sign
(hence a contraction of the cavity), albeit with a reduced speed.
This regime might correspond to B5SBin0AmO, indicating that

B~ 10*%

; fid
10°9 . Bin1B4AmO
—-— Bin2B4Am0 W
1
-------- Bin3B4Am0 },y
10 /-7"{».

100 10!
R (a.u.)

Fig. 23. Impact of internal initial magnetisation on the plasma parame-
ter for By = 10%.

4.2.2. Role of the internal initial plasma parameter

To study the impact of B;,, we ran a set of simulations that cover
all the possible initial gaps Bin/Bowe Where logBoy € {3, 4, 5}
and log Bi, € [0; log Bou[- We compared each result to the one
obtained with Bi, = 1 and the corresponding value of By A
striking result is the fact that the disc’s inner structure does not
depend on Si,. No matter which S;, we initially choose, a transi-
tion occurs in the cavity in order to impose B, ~ 1. Interestingly,
this threshold value is the one required to achieve transsonic
accretion, which is mentioned in Wang & Goodman (2017). We
illustrate this statement with Fig. 23 for the particular case of
Bout = 10*. We focus on the transient state of B4Bin3AmO0 in
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Fig. 24. Spatio-temporal diagrams of X (first panel), B, o, the vertical magnetic field at the midplane, and ¢, the flux function defined in Eq. (39).

These profiles focus on the first orbits of the run B4Bin3Amo0.

Fig. 24. The transition is due to matter leaving the cavity because
of the fast accretion at stake after a sharp increase of the mag-
netic field (and therefore a decrease of ). This reorganisation
of the cavity is a consequence of a rapid advection of magnetic
flux from the cavity onto the seed, which initially has low mag-
netisation because of our initial setup. Due to the total magnetic
flux conservation, there is a shortage of magnetic flux inside the
cavity, up until the inner seed reaches a state where its magneti-
sation is almost constant. The magnetic field then accumulates
at the inner boundary and 8 decreases accordingly so that accre-
tion is enhanced. At this point, matter leaves the cavity as it is
accreted onto the star. It is then clear that the cavity converges
towards the same overall structure as the fiducial simulation one.

We note that taking B;, equal to S,y would simulate a full
disc with no cavity. Hence, a threshold should exist regarding the
value of i, above which no cavity is able to form. Considering
Fig. 23, it seems that this threshold is >10°.

From these observations, we deduce that the cavity is regu-
lated by the value of the plasma parameter, which must take a
value close to 1. The reason for this regulation is not entirely
clear, and we add a word of caution regarding the role of the
inner radial boundary condition, especially with respect to the
magnetic field transport at R;,.. We discuss this influence in
Appendix B. Referring to Sects. 3.5.3 and 3.5.4, we suggest that
the RTI may be responsible for this regulation, but a dedicated
study would be required to ascertain this claim.

4.3. Zoom with a larger cavity radius

We performed a simulation with a double-sized cavity (Ry =
20 au) in order to check the impact of the cavity size. The simula-
tion was integrated for 1000 orbits at R = 10 au so that it reaches
355 orbits at R = 20 au The general observations are confirmed,
such as the elbow-shaped structure, the magnetic loop, the mag-
netic field advection in the outer disc, as well as the conclusions
regarding the accretion. While the cavity size is identical to
B3Bin0OAmO, the behaviour of the disc is exactly the same as
the fiducial one (see Fig. 25), indicating that S,y is the main
parameter regulating the cavity expansion. This means that the
global picture where two types of discs are connected is robust
and not linked to limitations in the cavity size or artefacts due to
the inner boundary condition.

5. Discussion and comparison with previous work

We modelled TDs sustained by MHD winds by performing 2.5D
global simulations. This model acts as a proof of concept, show-
ing that steady-state discs with both a cavity and a wind can be
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obtained. The resulting simulated discs are characterised by two
different zones with contrasted dynamics.

First, our ‘outer disc’ behaves like a standard, weakly mag-
netised, ambipolar-dominated protoplanetary disc (Lesur 2021b;
Cui & Bai 2021). In particular, we find mass and angular-
momentum transport coefficients, wind properties, and accretion
rates comparable to those found in the literature for ‘full’ discs.
We also find weak gaps, which are characteristic of non-ideal
MHD discs (Riols & Lesur 2019; Riols et al. 2020). However, the
magnetic field transport in the outer disc differs from previous
studies: we find that magnetic field lines are advected inwards
in the outer disc, in contrast to measurements in full discs which
always show outwards transport (Bai & Stone 2017; Gressel et al.
2020; Lesur 2021b). This discrepancy is likely due to the fact
that the field lines in the cavity are more collimated (i.e. less
opened), which results in a lower pressure on the magnetic sur-
faces in the outer disc, but it is possibly also connected to the
peculiar elbow-shaped magnetic surfaces at the transition radius.
In any case, it points to the fact that magnetic field transport is a
non-local phenomenon: it depends on the global disc structure.

In contrast to the outer disc, the cavity (or inner disc) is
strongly magnetised (8 ~ 1) because of its low surface density.
We emphasise here that the absolute magnetic field strength in
the cavity is not stronger than standard protoplanetary disc mod-
els. In practice, and given our set of units, we have By ~ 0.13 G
(see Eq. (17), with Boy = 10%), so, initially, B, ~ 1.25 mG at
R = 42 au in our simulations, which is of the same order of
magnitude as the upper limit of B,(R = 42 au) = 0.8 mG found
in Vlemmings et al. (2019), for example. Hence, while the cav-
ity is strongly magnetised, its field strength is compatible with
observational constraints.

Compared to the outer disc, the mass and angular-
momentum transport coefficients in the cavity are all of the order
of unity, resulting in transsonic accretion velocities and faster
wind with large lever arms (4 > 10). Overall, this picture quanti-
tatively matches the inner jet-emitting disc proposed by Combet
& Ferreira (2008). Interestingly, in all of our models, the cav-
ity manages to reach an accretion rate close to the outer disc
one by self-regulating the magnetic stresses. We find that most
of the angular-momentum transport is due to the laminar stress
(Appendix D) indicating that turbulent transport (possibly MRI-
driven) is unimportant in the cavity. This is not surprising since
our discs are dominated by ambipolar diffusion, which mostly
suppresses MRI turbulence (Bai 2011).

We find a significant deviation of the rotation profile in
the cavity as a result of the strong magnetic stress due to the
wind and typical rotation velocities of the order of 70-80% of
the Keplerian velocity. This fact, combined with the transsonic
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Fig. 25. Spatio-temporal diagrams for (X) and (8) for R20FID.

accretion, implies that the kinematics of these cavities have sin-
gular observational signatures. Fast accretion kinematics have
been observed in some TDs (Rosenfeld et al. 2014), but we note
that these signatures might also be due to a warped circumbinary
disc (Casassus et al. 2015).

As a result of the stress balance mentioned above, we obtain
accreting cavities that survive thousands of orbits and that are
slowly expanding or contracting, depending on the outer-disc
magnetisation. This result suggests that a cavity could be carved
spontaneously if the magnetisation of the outer disc is high
enough. There are already hints of such a process in global sim-
ulations; for instance, Cui & Bai (2021) show a gas-depleted
cavity forming in the inner profile of X (see their Fig. 5, first
row and first column panel). While this is by no means proof,
since the boundary conditions are probably unrealistic, it shows
that the secular evolution of wind-driven discs should be inves-
tigated systematically to check whether or not cavities could
spontaneously form in these models.

The temporal analysis of the disc reveals the appearance of
dynamical structures. In particular, we highlight the formation
of gas filaments above the disc surface that end up forming two
bubbles of gas each, one being ejected, while the other one
falls down onto the cavity before crossing it. At some point,
the falling matter has to cross the poloidal magnetic field lines
at the magnetic field loop location, resembling, to some extent,
the magnetospheric accretion observed in young stars (Bouvier
et al. 2007, 2020b,a; Pouilly et al. 2020) and magnetospheric
ejection events (Zanni & Ferreira 2013; Cemelji¢ et al. 2013).
However, there is no magnetosphere in our simulations, so the
magnetic topology is quite different from that of magnetospheric
interaction.

By analogy with magnetospheric accretion, we checked
whether the time variability seen in our simulations could be
due to a magnetic RTI. We have studied two criteria for the RTI,
in the form of a radial interchange of poloidal field lines (see
Sect. 3.5.4 and Appendix C). We found, however, that the RTI
requires magnetisations stronger than the ones found in our sim-
ulations, ruling out the RTI in the form we have assumed. It is,
however, still possible that another branch of this instability is
present. It is also possible that the non-axisymmetric version of
the RTI could be triggered in 3D simulations. We therefore defer
this study to a future publication.

On longer timescales, averaging out the fast variability, the
magnetic field strength appears to be self-regulated with 0.1 <
B < 1 in the cavity, independently of the initial field strength.

0 10000 20000
t (orbits at Rjy)

As a result, the cavity is strongly magnetised and rotates at
sub-Keplerian velocities, indicating a substantial magnetic sup-
port against gravity in this region. In essence, the regime of
our cavity is similar to the magnetically arrested disc (MAD)
proposed by Narayan et al. (2003) in the context of black hole
accretion discs. McKinney et al. (2012) showed that MADs
could be regulated by magnetic RTI, leading to magnetically
chocked accretion flows (MCAF). The MAD model is also asso-
ciated with the formation of plasmoids by reconnection events
(Ripperda et al. 2022). These features are recovered in our mod-
els of TDs, despite the fact that we used Newtonian dynamics
(MAD:s are usually found in GRMHD simulations) and the pres-
ence of a strong ambipolar diffusivity in our models. Hence, our
models could be interpreted as non-ideal, non-relativistic models
of MADs.

The time variability of the cavity is likely to be related to
the axisymmetric approximation used in this work since it sup-
presses non-axisymmetric instabilities, which seem to play a key
role in MADs simulations (e.g. McKinney et al. 2012; Liska
et al. 2022). Additionally, we note that the question of non-
axisymmetric hydrodynamical instabilities such as the Rossby
wave instability (RWI) (Lovelace et al. 1999; Li et al. 2000) at the
cavity edge is still open to debate in a magnetised environment
(Bajer & Mizerski 2013). We will address these points using full
3D simulations in a follow-up paper.

Regarding the caveats of our simulations, we remark that
the inner radial boundary is probably the most stringent caveat
of our numerical model. In particular, we found that this inner
boundary condition sometimes expels some poloidal magnetic
flux, resulting in the bursts seen in Fig. 21. However, the weakly
magnetised simulations (such as BSBin0AmO) are the only ones
exhibiting these events, and once the transient state is over, all the
simulations reach comparable steady states. So, the inner bound-
ary condition is likely not affecting the long-term evolution of
our models. Future models should nevertheless try to include
either an inner turbulent disc, or possibly the magnetospheric
interaction with the central star.

A possible limitation of our model concerns the role of the
MRI. Our simulated discs are dominated by ambipolar diffu-
sion, and as such, subject to MRI quenching by the non-linearity
embedded in the ambipolar diffusivity (17 oc B?). This saturation
is different from the saturation by 3D turbulence observed in the
ideal MHD regime. It is suggested that the MRI saturates in very
similar ways in 3D and 2D under strong ambipolar diffusion (see
e.g. Béthune et al. 2017; Cui & Bai 2021). This is also confirmed
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by our own 3D simulations, which will be published in a forth-
coming paper. Hence, the fact that our simulations are 2.5D has a
very limited impact on the turbulent transport one may observe.

We note that our simulations used a simplified treatment
of thermodynamics and ionisation chemistry. More numerically
involved models, such as that of Wang & Goodman (2017), use a
refined computation of the ionisation fraction and A, inside the
cavity of a TD, including several chemical species. This work
highlights, in particular, the influence of the X-ray luminosity of
the star Lx (see their Fig. 2, panels 2 and 3) as well as the role of
the temperature 7 at 16 au (Fig. 2, panels 6 and 7). Regarding
our profile of Ay = 1-10, our work is similar to their models 2
(with Lx = 10% ergs™') and 6 (where Ty = 30 K). Therefore,
we anticipate that an increase of two orders of magnitude for
Lx would lead to A, > 10? in most of our cavity. Such a change
would greatly alter the dynamical regime of the cavity since MRI
would then play a significant role see Appendix A and Blaes
& Balbus (1994) and Bai (2011). However, the role of the tem-
perature is less straightforward and seems to have little impact
on Aju.

Additionally, dust plays a significant role in the work of
Wang & Goodman (2017) regarding the ionisation of the disc.
As a matter of fact, only their models with dust reach low
values of Ax. The effect of dust in TDs is a major subject
that is not addressed in our work. Dust can modify the ionisa-
tion fraction but also create peculiar structures at the interface
between the disc and cavity. We mention in particular the inter-
play between dust and the radiation pressure, which is known
to create non-axisymmetric structures at the cavity edge (Bi &
Fung 2022) or an inner rim with an accumulation of matter due
to photophoresis (Cuello et al. 2016).

6. Conclusions

We performed 2.5D global numerical simulations of TDs in
the context of non-ideal MHD with MHD wind launching. Our
simulation design is initialised with a cavity in the gas surface
density profile, and a power-law distribution for the vertical mag-
netic field strength, resulting in a strongly magnetised cavity
surrounded by a standard weakly magnetised disc.

The main results are summarised in the following points:

1. We modelled strongly accreting TDs that reach a quasi-
steady state that lasts for at least thousands of years. The
accretion rate inside the cavity connects smoothly to the
accretion rate in the external part of the disc;

2. The cavity itself is characterised by a strong sub-Keplerian
rotation and a transsonic accretion velocity. These kinematic
signatures could potentially be verified observationally;

3. The magnetic field is advected inwards in the outer disc, in
contrast to full disc simulations. This points to the possible
non-locality of large-scale field transport;

4. The cavity structure (density and field strength) is self-
regulated. In particular, it is insensitive to a change in the
initial internal magnetisation and is characterised by 0.1 <
Bine S 15

5. The temporal analysis of the cavity dynamics highlights
the formation and accretion of bubbles of gas above the
disc which cross the cavity at sonic speeds. The magnetic
Rayleigh—Taylor instability might be responsible for this
unsteadiness;

6. The physics of the cavity (accretion speed, wind lever arm,
and mass loading) match previously published jet-emitting
disc solutions (Ferreira 1997; Combet & Ferreira 2008). The

A17, page 20 of 25

presence of a strong radial magnetic support and possible
regulation by the RTT is also reminiscent of MADs in black
hole physics (Narayan et al. 2003; McKinney et al. 2012).
These resemblances suggest that TDs could be an instance
of MADs applied to protoplanetary discs.
Transition discs with strong accretion rates and arbitrarily large
cavities can be achieved by magnetic winds emitted from the
cavity. This model is promising and should be tested with
observations.
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Appendix A: Ambipolar diffusivity for a transition
disc - a simple model

The aim of this appendix is to model the ambipolar diffusivity
spatial dependence in both a TD and a standard protoplane-
tary disc (i.e. without cavity). The general procedure to reach
such a result follows and adapts the main calculation steps that
are presented in Combet et al. (2010). As assumed in Eq. 4,
only the ambipolar diffusivity does appear in the MHD equa-
tions, which we assume is the dominant non-ideal effect in the
regime of discs we used at R > 10 (Riols et al. 2020; Simon
et al. 2015). Therefore, the only momentum exchange that occurs
between particles happens exclusively between ions and neutrals.
In a plasma made of molecular ions, electrons and neutrals, the
ambipolar diffusivity is given by

BZ

= (A1)
47T Vin Pn P

na

(Wardle 2007), where p, and p; are, respectively, the density
of the neutrals (the gas so p, = p) and of the ions and y;, =
(oV)in/(my + my) with {(ov)j, is the ion-neutral collision rate
whose value is

1/2
(V)i = 2,0 X 107 (@) em’s™! (A2)
u

(Bai 2011), with my being the atomic mass and y = 2,34 my the
mean molecular weight. Introducing the ionisation fraction & =
Pi/pn, ONE Obtains

2.1

-1 B 2 p )
= 1,6x10' (L) 2 (—) -1,
1a ix102) \16) Ux10%emt/) “°

(A.3)

Ambipolar diffusion is usually evaluated with the dimension-
less ambipolar Elsasser number A defined in Eq. 13. To obtain
this number, we have to evaluate the ionisation fraction. Let us
consider a simple chemical lattice with no metals nor grains:

(A4)
(A.5)

m + ionising radiation — m* + e~ 4,
m"+e — m 6,

with ¢ being the ionisation rate and ¢ the dissociative recombi-
nation rate. Following Fromang et al. (2002), we take

§=3x10°7"12cm’s7!. (A.6)
In this toy model, we then have
_ &
&= 55" Eruv (A7)
Je)

(Lesur et al. 2014), where &pyy accounts for the far-UV photon
contribution that we modelled following Perez-Becker & Chiang
(2011) as

-5 -2\
oy = 2% 1075 exp [— (2./0,03 gem) ] (A.8)
with X, the column density computed from the star to the point
of interest.
To calculate ¢j, we considered several ionisation sources. We
modelled the X-ray ionisation from the protostar by two
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Fig. A.1. Ambipolar Elsasser number A, in a standard protoplanetary
disc (top panel) and in a TD (bottom panel). In spite of these 2 profiles
being slightly different, no major changes occur from one kind of disc
to another around the midplane.

bremsstrahlung-emitting corona (following Bai & Goodman
2009 and Igea & Glassgold 1999):

R \7? . .
x = L x (1 ) [0 (/" 4 Wi
au

o (e—(Nm/NzW + ef(NHz/NzY’)] , (A9)

with Lx 29 = Lx/10%¥ergs™ and Lx, {1, &, @, B, N1, N, being
the numerical values defined in Bai & Goodman (2009), while
Ny and Ny, are the column densities of hydrogen vertically
computed above and below the calculation point.

We modelled the cosmic-ray ionisation rate following Ume-
bayashi & Nakano (1980) so that:

~Zeol./96gem™? 1
9

dcr = {dcro€ s (A.10)

where {cro = 10717 57! and X, is the matter column density
above and below the point of interest.

Lastly, we added the radioactive decay that is assumed con-
stant (Umebayashi & Nakano 2008) with a ionisation rate given
by
lrag. = 1079571 (A.11)
Combining the Egs. A.9, A.10, and A.11, we obtain ¢{; = {x +
{cRr + {rad. s paving the way to finally reach A using Egs. 13, A.6,
and A.7. We note that due to the dependency of 775 and v on the
norm of the magnetic field, this latter is cancelled out and does
not need to be computed to obtain A 4. The previous calculations
can be performed either for a standard protoplanetary disc or for
a TD. The only thing that needs to be changed to account for
such discs is the surface density profile, where Eq. 18 allows us
to consider (or not) the effects of the cavity.

The results of such calculations are displayed in Fig. A.l,
which represents the spatial dependency of A, in both a stan-
dard protoplanetary disc and a TD. Though these two profiles
look different at first glance, a deeper investigation reveals that
the values taken by A, in the discs remain quite close to unity in
both cases, while the general trend of A, in a standard protoplan-
etary disc is recovered even in the case of a TD (Thi et al. 2019).
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Moreover, A remains fairly below the critical value Aa it =
10? with or without a cavity. A, must stay below Ap_ it S0 that
the MRI effects are negligible (Blaes & Balbus 1994; Bai 2011).
Therefore, assuming a characteristic value of A o = 1 captures,
with a reasonable level of accuracy, the physics of ambipolar
diffusion, and the cavity does not alter the ambipolar Elsasser
number profile. The results we achieve from this simple toy
model are to be compared to the more detailed work of Wang
& Goodman (2017), in which many chemical species were taken
into account to compute the ambipolar Elsasser number inside
the cavity of a wind-driven TD.

Following Lesur (2021b) and Thi et al. (2019), we imple-
mented the profile of A so that

4
Aa(z,R) = Aao exp(i) , (A.12)

Ah

where A is a parameter that controls the height where a transition
between non-ideal and ideal MHD occurs (the non-ideal MHD
part being the inside of the disc) and is chosen as constant and
equal to 3 /4. Aa o remains a free parameter (see Section 1 for
more details). Additionally, a cut-off is used for the 1, profile so
that if 74 > 174, max, the value of 1, is replaced by na max = 10 &
in code units, such a choice being reflected in the A, profile with
Eq. 13.

Appendix B: Poloidal velocity relaxation and inner
boundary condition

We aim to address the influence of the poloidal velocity relax-
ation on our results to test our control on the inner boundary
condition. Two additional simulations were conducted with the
same setup as B4BinOAmO (fiducial run) and B5Bin0AmO,
respectively, but without the relaxation procedure. The results
are given in Fig. B.1, where we show the surface density (X)4000
time averaged on the first 4000 orbits at the internal radius (when
the differences are enhanced), with a focus on the innermost
radii. We highlight that these differences do not increase for
t > 4000 orbits at Rjy. For BSBinOAmO, the right panel of
Fig.B.1 suggests that the relaxation procedure influences how
the initial burst is evacuated since we detect differences between
the surface-density profiles at R > 1.5. However, releasing this
inner constraint reduces the inner peak of the profile of Z,
but it does not prevent the initial accumulation of matter from
appearing. In particular, the bursts of matter seen in Fig. 21
are not due to this condition (and are probably due to the
inner boundary condition; see next paragraph). For the fiducial
simulation, we estimate differences of 15% until R = 2, 7% until
R = 10, and less than 2% until R = 50, and we conclude that
the slight accumulation described in Section 3.1 is due to this
procedure, contrary to the occurrence of bursts as seen in Fig. 21.

Regarding the bursts of BSBinOAmO (see Fig. 21), we focus
on one of them in Fig. B.2. The first panel displays the spatio-
temporal diagram of the surface density on which the burst is
clearly detected at 17435 orbits at Ry, and localised by the red
dashed line. The accumulation of matter is correlated with a
decrease of the vertical magnetic field at the midplane (second
panel of Fig. B.2). This magnetic field is not lost but is expelled
outwards, as is evident from the magnetic flux function (third
panels of Fig. B.2). Such a shortage of magnetic field leads to an
increase of 8 and blocks accretion (we recall that the accretion
speed is vaee, o B77 with o > 0). As a result, M falls from 0,25

down to 0,1 X 1077 Mg yr~! in the region between the inner radial
boundary and the burst, and matter piles up in the cavity. This
episode ends when the magnetic flux is eventually re-accreted,
leading to an increase of the mass-accretion rate and the disap-
pearance of the density excess in the cavity. At some point, the
magnetic flux is advected back onto the seed until it saturates so
that B, can accumulate again close to the inner boundary con-
dition before accretion is enhanced back to normal. The reason
why such magnetic flux evacuates from the seed from time to
time remains unclear, and these occurrences close to the inner
boundary suggest that these might be a boundary condition arte-
fact. However, we mention that the total magnetisation of the
seed eventually saturates with a roughly constant value, so a
sharp increase of magnetic field (as is the case for this burst; see
the middle panel of Fig. B.2, a few orbits before the location of
the red dashed line) could force the seed to lose magnetic flux to
ensure its conservation. We finish by adding that these bursts are
only detected for the weakly magnetised simulations (the ones
with Bou = 10%).

Regarding the inner radial boundary condition for the mag-
netic field, we tried several configurations (an outflow condition,
which is the one we eventually chose, and a perfect conductor).
Both of these conditions lead to the same steady states.

We also ran a simulation with a stronger magnetic field close
to the inner boundary condition, but no significant changes were
noticed. The additional magnetic field was chosen so that the
magnetisation of the seed is set close to its saturation value in the
fiducial run. However, in any case, the same transient state occurs
and leaves the stage to a similar steady state (the magnetisation of
the seed reaches the same saturation value and the same stripes
are observed in the spatio-temporal diagram of ).

We therefore conclude that our setup is robust regarding
the initial state and the boundary conditions. The inner bound-
ary still plays a role because of its magnetisation and the fact
that only a given amount of magnetic field can be advected.
This probably leads to the burst events seen in simulation
B5Bin0AmO.

Appendix C: Interchange instability criterion
calculations

We express the instability criterion for the interchange instability
(or RTI) calculated in Spruit et al. (1995) (Eq. 59) in terms of the
plasma parameter. This criterion reads

2
) dQ
gm Or In = 2 (ra) =252, (C.1)

Z
where S is the shear that we approximate with $? = 9/4 Q2, and
Jm 18
B: B.

m = . 2
g 27X €2

By, is the radial component of the magnetic field at the disc sur-
face. Let us rewrite the previous expression in terms of 3, g
(defined with By = g B;) and ¢ (defined as 6 = —~dInZ/dInR):

B; B S BB ByB.B

z
Opln = = il , C3
s BB T 272 T T 273 B. €3
qu2_6 q 2\
9% 70 9 (g 4
2 R 47TZ(Z)’ €4
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Fig. B.1. Surface density time-averaged on the first 4000 orbits at R;,,. The blue lines are the reference runs (left panel: fiducial run, right panel:
B5Bin0AmO), and the red-dashed mines are the corresponding runs without the relaxation.
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Fig. B.2. Spatio-temporal diagrams of X (first panel), B o the vertical magnetic field at the midplane and y the flux function defined in Eq. 39, for
simulation B5BinOAmO. These profiles focus on the second burst detected in the left panels of Fig. 21. The red dashed line marks the beginning of

the burst when detected using X.

where X’ denotes the derivative of X with respect to R. With
P =c2p = (hQx)>Z/(V2r h), we obtain

427 ReQ2 Y
= —21( (C.5)
B,
Therefore, the instability criterion becomes
4Q2q6 4\2rReQ2 Y
§2 <2840 4 aR( K= (C.6)
\2r B 4r X B

€ being constant in the disc as well as 3 inside the cavity. Qg
varies as R~/ and T as R~ so that

48!21%

\2r B
By taking S2/ Qé = 9/4, the RTI can be triggered when
16¢

9@61(1_;)'

If we now assume that 6 = ¢ = 1 for simplicity, we finally obtain

§2 <

q(=0+1+98/2). (C.7

B < (C3)

8e
\2r

~ 0.355& = 0.0355 = Berit. (C9)

B <
9
where € = 0.1.
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Fig. C.1. Interchange instability criteria. The red dotted line shows the
critical value of B, while the green solid line is obtained with Eq. C.8.

Figure C.I compares the time-averaged values of § with
the criterion given in Eq. C.9. The value of By, is below the
time-averaged values of 8. Though this simple analysis makes it
difficult to make definitive conclusions on this subject, it seems
that the interchange instability is not triggered inside the cavity.
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Appendix D: Laminar transport coefficients

In order to discuss the role of the MRI, we must highlight the
impact of the laminar stress and its contribution to the transport
coefficients. In this article, we focus on the total stresses, defined
in Eq. 29. To compare the turbulent effects, we decompose the
stresses with a turbulent and a laminar part. In this prospect, we
introduce the deviation to the temporal mean such that

0oX =X —(X). (D.1)

Focusing on W,,, we expand the magnetic term as

(B, Bga) =(B;) <Bga> + (6B, 6B<p> . (D.2)
———— e

laminar turbulent

Concerning the turbulent stresses, we referred to Jacquemin-Ide
et al. (2021) (see their Appendix A) as we only computed the
laminar ones and compared the laminar transport coefficients
to the ones studied in the article. Therefore, we adopted the
following definition for the laminar radial stress:

m@ys—zﬁmm&xm% (D.3)
and for the laminar surface stress
. (Ba) (B |"
lam.\ _ 2 ®
<W93-‘pm = —r [sm QT . . (D4)

These definitions are coherent with previous works (Béthune
etal. 2017; Mishra et al. 2020; Jacquemin-Ide et al. 2021). Hence,
the laminar transport coefficients are given by

Wlam.
<a,lam.> = ip >
(P)
<Wé‘am.> ’
lam.\ _ (1
= ey

while we define their turbulent counterparts as

{(alurb.> = <a,> _ <C¥lam'>

(™) = ww) = (™)

The results are shown in Fig. D.1. The laminar contribution is
the major one for (vw) in the whole disc, so we only show its
laminar contribution with respect to the full coefficient, as they
take essentially the same values. Nevertheless, despite the lam-
inar term being high for (a), a strong turbulent term is at stake,
especially in the external part of the disc where it is dominant.
Inside the cavity, (@) is fairly distributed between the laminar
and turbulent contributions. However, we recall that the wind
may act also on the turbulent component of (@) since the mag-
netic field also appears in Eq. D.2. We finally conclude that the
MRI is probably acting on the disc outer parts in the (@) coef-
ficient, while the surface stress embodied by (vw) is definitely
dominated by the laminar part and due to the wind.
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Fig. D.1. Time-averaged transport coefficients and their laminar and
turbulent contributions. We give the laminar and turbulent contributions
for (@) and the total profile with its laminar contribution for (v ).
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