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ABSTRACT

Context. Classical Wolf–Rayet (WR) stars are direct supernova progenitors undergoing vigorous mass loss. Understanding the dense
and fast outflows of such WR stars is thus crucial for understanding advanced stages of stellar evolution and the dynamical feedback
of massive stars on their environments, and for characterizing the distribution of black hole masses.
Aims. In this paper, we develop the first time-dependent, multidimensional, radiation–hydrodynamical models of the extended opti-
cally thick atmospheres and wind outflows of hydrogen-free classical WR stars.
Methods. A flux-limiting radiation hydrodynamics approach is used on a finite volume mesh to model WR outflows. The opacities
are described using a combination of tabulated Rosseland mean opacities and the enhanced line opacities expected within a supersonic
flow.
Results. For high-luminosity models, a radiation-driven, dense, supersonic wind is launched from deep subsurface regions associated
with peaks in the Rosseland mean opacity. For a model with lower luminosity, on the other hand, the Rosseland mean opacity is not
sufficient to sustain a net-radial outflow in the subsurface regions. Instead, what develops in this case, is a “standard” line-driven
wind launched from the optically thin regions above an extended, moderately inflated, and highly turbulent atmosphere. We thus find
here a natural transition from optically thick outflows of classical WR stars to optically thin winds of hot, compact subdwarfs; in our
simulations, this transition occurs approximately at a luminosity that is ∼40% of the Eddington luminosity. Because of the changing
character of the wind-launching mechanism, this transition is also accompanied by a large drop (on the low-luminosity end) in the
average mass-loss rate. Since the subsurface opacity peaks are further associated with convective instabilities, the flows are highly
structured and turbulent, consisting of coexisting regions of outflowing, stagnated, and even pockets of infalling gas. Typical velocity
dispersions in our 3D models are high, 100–300 km s−1, but the clumping factors are rather modest, fcl ≡ ⟨ρ

2⟩/⟨ρ⟩2 ∼ 2. We further find
that, while the low-density gas in our simulations is strongly radiation-driven, the overdense structures are, after their initial launch,
primarily advected outward by ram-pressure gradients. This inefficient radiative acceleration of dense “clumps” reflects the inverse
dependence of line driving on mass density and leads to a general picture wherein high-density gas parcels move significantly slower
than the mean and low-density wind material.
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1. Introduction

Stars with initial masses higher than 8 M⊙ play an essential role
in both the chemistry and gas dynamics in galaxies such as our
own Milky Way (Doran et al. 2013; Ramachandran et al. 2018;
Heger et al. 2003; Hopkins et al. 2014). At the end of their
lives, many massive stars undergo supernova explosions, leaving
behind compact objects such as neutron stars and black holes.
Before this final event, however, many massive stars become
completely depleted of hydrogen (Crowther 2007). This deple-
tion may happen because of strong stellar winds (Conti et al.
1975; Abbott et al. 1987), eruptive events (Smith 2014, 2017),
or binary stripping (Paczyński 1967; Shenar et al. 2020). In
any case, what is left will be a stripped, hot and compact
Helium star.

Such stripped stars can either be classified as classical
Wolf–Rayet (WR) stars (after Wolf & Rayet 1867), when they
are characterized by strong, broad emission lines, or they can
become hot subdwarfs when they do not feature WR spectral
characteristics. Subdwarfs are considered to be surrounded by a

very thin atmosphere (Han et al. 2010). On the other hand, the
strong emission features that characterize WR stars are believed
to originate in a dense, radiation-driven wind that surrounds
the object (Beals et al. 1940). Classical WR winds have high
terminal speeds and high mass-loss rates (on the order of 10−7–
10−4 M⊙ yr−1 e.g., Nugis & Lamers 2000; Hamann et al. 2019),
and are optically thick to the extent that they hide the hydrostatic
stellar core. Linking evolutionary models of the WR hydrostatic
core to spectral observations thus requires a thorough under-
standing of the wind dynamics (Hillier 1991a). Identifying the
exact launching mechanism that can produce WR winds strong
enough to match observations is, however, still an active area
of research (e.g., Poniatowski et al. 2021; Sander et al. 2019).
Specifically, while the better understood winds of OB-stars on
the main sequence are well reproduced by means of a line-driven
wind theory assuming an optically thin continuum (originally
developed by Castor et al. 1975, CAK), this standard theory can-
not explain the high mass-loss rates inferred for high-luminosity
classical WR stars (Hillier 1991b; Cassinelli 1991; Lamers et al.
1993; Poniatowski et al. 2021).
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Since WR stars have high luminosity-to-mass ratios, they
typically exceed their effective Eddington limit, where the stellar
gravitational pull is overcome by radiative acceleration already
in deep subsurface layers (Heger et al. 1996; Grassitelli et al.
2018); the super-Eddington nature of these deep layers is associ-
ated with peaks in the Rosseland mean opacity, stemming from
atomic recombination of iron in particular. Nugis et al. (2002)
first explored this as a potential driving mechanism for WR
winds. Moreover, Grassitelli et al. (2018) computed hydrody-
namic, 1D, stationary models extending up to the wind sonic
point. These works suggest that Galactic WR stars are driven to
the sonic point by this “iron opacity bump,” as well as a transi-
tion in mass loss as a function of the luminosity-to-mass ratio.
However, WR winds launched in optically thick layers through
this mechanism do not meet the energy requirements to bring
the stellar gas from the sonic point up to escape speed (Ro &
Matzner 2016; Poniatowski et al. 2021). In 1D models based
purely on Rosseland opacities, this then leads to solutions that
are not able to escape the stellar gravitational potential. Here, gas
gets accelerated and lifted up from the hydrostatic core, before
it decelerates and finally starts falling back down onto the core
surface due to gravity.

In Poniatowski et al. (2021), we thus suggested a hybrid
opacity formulation, wherein Rosseland mean opacities are com-
bined with the strong enhancement in line opacity that, due to
the Doppler effect, is expected to occur in supersonic media
(CAK). In these hybrid opacity models, gas can then get lifted
up from the hydrostatic stellar core via static Rosseland mean
opacity. Then, once the gas is further away from the stellar core
it becomes optically thin, and efficient line driving can take over.
The first 1D spherically symmetric models have been computed
using this mechanism, reproducing the correct order of magni-
tude of mass-loss rates and providing a basic explanation for the
so-called core radius problem of classical WR stars (Poniatowski
et al. 2021; Moens et al. 2022). However, these 1D models still
needed further ad hoc opacity enhancements to the line driving
in order to prevent the mass launched in subsurface layers from
falling back upon the star. In Poniatowski et al. (2021), these
enhancements were attributed to unknown details about the line
statistics. Similarly, to avoid a nonmonotonic velocity field in
1D stationary hydrodynamic models of WR winds based on a
detailed non-local thermodynamic equilibrium (NLTE) comov-
ing frame radiative transfer (Gräfener & Hamann 2005; Sander
et al. 2019; Sander & Vink 2020), the radiation force is enhanced
by first assuming transfer through a strongly clumped outflow,
but then using this force to solve the equation of motion for a
stationary, smooth wind (see discussion in Björklund et al. 2022,
their Sect. 2.2, for some potential fundamental problems with
this approach).

In a multidimensional setting, on the other hand, subsurface
opacity peaks will also give rise to convective and radiative insta-
bilities (Cantiello et al. 2009; Jiang et al. 2015, 2018; Goldberg
et al. 2021). Since for high-luminosity WR stars these same
opacity peaks are also implied to be launching a supersonic out-
flow, it may be expected that, instead of being stationary, the
deep WR atmosphere might consist of a complex pattern of coex-
isting regions of up- and down-flowing material. This would
then cause the formation of structure and significant turbulent
motions.

To understand these effects, WR atmospheres and outflows
need to be modeled using multidimensional, time-dependent
simulation techniques, accounting properly for opacity peaks in
deep subsurface layers, as well as line driving in the upper atmo-
sphere. Here, we present the first attempts to construct such

multidimensional simulations of classical WR stars. For this,
we use the multidimensional partial differential equation (PDE)
toolkit MPI-AMRVAC1, a finite volume solver parallelized with the
open-MPI framework (Xia et al. 2018). We apply our recently
implemented modules for solving the time-dependent equations
of radiation-hydrodynamics (RHD) in two and three dimensions
(Moens et al. 2022). This work is thus a direct follow-up to the
1D RHD models of WR winds presented in Moens et al. (2022).
However, rather than assuming the ad hoc boosts of the line force
that were inherent to previous 1D models (see above), we now
use the “Munich atomic database” (Pauldrach et al. 1998, 2001;
Puls et al. 2000) to also compute a self-consistent line opacity
(Poniatowski et al. 2022).

Section 2 describes the applied prescription and setup for the
RHD simulations, as well as the hybrid opacity model used to
describe the interaction between gas and radiation. In Sect. 3,
we present the general properties of our 2D and 3D models. In
Sect. 4, we present a first exploration of the parameter space by
computing models that have different input stellar luminosities,
and we examine the effect this has upon the atmosphere and
wind properties. Section 5 discusses our main results and how
the models could be further improved. Finally, Sect. 6 concludes
this work with a summary and an outlook.

2. Modeling

To model the (radiation-dominated) dynamics and energy trans-
port in the multidimensional WR atmospheres and winds, we
use the newly developed radiation-hydrodynamic module of the
flexible (magneto-)hydrodynamics code MPI-AMRVAC (Xia et al.
2018; Keppens et al. 2020; Moens et al. 2022). The formalism
is fully described in Moens et al. (2022), which also includes
a number of standard benchmark cases and a test simulation
of a spherically symmetric WR wind outflow. The RHD equa-
tions are solved on a finite volume mesh using a “box-inwind”
approach (see Sundqvist et al. 2018; Moens et al. 2022). The bot-
tom boundary of the computational domain starts deep inside the
WR atmosphere at the (quasi-)hydrostatic core radius Rc, and the
simulations then extend several Rc into the supersonic outflow-
ing regions, here set to r = 6 Rc. In the remainder of this section,
we describe some key features of this modeling framework.

2.1. Radiation hydrodynamics

The Euler equations of hydrodynamics describe the conservation
of mass, momentum, and gas energy. With the effects of gravity
and radiation included as source terms on the right-hand side,
these equations are:

∂tρ + ∇ · (ρu) = 0, (1)
∂t(uρ) + ∇ · (uρu + p) = − fg + fr, (2)
∂te + ∇ · (eu + pu) = − fg · u + fr · u + q̇. (3)

Here, ρ is the gas density, u is the gas velocity, and e is the total
gas energy density, consisting of both an internal and a kinetic
energy component. The source terms fg and fr are the forces
due to gravity and radiation, and q̇ represents the heating and
cooling of the gas by radiation. The gas pressure p is related to
the total gas energy density e via the ideal gas law, which closes
the system of PDEs:

e =
p
γ − 1

+
1
2
ρv2. (4)

1 http://amrvac.org/
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In our simulations, the gas and radiation dynamics are separated
where we assume the equation of state of a monoatomic, non-
relativistic and nondegenerate gas. Neglecting ionization effects,
the polytropic index is appropriately set to γ = 5/3 (see also e.g.,
Jiang et al. 2015).

The external forces due to gravity and radiation impact both
the momentum and kinetic energy of the gas. In our model, the
gravitational force fg is assumed to come from a point source:

fg = ρ
GM∗

r2 r̂, (5)

which means that the WR core mass M∗ is assumed to be much
greater than the mass inside the atmosphere and wind. For the
models presented below, a brief order of magnitude estimate
shows that the mass contained in the simulated envelope is, at
maximum, six orders of magnitude lower than the mass in the
stellar core. Thus, the assumption of point gravity applies in this
situation. The acceleration due to the radiation force fr, and the
gas heating and cooling q̇, depend on the radiation field. Thus,
we need a formalism to treat radiation and its coupling with
the gas. In this work we make use of the frequency integrated
0th angular moment equation of the time-dependent radiation
transport equation in the comoving frame. This is an additional
PDE that can be written in a conservative form similar to the
hydrodynamic equations:

∂tE + ∇ · (Eu + F) = −q̇ − ∇u : P. (6)

Here, E is the frequency-integrated radiation energy density, F is
the frequency-integrated radiation flux, and P is the frequency-
integrated radiation pressure tensor. This radiation subsystem
further needs a closure relation connecting the radiation flux
vector, the radiation pressure tensor, and the radiation energy
density scalar. The nonequilibrium flux-limited diffusion (FLD)
approach, as described by Moens et al. (2022), is used for this,
wherein the radiation flux becomes:

F =
−cλ
κρ
∇E. (7)

Here the flux limiter λ prevents the magnitude of the radiation
flux from exceeding the physical limit cE, for the speed of light
c, when radiation is freely streaming. In the radiation diffusion
regime, radiation follows the Eddington approximation. In the
formulation above, κ is the flux-weighted mean opacity, in units
of cm2 g−1. In this paper, we assume a flux-limiter in the form
suggested by Levermore & Pomraning (1981; see also Moens
et al. 2022). The radiation pressure tensor is then written as P =
f E for a corresponding analytic form of the Eddington tensor,
following Turner & Stone (2001). The radiation force density,
and the heating and cooling, are computed from the local gas
and radiation quantities:

fr = ρ
κF
c

(8)

q̇ = cκρE − 4πκρB, (9)

where B is the frequency-integrated Planck function, and where
we have further assumed that the energy and Planck mean opaci-
ties present in the heating and cooling terms are equal to the flux
mean κ. Using the definitions E ≡ (4σ/c)T 4

rad and B ≡ (σ/π)T 4
gas,

we can alternatively write q̇ as a function of the radiation and
gas temperatures, Trad and Tgas, namely q̇ = 4κρσ(T 4

rad − T 4
gas).

Because of the smaller timescales that typically control the radia-
tive heating and cooling terms in our setup, these are updated

using an implicit method as described in Moens et al. (2022),
allowing also for nonequilibrium conditions where the radiation
temperature is not necessarily equal to the gas temperature.

2.2. Hybrid opacity model

An often-used method to obtain opacities κ for radiation-
hydrodynamics is to read them from various tabulations, for
example the OPAL (Iglesias & Rogers 1996) project, which
tabulates the Rosseland mean opacity in the static limit as a func-
tion of the logarithm of the temperature log10(T [K]) and the
parameter log10(R) (where R = ρ/(10−6 T [K])3), and different
chemical compositions. However, previous 1D WR models (e.g.,
Poniatowski et al. 2021) have shown that these OPAL opacities,
which have been gauged for static media, do not provide a good
description for the total opacity when the gas becomes super-
sonic. In such layers, Doppler shifts can significantly enhance
line opacities as compared to static Rosseland means, leading to
efficient line driving (Castor et al. 1975; Castor 2004). As shown
in Poniatowski et al. (2021), for classical WR stars, a strong out-
flow can be initiated in deep layers around T ∼ 150–200 kK,
where CAK-like line driving is quite inefficient (due to the high
densities), but where a large number of bound-bound transitions
in iron-like elements still contribute significantly to the Rosse-
land opacity (at the so-called iron opacity bump). Further out in
the atmosphere, however, the temperature declines, and the static
Rosseland mean opacity decreases to the extent that the initiated
flow stagnates if it does not experience any additional driving
(see also Sander et al. 2019; Sander & Vink 2020). As such,
building on the 1D models presented in Poniatowski et al. (2021)
and Moens et al. (2022), we here describe the total opacity as
a sum of static Rosseland and CAK-like formulations (see also
suggestion by Castor (2004), their section on “velocity-stretch”
opacities in Ch. 6):

κ = κOPAL + κline, (10)

where κline is the total contribution from all lines computed
for a supersonic medium. In Poniatowski et al. (2022) we
compute κline in the Sobolev approximation directly from a sum-
mation over the entire “Munich” line database, consisting of
∼4× 106 lines (Pauldrach et al. 1998, 2001), for a range of
temperatures and densities, assuming equal radiation and gas
temperatures, and local thermodynamic equilibrium (LTE). We
then fit our results to a variant of the parameterization suggested
by Gayley (1995):

κline = κ0
Q̄

1 − α

(
(1 + Q0t)1−α − 1

)
Q0t

, (11)

for

t = cκ0ρ
∣∣∣∣dvdr

∣∣∣∣−1
, (12)

with a fiducial normalization constant2 κ0 = 0.2 g−1 cm2, and
line-force parameters Q̄, Q0, and α. These line-force parameters
essentially represent the maximum line force in the limit that all
contributing lines are optically thin (Q̄), an effective maximum
2 In Poniatowski et al. (2021), we used a normalization constant κ0 =
0.34 g−1 cm2, but in these tabulations we have instead used 0.2 g−1 cm2

in order to reflect the typical Thomson scattering opacity in a hydrogen-
free classical WR star; this then enables a better one-to-one comparison
for studies of the values of Q̄.
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Fig. 1. Force multiplier M(t) as a function of the optical depth parame-
ter t. The green line is obtained by calculating the line-force parameters
from a line list database for a temperature of T = 62 kK and a gas den-
sity of ρ = 10−11 g cm−3. The red line is obtained by fitting this force
multiplier with Eq. (11). The best-fit parameters for this particular tem-
perature and gas density are Q̄ = 1187, Q0 = 689, and α = 0.70.

line strength (Q0), and a power-law index related to the relative
contributions from optically thick and thin lines (α). From fit-
ting Eq. (11) to integrated opacities from our line database, we
then obtain values of the line-force parameters as functions of
the local temperature and density. This is quite similar to how,
for example, OPAL opacity tables are constructed from com-
putations of the Rosseland mean. In other words, we compute
and tabulate Q̄, Q0, and α as a function of density and tempera-
ture Q̄(ρ,T ), Q0(ρ,T ), and α(ρ,T ). Similar tabulations have been
given by Lattimer & Cranmer (2021), although they use a differ-
ent assumed parameterization. Using these tabulations, κline is
then obtained by computing t from the local velocity gradient
and density at each spatial point and time step in the simula-
tion. An illustration of such a fit is provided in Fig. 1, showing
the so-called line-force multiplier M(t) = κline/κ0 for a range of
values of the optical depth variable t at a fixed density and tem-
perature. A fit (green line) of the results from the full line-list
calculations (red dots) using Eq. (11) here results specifically
in α = 0.70, Q̄ = 1187, and Q0 = 689, for ρ = 10−11 g cm−3

and T = 62 kK (typical expected density and temperature val-
ues within a WR outflow). Figure 1 further illustrates how in the
optically thin limit (left on the horizontal axis), M(t) → Q̄, and
how the slope in the optically thick region (right on the horizon-
tal axis) is indeed controlled by the α parameter, as discussed
above (see also CAK).

For this paper, large tables have been constructed where Q̄,
Q0, and α are tabulated as functions of temperature and density
values appropriate for the WR conditions under consideration.
Specifically, we have calculated a table that covers densities in
the range ρ ∈ [10−16, 10−7] g cm−3, and temperatures in the range
of T ∈ [10, 100] kK, for a hydrogen-free plasma with the same
chemical content as used for the OPAL tabulation. This means
that the relative abundances of metals are the same as in the Sun,
as described by Asplund et al. (2009), and the overall metalicity
Z is chosen to have the solar value but without hydrogen (X = 0),
and thus Y = 1 − Z⊙ = 0.98. This can differ from other formula-
tions such as those described by Sander et al. (2019), where the
abundance of each separate element is specified. These tables
cover the typical mass densities expected for the WR atmosphere
and wind, except for the temperatures near the lower boundary,

Fig. 2. Average relative density for each Eddington factor (top panel)
or ratio of opacities (bottom panel) at different radii in the 2D model
(Table 1). Yellow indicates that a gas with a given Eddington factor or
opacity ratio and radius is denser than the average gas at that radius,
while dark blue indicates that the gas is less dense.

which lay outside the table. This is because the original Munich
atomic database (Pauldrach et al. 1998, 2001) only contains up to
ionization stage VIII of the relevant line-driving elements, lim-
iting the maximum temperature in our tables for which we have
accurate atomic data. However, since the density in these high-
temperature regions is also very high, this typically renders the
contribution of κline (∝ 1/ρα) to the total opacity small or negli-
gible, as discussed in Poniatowski et al. (2021) and also verified
here a posteriori via the lowermost panels in Fig. 2. As such,
even if we were to fully neglect κline above a certain temperature
threshold, the effects upon our overall results would be small.
Nevertheless, to ensure that the total opacity does not experi-
ence any unphysically sharp transitions, we instead choose to use
here Q̄(ρ,T = 105 K), Q0(ρ,T = 105 K), and α(ρ,T = 105 K)
for all temperatures above 105 K3. As such, the upper limit of
the tabulated temperature range should not pose any significant
qualitative issues to our models.

Using our new tabulations, we are now able to compute the
spatially and time-varying line-force parameters from directly
within our simulations. As such, this method constitutes a
significant improvement compared to previous time-dependent
radiation-hydrodynamic line-driven wind models, which typi-
cally have either assumed that these parameters are constant in
both space and time, or used an ad hoc predescribed functional
form (Poniatowski et al. 2021).

2.3. Initial and boundary conditions

In this work, the outflows of WR stars are simulated using a
box-in-wind approach. The lower boundary of the computational
domain is located near the hydrostatic core such that, on average,
the bottom boundary is subsonic. The outer boundary is located
at a radius of 6 Rc. This way, the wind can be studied from a sub-
sonic launch all the way up to a distance at which most of the gas
has reached its escape velocity.

As an initial condition, a 1D model is relaxed, as described
in Moens et al. (2022). Input parameters are the radiative

3 We opt for this treatment instead of an extrapolation outside the high-
temperature end of the tables in order to ensure that the line opacity is
well behaved.
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luminosity L at the lower boundary, stellar mass M∗, core radius
Rc, and a chemical composition for the OPAL and line opacity
tables (see above). The 1D model is copied to every lateral point
in the 2D or 3D box. In order to trigger initialization of structure
a perturbation, sinusoidal in r, y (and z), is added to the lateral
momentum components. Additionally, to speed up the transition
of initial conditions, the initial density profile is reduced by a
factor of ten.

Boundary conditions in the lateral directions are periodic. On
the bottom boundary, an extended version of our standard con-
ditions for line-driven wind simulations is used. This means that
the lower and upper boundary conditions are set as described in
Moens et al. (2022), in their Sect. 5. In summary, the mass den-
sity is kept at a fixed value, and the momentum is extrapolated
into the ghost cells. The radial component of the gradient of E is
set by an input bottom luminosity and the FLD closure Eq. (7).
Finally, the gas energy is set to be in equilibrium with the radi-
ation energy. Since neither the momentum nor the gas energy
density is fixed at the lower boundary, this setup allows for a
self-consistent computation of the mass-loss rate Ṁ and gas and
radiation temperatures at the stellar core radius. In comparison to
the 1D models in Moens et al. (2022), for the multidimensional
simulations, one complication arises in the boundary conditions
for the radiation energy density. The elliptic (diffusion) term of
Eq. (6) is solved with a multigrid solver (Teunissen & Keppens
2019). For the lower boundary condition of this multigrid solver,
we use a Von Neumann boundary condition, where the value of
∇rE has to be set. In the multidimensional simulations described
in this work, a single, laterally averaged value of ∇rE is used,
computed via the FLD closure Eq. (7).

Finally, at the outer boundary, ρ, vρ, and e are linearly extrap-
olated outward. E is set by first calculating the average optical
depth of the outer boundary. For this, we assume that the portion
of the wind has reached its terminal velocity, and that outside
of the numerical domain, the wind continues with this constant
velocity and the same mass-loss rate. Assuming only electron
scattering opacity, the portion of the wind that is not simulated
can now be analytically integrated to give an optical depth. This
optical depth is used to calculate the radiation temperature, and
from that the radiation energy density at the outer boundary is
calculated.

2.4. Finite-volume method, mesh, and spherical corrections

MPI-AMRVAC is a finite volume code that makes use of a quadtree
or octree grid for adaptive mesh refinement (AMR). The simula-
tions presented in this paper were run on a Cartesian mesh, with
four levels of refinement resolving the bottom boundary. On the
base level, the numerical domain is only 16 cells wide and 128
cells in the radial direction, covering 0.5 Rc and 5 Rc respectively.
Doubling this resolution three times to level four means that the
base is refined to an effective 128 cells laterally and 1024 cells
radially. AMR is very useful in order to resolve the, on average,
subsonic layers of the wind near the core radius. This is crucial
in order to properly cover the average wind sonic point (and thus
not “choke” the outflow), while still keeping the total number of
cells reasonable in the outer supersonic wind. The elliptic part of
the radiation energy equation is solved with a multigrid method
that is integrated in MPI-AMRVAC (Teunissen & Keppens 2019).
However, due to the smoother operators used in the relaxation
of the multigrid solution, it is currently not possible to run these
types of RHD simulations on stretched or spherical grids (Briggs
et al. 2000). Thus, to correct for a spherical divergence in the
RHD PDEs, we have implemented correction terms accounting

Table 1. Input stellar parameters and gas mass fractions for the generic
2D and 3D models discussed in Sect. 3.

Parameter Value

M∗ 10 M⊙
Rc 1 R⊙
L∗ 0.67 LEdd

105.64 L⊙
κe,0 0.2 cm2 g−1

X, Y , Z 0, 0.98, 0.02

for spherical divergence effects in the fluxes of the conserved
quantities, as described in Appendix A of Moens et al. (2022).

3. General properties of the multidimensional WR
simulations

In this section, we present the first multidimensional WR wind
simulations using the hybrid opacity formalism from Sect. 2.2,
which includes the improved description of line acceleration as
described above. Instead of fixing Q̄ and parameterizing α (as
in Poniatowski et al. 2021; Moens et al. 2022), we derive local
line-force parameters as computed from the line statistics of
an atomic database. This means we do not choose a fixed set
of line-force parameters a priori (which is somewhat arbitrary
and can have a significant effect on the model dynamics), but
instead we compute and update them locally as the simulations
evolve. Our wind models depend on: stellar mass, core radius,
stellar luminosity, and a chemical composition for the opacity
tables. The input parameters of the generic (2D and 3D) models
discussed in this section are summarized in Table 1. The val-
ues for stellar mass (M∗ = 10 M⊙) and radius of the hydrostatic
core (Rc = 1 R⊙) were taken from the 1D model described in
Poniatowski et al. (2021), which were inspired by a calculation
of the helium main sequence using the stellar evolution code
MESA (Paxton et al. 2019, see also the M∗ = 10 M⊙ models in
Grassitelli et al. 2018). These values are on the low end of the
mass-radius regime modeled by Langer (1989), and just below
but in line with models by Maeder & Meynet (1987). In Table 1,
the radiative stellar luminosity is expressed in units of the elec-
tron scattering Eddington luminosity LEdd ≡ 4πGM∗c/κe, for
Thomson scattering opacity κe = 0.2 cm2 g−1, appropriate for
our hydrogen-free simulations. In the next section (Sect. 4), the
Eddington ratio L∗/LEdd is varied in four steps by changing the
stellar luminosity to examine how this affects the character of the
simulated outflows and the resulting structures.

3.1. 2D model with self-consistent line force

3.1.1. Thermal and dynamical timescales

Structures in the simulated wind have typical velocities on
the order of 108 cm s−1, which sets a characteristic dynamical
timescale τdyn, here defined as τdyn = Rc/(108 cm s−1). This is the
timescale at which we see changes in the positioning and shapes
of over-densities and filaments over a spatial extent of about 1 Rc.
The readjustment of the entire atmosphere (and wind) as a whole
also depends on its thermal timescale τth, which can be estimated
following Grassitelli et al. (2016):

τth =
GM∗Menv

RcL∗
. (13)
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Fig. 3. Color map of the relative density (top panel) and the radial velocity (bottom panel), for consecutive snapshots of the 2D model (Table 1)
at every τdyn. The figure shows the breakup from initial conditions and the formation of structures in the regions close to the core, which are then
carried outward.

Here, Menv is the mass contained in the atmosphere sur-
rounding the WR core. By integrating over the average radial
density profile of the simulation, we obtain the envelope mass,
and using Eq. (13), the thermal timescale of the atmosphere is
estimated to τth ≈ 300 s ≈ 0.5τdyn. Since the thermal and dynam-
ical timescales are on the same order, in the rest of this paper, we
will only refer to the dynamical timescale when discussing the
evolution of the winds.

3.1.2. Density and radial velocity maps

Here and throughout the paper, a relative density of the gas is
used to characterize when gas in the wind is either in a clump
or filament, or in the low-density medium in between overdense
structures. The relative density is calculated by dividing the den-
sity at each point by an average density at the same radius. This
average density is computed by averaging over the lateral coor-
dinate over several snapshots, covering 40 dynamical timescales,
well after the passing of the initial conditions. The upper and
lower panels in Fig. 3 show color maps of the relative density
and the radial velocity for a selected sample of snapshots of the
2D WR wind model (Table 1), separated by one τdyn each. The
upper panel of the figure allows us to focus on the structural
characteristics of the gas and its evolution.

The figure shows how the initially smooth outflow is broken
up, leading to a dynamically active wind with extensive struc-
ture formation in both density and velocity. In the top panels
of Fig. 3, the relative density shows the formation of higher
density filaments close to the lower boundary, which are then
accelerated outward with velocities slower than the surround-
ing less dense material (see Sect. 3.1.4). The lower panel further
shows that close to the bottom of the simulation, these higher
density regions also sometimes have negative radial velocities,
indicating material that is falling back onto the hydrostatic core.

Figure 4 shows, as a function of time, the mass flux4 through
the simulation near the outer edge of the simulation, at 5 Rc.
Through inspection of both Figs. 3 and 4, it can be seen that
after ≈10τdyn, the simulation is no longer affected by the initial
conditions.

3.1.3. Origin of the structure

We note that the structures seen in these simulations do not
arise from the line-driven instability (LDI, e.g., Owocki 1998;

4 It is important to note that the time variation of this mass flux is by no
means representative of the time variation of the stellar mass-loss rate
in our simulations; variation of the latter will be substantially lower due
to averaging effects over the full 4π sky.
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Fig. 4. Mass flux through the 5 Rc-plane of the 2D (Table 1) simulation as a function of time. 5 Rc is close to the outer boundary, but still sufficiently
removed to avoid effects due to boundary conditions. In the figure, the mass flux stabilizes after ∼10τdyn.

Sundqvist et al. 2018), which is in any case expected to be
damped in optically thick regimes (Gayley & Owocki 1995).
Instead, they are a result of instabilities related to the opacity
peak associated primarily with iron recombination (often called
the “iron opacity bump”) mentioned above (see also Jiang et al.
2015, 2018). Indeed, it can be shown that when a stellar enve-
lope dominated by radiation pressure approaches the Eddington
limit, the standard Schwarzschild criterion for convection will
be fulfilled (e.g., Langer 1997). Moreover, Castor (2004) used a
simple Kramer-type opacity law in a linear perturbation analysis
to show that a star approaching the Eddington limit can get an
imaginary Brunt-Väisälä frequency (see his Eq. (7.48)), and thus
produce an absolute instability. In our models, the Eddington
ratio across the iron opacity bump increases to above unity, and
the atmosphere becomes convectively unstable; in Appendix A
we discuss briefly how structure formation in our simulations
may relate to the linear analysis by Castor (2004). It is impor-
tant, however, to also distinguish the structures here from the
well-studied convective motions occurring in subsurface layers
of stars like our Sun (e.g., Stein & Nordlund 1998). In such
low-luminosity stars, radiation pressure plays a limited role and
the observed convective motions are typically slow and subsonic.
By contrast, the high-luminosity WR simulations presented here
are radiation dominated and energy transport by means of con-
vection is inefficient (e.g., Gräfener et al. 2011). This means that
radial motions that are highly supersonic with respect to the gas
sound speed are initiated from the subsurface layers (in cases
where the Eddington ratio is high enough), which then break
up into a very turbulent flow where supersonic fast and slow
streams of gas coexist at different lateral positions. Here, one
may view gas parcels that are initiated but not able to reach their
local escape speed (and thereby stagnate or even start falling
back upon the core), as localized regions where the wind fails to
escape the stellar gravitational potential, existing within the gen-
eral multidimensional flow structure. After the initial break-up,
the characteristic density structures observed in the simulations
soon develop into patterns of high-density, finger-like filaments.
Close to the core, these density filaments are mainly oriented in
the radial direction.

3.1.4. Clump dynamics

Figure 5 further displays the radial velocity of the wind as a func-
tion of radius, scaled to x = 1 − Rc/r. In the plot, data from each
of the cells for 40 snapshots are binned in discrete bins in (r,vr)-
space. Then, each bin is color-coded with the average relative
density in that bin:

ρ̃(r′, v′r) =
〈
ρ(r = r′, vr = v′r)
⟨ρ(r = r′)⟩

〉
. (14)

Fig. 5. Average relative density for each radial velocity at different
radii in the 2D model (Table 1). Yellow indicates that a gas with a given
velocity and radius is denser than the average gas at that radius, while
dark blue indicates that the gas is less dense. In red are the time and
laterally averaged radial velocity as a function of radius.

Yellow parts in the plot thus represent a gas that has a density
higher than the average density at that radius. Dark blue parts
represent a density lower than the average density at that radius.
The 40 snapshots used in the analysis for Fig. 5 are taken 0.5τdyn
apart, starting at t = 10τdyn.

Overplotted on the color map is the average radial veloc-
ity profile, taken from averaging over all lateral cells in those
40 snapshots. From this figure, we note that there is a large
spread, of up to three orders of magnitude, in densities present at
any given radius. Also, there is a clear anticorrelation between
the average relative density and velocity; the high-density,
clumped material is significantly slower than the average veloc-
ity, whereas the low-density material typically flows much faster.
In these specific snapshots, negative velocities are also present
up until r ≈ 1.5 Rc (x = 1 − Rc/r ≈ 1/3).

Figure 2 uses the same method as Fig. 5, but now displaying
the average relative densities in the (r,Γ)-plane in the top panel,
with the Eddington parameter Γ:

Γ ≡ fr/ fg, (15)

and in the bottom panel, the average relative density in the
(r,κline/κOPAL)-plane, where κline/κOPAL quantifies the relative
importance of the two opacity sources in the hybrid opacity
model (Eq. (10)). To be able to radiatively drive gas out of
the gravitational potential, the Eddington parameter should be
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Γ > 1. However, as illustrated in Fig. 2, many of the high-
density clumps (color-coded as yellow in the plot) are not
super-Eddington (that is, they have Γ < 1). This low radiative
acceleration experienced by the high-density material is caused
by the inverse dependency of the line force on density; for
Q0t ≫ 1 the scaling is κline ∼ 1/ρα (see Eqs. (11)–(12)). This is
further emphasized by the lower panel of Fig. 2, which demon-
strates the inefficiency of line driving for a high-density material
by displaying the ratio κOPAL/κline.

We note that close to the stellar core, the high tempera-
tures lie outside of the tables of the line-force parameters. As
explained in Sect. 2.2, in our simulation, α, Q̄, and Q0 are
approximated by assuming that they do not change significantly
with temperature outside of the tabulation domain. From the
bottom panel of Fig. 2, it can be seen that κline is enhanced by
∼10% of κOPAL for a relatively low-density material, and ∼1%
of κOPAL for a relatively high density material. In future work,
it will be important to expand upon the tables to incorporate
self-consistent line-force parameters also at higher temperatures.
For this, the line database needs to be complemented with data
for the higher ionization levels of the important metals, which
provide the lines at such temperatures.

In the absence of efficient line driving, and from a purely
radiation-gravitation force balance, one might expect these
clumps to decelerate and even fall back onto the stellar surface
at all radii (e.g., Poniatowski et al. 2021), and not only close
to the surface as indicated by Fig. 5. However, closer inspec-
tion of the force balance, including the advection of momentum
into the clumps, reveals that the clumped regions seem rather to
be advected outward by ram pressure. In other words, the low-
density regions are very efficient at picking up momentum via
line acceleration (in these regions Γ > 1), accelerating this gas
to high velocities before it crashes into the star-side face of high-
density clumps. Momentum is then transferred between the low-
and high-density regions without the need for direct line driving
on the latter. This can also be seen directly from the momentum
Eq. (2). Just as Γ is defined as the ratio of radiative to gravita-
tional force, a similar dimensionless quantity can be defined for
radially advected momentum:

Γadv ≡
−∇ · (vrρu)

fg
=
−[∇ · Pram]r

fg
, (16)

where the second equality introduces the tensorial ram pres-
sure as the outer product between the momentum and velocity
Pram = uρu. In the right hand side of the equation above, Γadv
is then defined as the radial component of the divergence of the
ram-pressure tensor, which is then again a scalar, scaled with the
radial gravitational acceleration. If we now ignore the gas pres-
sure term, which is small in these supersonic regions, the radial
component of the momentum equation can be rewritten as:

∂t(vrρ) = fg(Γ + Γadv − 1). (17)

This equation shows that the experienced acceleration does not
only depend on Γ, but instead on the sum of Γ and Γadv. Figure 6
shows this effect, comparing Γ and Γadv around a representative
gas clump of high density. Here, it is shown that the clump itself
is not line driven, but momentum is rather added to the clump
via ram pressure acting on its bottom edge.

3.1.5. Line-force parameters

The acceleration experienced by the gas also depends on the
locally computed and varying line-force parameters α, Q̄, and

Fig. 6. Momentum balance around a sub-Eddington clump in our 2D
model (Table 1). The top panel shows the relative density where the up
direction in this plot is radially outward. The bottom two panels show
the Eddington factor and the ram-pressure gradient scaled to gravity,
with iso-contours of relative density in black indicating the approxi-
mate location of the clump. The force distribution around this clump is
characteristic of most structures observed in our simulations.

Q0 (see Sect. 2). Figure 7 shows color maps of these parame-
ters, again computed from the 2D model discussed above at a
snapshot taken well after the relaxation of the initial conditions.
The figure illustrates that the values of the line-force parame-
ters, for the most part, reside in the typical ranges discussed
by Poniatowski et al. (2022). For example, α here is quite well
constrained within a range >∼0.5 and <1. Moreover, overdense
structures tend to have somewhat lower values of α, as illus-
trated by the enclosed black contours in Fig. 7. This is consistent
with the general discussion in Poniatowski et al. (2022), who find
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Fig. 7. Color map of the line-force parameters. From left to right, the
color in the panels represents the values for α, Q0, and Q̄ for a snapshot
in the 2D simulation (Table 1). The clumped structure is indicated by a
black iso-contour marking a relative density of one.

that for large parts of the (T , ρ) space, α indeed tends to slightly
decrease with increasing density. The variations in Q̄ and Q0
are somewhat larger, ranging from the typical Q̄ ∼ Q0 ∼ 103

to much smaller values of order ten or so. Overall, though, we
find that the general inverse density dependence κline ∼ 1/ρα,
as discussed above, has a larger effect on the generic driving
characteristics of the structured WR outflow than the temporal
and spatial variation of the line-force parameters. Nonetheless,
the large local variations in line-force parameters that we find,
emphasize the importance of relying on a locally computed
opacity rather than using pre-computed and fixed values for these
parameters.

3.1.6. Temperature profile

Figure 8 shows the temporal and lateral averaged gas and radia-
tion temperatures as a function of the scaled radial coordinate
x = 1 − Rc/r. The figure illustrates that the typical average
temperatures seen in 1D models (Poniatowski et al. 2021;
Moens et al. 2022) are overall well preserved also within our
multidimensional simulations. It further illustrates that the aver-
age gas and radiation temperatures are almost identical. In
our simulations, this arises from efficient radiative cooling of
shock-heated regions in the dense outflows, meaning the gas
quickly settles down to almost radiative equilibrium conditions
with Trad ≈ Tgas. Closer inspection of specific snapshots indeed

Fig. 8. Comparison of the average gas and radiation temperatures in the
2D model (Table 1).

reveals that there are quite a few gas parcels with Tgas sig-
nificantly higher than Trad, which means that shocks present
in the simulations are essentially isothermal. This may also
reflect a quite general issue of resolving such shock-heated lay-
ers in supersonic line-driven flows (see discussion in Lagae et al.
2021).

3.2. Comparison between 2D and 3D models

As discussed above in Sect. 3.1.2, once developed, the density
structure emerging in the simulated winds consists of high-
density filaments, preferentially oriented in the radial direction.
These characteristic structures are observed in both 2D and 3D
simulations, as shown by the relative density maps displayed in
Fig. 9. Both plots shown in the figure are from a single snapshot,
at a time well after numerical relaxation of the initial condi-
tions. For the 3D case, a slice was taken at a fixed position in the
second lateral (z-)direction. The figure shows that, although the
overall characteristic structure persists, the relative density pro-
file is sharper in 2D than in 3D, and the contrast between over-
and under-dense regions is also higher. This can be explained by
the fact that in 3D, the structures have an additional transverse
dimension over which they can break up. Effectively, this means
that in 3D there are more paths for the high-density gas to spread
out than in 2D, leading to a smoothing effect on the overall struc-
ture. Although not shown in the figure, similar results are also
obtained when inspecting the lateral velocity and temperature
profiles in 2D vs. 3D. Such a break-up of structures in the second
lateral dimension is illustrated in Fig. 10. Here, the upper panel
shows lateral slices of the relative density at different radii above
the core radius. The structures formed in the 3D box appear fairly
isotropic in the lateral plane, rather than filaments with a pre-
ferred lateral direction. Moreover, as we move away from the
stellar core, these structures tend to grow in size as they move
outward in radius along with the highly supersonic mean flow of
the gas. The lower panel then displays corresponding slices of
radial velocity. Due to the large range of velocities present, we
normalize the slices to a corresponding mean velocity (computed
by an average over the lateral slice). Blue portions thus corre-
spond to velocities above the average at that radius, and red to
those below. In addition, a black contour is added to mark regions
where the absolute radial velocity is zero, encircling regions of
negative velocity. As was also seen in Fig. 5, this illustrates that
negative velocities are only present in layers quite close to the
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Fig. 9. Relative density of the base model (Table 1), comparing results
from a 2D setup to a 3D setup. On the left is a snapshot of the 2D model
and on the right a 2D slice from the 3D model at a fixed z-coordinate.
Both snapshots are taken well after numerical relaxation and are repre-
sentative of the respective simulations.

core (left-most plot), and that in all outer layers the simulation
indeed can be characterized as an outflowing wind with a large
velocity dispersion.

4. From hot subdwarfs to WR stars

Starting from the simulations presented above, in this section,
we calculate additional models by varying the bottom bound-
ary luminosity flowing into the simulation box while keeping

the stellar mass and core radius fixed. This serves to vary the
basic scale of radiation-Γ, allowing us to investigate the condi-
tions under which a radial wind outflow can already be launched
from the subsurface iron opacity bump, and also the conditions
under which the launched wind then can be sustained to high
radii. Table 2 shows the basic parameters for the simulated stars
in our grid, with models conveniently parameterized according
to their Eddington luminosity LEdd. The core radii Rc and masses
M∗ are identical for all models, and are set to the same values
as in Table 1. Here, we note that the stellar luminosity L∗ in
the “dynamically inflated” 1D WR model by Poniatowski et al.
(2021) lies approximately between the two models with the low-
est luminosities in Table 2, while the core radius and stellar mass
are the same. It should be noted that the simulated models have
luminosities slightly above the predicted M∗, L∗-relation given
by, for example, Langer (1989).

All simulations presented in this section are computed in full
3D (for discussion on basic differences between 2D and 3D mod-
els, see Sect. 3.2). The resulting parameters obtained from the
simulations are summarized in Table 2.

As discussed in this section, varying the value of L∗/LEdd
allows us to discover and analyze a natural transition from high-
luminosity stars with WR-type dense (optically thick) outflows,
to hot, compact subdwarfs with less dense (optically thin) line-
driven winds. Although He-stars can span a range in Γe, due to
their tight mass-luminosity relation, it is unlikely that all mod-
els presented here (four different luminosities with one and the
same mass and radius) would all be the result of realistic stellar
evolution. In this work, we are mainly concerned with investigat-
ing the possible effect of different electron scattering Eddington
ratios on the wind dynamics.

4.1. Radial profiles

Figure 11 shows probability density cloud profiles for: i) radial
velocity, ii) tangential velocity, iii) gas density, iv) radiation-Γ,
and v) κOPAL/κline-ratio, in the rows for different models with
changing boundary luminosity in the columns. These probability
clouds are computed for each considered quantity by construct-
ing a probability density function from all of the cells in the
lateral plane at each given radius. The color-coding in the panels
shows the probability density of finding a cell, for example with
a given mass density or radial velocity, at a given radial distance
from the stellar core (scaled according to x = 1 − Rc/r for better
visualization). Supplementing these probability clouds, Figs. 12
and 13 show the average density and radial velocity profiles of
all four models Γ1 – Γ4. Here, we have used empty dots to indi-
cate an estimation of the average sonic point for each profile.
This was computed by finding the radius at which the average
velocity profile surpasses the average speed of sound of the gas.
For all of our models, the average sonic point lies within our
simulation domain, where the first few cells close to the bottom
boundary are, on average, subsonic. For model Γ1, we note that
the average wind velocity becomes slightly supersonic after an
initial acceleration over the iron opacity bump, before deceler-
ating due to a lack of opacity, and then it reaccelerates again
past a new sonic point due to line driving. For this model, only
the outermost sonic point has been indicated. Filled dots indi-
cate the mean photospheric radius, for which the computation is
explained in Sect. 4.2.

4.1.1. Model Γ3

Model Γ3 is the 3D base model from the previous section
(Sect. 3). Here, the material is lifted up directly from layers
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Fig. 10. Relative density and radial velocity for a representative snapshot of the Γ3 3D simulation. In the top row, overdensities are indicated in
blue and underdensities are indicated in red. In the bottom row, gas moving faster than average is indicated in blue, and gas moving slower than
average is indicated in red. Different columns represent different radial coordinates, with the first column representing a radius just above the core
radius. In the bottom row, the black contour represents the region where the absolute radial velocity is equal to zero.

Table 2. Results for the grid of 3D models with varying input luminosities, and a fixed M∗ = 10.0 M⊙ and Rc = 1.00 R⊙.

Model log10(L∗/L⊙) L∗/Ledd ⟨Ṁ⟩ [M⊙ yr−1] ⟨v∞⟩ [103km s−1] ⟨Rph⟩/Rc log10(⟨Teff⟩[K])

Γ1 5.33 0.33 1.5× 10−6 1.25 1.61 4.99
Γ2 5.47 0.46 1.5× 10−5 0.62 3.97 4.83
Γ3 5.64 0.67 3.2× 10−5 1.05 3.64 4.89
Γ4 5.74 0.84 7.2× 10−5 1.35 4.27 4.88

Notes. From left to right, the columns display the model name, stellar luminosity, Eddington ratio, average mass-loss rate, average asymptotic
velocity, average photospheric radius, and the average effective temperature.

close to Rc by the enhanced opacity associated with the subsur-
face iron opacity bump. At higher radii, once the density gets
low enough, efficient line driving then takes over and ultimately
drives the launched wind out of the gravitational well of the star
by accelerating it to above the local escape velocity (indicated by
dashed red lines in the uppermost panels of Fig. 11). Although
the range of densities and velocities at each radius is quite large,
the average profiles (Figs. 12 and 13) are relatively well-behaved.
For example, the average radial wind outflow reaches supersonic
velocities already close to Rc, and it continues to rise all the way
to the outer boundary.

4.1.2. Model Γ4

Model Γ4 has a base luminosity higher than the Γ3 simulation.
The overall wind morphology of this simulation mimics that
of the Γ3 model, but due to the higher luminosity, it can drive
an even higher mass-loss rate out of the stellar potential (see
also discussion in Sect. 4.5). We note that for both the Γ4 and
Γ3 simulations, almost all gas parcels have reached velocities
above the local escape speed at the outer simulation boundary.
This contrasts with the situation in the Γ2 simulation, which is
discussed next.

4.1.3. Model Γ2

In model Γ2, as for Γ3 and Γ4, gas is lifted directly from Rc
and soon reaches supersonic radial velocities (see the uppermost
panel in Fig. 11), so that the wind outflow is also initiated by the

iron opacity bump below the optical stellar surface. However,
due to the lower luminosity, the scale of the radiation force is
reduced, which results in the gas particles in the launched wind
struggling to reach their local escape speeds. From the proba-
bility plot of the radial velocity (uppermost panel in Fig. 11),
we note that the majority of gas particles have actually not yet
reached their escape velocity at the outer simulation boundary,
making it uncertain whether they would ultimately make it out
of the stellar gravitational well (see also discussion in Sect. 4.5).
This is also visible in the plot (Fig. 13) of the average veloc-
ity profile, which shows a nonmonotonic behavior in the outer
parts where the Rosseland mean opacity does not provide suf-
ficient interaction between the gas and the radiation field, and
the effects of line driving start to dominate. Naively, one might
expect a corresponding inversion in the density due to the con-
tinuity equation that states that the average ⟨r2ρvr⟩ is constant
throughout the wind. However, in the average density profile
corresponding to this model, there is no corresponding inversion
in the density. The reasons for this are most likely related to:
(i) ⟨ρ3⟩ , ⟨ρ⟩⟨3⟩, and (ii) a stronger than r−2 decline in density.
Essentially, this Γ2 simulation has initiated a very dense out-
flow directly from the iron opacity bump, but due to its reduced
luminosity, the launched mass flux cannot be efficiently carried
outward, and so some of the dense gas filaments begin to stag-
nate and might even fall back upon the core. This can also be
directly seen from the probability plots, where this simulation
not only shows a very large range of velocities but also displays
larger downward motions than the other simulations, reaching
many hundreds of kilometers per second.
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Fig. 11. Probability densities for different quantities. Lateral slices from ten snapshots are used to calculate a probability distribution function
at each radial point. The ten snapshots are taken after the numerical relaxation of the initial conditions and are all 1τdyn apart. Different columns
represent models with different boundary luminosities, increasing the luminosity from left to right. The different rows represent, from top to bottom:
the density-weighted radial velocity, the magnitude of the tangential velocity vt = (v2y + v

2
z )1/2, the gas density, the effective Eddington parameter,

and the ratio of κline over κOPAL. The color maps in the top three rows are scaled differently to those of the bottom two rows for visibility reasons.
This is because the probability distribution functions of the top three quantities are typically thinner and higher peaked. The probability density
functions are normalized such that the integral over the variable shown on the y-axis gives unity at each radius.

Fig. 12. For each of the four 3D models, this figure shows the average
density profile as a function of radius.

4.1.4. Model Γ1

In model Γ1, the bottom boundary luminosity is even lower. This
simulation shows a markedly different behavior than those with
higher base luminosities. In other words, in this model, the opac-
ity around the iron opacity bump is not enough to launch a radial
wind outflow from these deep subsurface regions. Instead, a very
turbulent, extended atmosphere is created, which does not expe-
rience an outward-directed supersonic average velocity. In other

Fig. 13. For each of the four 3D models, this figure shows the average
velocity profile as a function of radius. The average sonic point has been
indicated with an empty circle, and the mean photospheric radius with
a filled circle.

words, although the velocity dispersion is still highly supersonic,
a net radial wind outflow is no longer launched.

What we obtain here is a very extended and turbulent atmo-
sphere, reaching x ≈ 0.4, r ≈ 1.67 where the density has become
low enough for line driving to take over and launch a (signifi-
cantly less dense, see also below) supersonic wind. In the deep
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Fig. 14. Probability density function of the photospheric radius for the
Γ3 model. The horizontal axis shows at the radius at which the radial
Rosseland mean optical depth is equal to 2/3. Due to the time-dependent
and laterally structured wind, this varies for different radial lines of
sight, giving a distribution in r. This distribution is computed based on
128× 128 transverse cells and on ten time snapshots. The photosphere
is defined here as the radius where the Rosseland mean optical depth
is equal to 2/3. The red line indicates the mean of the distribution. The
probability density function is normalized such that the integral over the
variable shown on the x-axis gives unity.

surface regions, the opacities in this model correspond to the
iron opacity bump at ∼200 kK rather than the opacity increase
due to Helium (Grassitelli et al. 2018). Helium recombination
dominates the Rosseland mean at ∼50 kK, which in this model
occurs at x ≈ 0.7. However, in those regions, the gas has already
reaccelerated due to line driving, which is the main contributor
to the total opacity in the outer wind (see the bottom left panel
in Fig. 11).

4.2. Photospheric radius

Using the hydrodynamical structure and the OPAL Rosseland
opacity tables, a photospheric radius Rph(τRoss = 2/3) can be
derived from the models. For simplicity, this is done by com-
puting the Rosseland mean optical depth in the radial direction.
Since the models are time-dependent and not spherically sym-
metric, the photospheric radius will also vary with both time and
lateral position. Figure 14 shows the distribution of photospheric
radii encountered in ten different snapshots at all different lateral
points for the Γ3 model. From this distribution, a mean photo-
spheric radius ⟨Rph⟩ is computed by taking the straight average,
which can then be compared to the radius of the hydrostatic
core Rc.

Table 2 lists the mean photospheric radii for the four 3D
models. There is a monotonic increase in the photospheric radius
with the Eddington ratio. Here the Γ1 model stands out, having
a significantly smaller photospheric radius than the Γ2−Γ4 mod-
els. While the Γ2−Γ4 models have very optically thick winds
with ⟨Rph⟩/Rc ≈ 4, x ≈ 0.75, for the Γ1 model ⟨Rph⟩/Rc ≈ 1.6,
corresponding to x ≈ 0.4.

4.3. Effective temperature

Continuing this analysis, a corresponding effective temperature
σT 4

eff ≡ F(Rph) can be computed, where F(Rph) is the radia-
tive flux at the photosphere and σ is the Boltzmann constant.
At every lateral point, the radial component of the FLD-flux

Fig. 15. Probability density function of the effective photospheric tem-
perature for the Γ3 model. The horizontal axis shows the effective
temperature for a particular radial line of sight. Due to the time-
dependent and laterally structured wind, this varies for different radial
lines of sight, giving a distribution in r. This distribution is computed
based on 128× 128 transverse cells and on 10 time snapshots. The
effective photospheric temperature is defined here as a function of the
radiation flux calculated at the photospheric radius. The red line indi-
cates the mean of the distribution. The probability density function is
normalized such that the integral over the variable shown on the x-axis
gives unity.

is taken, using Eq. (7) at the photospheric radius. Again, due
to the variation in time and lateral space, there is a distribu-
tion in effective temperatures. This is shown in Fig. 15 for the
Γ3 model.

For each of the four 3D models, the average effective tem-
perature is computed and listed in Table 2. Models Γ2–Γ4 have
comparable effective temperatures. Here, two effects cancel each
other out. Model Γ4 has a higher Eddington ratio and thus a
higher stellar luminosity than model Γ2, but its photospheric
radius is further away from the hydrostatic core, and the radiative
flux drops, on average, by 1/r2. On the other hand, model Γ2 has
a lower stellar luminosity, but the flux is evaluated closer to the
hydrostatic core due to the smaller photospheric radius. Apart
from this, model Γ1 stands out again with a significantly larger
effective temperature. This also indicates different behavior in
the overall wind structure.

The histograms in Figs. 14 and 15 further display the sim-
ulated variation of the photospheric radius and effective tem-
perature in the Γ3 model, showing a full width half maximum
of about 20 kK in Teff and 0.5 Rc in photospheric radius. These
variations reflect the fact that the τRoss = 2/3 surface along a
radial line through the fast, low-density lanes of the simulations
(e.g., Fig. 3) lies much deeper than where such a radial line hits
high-density clumps in the outer wind layers.

We caution, however, that we have used a very simple radial
integration to define a photospheric radius and the correspond-
ing effective temperature along each line of sight (see above).
The width of the distribution thus serves only as a first visual-
ization of the variability, and will likely not be representative of
the actual variation in stellar effective temperature. In follow-up
work, we will reinvestigate this by means of 3D radiative trans-
fer (Hennicker et al. 2020, 2022) performed on the full wind
volume. This will allow us to investigate the typical level of pho-
tometric and line-profile variability that our 3D models would
predict.
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Fig. 16. Relation between mass-loss rate and the Eddington factor over
the grid of four 3D wind models. The models are compared to empirical
data from Hamann et al. (2019) (dashed green line) and Nugis & Lamers
(2000) (dash-dotted purple line), and theoretical models from Sander &
Vink (2020) (dotted orange line).

4.4. Mass-loss rate

Furthermore, we also compute average mass-loss rates from our
models, by taking a time and spatial average of the mass-loss rate
Ṁ = 4πρvrr2 flowing out from the outer boundary of the simula-
tion box. Fig. 16 compares the average mass-loss rate ⟨Ṁ⟩ with
various results for steady WR-type mass-loss rates from the lit-
erature. This comparison shows fair agreement in the WR wind
regime (Γ2–Γ4) with the empirical results by Nugis & Lamers
(2000) and Hamann et al. (2019). For the Γ1 simulation, our
⟨Ṁ⟩ is significantly lower than these empirical scalings, which
stem from the analysis of dense WR outflows. Our rates are
also considerably lower than the recent 1D steady-state models
by Sander & Vink (2020). The reason for this discrepancy may
be that, in their 1D stationary models, Sander & Vink (2020)
needed to (somewhat artificially) boost the radiative acceleration
to enforce a monotonic velocity field, ensuring that the full mass
flux initiated at the sonic point escapes. They did this by invok-
ing an ad hoc large amount of clumping in the models ( fcl = 50,
see definition of fcl below), assuming that all wind mass is
contained within these high-density clumps, albeit while still
solving the steady-state equation-of-motion for the smooth
(rather than clumped) wind.

The natural question then arises about the fraction of the
wind mass contained within the high-density parts of our sim-
ulations. Figure 17 shows the distribution of mass and radial
momentum as a function of relative density for our Γ3 model.
The top panels display the mass and outward momentum dis-
tribution from the lowermost region of the simulation, between
5 Rc and 6 Rc, and the bottom panels display the distributions
between 1 Rc and 2 Rc. Here, the probability density functions
are computed by first binning the cells according to their rela-
tive density. Then, for each bin in relative density, the number
of cells with that corresponding relative density are counted
and weighted with their density or momentum. Afterward, the
probability densities are normalized such that the integral of the
probability density function over relative density gives unity.

In both the upper and lower panels, it is seen that a lit-
tle over half of the mass is located in the overdense regions,
to the right of the vertical dotted line indicating the average
density. From the bottom panel, one can also see that, close

to the stellar core, a majority of the momentum is contained
in the high-velocity, low-density material. However, further out
in the wind (upper panels), a majority of the momentum, and
thus mass-loss rate, is contained within gas with a higher-than-
average density. Most notably, however, the overall distributions
of mass and momentum in our simulations are actually quite
broad and Gaussian-like, which is very different from the typical
two-component medium (clumps and an inter-clump medium)
ansatz assumed in various spectroscopic and diagnostic clumpy
wind models (e.g., Hillier & Miller 1998; Sundqvist & Puls 2018;
Sander et al. 2018).

4.5. Transitioning from an optically thick to an optically thin
wind

By varying the input stellar luminosity, the models presented
here show a natural, smooth transition over different wind mor-
phologies. At the highest luminosities, simulations Γ3 and Γ4
essentially represent the winds from classical WR stars, where
the material is lifted up directly from layers close to Rc by the
enhanced opacity associated with the subsurface iron opacity
bump. With lower luminosity, model Γ2 is quite similar to the
dynamically inflated 1D models presented in Poniatowski et al.
(2021), where an ad hoc increase in the line force in the outer
regions had to be made by the authors so that the wind launched
at the iron opacity bump could reach a velocity above the local
escape speed. At the lowest simulated luminosity, model Γ1
resembles how a standard line-driven wind is launched from the
optically thin parts of the atmospheres in, for example, main-
sequence O-stars (e.g., Björklund et al. 2021), rather than from
the subsurface iron opacity peak. The main difference between
such a main-sequence O-star and the simulation here is that here
the star is much more compact (meaning that it has a much
smaller radius). Moreover, the subsonic average structure and
the substantially reduced mass-loss rate observed in our Γ1 sim-
ulation are in qualitative agreement with the 1D (stationary and
subsonic) hydrodynamic stellar structure models by Grassitelli
et al. (2018), who found that below a certain mass-loss limit, a
classical WR star is not able to launch a supersonic wind from
the iron opacity bump region. This is apparent in Fig. 13, where
the location of the average sonic point for the different mod-
els has been indicated with an empty circle (see also Sanyal
et al. 2015). However, in our Γ1 simulation, the driving force
behind the second acceleration through the sonic point is differ-
ent. In Grassitelli et al. (2018), the reacceleration occurs due to
a second bump in the Rosseland mean opacity (e.g., the helium
opacity bump), while in our models it is mainly a line-driven
wind that is optically thin in the continuum. The extent of the
inflated and optically thick turbulent atmosphere in our model is
quite large, covering ∼1.61 R⊙ in distance above the core radius.
This model has a mass-loss rate that is, for the same stellar mass,
almost an order of magnitude lower than the simulations, with
a higher base Eddington factor. Overall, this Γ1 model is proba-
bly a quite good representation of the transition from WR stars
to the stripped hot (sub)dwarfs that are believed to be results of
binary evolution (Han et al. 2010), and it essentially represents
low-luminosity counterparts of classical WR stars (Götberg et al.
2018).

Thus, our grid of simulations with varying luminosity
demonstrates the transition from a moderately inflated and very
turbulent atmosphere with a “standard” optically thin line-driven
wind on top of it (Γ1), to a classical WR star with a very optically
thick and supersonic wind outflow driven directly from deep sub-
surface regions (>Γ2). This transition is also directly reflected in
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Fig. 17. Distributions of mass (solid lines) and radial momentum (dotted lines) in our Γ3 model as a function of relative density. The two panels on
the left show the probability density function, and the two panels on the right show the cumulative distribution function. The probability density
and cumulative distribution functions calculated for the regions in the wind between 5 Rc and 6 Rc, and between 1 Rc and 2 Rc, are shown in the
top and bottom panels, respectively. The probability density functions are normalized such that the integral over the variable shown on the x-axis
gives unity.

the significant drop in the average mass-loss rate observed for the
Γ1 simulation, as discussed below (see also Fig. 16 and Table 2).
Moreover, although all of our simulations are still accelerating
at the simulated outer boundary, from the slope of the average
velocity curves in Fig. 13, we may deduce that the Γ 1 simulation
likely would reach a final terminal wind speed that is signifi-
cantly higher than the other models (consistent also with the 1D,
stationary models by Sander & Vink 2020).

The transition from optically thick to optically thin wind
conditions is also directly reflected in the average photospheric
radius ⟨Rph⟩ of the Γ1 model as compared to the simulations with
higher luminosity (see Table 2). Since the supersonic wind in this
simulation is launched only at x ≈ 0.4 (see Fig. 13), the location
of Rc verifies that the supersonic radial outflow in the Γ1 model
indeed represents a quite standard optically thin line-driven wind
initiated from layers above, but still quite close to the optical
stellar surface.

In this respect, we note that although the mass flux through
the outer simulation boundary in the transitional Γ2 simulation
suggests a high WR-type mass-loss rate for this model, it is not
entirely clear that this would be the final stellar mass-loss rate.
In other words, although the gas parcels at the outer boundary
of this simulation have positive radial velocities, the majority
of them have still not reached their local escape speeds (see
Fig. 11). As such, their final fates are still somewhat uncertain;
it is unknown whether they will eventually be able to escape the
stellar potential, or instead lose their outward momentum and
ultimately start falling back upon the core. In order to investigate
this, the current simulations would have to be extended to higher
radii, which we defer to future work. It is nonetheless interest-
ing to note that the nature of these transitional winds may be
somewhat different from their counterparts with higher (classi-
cal WR winds) and lower (hot subdwarfs) luminosities. Because
of the high mass flux initiated in the subsurface regions, the tran-
sitional wind will still be optically thick, and as such it resembles
that of a classical WR star. However, in comparison to stars
with higher luminosities, the high-density regions in this wind

(likely the most visible parts in spectral observations) should be
characterized by significantly lower radial wind speeds.

4.6. Clumping factor and velocity dispersion

1D stellar atmosphere codes such as PoWR (Gräfener et al.
2002), CMFGEN (Hillier & Miller 1998) and FASTWIND (Puls
et al. 2020) typically assume an analytic expression for the veloc-
ity and density profile, and thus they do not directly model
structure in the wind. Instead, such codes rely on different
parameterizations of the complex structure in the wind. Our 3D
models now allow us to gauge these parameterizations. In this
section, we look at the clumping factor and the velocity disper-
sion, which are both important quantities when deriving stellar
and wind parameters from observed spectra.

4.6.1. Clumping factors

The clumping factor is important in the context of spectral
diagnostics, for example when investigating recombination lines
to determine mass-loss rates. To characterize overdensities, the
clumping factor is defined as

fcl ≡
⟨ρ2⟩

⟨ρ⟩2
, (18)

where the angle brackets here denote averaging over time and lat-
eral directions. Since the absorption coefficients (per unit length)
of optical recombination lines scale as χ ∼ ρ2, the mean absorp-
tion becomes enhanced in a clumped outflow. In a stellar wind,
the mean mass-loss rate scales with the density: ⟨Ṁ⟩ ∼ ⟨ρ⟩, so for
the absorption coefficient of a recombination line: ⟨χ⟩ ∼ ⟨ρ2⟩ ∼

fcl⟨ρ⟩
2 ∼ fcl⟨Ṁ⟩2. It is well known that this can have a signifi-

cant effect upon empirical mass-loss rate determinations in hot
star winds (see Puls 2008, for a review).

Figure 18 shows that the clumping factor is on the order of
fcl ∼ 2 in our 3D simulations. We note that this is significantly

A42, page 15 of 21



A&A 665, A42 (2022)

Fig. 18. Clumping factor as a function of radius for each of the four 3D
models in our grid.

lower than seen in corresponding 2D models, where it rather lies
between ∼5–10. Again, this reflects the fact that density con-
trasts in general are sharper in 2D models than in 3D models,
because in 3D, gas parcels have one more dimension in which
they can spread out, leading to a smoothing effect (see discussion
in Sect. 3.2).

As can be seen from Fig. 10, the physical scales of the clumps
vary throughout the radial extent of the simulation. By inspect-
ing and measuring the diameter of some of the typical over-dense
regions, we can make some simple first estimates of the charac-
teristic clump sizes. In all of the simulations, we find that the
typical lateral length scale of the over-densities is about ∼0.02 Rc
at a radius of r = 1 Rc, ∼0.06 Rc at a radius of r = 2 Rc, and
roughly constant at ∼0.1 Rc at radii outward of r = 3 Rc.

4.6.2. Velocity dispersion

The probability density maps discussed above directly suggest
large velocity dispersion. We distinguish here between a radial
component:

vr,disp =

√
⟨v2r ⟩ − ⟨vr⟩

2 (19)

and a lateral component. Since there is no net displacement in
the lateral direction, the average lateral component of the veloc-
ity vector should be zero. However, this does not mean that the
average magnitude of the velocity vector projected on the lateral
plane is zero. As such, to statistically quantify lateral motions,
we here inspect directly the root mean square (RMS) of the
projected velocity vector:

vt,RMS =

√
⟨v2t ⟩, (20)

where v2t = v
2
x + v

2
y. Figures 19 and 20 show the time and laterally

averaged radial velocity dispersion, and the lateral RMS velocity
of the tangential velocity, as a function of radius. Models Γ2−Γ4
have a peak in their radial velocity dispersion at around 2 Rc,
after which the value steadily declines in the outer wind. The
Γ1 model, on the other hand, peaks significantly further out, at
around 3.5 Rc. This aligns well with the interpretation that, for
the more luminous models, the static Rosseland mean opacity
only barely suffices to drive the stellar gas that is launched close

Fig. 19. Radial velocity dispersion as a function of radius for each of
the four 3D models in our grid.

Fig. 20. Tangential RMS velocity for each of the four 3D models in our
grid.

to Rc outward, resulting in coexisting regions of up- and down-
flowing material close to the stellar core. However, when line
driving takes over further out in the wind, material can escape
much more easily. For the less luminous model Γ1, on the other
hand, the wind is only initiated at ∼1.5 Rc (see discussion above),
which means that the vigorous turbulence initiated around the
iron opacity peak actually starts to decrease somewhat before the
line-driven wind is ignited. As seen from both the probability-
density map of the radial velocity (upper left panel in Fig. 11) and
the radial velocity dispersion as a function of radius (Fig. 19),
this then gives a distinctly different behavior, characterized by
large dispersion close to the core radius, followed by first a region
of declining values and then a second rise when the line-driven
wind is launched.

Typical upper values for both radial and tangential quanti-
ties in all four models are found to be ∼300 km s−1. For the
higher luminosity models with WR-like mass loss, this means
that when the background radial velocity field is subtracted, the
turbulent motions are close to isotropic. However, as discussed
in Sect. 5.1, at least for the outer wind (which experiences sig-
nificant line driving), this velocity-dispersion isotropy needs to
be further investigated and anisotropic line opacities need to be
accounted for.
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5. Discussion

The successful 3D RHD simulations presented in this paper
overall provide precious information about the structure and
characteristics of WR stellar atmospheres and wind outflows. In
addition, they suggest a natural transition between the dense,
optically thick outflows from high-luminosity WR stars and
more standard optically thin line-driven wind outflows from hot
(sub)dwarfs. Nonetheless, there are a number of simplifications
we have made in order to make our 3D computations possible, in
particular regarding the calculation of the radiative acceleration.

5.1. Model limitations

First, our tabulations of the line-force parameters are based on
calculations assuming the radiation and gas temperatures are
equal. Although this approximation has been shown to pro-
vide good estimates of the line force also in the O-star domain
(Poniatowski et al. 2022), it is simultaneously well known that,
at least when performing spectral synthesis, the outer regions of
WR outflows are affected by NLTE effects. As such, it would
be useful to extend our current tabulations toward (approximate)
NLTE conditions (following, e.g., Puls et al. 2000), in order to
examine how this might affect the tabulations of the line-opacity
parameters.

Secondly, in this paper we have assumed an isotropic κline

set by the radial velocity gradient; since the examined WR flows
are strongly dominated by the radial velocity component in the
regions with significant κline, this is probably a quite reasonable
first approximation. However, a more realistic treatment would
instead use an anisotropic κline computed from a proper average
of the velocity gradients along different directions. Such con-
siderations of nonradial velocity gradients might then affect, for
example, the tangential velocity dispersion in the outer wind (see
Sect. 4.6.2). Moreover, the radial line acceleration might also be
affected by nonradial velocity gradients, due to the solid angle
integration that is formally required in the computation of this
component as well (e.g., Pauldrach et al. 1986).

Thirdly, our computation for κline is essentially carried out
using the Sobolev approximation. This neglects the strong line-
deshadowing instability (LDI) inherent to line-driven flows
(Owocki 1998). Although this LDI causes strong levels of wind
clumping in OB-star winds (e.g., Driessen et al. 2019), lin-
ear analysis suggests that it may be damped within dense WR
outflows (Gayley & Owocki 1995). Indeed, empirical analysis
suggests lower levels of clumping in WR outflows (Hillier 1991a)
than in O-stars (Hawcroft et al. 2021). Nonetheless, as shown
in Fig. 18, the clumping factors found in these first 3D simula-
tions, fcl ∼ 2, are certainly on the lower end of what seems to be
suggested by analysis of electron scattering wings in combina-
tion with optical recombination lines (see overview in Crowther
2007). This suggests that the strong radial compression typically
induced by the LDI may still play a role in setting the absolute
scale of clumping also in WR outflows, at least in the outer wind
parts with modest continuum optical depths.

Next, our setup is that of a Cartesian box-in-wind simulation,
where we correct for the 1/r2 decline of the fluxes of the con-
served quantities in PDEs (1)–(3) and (6) (see also Appendix A
in Moens et al. 2022). However, so far it is unclear how wind
structures would deform and grow or diffuse when advected out-
ward in a lateral direction due to the divergence of the radial
directions at different points on a lateral plane. Taking this
effect into account would require moving away from our cur-
rent “pseudo-planar” approach, using either one of two methods.

Fig. 21. Radial stratification in the lateral midplane (y = z = 0) of the
radiative energy density (top panel) and the flux components (bottom
panel) as obtained for a representative snapshot of the 3D Γ3 simula-
tions. The radiation quantities are calculated from the FLD method (red
lines) or from a detailed 3D radiative transfer solution technique using
short characteristics (blue lines).

A first possibility is to perform global simulations in a “wind-
in-box” (instead of box-in-wind) setup. The drawback with this
method is that the resolution, by necessity, would be lower, and
thus it is unclear how well structures would be resolved (espe-
cially in the deep, critical layers around the mean sonic point).
Alternatively, one could perform local box-in-wind simulations
as presented here, but in full spherical coordinates. This would
not require significantly higher resolution, but is so far not pos-
sible within our numerical setup due to the spherical divergence
operator that would be present in Eq. (6).

5.2. Comparison between hybrid-opacity flux-limited diffusion
and short characteristics

Finally, our flux calculations rely on analytic closure relations
between radiation energy density, pressure, and flux. To estimate
the error introduced by these analytic relations used in our FLD
approach, we have recalculated the radiation quantities with a
full 3D short characteristics (SC) solution method for a represen-
tative simulation snapshot (corresponding to Fig. 10). Within the
SC method, we are solving the (gray) equation of radiative trans-
fer for the specific intensity directly, and then perform the angu-
lar integrals to obtain the radiation energy density and radiation
flux components. To this end, we have extended the SC radiative
transfer solution scheme from Hennicker et al. (2020) to include
periodic boundary conditions in a slab geometry. Since this solu-
tion framework requires a global simulation setup (in contrast to
the local FLD approach), we remap all required quantities on a
global spatial grid with Nr = 301 grid points using a logarithmic
spacing to recover a high resolution near the stellar core, and
an equidistant grid spacing with Ny = Nz = 101 in the lateral
components. The angular integrals are then performed by using
NΩ = 32 directions distributed symmetrically over all octants.
Figure 21 shows the resulting radial stratification of the radia-
tive energy density and flux components for the 3D Γ3 model,
compared to the corresponding solution from the FLD method.

Particularly for the energy density, the differences between
the two frameworks are only marginal. In the outer wind, we do
find some deviations, which, however, are most likely related to
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the SC method. Namely, within the slab-geometry SC scheme,
the finite size of the stellar atmosphere is intrinsically neglected
by using periodic boundary conditions. Moreover, since at
present it is somewhat unclear how to best include line opacity
in the SC scheme, these calculations have been carried out for
a total κ = κOPAL. However, while κOPAL dominates the contribu-
tion in the inner atmospheric parts, in the outer parts, line opacity
can also play a role in the scale of radiation energy density
(see previous discussions). The flux components show some-
what larger quantitative differences between the FLD and SC
solution schemes, with a smoother stratification found from the
SC method. The qualitative behavior, however, is very similar.
In particular, considering the overall scale, for each of the flux
components there is a good agreement between the two meth-
ods, with a much higher radial flux when compared to the lateral
components, as also found from the FLD solution. Overall, the
qualitative behavior of all radiation quantities is similar, lending
support to the analytic closure relations used in this paper.

6. Summary and future work

In this paper, we describe the first successful 2D and 3D numer-
ical models of the radiation-driven atmospheres and outflows
from WR stars. Our simulations have been calculated using a
box-in-wind approach, in which the equations of hydrodynamics
are solved together with the frequency-integrated first moment
of the radiative transfer equation using an analytic flux-limiting
closure relation, relating the time-dependent radiative energy
densities and fluxes. In this way, we are able to account for the
time-dependent radiation force, as well as heating and cooling
source terms. Opacities are described using our hybrid approach
that combines Rosseland mean opacities in the static limit with
a description of velocity-stretched line-driving opacities, com-
puted from an atomic database consisting of some four million
spectral lines (Pauldrach et al. 1998, 2001).

In our multidimensional models, we find that gas close to the
stellar core is accelerated by a radiation force that is mainly inter-
acting via the Rosseland mean opacity. However, not all gas is
immediately driven outward. Due to a combination of the strong
radiation force and instabilities associated with subsurface opac-
ity peaks, gas clumps together creating turbulent motions and the
coexistence of highly supersonic up- and down-flowing gas. We
note that this structure formation is not a result of the LDI, such
as is present in OB-stars (Driessen et al. 2019), but most likely
arises due to convective instabilities associated with subsurface
opacity peaks in high-luminosity stars near the Eddington limit
(Jiang et al. 2018, see also Castor 2004, their Ch. 7.3). The gas
that reaches far enough away from the (quasi)hydrostatic core
is then further accelerated by line driving. However, clumps
that are further out in the wind are too dense to experience
efficient line driving, and continue to advect outward via ram
pressure from the faster, line-driven low-density gas. It is really
this interplay between radiation driving on low-density gas and
ram pressure from low-density gas acting on high-density gas
that finally allows the material to escape the stellar potential.

After identifying this fundamental mechanism, we studied
the influence of the core luminosity. For this, a first grid of 3D
models was calculated, where the bottom boundary input lumi-
nosity was varied. We found a transition from the strong optically
thick wind as observed in classical WR stars to an optically thin
line-driven wind of a hot, compact subdwarf star. This transition
shows itself in the mass-loss rates, terminal velocities, location
of the mean photospheric radius, and the sonic point location
(see also the corresponding predictions from the 1D, stationary

models by Grassitelli et al. 2018; Sander & Vink 2020). For each
of the four 3D models, we characterized mean velocity and den-
sity profiles. Just by lowering the bottom luminosity, the wind
launching in the hot subdwarf is delayed until ≈1.5 Rc. Below
this launching radius, the atmosphere is very structured and tur-
bulent, but without a significant net radial velocity. Hereafter, a
line-driven wind launches with a density that is an order of mag-
nitude lower than the WR models, resulting in an optically thin
wind with a significantly lower average mass-loss rate. In our
simulations, the transition point between the different types of
winds happens at a threshold around L∗/LEdd ≲ 0.4 (see Table 2).
Stars with an Eddington ratio lower than this threshold would
thus appear as hot subdwarfs featuring an optically thin wind,
while stars above it would appear as WR stars featuring a thick
wind. We note, however, that this limit will also depend on
stellar metallicity (which influences the opacities) and rotation
(which may reduce the effective gravity); effects from this will
be investigated in a planned follow-up work.

Additionally, the 3D models were used to compute clump-
ing factors and velocity dispersions, which are on the order of
fcl ≈ 2 and vr,disp ≈ vt,RMS ≈ 100–300 km s−1 for all four mod-
els. Concerning the clumping factors, this is significantly lower
than what is found in our corresponding 2D models, which fea-
ture sharper gas density structures, suggesting that it is indeed
important to model these types of outflows in 3D rather than
in 2D. As discussed in Sect. 5.1, the fcl ≈ 2 found here lies at
the lower end of what is typically inferred from observations of
electron scattering wings, suggesting that the strong radial com-
pression associated with the LDI may ultimately play a role in
setting the absolute scale of wind clumping also in WR stars (in
combination with the subsurface, convection-driven instabilities
and structures investigated here). Average mass-loss rates cal-
culated from our WR-like models further agree reasonably well
with trends observed in empirical studies of WR stars (Nugis &
Lamers 2000; Hamann et al. 2019), while the predicted mass-loss
rate of the hot subdwarf model is about an order of magnitude
lower.

A natural follow-up on the work presented here is the anal-
ysis of synthetic light curves and spectra computed from our
3D models. WR stars have been observed to be prone to small
substructures in spectral lines, so-called line-profile variations
(LPV’s), due to high-density clumps moving through the wind
(Lepine et al. 1996; Lépine et al. 1999). Our models allow us
to compute synthetic spectral lines from consecutive snapshots
and, in that way, study how our predicted structures compare to
observed LPVs in WR stars. In the same spirit, the variation of
the optical photosphere may also result in stochastic variations of
photometric light curves, as indeed observed for WR stars (e.g.,
Lenoir-Craig et al. 2022). Moreover, Chené et al. (2020) sug-
gested that the specific behavior of LPV and clumping observed
for different WR stars indeed might indicate that their wind
structure predominately arises because of convective instabili-
ties, rather than the LDI (see also suggestions in Grassitelli et al.
2016).

In future work, two of the simplifications mentioned in
Sect. 5 can be addressed within our setup. The first one
is the assumption of an isotropic line opacity. This can be
circumvented by reformulating the FLD closure with a non-
isotropic diffusion coefficient, allowing us to more accurately
simulate lateral radiation forces. The second is the box-in-wind
setup, which may be improved upon by restructuring our simula-
tions in a global, Cartesian star-in-box model. This might allow
us to more accurately follow the wind structures further away
from the star, although at the cost of a larger simulation space
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with an overall lower resolution. In addition, this would allow
us to study the influence of rapid stellar rotation on the wind
structure.

Furthermore, the methods used in this work are general in
such a way that they can be expanded toward other regions of the
Hertzsprung–Russel diagram. So far we have covered outflows
from classical WR stars and a single model of a hot subdwarf,
but similar methods could be used to study, for instance, the
interaction between a turbulent atmosphere and the overlying
line-driven wind in OB-stars. Additionally, methods described
in this work could prove valuable in the modeling of wind-
envelope interactions in S-Dor type variables (Grassitelli et al.
2021), and the influence from line driving on these stars’ turbu-
lent envelopes and outflows (Jiang et al. 2018). In these studies,
first efforts have been made in understanding the variability of
these stars as a consequence of iron and helium bump opacities,
but previous models have failed to reproduce expected mass-loss
rates. In view of our results here, it seems likely that this might
be due to the negligence of line driving. In general, the combi-
nation of FLD-RHD with our hybrid opacity prescription indeed
has potential for a quite broad array of topics.
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Paczyński, B. 1967, AcA, 17, 355
Pauldrach, A., Puls, J., & Kudritzki, R. P. 1986, A&A, 164, 86
Pauldrach, A. W. A., Lennon, M., Hoffmann, T. L., et al. 1998, Boulder-Munich

II: Properties of Hot, Luminous Stars, ed. I. Howarth, ASP Conference Series,
131 (San Francisco), 258

Pauldrach, A. W. A., Hoffmann, T. L., Lennon, M., et al. 2001, A&A, 375,
161

Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10
Poniatowski, L. G., Sundqvist, J. O., Kee, N. D., et al. 2021, A&A, 647, A151
Poniatowski, L. G., Kee, N., Sundqvist, J. O., et al. 2022, A&A, submitted,

[arXiv:2204.09981]
Puls, J. 2008, IAUS, 250, 25
Puls, J., Springmann, U., & Lennon, M. 2000, A&AS, 141, 23
Puls, J., Najarro, F., Sundqvist, J. O., & Sen, K. 2020, A&A, 642, A172
Ramachandran, V., Hamann, W. R., Hainich, R., et al. 2018, A&A, 615, A40
Ro, S., & Matzner, C. D. 2016, ApJ, 821, 109
Sander, A. A., & Vink, J. S. 2020, MNRAS, 499, 873
Sander, A. A., Fürst, F., Kretschmar, P., et al. 2018, A&A, 610, A60
Sander, A. A. C., Vink, J. S., & Hamann, W. R. 2019, MNRAS, 491, 4406
Sanyal, D., Grassitelli, L., Langer, N., & Bestenlehner, J. M. 2015, A&A, 580,

A20
Shenar, T., Gilkis, A., Vink, J. S., Sana, H., & Sander, A. A. 2020, A&A, 634,

A79
Smith, N. 2014, ARA&A, 52, 487
Smith, N. 2017, Philos. Trans. A, Math. Phys. Eng. Sci., 375
Stein, R. F., & Nordlund, Å. 1998, ApJ, 499, 914
Sundqvist, J. O., & Puls, J. 2018, A&A, 619, A59
Sundqvist, J. O., Owocki, S. P., & Puls, J. 2018, A&A, 611, A17
Teunissen, J., & Keppens, R. 2019, Comput. Phys. Commun., 245, 106866
Turner, N. J., & Stone, J. M. 2001, ApJS, 135, 95
Wolf, C. J. E., & Rayet, G. 1867, CRAS, 65, 292
Xia, C., Teunissen, J., Mellah, I. E., Chane, E., & Keppens, R. 2018, ApJS, 234,

30

A42, page 19 of 21

http://linker.aanda.org/10.1051/0004-6361/202243451/1
http://linker.aanda.org/10.1051/0004-6361/202243451/1
http://linker.aanda.org/10.1051/0004-6361/202243451/2
http://linker.aanda.org/10.1051/0004-6361/202243451/3
http://linker.aanda.org/10.1051/0004-6361/202243451/4
http://linker.aanda.org/10.1051/0004-6361/202243451/5
http://linker.aanda.org/10.1051/0004-6361/202243451/5
http://linker.aanda.org/10.1051/0004-6361/202243451/6
http://linker.aanda.org/10.1051/0004-6361/202243451/6
http://linker.aanda.org/10.1051/0004-6361/202243451/7
http://linker.aanda.org/10.1051/0004-6361/202243451/8
http://linker.aanda.org/10.1051/0004-6361/202243451/9
http://linker.aanda.org/10.1051/0004-6361/202243451/10
http://linker.aanda.org/10.1051/0004-6361/202243451/11
http://linker.aanda.org/10.1051/0004-6361/202243451/11
http://linker.aanda.org/10.1051/0004-6361/202243451/12
http://linker.aanda.org/10.1051/0004-6361/202243451/13
http://linker.aanda.org/10.1051/0004-6361/202243451/14
http://linker.aanda.org/10.1051/0004-6361/202243451/15
http://linker.aanda.org/10.1051/0004-6361/202243451/16
http://linker.aanda.org/10.1051/0004-6361/202243451/17
http://linker.aanda.org/10.1051/0004-6361/202243451/18
http://linker.aanda.org/10.1051/0004-6361/202243451/19
http://linker.aanda.org/10.1051/0004-6361/202243451/20
http://linker.aanda.org/10.1051/0004-6361/202243451/21
http://linker.aanda.org/10.1051/0004-6361/202243451/22
http://linker.aanda.org/10.1051/0004-6361/202243451/23
http://linker.aanda.org/10.1051/0004-6361/202243451/24
http://linker.aanda.org/10.1051/0004-6361/202243451/25
http://linker.aanda.org/10.1051/0004-6361/202243451/26
http://linker.aanda.org/10.1051/0004-6361/202243451/27
http://linker.aanda.org/10.1051/0004-6361/202243451/28
http://linker.aanda.org/10.1051/0004-6361/202243451/29
http://linker.aanda.org/10.1051/0004-6361/202243451/30
http://linker.aanda.org/10.1051/0004-6361/202243451/31
http://linker.aanda.org/10.1051/0004-6361/202243451/32
http://linker.aanda.org/10.1051/0004-6361/202243451/33
http://linker.aanda.org/10.1051/0004-6361/202243451/34
http://linker.aanda.org/10.1051/0004-6361/202243451/35
http://linker.aanda.org/10.1051/0004-6361/202243451/36
http://linker.aanda.org/10.1051/0004-6361/202243451/37
http://linker.aanda.org/10.1051/0004-6361/202243451/38
http://linker.aanda.org/10.1051/0004-6361/202243451/38
http://linker.aanda.org/10.1051/0004-6361/202243451/39
http://linker.aanda.org/10.1051/0004-6361/202243451/40
http://linker.aanda.org/10.1051/0004-6361/202243451/40
http://linker.aanda.org/10.1051/0004-6361/202243451/41
http://linker.aanda.org/10.1051/0004-6361/202243451/42
http://linker.aanda.org/10.1051/0004-6361/202243451/43
http://linker.aanda.org/10.1051/0004-6361/202243451/44
http://linker.aanda.org/10.1051/0004-6361/202243451/45
http://linker.aanda.org/10.1051/0004-6361/202243451/46
http://linker.aanda.org/10.1051/0004-6361/202243451/47
http://linker.aanda.org/10.1051/0004-6361/202243451/48
http://linker.aanda.org/10.1051/0004-6361/202243451/49
http://linker.aanda.org/10.1051/0004-6361/202243451/50
http://linker.aanda.org/10.1051/0004-6361/202243451/51
http://linker.aanda.org/10.1051/0004-6361/202243451/52
http://linker.aanda.org/10.1051/0004-6361/202243451/53
http://linker.aanda.org/10.1051/0004-6361/202243451/54
http://linker.aanda.org/10.1051/0004-6361/202243451/55
http://linker.aanda.org/10.1051/0004-6361/202243451/56
http://linker.aanda.org/10.1051/0004-6361/202243451/58
http://linker.aanda.org/10.1051/0004-6361/202243451/58
http://linker.aanda.org/10.1051/0004-6361/202243451/59
http://linker.aanda.org/10.1051/0004-6361/202243451/60
https://arxiv.org/abs/2204.09981
http://linker.aanda.org/10.1051/0004-6361/202243451/62
http://linker.aanda.org/10.1051/0004-6361/202243451/63
http://linker.aanda.org/10.1051/0004-6361/202243451/64
http://linker.aanda.org/10.1051/0004-6361/202243451/65
http://linker.aanda.org/10.1051/0004-6361/202243451/66
http://linker.aanda.org/10.1051/0004-6361/202243451/67
http://linker.aanda.org/10.1051/0004-6361/202243451/68
http://linker.aanda.org/10.1051/0004-6361/202243451/69
http://linker.aanda.org/10.1051/0004-6361/202243451/70
http://linker.aanda.org/10.1051/0004-6361/202243451/70
http://linker.aanda.org/10.1051/0004-6361/202243451/71
http://linker.aanda.org/10.1051/0004-6361/202243451/71
http://linker.aanda.org/10.1051/0004-6361/202243451/72
http://linker.aanda.org/10.1051/0004-6361/202243451/73
http://linker.aanda.org/10.1051/0004-6361/202243451/74
http://linker.aanda.org/10.1051/0004-6361/202243451/75
http://linker.aanda.org/10.1051/0004-6361/202243451/76
http://linker.aanda.org/10.1051/0004-6361/202243451/77
http://linker.aanda.org/10.1051/0004-6361/202243451/78
http://linker.aanda.org/10.1051/0004-6361/202243451/79
http://linker.aanda.org/10.1051/0004-6361/202243451/80
http://linker.aanda.org/10.1051/0004-6361/202243451/80


A&A 665, A42 (2022)

Appendix A: Convective instability with radiation
pressure

Following Castor (2004) (their Ch. 7), we here examine further
the instability that arises in our simulations. Namely, the atmo-
spheres of luminous stars are prone to instabilities when the
Eddington factor approaches unity (Γ ≈ 1). Castor (2004) per-
formed a linear stability analysis on the momentum equation (2),
stating that the atmosphere becomes absolutely unstable where
the radiation-modified Brunt-Väisälä frequency ω2

BV becomes
imaginary:

ω2
BV =

(γ − 1)a2

γ2H2

[
1 − (n + q)

Γabs

1 − Γ

]
. (A.1)

Here, it is implied that the total radiation force is provided
by either electron scattering, with a constant opacity Γe, or an
additional absorption term Γabs. H is the effective scale height
and a is the speed of sound. The additional opacity is described
by a Kramers-like law:

Γe =
ρ

fg,r

Fr

c
κ0, (A.2)

Γabs =
ρ

fg,r

Fr

c
κ1ρ

nT−q, (A.3)

Γ = Γe + Γabs. (A.4)

Here, κ0 is the Thompson opacity, which is assumed to be con-
stant with a value of ≈ 0.2 g−1 cm2 for the hydrogen-free, fully
ionized gas in a WR-atmosphere. κ1, n, and q are the parame-
ters describing the Kramer’s law for absorption opacity. In their
analysis, Castor (2004) did not take into account any form of line
driving. Conveniently, in our models, the radiation force close to
the stellar core (where structures are first generated) is domi-
nated by the Rosseland mean opacity and not by the line driving
(Fig. 2).

By fitting the OPAL tables’ opacity to Eq. (A.4), n and q
can be retrieved at every cell in one of the snapshots of the 2D
model. Ignoring κline, the Brunt-Väisälä frequency can be calcu-
lated using Eq. (A.1). ωBV is indeed imaginary when ω2

BV < 0
which occurs when 1/(n + q) < Γe. In Fig. A.1, the instabil-
ity growth time, given by the inverse of the imaginary part of
ωBV, is plotted for several snapshots, each a dynamical timescale
apart. Here, we only focus on the lower parts of the simulation,
from r = 1Rc to r = 1.5Rc (this is the region where the analy-
sis is mostly valid because κline << κOPAL), which is where the
structures develop in our simulations, as can be seen in Fig. (3).

As can be seen from Fig. A.1, most of the lower atmosphere
is convectively unstable due to the effects of radiation pressure.
Moreover, for certain regions, the growth time of the instabil-
ity is indeed small enough to trigger structure formation on the
timescales simulated in our models. This instability is likely
what drives the formation of structure close to the WR-core in
the models presented in this paper.
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Fig. A.1. Convectively unstable zones in a series of snapshots from the 2D Γ3 model. The snapshots are taken 0.5τdyn apart, well after the transition
of the initial conditions. The color map represents the inverse of the imaginary part of the radiation-modified Brunt-Väisälä frequency. Overplotted
on top in black is the contour representing where the relative density is equal to one.
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