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Abstract. Accurate high-resolution measurements are es-
sential to improve our understanding of environmental pro-
cesses. Several chemical sensors relying on membrane sepa-
ration extraction techniques have slow response times due to
a dependence on equilibrium partitioning across the mem-
brane separating the measured medium (i.e., a measur-
ing chamber) and the medium of interest (i.e., a solvent).
We present a new technique for deconvolving slow-sensor-
response signals using statistical inverse theory; applying a
weighted linear least-squares estimator with the growth law
as a measurement model. The solution is regularized using
model sparsity, assuming changes in the measured quantity
occur with a certain time step, which can be selected based
on domain-specific knowledge or L-curve analysis. The ad-
vantage of this method is that it (1) models error propagation,
providing an explicit uncertainty estimate of the response-
time-corrected signal; (2) enables evaluation of the solution
self consistency; and (3) only requires instrument accuracy,
response time, and data as input parameters. Functionality
of the technique is demonstrated using simulated, laboratory,
and field measurements. In the field experiment, the coeffi-
cient of determination (R2) of a slow-response methane sen-
sor in comparison with an alternative fast-response sensor
significantly improved from 0.18 to 0.91 after signal decon-
volution. This shows how the proposed method can open up a
considerably wider set of applications for sensors and meth-
ods suffering from slow response times due to a reliance on
the efficacy of diffusion processes.

1 Introduction

High-resolution in situ data are crucial to observe high vari-
ability in environmental processes when surrounding envi-
ronmental parameters are continuously changing. Many con-
temporary measurement techniques have a limited response
time due to signal convolution inherited from a diffusion
process, such as in Vaisala radiosondes (Miloshevich et al.,
2004) or in continuous-flow analysis of ice cores (Faïn et al.,
2014). In oceanic sciences, measurement of dissolved ana-
lytes often requires an extraction technique based on mem-
brane separation, where the property of interest (a solute)
equilibrates across a membrane separating the medium of in-
terest (a solvent) from the medium where the actual measure-
ment takes place (a measurement chamber). This makes the
sensor response time (RT) directly governed by how fast the
analyte of interest can diffuse through the membrane. This
process is mainly driven by the difference in partial pres-
sure between the two media and can be relatively slow. This
results in high sensor RTs, leading to unwanted spatial and
temporal ambiguities in recorded signals for sensors used in
profiling (Miloshevich et al., 2004), used on moving plat-
forms (Bittig et al., 2014; Canning et al., 2021), or deployed
in dynamic environments (Atamanchuk et al., 2015). Herein,
we refer to sensors with this particular design as equilibrium-
based (EB) sensors and we seek to establish a robust, simple,
and predictable method for correcting high RT-induced errors
in data from these sensors.
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Considering an EB sensor during operation, we define
ua(t) as the instantaneous ambient partial pressure of inter-
est and um(t) as the partial pressure within the measuring
chamber of an EB sensor, where the measurement occurs.
In this situation, a model of um(t) as a function of time can
be obtained via the growth-law equation (Miloshevich et al.,
2004), which describes diffusion of the property of ua(t)

through the separating barrier (in this case the membrane):

∂tum = k(ua− um), (1)

where k is a sensor-specific growth coefficient, which deter-
mines how fast a change in ua(t) will be reflected in um(t).
The RTs of EB sensors are often given in τ63 = 1/k, which
corresponds to the time the sensor requires to achieve 63 %
(1 e-folding) of an instantaneous step change in ambient con-
centration. If k in Eq. (1) is sufficiently small (i.e., τ63 is
large), the diffusion will be slow, and any fast fluctuations
in ua(t) will be smeared out in time.

A numerical technique has already been proposed to re-
cover fast fluctuations in ua(t) from measurements of um(t)

using a closed-form piece-wise solution to Eq. (1) (Miloshe-
vich et al., 2004). However, due to the ill-posed nature (see
e.g., Tikhonov and Arsenin, 1977) of the forward model, er-
rors in the measurements will be amplified when reconstruct-
ing ua(t). Miloshevich et al. (2004) counteract this using an
iterative algorithm that minimizes third derivatives to obtain
locally smooth (noise-free) time series prior to the recon-
struction of ua(t). While this and similar methods seem to
usually work well in practice (Bittig et al., 2014; Canning
et al., 2021; Fiedler et al., 2013; Miloshevich et al., 2004), it
is difficult to determine the uncertainty of the estimate, as the
iterative scheme does not model error behavior. Predicting
the expected solution of the iterative estimator is also diffi-
cult, and there is no straightforward way of choosing suitable
smoothing parameters. These are important attributes for the
reliability of solutions to these types of problems, due to the
error amplification that occurs during deconvolution.

Herein, we establish an alternative method for estimating
ua(t) from a measurement of um(t). This solution is based
on the framework of statistical inverse problems and lin-
ear regression. Using a weighted linear least-squares esti-
mator, the growth-law equation as measurement model, and
a sparsity regularized solution, we are able to take into ac-
count uncertainties in the measurements, provide an intuitive
and/or automated way of specifying an a priori assumption
for the expected solution, and determine the uncertainty of
the estimate. This approach also enables us to evaluate the
self-consistency of the solution and detect potential model
and/or measurement issues. A time-dependent k can also be
employed, which suits membranes with varying permeabil-
ity (e.g., where k is a function of temperature). We show
that automated L-curve analysis produces well-regularized
solutions, thereby reducing the number of input parameters
to sensor response time, measurement uncertainty, and the
measurements themselves. The robustness and functionality

of our technique were validated using simulated data, lab-
oratory experiment data, and comparison of simultaneous
field data from a prototype fast-response diffusion-rate-based
(DRB) sensor (Grilli et al., 2018) and a conventional slow-
response EB sensor in a challenging Arctic environment.

2 Method

We assume that the relationship between observed quan-
tity ua(t) and measured quantity um(t) is governed by the
growth-law equation as given in Eq. (1). Estimating ua(t)

from um(t) is an inverse problem (Kaipio and Somersalo,
2006; Aster et al., 2019), and a small uncertainty in um(t)

will result in a much larger uncertainty in the estimate of
ua(t), making it impossible to obtain accurate estimates of
ua(t) without prior assumptions.

To formulate the measurement equation (Eq. 1) as an in-
verse problem that can be solved numerically, we need to
discretize the theory, model the uncertainty of the measure-
ments, and establish a means for regularizing the solution by
assuming some level of smoothness (prior assumptions). We
will denote estimates of ua(t) and um(t) as ûa(t) and ûm(t).
Measurements of um(t) will be noted as m(t). Each element
of the following steps is illustrated in Fig. 1.

We discretize Eq. (1), using a time-symmetric numerical
derivative operator (e.g., Chung, 2010):

1
21t

ui+1−
1

21t
ui−1+ kiui − kiai = 0. (2)

We have used the following short-hand to simplify notation:
um(ti)= ui and ua(ti)= ai . Here ti is an evenly sampled grid
of times and 1ti = ti+1− ti is the sample spacing. We refer
to ti as model time, and for simplicity we assume that this is
on a regular grid 1ti =1t with a constant time step. Note
that the growth coefficient ki = k(ti) can vary as a function
of time.

We assume that sensor measurements mj of the quantity
um(t) obtained at times t ′j (see Fig. 1) have additive indepen-
dently distributed zero-mean Gaussian random noise:

mj = um(t
′

j )+ ξj , (3)

where ξj ∼N (0,σ 2
j ) with σ 2

j the variance of each measure-
ment, which in practical applications can be estimated di-
rectly from the data or by using a known sensor accuracy.
The t ′j is the measurement time, which refers to the points in
time where measurements are obtained. Coupling between
um(ti) and measurementsmj is obtained through gridded re-
sampling. Note that the measurement time steps t ′j do not
need to be regularly spaced, nor coincide with the model
times ti .

To reliably estimate ua(t), we need to regularize the so-
lution by assuming some kind of smoothness for this func-
tion. A common a priori assumption in this situation is to as-
sume small second derivatives of ua(t), corresponding to the
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Figure 1. (a) Schematic representation of Eqs. (3)–(10) showing the relationship between the measurements (mj , red dots), modeled mea-
surements (red line), and de-convolution process for a step change in ambient property (ua orange line) lasting 2 e-foldings (τ63) of the
growth-law equation. Thickness of lines in zoomed inlet indicates weighting during re-sampling onto tj grid. (b) Schematic representation
of EB sensor (grey box) during operation and physical location of the different properties in Eqs. (1)–(10). Note that in this schematic
we follow the assumptions of linearity in um(t

′
j
) between the model points um(ti) (and not the “true” concentration within the measuring

chamber).

second-order Tikhonov regularization scheme (Tikhonov and
Arsenin, 1977). Although this provides acceptable solutions,
the choice of the regularization parameter (i.e., adjusting the
amount of regularization applied) is not particularly intuitive.
Since our method is intended for a variety of domains where
validation can be challenging, we have chosen to employ a
different regularization method, where the regularization pa-
rameter relates directly to simple real-world characteristics
and the ability of the instrument to resolve the ambient envi-
ronment.

Model sparsity regularization (see e.g., Hastie et al., 2015)
provides an intuitive model regularization by assuming that
the observed quantity can be thoroughly explained by a re-
duced number of samples in some domain. In our case, we
have used time domain sparsity, which translates to setting
the number of model time (ti) steps N smaller than the num-
ber of measurement time (t ′j ) steps M . The a priori assump-
tion we make to achieve this is that the observed quantity can
only change with a time step of

1t =
max(ti)−min(ti)

N − 1
= ti+1− ti (4)

and change piece-wise linearly between these points. Using
this approach, an optimal regularization parameter becomes
the lowest1t at which the observed quantity can change sig-
nificantly. This means that choosing the regularization pa-
rameter can be done based on domain-specific knowledge
or scientific requirements for temporal resolution, within the
limitations posed by the ill-posed nature of the problem and
sensor performance.

We can now express the theory, relationship between the
measurements and the theory, and the smoothness assump-

tion in matrix form as follows.

m=Gx (5)[
0
m′

]
=

[
γA γU
0 V

][
a

u

]
(6)

Here, m′
= [σ−1

1 m1,σ
−1
2 m2, . . .,σ

−1
M mM ]

T contains the
standard deviation normalized measurements and a =

[a1,a2, · · ·,aN ]
T and u= [u1,u2, · · ·,uN ]

T the discretized
concentrations ai = ua(ti) and ui = um(ti) (see Eq. 2). N
is the number of model grid points i, and M is the num-
ber of measurementsmj . A ∈ RN×N and U ∈ RN×N express
the growth-law relationship between discretized ai and ui as
given in Eq. (2). The matrix V ∈ RM×N handles the regu-
larization and the relationship between measurements and
the discretized model of um(t). The constant γ � σ−1

j is
a numerically large weighting constant (we used γ = 21t ·
105σ−1

s , where σs is the smallest σ in m′), which ensures that
when solving this linear equation, the solution of the growth-
law equation will have more weight than the measurements.
In other words, the solution satisfies the growth-law equation
nearly exactly, while the measurements are allowed to devi-
ate from the model according to measurement uncertainty.
Estimates are insensitive to the exact choice of γ as long as
it is large enough to disallow large errors in the growth-law
equation solution (which is why it is balanced by σ ).

The definitions of the matrices are as follows, where ki is
the growth coefficient:

Aij =

{
−ki when i = j

0 otherwise.
(7)
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In matrix U we also need to express the time derivative of
um(t) and consider edge effects.

Uij =

ki when i > 1 and i < N and i = j

(21t)−1 when i > 1 and i < N and j = i+ 1
−(21t)−1 when i > 1 and i < N and j = i− 1
ki − (1t)

−1 when i = 1 and j = i
(1t)−1 when i = 1 and j = i+ 1
ki + (1t)

−1 when i =N and j = i
−(1t)−1 when i =N and j = i− 1
0 otherwise

(8)

The matrix V ∈ RM×N relates concentration ui to measure-
ments of this concentration mj (see Fig. 1 and Eqs. 2 and 3).
We use a weighted linear interpolation between grid points ti
when assigning measurements to the model:

Vji =

{(
1−

∣∣t ′j − ti∣∣/1t)σ−1
j when

∣∣t ′j − ti∣∣≤1t
0 otherwise,

(9)

where 1t is the model time step and regularization param-
eter (see Eq. 4). It is now possible to obtain a maximum
a posteriori estimate of ua(t) and um(t) by solving for the
least-squares solution to matrix Eq. (5):

x̂ = (GTG)−1GTm. (10)

The vector x̂ = [â; û] contains the maximum a posteriori
estimate of vectors a and u. The matrix G is described in
Eqs. (5)–(9). The estimate â of ua(t) is the primary interest;
however, the solution also produces an estimate û of um(t).
This can be a useful side product for detecting outliers from
fit residuals or other issues with the measurements (as shown
in the field experiment).

Equation (10) allows the estimate to also be negative,
which can be unwanted if the observed quantity is known
positive. In such cases, it is possible to apply a non-negativity
constraint using a non-negative least-squares solver (Lawson
and Hanson, 1995).

As the uncertainties of measurements are already included
in the theory matrix G, the a posteriori uncertainty of the
solution is contained in the covariance matrix 6MAP, which
can be obtained as follows:

6MAP = (GTG)−1. (11)

This essentially achieves a mapping of data errors into model
errors, including the prior assumption of smoothness.

The quality of the solution relies on an appropriate choice
of regularization parameter 1t and noise/uncertainty in the
measurements, but also on the ratio between the RT of the
sensor and variance in the property of interest. We develop
this further through an application of the theory in a simula-
tion experiment.

2.1 Simulation and 1t determination

To test the numerical validity of our method and develop a
regularization parameter selection tool, we used a toy model.
This gives us the possibility to prove that the method gives
well-behaved, consistent solutions as we know the correct
results and control all input variables.

We defined the simulated concentration ua(t) (see also
Fig. 1) as a step-wise change in partial pressure:

ua(t)=

{
0 when t < 5

1 when t ≥ 5,
(12)

where units for time and partial pressure are arbitrary. While
this is not a realistic scenario encountered under field con-
ditions, step-change simulations are a conventional calibra-
tion. It is also the most challenging scenario for testing our
method, since it directly violates our smoothness assumption.

The measurement chamber partial pressure um(t)was sim-
ulated with a dense grid using a closed-form solution of
Eq. (1) from ua(t) and a growth coefficient k = 0.1 (τ63 =

10). A simulated set of measurements mj was then ob-
tained by sampling from um(t) and adding Gaussian noise
ξj ∼N (0,σ 2

j ) (see Eq. 3). We assume that measurement er-
rors are proportional to um(t) (measurement uncertainty in-
creases with increasing concentration) in addition to a con-
stant noise floor term, providing a standard deviation for each
measurement given by

σj = εum(t
′

j )+ σ0. (13)

We used ε = 0.01 and σ0 = 0.001 (0.001+ 1 % uncertainty).
As A, U, and m′ of the matrix equation (Eq. 6) are now

known, only the regularization parameter 1t in V (Eq. 9)
needs to be defined to obtain the gridded estimate of time and
RT-corrected measurements (i.e., û and â) for the simulated
model. For solutions regularized through smoothing, a well-
regularized solution captures a balance between smoothness
and model fit residuals. Or in more practical terms, the pro-
vided solutions are sharp enough so critical information is
not lost (i.e., detection of short-term signal fluctuations is
not removed by smoothing integration), but with reasonable
noise and uncertainty estimates. We have chosen a heuristic
approach to this optimization problem, by applying the L-
curve criterion (see Hansen, 2001). Statistical methods based
on Bayesian probability (Ando, 2010), such as the Bayesian
information criterion, were also tested with similar results.
We chose to apply the L-curve criterion due to its robustness
and ability to intuitively display the effect the regularization
parameter has on the solution, which we believe is an advan-
tage in practical applications of our method.

In our case, the L-curve criterion involves calculating a
norm Es, which measures how noisy the estimate is and
a norm Em, which measures how large the fit residual is
(i.e., an estimate of how well the model describes the mea-
surements). These norms are calculated for a set of differ-
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ent regularization parameters, which are compared in a log-
log plot (see Fig. 2a) where the data points align to trace
a curve that resembles the letter “L”. The under-regularized
(or too noisy) solutions are found in the upper left corner
where perturbation errors dominate. The over-regularized (or
over-smoothed) solutions are located in the lower right cor-
ner, where regularization errors dominate. Good regulariza-
tion parameters are located in the middle of the bend or kink
of the L, where smoothness and sharpness are well balanced,
limiting both noise and fit residuals.

We have used the first-order differences of the maximum
a posteriori solution â as the norm measuring solution noise:

Es =

N−1∑
i=1
|âi+1− âi |

2, (14)

and to approximate the fit residual norm, we use

Em =

M∑
j=1

∣∣ûm
(
t ′j
)
−mj

∣∣2, (15)

where mj is the measurement of the quantity um(t):

ûm(t)=

N∑
i=1

wi(t)ûi, (16)

which comes directly from the least-squares solution (Eq. 10)
of matrix Eq. (6), where

wi(t)=

{
(1− |t − ti |/1t) when |t − ti | ≤1t

0 otherwise
(17)

corresponds to Vji (see Eq. 9) but without scaling for mea-
surement error standard deviation. In essence, ûm(t

′

j ) is the
best-fit model for the measured quantity um(t) obtained us-
ing linear interpolation in time from the least-squares esti-
mates in vector û. Note that our definition of Es is not nor-
malized with the number of model points (N ), implying a
slight favoring of less complex solution (it is possible to nor-
malize with N − 1 and M in Es and Em, resulting in slightly
more complex solutions in the bend of the L).

We calculated a set of estimates using a wide range of 1t
and produced the L curve in Fig. 2a using our norm and fit
residual definitions (Eqs. 14 and 15). We plotted estimates
of ua(ti) from mj using three different values of the 1ts
shown in this L curve to inspect an over-regularized, under-
regularized, and well-regularized solution. The error esti-
mate, given as a 95 % confidence interval (2σ uncertainty), is
obtained from the diagonal terms of the upper left quadrant
of the covariance matrix (the quadrant concerning [a,a]; see
Eq. 11) using the simulated measurement uncertainties as in-
put variance (which are proportional to um(t) except an off-
set σ0, Eq. 13). The solution in Fig. 3a resulted from a low
1t = 0.25 (upper left in the L curve in Fig. 2a) and is under-
regularized and too noisy. The solution has small fit resid-
uals (Fig. 2b), since the high resolution enables the model

to represent almost instantaneous changes. Figure 3b shows
an over-regularized solution, with a high1t = 5 (lower right
in the L curve, Fig. 2a). In this scenario, the noise is mini-
mal; however, the coarse resolution of the model gives poor
fit with the signal. This can be clearly seen in Fig. 2c as a
spike in the fit residuals at the location of the step change
(t = 5) where the model is unable to represent the process
that produced our measurements due to the poor resolution.
Choosing 1t = 1.35, located in the bending point of the L
in Fig. 2a, provides a well-regularized solution with good
balance between noise and model fit residuals. Since we as-
sume that the property of interest changes linearly between
our model points, a small irregularity in the model fit residu-
als also remains at the step here (Fig. 2d) due to the model’s
inability to capture the high-frequency components of the
step function. In practice, the fit residual irregularity arises
due to the discrepancy between um(t

′

j ) and mj at the step
change (the effect is illustrated in Fig. 1). Nonetheless, with
1t = 1.35 the step change is well represented within the lim-
its of the resolution provided by the model assumption with-
out very eye-catching fit residuals, nor unreasonable noise
amplification (Fig. 2d).

Using 1t = 1.35, we can also inspect how a well-
regularized solution is affected by edges and missing mea-
surements (shown in Fig. 3d). The missing measurements re-
sulted in an increased uncertainty in the region where there
are no measurements, but the maximum a posteriori estimate
still provided a reasonable solution. Uncertainties grow near
the edges of the measurement as expected, since there are no
measurements before or after the edges which contain infor-
mation about ua(t).

Choosing the best 1t is a pragmatic task, where the L-
curve criterion is a useful guideline. The kink in the L curve
can be chosen manually through visual inspection or auto-
matically by identifying the point of maximum curvature.
We numerically approximated the maximum curvature loca-
tion using a spline parameterization of the L curve (method
described in Appendix A) to find 1t = 1.35. Estimating 1t
using the L-curve criterion gives a solution with a numer-
ically optimal compromise (according to our definitions of
Es and Em) between noise and information about variabil-
ity. Increasing or decreasing 1t slightly can be justified in
instances where scientific hypotheses require interpretation
of very rapid variability or where model fit residuals suggest
too crude model complexity for crucial parts of the time se-
ries. Nonetheless, if no regularization parameters 1t satisfy-
ing the scientific requirements are found in relative proximity
of the bend of the “L”, this could indicate that the measure-
ment device is unable to resolve the phenomenon of interest
due to low accuracy and/or a too convoluted signal.

Even though the step function is an unrealistic scenario
in a practical application, it is likely that the variability of a
measured property can change considerably within a single
time series. Since the L-curve criterion provides a 1t which
is a compromise between error amplification and model fit
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Figure 2. (a) L curve for sweep of different 1t values for estimated property (RT correction) of simulated measurements given by mj =
um(tj )+ ξj . On the y axis, Es is the noise in the data given by the step difference between adjacent data points, which is high for models
that are too complex (lower 1t/higher number of data points) in the model. The x axis is the fit error residual Em, which shows how well
the results (the uas) explain the measurements m. The latter is high for too sparse models (high 1t/low number of data points). Panels (b),
(c), and (d) show fit residuals û(t ′

j
)−mj for each point in measurement time using 1t = 0.25 (b), 1t = 5 (c), and 1t = 1.35.

residuals, this can result in a model complexity which is too
crude to resolve important high-variability sections of the
data. In this case, inspection of model fit residuals can iden-
tify sections of the dataset with too low complexity. Gener-
ally, the model fit residuals should be roughly normally dis-
tributed and should not have strong irregularities or system-
atic patterns. Too low complexity causes residual spikes, as
shown in the simulation experiment. By identifying such sec-
tions in the dataset, considerations can be made, for instance
by cautionary data interpretation. Alternatively, it is possible
to manually increase model complexity for the whole or cer-
tain parts of the time series (by splitting the time series) to
reduce the fit residuals in these regions.

3 Laboratory experiment

We evaluated our proposed technique in a controlled labora-
tory experiment using a Contros HydroC CH4 EB methane
sensor by exposing the sensor to step changes (similar to
the numerical experiment) in concentration. We connected
the instrument to an airtight water tank (12.9 L) with a small
headspace (∼ 0.25 L) via hoses where water was pumped at
6.25 L min−1 and kept at constant temperature (22 ◦C) (see
setup in Appendix B). The setup first ran for 2 h to ensure
stable temperature and flow. In this period, the sampling rate
was 60 s, while it was changed to 2 s for the rest of the ex-

periment to provide high measurement resolution for the step
changes.

Four step changes (two up and two down) were approxi-
mated by opening the lid and adding 0.2 L of either methane-
enriched or ultrapure water. The RT of the sensor was de-
termined to 23 min at 22 ◦C (k = 0.000725 s−1) prior to the
experiment following standard calibration procedure of the
sensor, and parameters affecting membrane permeation were
controlled (i.e., water flow rate over membrane surface and
water temperature). Running a calibrated sensor in a con-
trolled environment assuming random errors, we chose to use
signal noise as the basis for measurement uncertainty (rather
than as stated in the instrument data sheet). This was esti-
mated using the standard deviation of the single point finite
differences in the measurement data.

σj=1,2,3,...M =

√√√√ 1
M − 1

M−1∑
j=1

(mj+1−mj −µ)
2,

where µ=
mM−1−m1

M − 1
(18)

The first 2 h had lower noise due to the reduced sampling
rate and hence longer internal averaging period, but noise
was otherwise constant and unrelated to the measured con-
centration. We therefore used two separate σ values (mea-
surement uncertainty): one for the first 2 h and one for the
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Figure 3. Estimated property using simulated data and different regularization parameters (time intervals). The simulated measurements
mj = um(tj )+ ξj are shown with red points, and the estimated property ûa(t) is shown with a blue line with 2-σ uncertainty indicated with
a light blue line. Panel (a) shows a high-temporal-resolution estimate, which is very noisy, due to the ill-posed nature of the deconvolution
problem; (b) shows an estimate with a too low temporal resolution, which fails to capture the sharp transition at t = 5; and (c) shows a good
balance between estimation errors and time resolution. Panel (d) shows estimated property for a simulated dataset with missing measurements
between t = 15–17, which results in an increased error around the missing measurements for the estimated quantity. Error estimates are given
as 95 % confidence intervals.

latter part of the measurement period. 1t was determined to
179 s using the automatic 1t selection based on the L-curve
criterion (see Appendix A). This also gave well-confined fit
residuals, with a difference in signal noise at around 7000 s
due to the change in input noise (caused by changes in sam-
pling rate from 60 to 2 s after 2 h, Fig. 4a and b).

At the first step change, the RT-corrected concentration
rapidly increased from around 2.6 to ∼ 41 µAtm (Fig. 4c
and d). This was followed by a slower increase taking place
over around 30 min up to ∼ 47 µAtm and then a slow de-
crease for another 30 min down to∼ 45 µAtm before the next
step change. The following step increase and subsequent two
step decreases followed the same pattern, which can be ex-
plained by three processes indicated in Fig. 4d. The first rapid
increase (process 1) results from the initial turbulent mix-
ing caused by the abrupt addition of methane-enriched wa-
ter to the tank. This is followed by a slower diffusive mix-
ing phase occurring after the water has settled (process 2).
While these processes are occurring, there is also a gradual
diffusion of methane to the headspace, which is shown as de-
creasing concentrations in approximately the last half of the
plateau periods (process 3). As expected, this decrease was
faster for higher concentrations, due to the larger concen-
tration gradients across the water–headspace interface. The

step decreases behave consistently with the step increases,
although processes 2 and 3 become indiscernible since they
both act towards decreasing the concentration.

Estimated uncertainty of the RT-corrected data averaged
0.64 µAtm (95 % confidence), which is roughly double the
raw data noise of 0.29 µAtm. Due to the long concentration
plateaus, the balanced 1t lies in a quite strongly regular-
ized solution. Nonetheless, the de-convolved instrument data
give a considerably better representation of the step changes
with a relatively small uncertainty estimate and reveal known
features of the experiment setup (processes 1–3 in Fig. 4d),
which is obscured in the convolved data.

4 Field experiment

Continued evaluation of our proposed technique was applied
under more challenging conditions in a field-based study us-
ing simultaneous data from two different methane sensors
towed over an intense seabed methane seep site offshore west
Spitsbergen (Jansson et al., 2019). A slow-response EB Con-
tros HISEM CH4 and a fast-response membrane inlet laser
spectrometer (MILS) DRB sensor (Grilli et al., 2018) were
mounted on a metal frame and dragged at various heights
over the seabed (∼ 20–300 m) at 0.4–1.1 m s−1 in an area
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Figure 4. (a) L curve for sweep of different1t values for estimated RT-corrected EB sensor data. The y axis,Es, is the noise in the data given
by the step difference between adjacent data points, which is high for models that are too complex (lower 1t/higher number of data points)
in the model. The x axis is the fit error residual, ûm(t

′
j
)−mj , which shows how well the best-fit model explains the measurements. (b) Fit

residuals ûm(t
′
j
)−mj (black line) for each point in measurement time using 1t = 179 s. Panel (c) shows the result of the deconvolution

(black line), uncertainty estimate (grey shading), and raw EB sensor data (blue line). Panel (d) is a zoomed-in version of (c) with area
specified in (c).

with many hydro-acoustically mapped methane seeps. The
rapid and large variability in methane concentration, direct
comparison with the DRB sensor, and particularly high RT
of the EB sensor in cold water made this an ideal test sce-
nario for field-based applications.

4.1 Growth coefficient and measurement uncertainty

We determined the growth coefficient k (or the inverse, the
τ63) for the EB sensor prior to the field experiment (see Ap-
pendix C) to be 5.747× 10−4 s−1 (τ63 = 1740 s) at 25 ◦C.
Taking the temperature dependency for the permeability of
the polydimethylsiloxane sensor membranes into account
(Robb, 1968), we found the following relationship for k:

k(T )= k0+αkT , (19)

where k0 = 3.905× 10−4 s−1 is k at temperature T =

0 ◦C and αk = 7.38×10−6 s−1 ◦C−1 (4.200×10−4s−1
≤ k ≤

4.377×10−4 s−1 for water temperature 4 ◦C≤ T ≤ 6.4 ◦C in
the field experiment). We did not take the RT of the DRB sen-
sor into account in the comparison, since its τ63 was negligi-
ble (8.0s< τ63 < 8.3 s at 25 ◦C) compared to the EB sensor.

The measurement uncertainty (σj in Eq. 13) was set to
either the estimated raw data noise or to the stated sensor
accuracy after equilibrium is achieved, depending on which
of these parameters was higher. The EB accuracy is stated
to 3 % using the ISO 5725-1 definition of accuracy, which
involves both random and systematic errors. High concentra-
tions during the field experiment made the 3 % sensor accu-
racy our main input parameter for measurement uncertainty.
It is worth noting that this uncertainty regards the gas detec-
tion occurring within the measurement chamber and not po-
tential errors caused by other factors such as imperfections
with the membrane or pump operation.

4.2 1t determination

We produced an L curve from a set of estimates of ua(t)

with 1t values ranging from 10 to 550 s (Fig. 5a). Using
a polynomial spline to approximate the maximum curvature
point (see Appendix A), we found the optimal 1t to be 55 s,
which is in good agreement with our visual inspection of the
L curve. Upon inspection of the fit residual plot (Fig. 5b),
we observed large spikes at several time points, meaning that
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the model failed to describe the transformation between the
measurements mj and the RT-corrected estimate ua(ti). In-
spection of raw data (red line in Fig. 5b) uncovered sharp
signatures in the measured dissolved concentration at these
instances – too sharp to be a real signal (as these should have
been convolved by the instrumental function). We concluded
that there was an unidentified problem with the EB sensor
system at these instances, most likely related to power draw,
pump failure, or other instrumental artifacts. Removing these
problematic sections and re-doing the estimates provided an
L curve with an unchanged maximum curvature location.
We therefore kept using1t = 55 s in the final deconvolution,
which now gave a solution with approximately Gaussian dis-
tributed fit residuals without spikes (Fig. 5d), meaning that
we have a self-consistent and valid solution.

4.3 Sensor data comparison

The comparison between DRB, EB, and RT-corrected EB
sensor data collected during the transect offshore west Spits-
bergen is shown in Fig. 6. We used the coefficient of deter-
mination (R2) and the mean absolute error to compare the
datasets (having already validated the method numerically
and in the laboratory test).

The untreated EB sensor data clearly show how the con-
volution creates a strong hysteresis effect and makes the sen-
sor unable to directly detect rapid changes in methane con-
centration. This results in a low coefficient of determination
(R2
= 0.18), high mean absolute error (MAE= 9.77 ppm),

and flat slope angle (α = 0.47) when compared to DRB data
(Fig. 6a and b). RT-corrected EB data, on the other hand,
match the DRB data well (R2

= 0.91, MAE= 4.1 and α =
0.82, Fig. 6a and c), showing that high-resolution data were
indeed convolved in the EB data and that our method man-
aged to retrieve them successfully.

The high R2 of the RT-corrected data confirms that the EB
sensor captured most of the variability in dissolved methane;
however, there is a slight bias in the differences between the
two datasets (α = 0.82). Inspecting the absolute differences
reveals that the RT-corrected EB data have more moderate
concentrations during periods of very strong variability. This
can partly be explained by the inherent smoothing of a sparse
model (for larger 1t). In theory, increasing the model com-
plexity (reducing 1t) should return a slope closer to 1 and
reduce differences. However, our attempt at decreasing 1t
for achieving this did not improve the slope, but increased
the noise as expected. The flat slope could also at least partly
originate from the previously problematic sections (spikes in
Fig. 5) in the EB sensor data (arrows in Fig. 5b). Even though
we ignored the data at these intervals, the offset in absolute
concentration still affects our end estimate. Another explana-
tion could be an overestimation of the k of the EB sensor in
the laboratory procedure prior to the field campaign. Indeed,
when using a lower k, e.g., corresponding to τ63 = 3600 s
(keeping 1t = 55 s), which matches better with calibration

results for similar sensors, the slope goes to 1 and differences
are evenly distributed between high and low methane con-
centrations. The small slope offset could also be a combined
effect of the above-iterated reasons.

Using the framework of inverse theory allows us to model
error behavior by calculating the covariance matrix 6MAP
(see Eq. 11 and Appendix D), enabling a comparison of the
uncertainty estimates of the two sensors (shaded regions in
Fig. 6). For the DRB sensor data, we used the stated 12 %
accuracy as the uncertainty estimate (Grilli et al., 2018). For
the RT-corrected EB data, we used the 95 % confidence of the
deconvoluted estimate using input measurement uncertainty,
resulting in a median uncertainty range of 22 %. Linearly in-
terpolating the RT-corrected EB data onto DRB data time and
taking the mutual error bounds into account, the two datasets
agree within the uncertainties 92 % of the time. This is de-
spite the lower resolution of the RT-corrected data and other
potential error sources (some described above), and we con-
sider this a successful result.

The DRB data have a lower median relative (%) uncer-
tainty estimate, but to compare these relative uncertainty es-
timates directly can be slightly misleading as the relative
uncertainty estimate of the RT-corrected data varies in time
(Fig. 6d). This is due to the EB sensor convolution occur-
ring prior to the time when the actual measurement (includ-
ing measurement uncertainty) takes place (see Fig. 1b). Since
input measurement uncertainty mostly follows 3 % of mea-
sured (already convolved) value, the uncertainty estimate be-
comes a function of the EB raw data. Consequently, due to
the raw data hysteresis, the uncertainty becomes lower for
increasing concentrations compared to decreasing concentra-
tions, and vice versa. We can observe this at ∼ 00:15 and
∼ 07:15 LT, when the RT-corrected concentration increases
dramatically, but the uncertainty estimate is still relatively
small (Fig. 6a and d). On the other hand, between 04:40 and
05:30 LT, the RT-corrected concentration data are relatively
low and constant, but the uncertainty estimate is large and
shrinks slowly due to the slow decrease in um(t). Comparing
the error bounds of the datasets using the relative uncertainty
is therefore a simplification because of the raw-data-inherited
RT-corrected uncertainty estimate. Overall, this adversely af-
fects the relative uncertainty estimate of the RT-corrected
dataset, since high error bounds inherited from the raw-data
hysteresis during decreasing concentrations are divided by
RT-corrected low concentration values, which results in high
relative uncertainties. A more narrowly defined (if possible)
input uncertainty estimate for the EB sensor could help con-
strain this uncertainty.
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Figure 5. (a) L curve for sweep of different 1t values for estimated RT-corrected EB sensor data. The y axis, Es, is the noise in the data
given by the step difference between adjacent data points, which is high for models that are too complex (lower 1t/higher number of data
points) in the model. The x axis is the fit error residual, ûm(t

′
j
)−mj , which shows how well the best fit model explains the measurements.

(b) Fit residuals ûm(t
′
j
)−mj (blue line) for each point in measurement time using 1t = 55 s and raw EB sensor data (red line). Residual

spikes attributed to a malfunctioning of the EB sensor are indicated by the black arrows (and zoom in oval inlet). Panels (c) and (d) show the
results from the same analysis as (a) and (b), but on the dataset where the problematic regions defined in (b) were removed.

5 Conclusions

We presented and successfully applied a new RT-correction
algorithm for membrane-based sensors through a deconvolu-
tion of the growth-law equation using the framework of sta-
tistical inverse problems. The method requires few and well-
defined input parameters, allows the user to identify measure-
ment issues, models error propagation, and uses a regular-
ization parameter which relates directly to the resolution of
the response-time-corrected data. Functionality testing was
done using both a laboratory and a field experiment. Results
from the laboratory experiment uncovered features of the ex-
perimental setup which were obscured by convolution in the
raw data, and the field experiment demonstrated the robust-
ness of the algorithm under challenging environmental con-
ditions. In both tests, the sensors’ ability to describe rapid
variability was significantly improved, and better constraints
on input uncertainty and response time are areas which can
potentially further enhance results.

This method and validation experiments using the Con-
tros/HISEM sensors uncover a new set of applications for
these and similar sensors, such as ship-based profiling/-
towing and monitoring of highly dynamic domains. Con-
ventional EB sensors are also more abundant and afford-
able compared to more specialized equipment, increasing
the availability and possibilities for scientists requiring high-
resolution data to solve their research questions. Addition-
ally, we believe this deconvolution method could be applica-
ble to other measurement techniques as well, where diffusion
processes hamper response time.
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Figure 6. (a) Field data from the DRB (yellow), EB (red), and RT-corrected EB (blue) sensors. Panels (b) and (c) show direct comparison
between DRB and the EB sensor data. Coefficient of determination (R2), mean absolute error (MAE), and slope angle (α) are given for
comparison between the DRB sensor data and either raw (b) or RT-corrected (c) EB sensor data. Panel (d) shows the error estimate of the
RT-corrected signal, ua(ti), as 2 standard deviations.

Appendix A: Automatic 1t selection

Even though 1t sometimes can be chosen purely based on
the practical problem at hand, we also want to provide a more
rigorous way of choosing1t applicable at any circumstance.
There are several ways to approach this problem (see e.g.,
Ando, 2010), but we have used the L-curve criterion. Even
though 1t can be chosen through visual inspection of the
L curve, we also provide the option of automatic 1t selec-
tion to further simplify and provide more robustness to the
methodology. This is done by finding the point of maximum
curvature in the L curve, which corresponds to the kink of the
L. We do this by fitting a fourth degree smoothness regular-
ized cubic spline to a sweep of a given number of solutions
estimated using evenly distributed 1t values between a 1t
corresponding to one-half of the measurement time step up
to a maximum of 2000 model points and a1t corresponding
to a 10-point model grid. A 1t located in the bend of the L
can then be found by using the derivatives of the polynomials
in the spline and maximizing the curvature given by

K =
S′Em

S′′Es
− S′′Em

S′Es(
S′Em

2
+ S′Es

2) 3
2
,

where SEm and SEs are the splines of Em and Es and us-
ing Lagrangian differential notation. Smoothing is done by
including the second derivatives weighted by a smoothing
parameter in the minimization criteria of the spline fit.

One issue that arose during development of the automatic
1t selection algorithm was that it was applied to data from a

toy model where we tried to estimate a step change in prop-
erty (Fig. 3 in paper). This is of course an unrealistic situ-
ation to encounter in any field application of a real instru-
ment and is also in violation of any smoothness assumption
we make on the solution. More specifically, we assume that
changes in ua(t) can only occur following a piece-wise lin-
ear model with a time resolution of 1t , which is violated in
the case of an instantaneous step change. The L-curve crite-
rion will nonetheless give us the best possible approximation
we can get to the most likely solution of our problem. How-
ever, the fit residuals between m̂j and mj will be dependent
on the match or mismatch between the time steps in ua(ti)

(with resolution defined by 1t) and the time when the in-
stantaneous step change occurs. In essence, if there is a good
match between the model time steps and the instantaneous
step change, the model will be able to produce lower fit resid-
ual and vice versa. The result of this is that the spline fit can,
depending on the location of the knots, produce local points
with very high curvature which are not located in the kink of
the L. We counteracted this effect when using the toy model
data by doing a simple running mean and sorting of the noise
and fit residual data for the solutions produced during the1t
sweep, which resulted in consistent results. In a real-world
application where there is constant but less abrupt variability,
this should not be an issue, but we kept the running mean fil-
ter to increase the robustness of this approach. We also com-
pared the automated model selection based on the L-curve
criterion as iterated herein with model selection based on the
Bayesian information criterion (see e.g., Ando, 2010), which
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gave similar results. Nonetheless, it is recommended that the
ability to visually inspect the L-curve is exploited, to ensure
the automatic selection has worked as expected.

Appendix B: Laboratory setup

Figure B1. (a) Schematic representation of the experiment setup
and (b) picture of the experiment setup. The tank had an airtight
dome-shaped lid with a small headspace (∼ 0.3 L) and was 27.5 cm
high and 24.5 cm diameter. Room temperature was controlled and
kept constant.

Appendix C: Growth coefficient determination for field
experiment

To apply our methodology to the EB field sensor dataset and
compare with the DRB data, the sensor growth coefficients k
(or τ63) are required. Since no calibration data were available
on location, we estimated k directly prior to the field cam-
paign by placing both instruments in a freshwater-filled con-
tainer (25 L, 25 ◦C), where ∼ 500 mL of methane enriched
water was added instantaneously to simulate a step change
in concentration. The water was continuously mixed using
the two submersible pumps provided by the instruments and
corrected for degassing to the atmosphere. With this setup, k
was estimated to 5.747× 10−4 s−1 (τ63 = 1740 s) for the EB
sensor and 7.69× 10−2 s−1 (τ63 = 13 s) for the DRB sensor.

Water temperature and salinity have a direct impact on
k for both these sensors due to changes in gas permeation
of the membrane (Robb, 1968). This makes k a function of
time in a field experiment where these properties are varying.
Based on laboratory testing on the permeation efficiency of
the polydimethylsiloxane (PDMS) membranes used in both
sensors (see Grilli et al., 2018) we found that k increased lin-
early with temperature following

k(T )= k0+αkT ,

where k0 is k at T = 0 ◦C and αk is a constant individually
determined for each sensor. The effect of salinity was neg-
ligible at the low water temperatures at our field study site.
To keep the RT of the fast-response sensor as low as possible
during the field campaign, we increased the total gas flow
in the DRB sensor, thereby counteracting some of the loss
in responsiveness due to lower water temperature. The wa-
ter temperature range during the field study was 4.0–6.4 ◦C,
which gave a k between 4.200× 10−4 and 4.377× 10−4 s−1

(τ63 = 2285–2381 s) for the EB sensor and between 0.120
and 0.125 s−1 (τ63 = 8.0–8.3 s) for the DRB sensor, taking
increased gas flow into account.

Appendix D: Covariance matrix from field experiment
estimate

Figure D1 shows the covariance matrix from the field exper-
iment (6MAP as calculated by Eq. 11). The upper left quad-
rant of Fig. D1 concerns the [a,a] covariances, and the diag-
onal elements are the model uncertainty estimates. The other
quadrants concern the [a,u], [u,a], and [u,u] covariances.
Note that the color scales in Fig. D1 are set to be small to
increase the contrast of the plot.

The fluctuations on each side of the diagonal elements
(non-diagonal elements) in row 100 (see Fig. D1b and c)
show that there is auto-correlation in the error estimates of
a. This is expected since the elements in a are constructed
from a set of linear combinations of the elements of m′ and
also, being well confined in time, of little concern (see e.g.,
Aster et al., 2019).
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Figure D1. (a) Covariance matrix from response time correction of field experiment data. The [a,a] covariance is shown in the upper left
quadrant, and the lower left and upper right quadrants with very faint but visible diagonals show the [a,u] and [u,a] covariance matrices
(b) Row 100 of the covariance matrix and (c) a zoomed-in excerpt of row 100 of the covariance matrix (approximate region indicated by the
square in c).
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