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Abstract
Since the rise of the gold price in 2000, artisanal and small-scale gold mining (ASGM) is 
a growing economic activity in developing countries. It represents a source of income for 
several millions of people in West Africa. Exploitation techniques have evolved from tra-
ditional gold panning to mechanization and use of chemical products that are harmful for 
the environment. Government strategies to control and regulate this activity are impeded 
by the difficulties to collect spatial information, due to the remote location and the mobile 
and informal natural of ASGM. Here we present and discuss the value of remote sensing 
techniques to complement the knowledge on artisanal mining impacts, including for detec-
tion of illegal sites, the evaluation of the degradation of soils and waters, the deforestation 
and the monitoring of expansion of ASGM with time. However, these techniques are blind 
regarding gender issues, labor relations, mobility, migration, and insecurity and need to be 
considered with knowledges from other disciplines. Remote sensing is also instilled with 
various powers accruing to those enabled to produce and interpret these data. Remote sens-
ing should be therefore used in a reflexive manner that accounts for the social, ethical and 
political implications of ASGM governance informed by space observations.

Keywords Artisanal mining · Remote sensing · West Africa · Interdisciplinarity · Public 
policies
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1 Introduction

Artisanal and small-scale gold mining (ASGM)—low-tech mineral, labor intensive extrac-
tion and processing—is a very important economic activity in developing countries with 
gold resources. In West Africa, for instance, thousands of artisanal gold mines provide 
employment for more than 2 millions of people, and livelihoods for at least three times 
more (IGF 2017). The number of gold miners and proportion of the population living from 
this sector vary from one country to another among the West African countries: Burkina 
(1,000,000 in 2017), Niger (450,000 in 2011), Côte d’Ivoire (503,100 in 2017), Ghana 
(1,100,000 in 2011), Guinea (300,000 in 2011), Mali (400,000 in 2016), Senegal (15,000 in 
2014) and Sierra Leone (300,000 in 2011) (source: https:// delve datab ase. org/ data). These 
numbers are approximate, not recent, and most likely represent underestimation of present 
employment directly working in ASGM. These gold mines are frequented by men, women 
and children who rely on the income from artisanal mining and related activities to escape 
poverty or complement farming incomes, especially during the dry season (Cartier and 
Bürge 2011; Hilson and Garforth 2012). This activity is generally unlicensed and partakes 
in the predominantly informal economy that unfolds outside the legal domain of formal 
recognition by the State. In consequence, ASGM tends to be described as illegal or clan-
destine, by contrasts with the large-scale industrial mines (LSM). However, the distinction 
between industrial and artisanal mining should not be view as rigid or sharp, both because 
ASGM and LSM often interact throughout the mine cycle, and because ASGM is increas-
ingly capitalized and mechanized. Recent studies indeed suggest that legal small-scale 
mining entrepreneurship is developing when the national framework promotes such activ-
ity (Hilson et  al. 2018). Besides, formality and informality should not be equated to the 
presence or absence of rules. While artisanal mining occurs mainly outside the legal frame-
work of the State, artisanal miners have developed complex and efficient modes of organi-
zation. In contrast, while industrial mining is regulated by the legal system of the State, 
such laws may sometimes be questioned for failing to retain a sufficient share of the mining 
rent, to protect the environment, or to downplay the rights of local populations in favor of 
those of foreign investors. Large-scale mining and artisanal mining are both responsible for 
environmental degradation in gold mining areas, but in different ways, as the development 
and exploitation techniques of artisanal mining sites are essentially uncontrolled. Together 
with rural and urban poverty (Hilson and Garforth 2012), the rise in the price of gold since 
2000 is the main cause of the proliferation of these artisanal mines, with spikes subsequent 
to global crises, such as following 2009 global downturn and more recently the COVID 
pandemic. Technological factors, such as the development of metal detectors, have contrib-
uted to the proliferation of ASGM. Despite the fact that it represents a source of income 
for the local population, it also causes damage to the environment, potentially affecting 
directly the health of gold miners and people living in their vicinity.

Faced with the proliferation of these artisanal mines, governments have sometimes tried 
to ban artisanal mining, but more generally adopt various strategies to control or regulate 
this sector of activity, which can take different forms. When the strategy is to regulate the 
activity through formalization, gold miners are expected to access mining permits, which 
in practice is often hindered by important financial and social barriers and administra-
tive obstacles (Hilson 2020; Tschakert 2009). However, this activity is mobile by nature, 
depending on new discoveries, as well as frequent expulsions from the mining sites. Some 
gold mining sites have been exploited for one or two centuries and are tolerated, and yet 
most remain in the realm of informality. The deployment of this activity in space and time, 
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and its regulation, is therefore a complex issue involving many actors: the state and its 
representatives at various levels, the local authorities (e.g., heads of districts, mayors), the 
customary authorities (administrative heads of villages), investors from the political–eco-
nomical elite, the landowners, as well as the villagers and immigrants from neighboring 
areas and countries.

The regulation of ASGM is accompanied by missions on the ground by the authori-
ties, involving controls, the seizure or destruction of equipment, and so-called clearing 
operations of illegal sites. Conflicts with artisanal gold miners also occur in the case of 
attribution of exploration or exploitation permits to large/international mining companies. 
This regulatory effort is also accompanied by training of artisanal gold miners (e.g., train-
ing camps in Côte d’Ivoire) aimed at developing environmentally more friendly practices 
and the development of an activity within a legal framework. However, these efforts are 
strongly undermined by the costs and difficulties to monitor activities, which usually take 
place at large distance of major urban centers or capitals. Field observations (including aer-
ial and unmanned aerial vehicles—UAVs) may not be conducted on a regular basis, expul-
sions are sometimes followed by the re-settlement of clandestine mining sites, whereas the 
boundaries of allocated corridors may not be observed by gold miners, especially when 
they are, or become, unproductive.

Therefore, to fill gaps related to the lack of geographic, spatial and temporal information 
on artisanal mining sites, researchers and governments, in different regions of the world, 
have used satellite data to identify, monitor and map artisanal mining sites and analyze/
assess their environmental impacts. The objective of this article is to present an overview 
of the contributions of remote sensing approaches to the monitoring of ASGM and their 
environmental impact in developing countries. The focus is placed on West Africa, where 
solutions based on Earth Observations are generally under-exploited. Whereas applied 
research and exploration of mineral resources in West African received considerable atten-
tion over the last decades, research on the impact of mining activities and on mining envi-
ronments has drawn the attention of international donors only recently, as illustrated with 
the recent installation of several Center of Excellences in this domain in Côte d’Ivoire, 
Niger and Guinée, with funding from the World Bank. This article also discusses the social 
aspects of the use of remote sensing techniques, including the compilation and presentation 
of data and facts on maps to the different actors (objectivity), as well as the risks associated 
with these techniques. The recent and future deployment of satellites orbiting the Earth 
with sensors with enhanced spectral capabilities and resolutions also offers new avenues 
for both research and support to public policies in this sector. These prospective aspects are 
discussed in the last section of this article.

The use of remote sensing to study and monitor areas degraded by gold mining activity 
began in the early 2000s in Brazil. The first study carried out was by Almeida-Filho and 
Shimabukuro (2000) and Almeida-Filho (2002). It focused on soil degradation. Our biblio-
graphic synthesis therefore covers the period 2000–2021. Since this first study, the theme 
of "remote sensing and artisanal mining" has become more diversified. Some studies focus 
on the identification of exploitation areas (legal/illegal) (Gond et al. 2004; Laperche et al. 
2008; Elmes et al. 2014; Gallwey et al. 2020; Asner and Tupayachi 2016; Almeida-Filho 
and Shimabukuro 2000; Lobo et al. 2018; LaJeunesse Connette et al. 2016; Le Tourneau 
and Albert 2005; Telmer and Stapper 2007). Other applications include the evaluation of 
deforestation (Rahm et al. 2014; Schueler et al. 2011; Poudori et al. 2001; Caballero Espejo 
et al. 2018; Diringer et al. 2020; Asner and Tupayachi 2016; Asner et al. 2009; Swenson 
et  al. 2011), the measure of water turbidity related to ASGM (Lobo 2015; Gallay et  al. 
2018; Linares 2019; Lobo et al. 2018), and the analysis of gold panning expansion over 
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time (Kusimi 2008; Manu et al. 2004; Obodai et al. 2019; Snapir et al. 2017; LaJeunesse 
Connette et al. 2016; Isidro et al. 2017). Following the work of Almeida-Filho (2002), the 
analysis of land degradation by ASGM has continued in many other regions of the world.

The basic motivation for these different studies is that human activity in the broad sense 
around mining sites (exploration, extraction, storage and processing of ore) and the natural 
degradation of abandoned mining sites, including the formation of acid mine drainage, have 
physical properties (usually optical) that are distinct from other types of land use. Once 
these properties are known, usually through field studies, the specific spectral signature of 
the gold mining sites is analyzed, in time and/or space. Analysis of the changes detected in 
these areas from space allows quantification of the environmental impacts (deforestation, 
increase in water sediment load, soil degradation), and the expansion of ASGM. Different 
approaches have been pursued depending on the objectives; they differ in the type of data 
used, the method of site identification, and/or the method of detecting changes over time. 
Concerning the data, Landsat images have been the most frequently used over the period 
2000–2018, their main assets being their accessibility (free), a large global coverage, and 
long time series. More recently, authors of this type of work have used higher resolu-
tion optical data (SPOT, Sentinel-2, UK-DMC2, MODIS—moderate resolution imaging 
spectrometer—, Google Earth and UAVs), while others have chosen to work with radar 
data (Sentinel-1, JERS1, PALSAR, ENVISAT) to avoid constraints related to cloud cover, 
particularly in tropical areas. Sentinel-1 radar images have been efficiently used to moni-
tor deforestation in the tropical forest of French Guiana (Ballère et al. 2021; Bouvet et al. 
2018), and these methods identify the fraction of deforestation related to gold mining. The 
contribution of data from hyperspectral satellites (Hyperion) and data from airborne sen-
sors (Hymap, AVIRIS) have also been explored to know the impact of mining discharges 
and abandoned mining sites on the environment. Studies have focused in particular on the 
impact of acid mine drainage (AMD), defined as acidification of surface water due to the 
weathering of minerals exposed to the air following mining operations (Choe et al. 2008; 
Buzzi et al. 2014; Riaza and Müller 2010; Riaza et al. 2015, 2012b; Swayze et al. 2000; 
Pfitzner et  al. 2018; Percival et  al. 2014; Kemper and Sommer 2002; Jeong et  al. 2018; 
Jackisch et al. 2018; Davies and Calvin 2017). Some of these studies are very simple and 
qualitative: photo-interpretation, thresholding, and manual digitization of sites, while other 
more complex and powerful approaches are developing (use of artificial intelligence and 
statistical methods) and allow for more comprehensive, automated, and recurrent treatment 
of regions affected by this activity. In all cases, prior knowledge of the terrain, i.e., the 
characteristics of the gold washing sites and the techniques used to extract and process the 
ore, is necessary to conduct these studies. The characteristics of the gold mining sites vary 
according to the geology of the region (nature of the deposits), thus influencing the ore 
extraction techniques. These techniques vary widely from one site to another, ranging from 
shafts and tunnels up to a few tens of meters deep to reach vein deposit, or to open shafts 
or the panning of riverbeds for placer deposits. The morphology of the sites is also depend-
ent on the type and geometry of the deposit (vein or placer type). The spatial organization 
of the extraction and processing sites also varies, in particular according to the presence 
or absence of nearby water sources (see paragraph describing the study sites). Our syn-
thesis is structured around the following applications of remote sensing techniques focus-
ing on capabilities and limitations for each of them: detection and identification of ASGM 
sites, soil degradation, deforestation and analysis of the temporal expansion of ASGM, 
and ASGM and water pollution as seen from space. This organization is justified by the 
fact that the first information is the occurrence of a mining site (detection), whereas use 
of remote sensing data has then focused on the consequences on different compartments 
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of the natural environment: soil, vegetation and waters. Naturally, these compartments are 
open systems and communicate with each other. This section also includes a subsection 
focusing on research and applied prospective, based on the new capabilities of future satel-
lites equipped with enhanced spectral capabilities and/or higher imaging resolutions. These 
sections are followed by a discussion on societal and ethical aspects of the use of space-
based information for the governance of the mining sector. The discussion also emphasizes 
the use of research findings by various actors in the artisanal mining sector, and in particu-
lar in the operational applications of gold mining regulations that have developed in some 
countries as a result of academic work.

2  Remote Sensing Observation of ASGM

2.1  Detection of ASGM Sites

The most ubiquitous application of remote sensing techniques to ASGM is to address the 
question of the mapping mining sites, which may develop clandestinely in remote places. 
In French Guiana, following the government’s plan to regulate and control ASGM, a feasi-
bility study of the detection of gold panning sites by satellite imagery was conducted. This 
study, carried out by Gond and Brognoly (2005), provided information on the spectral and 
optical properties of gold mining areas. A detection algorithm was developed using the vis-
ible and infrared bands of a SPOT 4 image (20 m resolution) and Landsat 5 and 7 images 
(30 m resolution). The detection method was based on the contrasts between the observed 
object and its environment (Gond et  al. 2004). These studies concluded that Satellite 
imagery is reliable for detection of mining sites despite the frequently dense cloud cover 
typical of equatorial regions. In the case of gold mining site detection by satellite imagery 
in the tropics, the observed object (the mining site) is distinguished from its environment 
(the tropical rainforest) by a strong contrast between the exposed ground and the surround-
ing vegetation (Fig. 1). Figure 2 illustrates the ASGM seen at different scales (from ground 
to space) in tropical areas (with an example in Côte d’Ivoire). This strong contrast will be 
revealed in a variable way on the spectral bands of the satellite data used. The contrast is 
more or less marked depending on the observation wavelength or the filter used. The major 
difficulty highlighted in this study is the similarity, from a spectral point of view, between 
the different types of bare soil: gold mining, deforestation for timber exploitation, culti-
vated areas, inhabited areas, etc..

The authors of the study in French Guiana therefore attempted to amplify this contrast 
by using spectral indices, which made it possible to identify threshold values to distinguish 
surfaces exploited for gold from other types of surfaces. A field campaign was conducted 
to validate these results. Once the gold mining sites were geolocated using this method, 
the information was collected in a geospatial database. Based on this study, the Guyanese 
government initiated remote sensing monitoring of gold mining activities to determine the 
location of illegal operations and to assess the expansion of the activity (Laperche et al. 
2008). The government also created the “Observatoire de l’Activité Minière” (OAM) in 
2008. The OAM currently monitors gold mining with the development of several process-
ing lines that are used to monitor water turbidity and deforestation (Linares 2019). In 2019 
during the presentation of the OAM 10-year review, it was reported that more than 2000 
images from different sensors (Landsat 5 and 7 in 2006, SPOT 2–4 and 5 between 2007 
and 2014, Landsat 8 between 2013 and 2017, Sentinel-2 since 2016) have been processed, 
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which has allowed the detection of 15,439 sites and the digitization of 12,288 ha. However, 
the monitoring of the evolution of mining sites by optical satellite imagery faced problems 
related to cloud cover, which is frequent in tropical areas, and the temporal repeatability of 
Landsat and SPOT data did not allow for a sufficient number of cloud-free images, unlike 
what is now possible with Sentinel-2 data (Landsat-8 has a 16-day cycles, to be compared 
with the 5-day revisit frequency of the Sentinel-2a and b constellation). In Myanmar, 
LaJeunesse Connette et al. (2016) identified and mapped the extent and current expansion 
of artisanal mining activities using Landsat 8 satellite imagery and Google Earth imagery, 
producing the first public database on artisanal mining in that country. An approach based 
on photo-interpretation and comparison of satellite images at different dates was used in 
this study. The authors point out the constraint related to the resolution of Landsat data 
to detect gold panning sites, which are very small, and the similarity at the spectral level, 
which leads to confusion, hence the choice of photo-interpretation, which is more qualita-
tive and subjective, using Google Earth.

In Ghana, Gallwey et al. (2020) applied deep learning to gold panning site detection. 
This study applied a convolutional neural network model to Sentinel-2 data. Results vali-
dated with field observations (test sites) showed less than 8% error, justifying the effective-
ness of their approach. The model was also used to quantify the extent of deforestation 
related to illegal mining in the protected forests of Ghana and to estimate the effect of gov-
ernance. The ASM land-use category increased by 15,000 ha over the period 2015–2019. 
However, this study also shows the effectiveness of the Ghanaian government’s efforts to 
regulate gold mining in 2017 with a decrease of 6000 ha of impacted land. The deep learn-
ing approach also quantified the extent of illegal mining-related deforestation within Gha-
na’s protected forests, measured at over 3500 ha, with 2400 of these lost since 2015. The 
results obtained with deep learning are much more accurate compared to those obtained 
using other machine learning methods such as random forest or multilayer perceptron 
(MLP). However, additional training data are needed in different climatic zones and land-
use types to extend its application.

Fig. 1  Aerial photograph of AGSM, Central Côte d’Ivoire
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Fig. 2  Illustration of the detection of artisanal mining sites and appearance at different scales. a Extract of 
Sentinel-2 scene of 22 May 2020 (Central Côte d’Ivoire). RGB color composite approaching natural colors, 
R = band 4 (red, 664.6 nm), G = band 3 (green, 559.8 nm), and B = band 2 (blue, 492.4 nm). b Aerial image 
taken with a drone. The white square in a indicates the location of the aerial image. c Picture taken during a 
field campaign within the aerial image
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Several other studies have demonstrated the capacity of satellite imagery in the iden-
tification and detection of ASGM sites (e.g., Simionato et al. 2021), but several difficul-
ties arise. These difficulties are related to the optical spectral signature of the sites and 
their spatial footprints. Depending on the objectives and the study area, the approach to 
be adopted must take these difficulties into account. Regarding the spectral signature, 
ASGM sites are often confused with other types of bare soil. Spatially, the size of the sites 
makes their detectability with medium-resolution data difficult, if not impossible. In Sen-
egal, Ngom et al. (2020) proposed a method for detecting and mapping ASGM sites with 
the minimal confusion possible using Sentinel-2 data and the Google Earth Engine. The 
method is based on the study of spectral properties over time of different landcover types 
such as bare soil, water, vegetation, settlement and area used for ASGM. These authors 
used principal component analysis (PCA) to determine the optimal period of the year for 
mapping ASGM area, separability and threshold (SEaTH) to determine the optimal bands 
or spectral indices to discriminate ASGM from other land use. The most relevant bands 
served as band sets for automatic classification and mapping of the scenes achieved with 
support vector machine (SVM) classifier. This proposed method has been validated with an 
accuracy of more than 80% showing the effectiveness of Sentinel-2 data for mapping gold 
panning sites. Beyond detection of mining sites, Earth Observation from space can also be 
used to quantify the consequences of ASGM as a function of time and in different compart-
ment of our natural environment, including soil, vegetation and rivers. These topics are 
addressed in the next section.

2.2  Soil Degradation

This section focuses on studies whose objectives are of documenting from space, as a 
function of time, the state of soil degradation as a result of ASGM. Soil degradation 
is defined as a change in soil health that results in a decrease in the capacity of the 
ecosystem to provide goods and services for its beneficiaries. Soil degradation gener-
ally refers to its acidification, erosion or compaction, the modification or destruction 
of the humus in relation to changes in the vegetation, the decrease of the amount of 
organic matter, and the pollution by toxic metals (Fig.  3). A pioneering study in this 
domain (Almeida-Filho 2002) used a 12-year Landsat-Thematic Mapper (TM) image 
time series (1987–1999) at 30-m resolution to analyze areas degraded by gold miners. 
The approach, based on a principal component analysis of the images, highlights areas 
of bare soil in relation to the vegetation of the surrounding savannah. It is followed by 
a post-classification that consists of image segmentation and classification of the seg-
mented regions. The results of this study showed that degraded areas increased from 
94.4  ha in 1987 to 404.4  ha in 1994. Then, following the cessation of ASGM, a re-
vegetation of the land was observed, decreasing the bare areas from 311.2 ha in 1995 
to 246.2  ha in 1999. However, this study showed that the areas that were intensively 
exploited revegetated more slowly than in other cases of de-vegetation, thus demonstrat-
ing the particularly negative impacts of ASGM on soil fertility. Following this study, 
studies have been initiated in other regions of the world, such as Indonesia and Brazil 
(Telmer and Stapper 2007; Lobo et al. 2016), with improved approaches but also based 
on the detection of changes in optical signatures. In Niger, Abass Saley et  al. (2021) 
were able to map the evolution of the mining site of Koma Bangou during four dec-
ades using Landsat data. This study relied on spectral indices designed to be sensitive 
to minerals present in mining waste (such as oxides and hydrated minerals) and took 
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advantage of the scarcity of the vegetation in this region. The authors of this work were 
able to clearly distinguish the expansion of mining waste, as well as the introduction 
and expansion of cyanidation (hydrometallurgical technique for extracting gold by con-
verting the metal to a water-soluble coordination complex using an aqueous solution of 
cyanide) during the last decade.

Several studies of land degradation caused by mining activities in general (not just 
ASGM) have also focused on acid mine drainage, which can, in addition to the acidi-
fication water, contribute to the release of toxic metals from mining waste in the soils. 
Hyperspectral and multispectral data have been able to detect and map this phenomenon 
in Pennsylvania (Williams et  al. 2002), Iran (Seifi et  al. 2019; Shahriari et  al. 2013), 
California (Montero et al. 2005) and South Africa (Mielke et al. 2014). They are often 
combined with airborne data to understand contamination in acidic water basins in min-
ing areas. Hyperspectral data can provide early indications of the status of soil con-
tamination generated by waste from sulfide-rich mines, allowing authorities to activate 
mitigation procedures. Riaza et  al. (2012a, b) used Hyperion data (30  m resolution, 
demonstrator) and Hymap airborne data (5 m resolution) to map mine waste from mas-
sive sulfide deposits in the Iberian area. This study showed that mine dams, mill tailings 
and mine dumps in a variable state of pyrite oxidation are recognizable on these types 
of data. Acidic water pools at mine sites are spectrally remarkable and can be mapped 
with simple image processing procedures, including Minimum Noise Fraction Trans-
form, Pixel Purity Index, N-Dimensional Visualizer, or Spectral Angle Mapper. In addi-
tion, acidic waters of different chemical composition that are responsible for soil degra-
dation can be mapped using hyperspectral data, whether at high or low spatial resolution 
(Quental et al. 2013; Riaza et al. 2015).

Fig. 3  Artisanal gold mining site of Kharakhéna (Eastern Senegal) illustrating the degradation of soil
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2.3  Deforestation

Deforestation is one of the best known and most documented impacts of gold mining. It 
has been measured from space by several authors in many different regions. It is generally 
defined (in the remote sensing and gold mining theme) by a conversion of forest into mining 
sites, the transformation being particularly visible on satellite images (Fig. 4). In this sec-
tion, we include both destruction of natural forests and degradation of areas previously used 
for agroforestry (e.g., cocoa growing). Taking advantage of the availability of more than 
30 years of satellite imagery, it has been possible to determine deforestation and expansion 
in areas where these activities were known for decades. In the Amazonian Park of French 
Guiana, the WWF (World Wildlife Fund) raised the alarm bells on the catastrophic situa-
tion caused by gold washing. Aerial overflights conducted three times a year to survey the 
sites showed record pressure from illegal gold mining in this protected area. Impacted areas 
had increased by 24% in 2016 and 139 active sites were identified (WWF 2016). One of the 
OAM processing chains mentioned in the previous paragraph is used to track areas impacted 
by ASGM in French Guiana and thus quantify deforestation. With this chain, monitoring is 
done on a weekly basis with Sentinel-2 data. The operating mode of the process is presented 
in Fig.  5. Thanks to this processing chain, several illegal operations have been detected 
and interrupted. One example is the destruction of the Grande Bagot creek detected by the 
“Office National des Forêts (ONF)” on the Sentinel-2 image of 15 May 2019. The gendar-
merie intervened in 2019 on this site to put an end to illegal activities.

In the Peruvian Amazon in the department of Madre de Dios, a study by Swenson et al. 
(2011) used Landsat 5 data acquired between the period of 2003–2009 to quantify defor-
estation through an ISODATA unsupervised classification approach in the Guacamayo 
and Colorado-Piquiri mining areas. This study showed that, from 2003 to 2009, mining at 
both sites converted 6600 ha of primary rainforest and wetlands into large areas of ponds 
and tailings. This destruction of the Peruvian forest has been strongly correlated with 
the increase in the price of gold (~ 18% per year). It increased from 292 ha/year between 

Fig. 4  Illustration of deforestation caused by gold mining in Central Côte d’Ivoire
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2003 and 2006 to 1915  ha/year between 2006 and 2009, a sixfold increase. A further 
study by Caballero Espejo et  al. (2018) using CLASlite (Asner et  al. 2009) and Global 
Forest Change (Hansen et al. 2013) algorithms applied to Landsat data in the same area 
showed that ASGM caused deforestation quantified at 100,000 ha over a 34-year period 
(1984–2017) in the Peruvian forest.

In southern Ghana, Snapir et al. (2017) applied an unsupervised classification approach 
on UK—Disaster Monitoring Constellation-2 (UK-DMC2) satellite data at 22 m resolu-
tion to analyze the destruction of cocoa growing areas due to illegal gold mining between 
2011 and 2015. This study showed that ASGM expanded very rapidly. The exploited areas 
tripled over the study period along the Offin, Ankobra, Birim, Anum, and Tano rivers. 
Despite the positive results of this study, the authors noted the difficulties of working with 
optical imagery due to cloud cover over the area, which poses a major challenge for map-
ping and monitoring illegal mining activities in southern Ghana. The study by Forkuor 
et  al. (2020) therefore explores the contribution of Sentinel-1 radar imagery for change 
identification and detection. A change detection approach, based on three time-series char-
acteristics—minimum, average, maximum—was used to calculate an appropriate back-
scatter threshold for identifying/detecting mining-induced land-cover changes in the study 
area. This study showed a downward trend in the evolution of ASGM in southern Ghana 
from 2015 to 2019 illustrating the impacts of the efforts of the Ghanaian government in the 
fight against illegal gold panning. It should be noted that even radar data have limitations 
in tropical regions, as Forkuor et al. (2020) reported that 25% of the Sentinel-1 data were 
unusable due to atmospheric effects from high intensity rainfall events.

2.4  Water Turbidity

Remote sensing is used to analyze the impact of gold mining on rivers. Mining is most 
often carried out along streams, resulting in significant sediment discharge into rivers 

Fig. 5  Processing chain developed to monitor deforestation in French Guiana (translated and modified from 
Linares 2019)



 Surveys in Geophysics

1 3

(Fig. 6). In this case, the turbidity of the water is due to suspended matter following dis-
charge of mining waste into the rivers.

In 2017, the French public organisation BRGM developed a telemetry system for 
water turbidity in French Guiana (Linares 2019). This system consisted in transforming 
the reflectance of turbid waters, measured from Sentinel-2 band 4 into a turbidity value 
expressed in nephelometric turbidity unit (NTU). It was first applied by the Amazonian 
Park of French Guiana for a turbidity observatory of the Maroni. The method was consoli-
dated a few years later with approaches conducted by Gallay et al. (2018). In this study, the 
authors combined field data (water flow, precipitation, suspended sediment concentration, 
suspended sediment load estimates) and satellite data (MODIS) to monitor the evolution of 
suspended sediment fluxes in the Maroni and Oyapock rivers in French Guiana. The objec-
tive was to assess whether changes in sediment loads were associated with deforestation 
and removal of soil layers caused by the development of mining activities in the two rivers. 
Results showed that 15 years of intensive mining activities have altered the concentration 
of suspended sediment in the Maroni River, significantly increasing sediment loads and 
yields since 2009. This increase in sediment discharge is also correlated with deforestation 
along with the development of the mining activity (Gallay et al. 2018). This approach, also 
tested in Burkina Faso, has proven to be very effective for monitoring water turbidity (Rob-
ert et al. 2016). However, the resolution of MODIS data (250 m) does not allow detection 
of turbid waters of small areas. Recently, this processing chain has been adapted to Senti-
nel-2 data and the operationality of this tool will allow monitoring of pollution of water-
ways related to mining activities. The work of Lobo et al. (2018) conducted on the Tapajos 
River in the Amazon quantified, particularly from Sentinel-2 data, the effects of suspended 
solids derived from mining activities on optical properties. In this study, the aim was to 
relate the reflectance of satellite data to the total amount of suspended solids in the water. 
The authors concluded that the inorganic nature of the mine tailings affected the underwa-
ter scalar irradiance in the Tapajós River basin. For tributaries with little or no influence of 
mine tailings, the waters are relatively more absorbent.

2.5  Future Capabilities, Persistent Limitations and Avenues for Interdisciplinary 
Research

With increasing temporal, spatial and spectral resolution, the future sensors and satellites 
imaging the surface of the Earth will offer new capabilities for monitoring the development 
of ASGM and assessing their consequences on the environment. In particular, hyperspec-
tral imaging, which provide the capabilities to map the concentration of certain types of 
minerals, will be useful for mapping waste, cyanidation areas and acid mining drainage in 
detail. A resolution of a few meters to a few tens of meters per pixel will be required for 
such applications. For this purpose, it is possible to mention the PRISMA (PRecursore 
IperSpettrale della Missione Applicativa) and HySIS (HyperSpectral Imaging Satellite) 
satellites put into orbit in recent years and the future HSI (HyperSpectral Imager, Mücke 
et al. 2019) and HISUI (Hyperspectral Imager SUIte, Tachikawa et al. 2012) satellite mis-
sions. The spatial resolution of this new generation of satellite (30 m) will remain a pos-
sible limitation for mapping sparse and disseminated mining waste. Studies using hyper-
spectral satellite data will develop with these new generation of satellites, knowing that 
Hyperion was a demonstrator of this technology and that the spatial and temporal cover-
age of Hyperion data remain limited. For example, no Hyperion data are available for the 
Kharakhéna and Bantakokouta sites considered in the recent study of Ngom et al. (2020), 



Surveys in Geophysics 

1 3

while only one scene has been acquired at the Kokumbo site in Côte d’Ivoire, but this 
one has a high cloud cover. This example illustrates the fact that cloud coverage will limit 
the capabilities of hyperspectral sensors as it does for satellite imagery. Only high revisit 

Fig. 6  Illustration of sediment discharge into rivers linked to artisanal mining activities. a Extract of Senti-
nel-2 scene of 23 May 2021 (along the Bandama river in the central Côte d’Ivoire). RGB color composite 
approaching natural colors, R = band 4 (red, 664.6 nm), G = band 3 (green, 559.8 nm), and B = band 2 (blue, 
492.4 nm), b is a picture taken in the river illustrating the discharge of sediment potentially linked to min-
ing activities
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frequency may overcome this obstacle in tropical regions, during the rainy season. The 
recent elaboration of new techniques to monitor deforestation (Reiche et al. 2021; Ballère 
et al. 2021; Bouvet et al. 2018) on the weekly basis from Sentinel imagery may provide 
additional relevant data with comparable or higher performance than optical imagery to 
detect artisanal mining sites in their early phases of development.

It should be finally noted here that all these techniques remain (and will likely remain) 
blind regarding gender issues, labor relations, insecurity on mining sites, and migrations 
related to gold panning, which all need to be considered in the governance of this sec-
tor. It is therefore clear that the governance of ASGM informed by space-based observa-
tions must include knowledge from other disciplines in an interdisciplinary approach. They 
are many possible connections between these issues and observations that can be inferred 
from space, which offers avenues for interdisciplinary research in geology, environment, 
social, political, economic and health sciences. The next section of this manuscript there-
fore addresses the social and ethical aspects of a governance of ASGM informed by remote 
sensing observations and lists some of these outstanding questions that may be addressed 
by interdisciplinary research.

3  Governance of ASGM Informed by Remote Sensing Observations: 
Social and Ethical Aspects

In many ways, remote sensing observations promise to complement the knowledge on 
artisanal mining impacts in the areas where it occurs, and which are often remote and 
hardly accessible for the agents of the concerned governments’ branches. More broadly 
conceived, remote sensing observations complement the available tools (such as census, 
mapping, agents’ delegation on site, episodic reporting, etc.) to a state to properly "see" 
the territory it is assumed to govern (Scott 2008) by objectifying and reducing it in leg-
ible formats. As any technology of the sight, remote sensing is also necessarily parceled 
in what it enables to see, and inevitably instilled with various powers accruing to those 
enabled to produce, make accessible (or not), and interpret through different frames and 
political agendas "objectified" representations of the landscape (Witjes and Olbrich 2017; 
Litfin 2002; Hall 2017; Davis et al. 2021). This final section is thus a call to the actors of 
this dynamic field to use remote sensing in a reflexive manner that accounts for the social 
and political implications of ASGM governance informed by space observations and that 
fosters access to information and enhance knowledge across levels beyond government. 
Taking stock of the prolific social science scholarship on artisanal and small-scale mining, 
we briefly point to some of the major issues that these considerations raise.

3.1  Earth Observation for an Inclusive Formalization Policy

As an instrument of governance, Earth Observation (EO) from space (or remote sensing) 
cannot be disentangled from current major regulatory trends. Spurred by major donors 
such as the World Bank and various UN agencies, the push toward the formalization of the 
artisanal mining sector has become a central piece of the development strategy of several 
countries in West Africa (Hilson 2017). Yet, after 15 years, dominant top-down formaliza-
tion strategies (e.g., ASGM licenses, corridors, etc.) have overall had very limited results 
(Van Bockstael 2019; Hilson 2017; Geenen 2012) when not merely counterproductive 
(Marshall and Veiga 2017; Hilson and Maconachie 2017; Banchirigah 2006). The passage 
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from tolerance to formality (by dedicating specific sections to ASGM in the last round of 
mining codes’ revision) has de facto placed most miners in the realm of illegality (Van 
Bockstael 2014; Hilson 2013), notwithstanding “vulnerabilizing” (Fisher 2007), “margin-
alizing” (Tschakert and Singha 2007; Sauerwein 2020), or “criminalizing” (Crawford and 
Botchwey 2018) informal actors. Indeed, while ASGM relies on ephemeral and moving 
sites, constantly reconfigured by artisanal miners’ mobility, formalization relies on the con-
trary on a fixation of the activity and the definition of specific spaces where it is legal (or 
not) to exploit. From the grounded perspective of the artisanal miners, the fraught equation 
between informality and illegality has then mainly translated in the multiplication of bans 
and (often violent) evictions (Bolay 2017; Dessertine 2019; Dessertine and Noûs 2021; 
Werthmann 2006; Hilson 2017; Wireko-Gyebi et al. 2020), putting at risk the livelihoods 
of thousands of miners and their dependents. It is therefore crucial that remote sensing 
instruments support a truly inclusive formalization policy (e.g., Hilson 2020), rather than 
merely implementing a surveillance apparatus of control and repression.

3.2  The Importance of an Open‑Access EO Information and Products

Despite its mainly informal nature, artisanal mining is highly regulated by various forms 
of non-state “practical norms of real governance” (De Herdt and Olivier de Sardan 2015). 
Local actors such as “customary” village authorities or mine authorities (as the vigilante 
groups called tombolomaw in Mande populations, for example) enforce the everyday real 
governance of mining sites (collection of “informal” taxes, resolution of conflicts, alloca-
tion of plots, etc.) (Brottem and Ba 2019; Persaud et al. 2017; Grätz 2004, 2009; Sangaré 
et al. 2017), whose revenues tangibly contribute to local development (e.g., Teschner 2014; 
Bazillier and Girard 2018). The relative discrepancy between state and non-state actors and 
norms urgently raises the question of access to information generated by remotely sensed 
imagery. While remote sensing information can expectedly help governments in decision 
making and monitoring artisanal mining activities at a distance, i.e., identify new "rushes", 
deforestation issues, or informal settlements, it is still vital that information flows extend 
beyond government offices and get accessed by local level actors who are often consid-
ered more legitimate both by miners and local populations. This is even more so regarding 
environmental deleterious impacts, whose "slow violence" (Nixon 2011)—i.e., its long-
term consequences being often synchronically imperceptible—can be made more legible 
through longitudinal mapping.

Likewise, the increasingly open-access feature of EO makes it subject of political dis-
putes along what term the measurement–commensuration–diffusion continuum (Noucher 
et al. 2021), that is the phases though which environmental governance quantifies, catego-
rizes, and communicates environmental problems. At each of these stages, EO data may be 
embedded in and support different political agendas. In French Guiana, these authors show 
how the same reality of illegal artisanal gold mining is differently measured and interpreted 
by different actors within and outside the State. While the French State relied on its own 
EO data and was reluctant to make it available to the public, the WWF launched a compet-
ing mapping project through open access EO and participatory, crowed sourced, mapping. 
Not only did the quantification of the activity vary, but also its interpretation and the polit-
ical measures that were communicated. Such discrepancies also manifested within state 
structures, with armed forces being more concerned by the legal status of operations and 
parks and conservation with the stage and intensity of the activity. WWF, instead, made 
no such difference at all as the NGO’s aim was rather to challenge the State to increase 
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disclosure on environmental impacts, and alert the public on deforestation. All in all, 
beyond claims for objectivity, EO provides information that can serve contradictory goals 
such as support decision-making or legitimize decisions, establish forms of control or con-
test them. This calls for attention to the inherent political uses and to the discrepancies in 
accessing, interpreting, and diffusing information gathered from EO, for such information 
may both serve coercive aims as well as play a role in informing public debate in the con-
text of a more concerted and inclusive regulation of artisanal mining.

The fact that the vast majority of countries facing ASGM do not produce satellite data 
themselves implies that these states may—temporarily—remain depend of open-access 
space data initiatives from countries with well-developed space programs. However, the 
more intensive use of earth observation products contributes to the development of a com-
munity of researchers and end-users, which will be ready to use their own satellite data in 
the future, mentioning, for instance, the recent launch of African satellites and the emer-
gence of new space programs in several African countries (Pović et al. 2018).

3.3  Integration of Space‑Based Results within Interdisciplinary Research Results 
into Governance Measure

Finally, as demonstrated in this review of remote sensing uses in mining and environmen-
tal governance, visualization from space can indeed inform on a series of environmental 
impacts such as pollution of rivers and water basins, deforestation, but also urbanization/
new settlements (e.g., Gagnol et al. 2019). However, they are of little help to understand 
social questions that equally partake in sustainability issues, such as gender (Buss et  al. 
2019; Huggins et  al. 2017; Hinton et  al. 2017), labor relations (Lanzano and Arnaldi di 
Balme 2021; Bolay 2017; Hilson 2010), mobility and migration related to artisanal min-
ing (Dessertine 2016; Werthmann 2010; Bolay 2014, 2016), or insecurity (Ros-Tonen et al. 
2021; Lanzano et  al. 2021), all while they underlie much of miners’ practices and their 
potentially environmentally unsound consequences. As argued by Fisher et  al. (2021), 
plural knowledges are necessary for addressing the complexity of sustainability in gold 
mining. As one among other forms of knowledge, remote sensing will probably need to 
be cross fertilized with other knowledges; scientific and formal certainly, but also more 
grounded forms of local (ecological) knowledge (e.g., Duff and Downs 2019; Hennessy 
2015). This is both a conceptual challenge regarding how to actually do interdisciplinary 
research, and an operational one requiring grassroots approaches as traditionally devised in 
ethnographic methods or collaborative approaches potentially implicating crowed sourced 
data that have proven to be efficient, for instance in water governance (Buytaert et  al. 
2014).

Considering that the actual governance of mining sites, such as where, when, and by whom 
are gold deposit exploited, usually bypass government structures, information generated by 
remote sensing technologies can increase the local knowledge about mining and its impacts, 
provided that it is made accessible to the local actors of the “real governance” of artisanal 
mining. Yet, as argued by Poncian (2020) in a study on the role of Information and Com-
munication Technologies (ICT) in the citizen engagement of extractive resources governance 
in Tanzania, while government bodies can indeed increase the flow of information through 
conventional and new media channels (in particular social medias), this does not necessarily 
translate into more citizen engagement. To actually increase engagement and the use of infor-
mation by the local actors of governance, communication should, according to this author, 
not be limited to unidirectional, top-down, channels. This can be achieved through the usual 
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apparatus of onsite workshops and trainings, as well as through a more interactive use of 
media platforms throughout which qualitative information can flow up to governments. For 
instance, McFarlane and Rebecca (2019) study of artisanal mining in Myanmar uses USGS 
Landsat observations and Google Earth data to assess the growth of illegal suction pump min-
ing over the last twenty years. To understand these changes, it builds upon human centered 
design workshops, field visits, household surveys and interviews to interpret the social, envi-
ronmental and economic implications of this activity from the perspective of the workers and 
local population, upon which policy measures are proposed. Thus, as argued by Davis et al. 
(2021) more collaborative approaches to remote sensing that includes local stakeholders and 
researchers across data acquisition, analysis and dissemination in “active collaboration and 
knowledge exchange can help balance existing power structures” and ensure that local con-
cerns and perceptions of sustainability are integrated in governance measures.

4  Conclusions

The article was conceived as an entry point in the already vast literature about remote sensing 
characterization of artisanal and small-scale gold mining sites. It is primarily intended either 
for students and researchers of the academic domain willing to develop further research in this 
domain. The present-day capabilities of satellites orbiting the Earth and their sensors offer var-
ious applications, including identification of ASGM site, mapping degradation of soil, defor-
estation, characterization of sediments discharge in rivers, and short- or long-term mapping of 
the expansion of artisanal gold mines and their waste. The development of a new generation 
of satellites with hyperspectral capabilities will open new avenues for research, as detailed 
characterization of minerals present in mining waste will become possible. This article also 
emphasizes that the complex issues associated with the regulation of mining sites cannot be 
solved without interdisciplinary and collaborative approaches combining different sources of 
knowledge, and involving the different actors, including researchers and local stakeholders. 
Within this framework, remote sensing data and their scientific interpretations provide maps, 
quantified interpretations, and reconstruction of the past evolution of the landscape. These data 
and products should be considered as pedagogic tools of great values that can be made easily 
accessible to the different actors via on-line platforms and dedicated applications, following 
a pioneering example being proposed in Senegal (Ngom and Mbaye 2021). Remote sensing 
data should be also used in a reflexive approach, that accounts for the economic, social, and 
ethical implications of ASGM regulations.
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