The Meteoritical Bulletin, No. 110

To cite this version:

HAL Id: insu-03863070
https://insu.hal.science/insu-03863070
Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
The Meteoritical Bulletin, No. 110

Jérôme GATTACCECA1*, Francis M. McCUBBIN2, Jeffrey GROSSMAN3, Audrey BOUVIER4, Nancy L. CHABOT5, Massimo D’ORAZIO6, Cyrena GOODRICH7, Ansgar GRESHAKE8, Juliane GROSS2,9, Mutsumi KOMATSU10, Bingkui MIAO11, and Devin SCHRADER12

1CNRS, Aix Marseille Univ, IRD, INRAE, CEREGE, Aix-en-Provence 13545, France
2NASA Johnson Space Center, Mail Code XI, 2101 NASA Parkway, Houston, Texas 77058, USA
3Reston, Virginia 20194, USA
4Bayerisches Geoinstitut, Universität Bayreuth, 95447 Bayreuth, Germany
5Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723, USA
6Dipartimento di Scienze della Terra, Università di Pisa, Pisa 56126, Italy
7Lunar and Planetary Institute, USRA-Houston, 3600 Bay Area Blvd, Houston, Texas 77058, USA
8Leibniz-Institut für Biodiversitätsforschung, Museum für Naturkunde, Invalidenstraße 43, 10115 Berlin, Germany
9Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey 08854, USA
10Saitama Prefectural University, Saitama 343-8540, Japan
11Guilin University of Technology, Guangxi Province 541004, China
12Buseck Center for Meteorite Studies, School of Earth and Space Exploration, Arizona State University, 781 East Terrace Road, Tempe, Arizona 85287, USA

*Corresponding author. E-mail: gattacceca@cerege.fr

Abstract—Meteoritical Bulletin 110 contains the 2802 meteorites approved by the Nomenclature Committee of the Meteoritical Society in 2021. It includes 10 falls (Arpu Kuilpu, Djadjarum, Glendale, Kindberg, Madura Cave, Motopi Pan, Oroconuma, Punggur, Tihigrin, Winchcombe), with 2014 ordinary chondrites (including 1 ungrouped ordinary chondrite), 220 carbonaceous chondrites (including 11 ungrouped), 212 HED achondrites, 69 lunar meteorites, 62 ureilites, 43 iron meteorites, 35 Martian meteorites, 31 Rumuruti chondrites, 27 primitive achondrites, 24 mesosiderites, 19 relict meteorites (all iron meteorites), 15 pallasites, 13 enstatite chondrites, 11 ungrouped achondrites, 7 enstatite achondrites. Of the meteorites classified in 2021, 1270 are from Antarctica, 1049 from Africa (930 with an NWA name), 329 from South America (326 from Chile), 123 from Asia, 20 from North America (19 from the USA), 6 from Europe, 3 from Oceania, and 2 from unknown locations.

TRENDS AND SPECIFICITIES

Meteoritical Bulletin 110 (MB110) contains the 2802 meteorites submitted to and accepted by the Nomenclature Committee of the Meteoritical Society in 2021. This includes 10 falls (Arpu Kuilpu, Djadjarum, Glendale, Kindberg, Madura Cave, Motopi Pan, Oroconuma, Punggur, Tihigrin, Winchcombe), with 2014 ordinary chondrites (including 1 ungrouped ordinary chondrite), 220 carbonaceous chondrites (including 11 ungrouped), 212 HED achondrites, 69 lunar meteorites, 62 ureilites, 43 iron meteorites, 35 Martian meteorites, 31 Rumuruti chondrites, 27 primitive achondrites, 24 mesosiderites, 19 relict meteorites (all iron meteorites), 15 pallasites, 13 enstatite chondrites, 11 ungrouped achondrites, 7 enstatite achondrites. Of the meteorites classified in 2021, 1270 are from Antarctica, 1049 from Africa, 329 from South America, 123 from Asia, 20 from North America, 6 from Europe, 3 from Oceania, and 2 from unknown locations.

In detail, 1270 meteorites are from Antarctica, 1049 from Africa (930 with an NWA name), 329 from South America (326 from Chile), 123 from Asia, 20 from North America (19 from the USA), 6 from Europe, 3 from Oceania, and 2 from unknown locations (Fig. 1). As for the last few years, Chile, with 326 meteorites (12% of the total), is now the main source of meteorites outside of North Africa and Antarctica. The meteorites classified in MB110 include 10 falls that occurred between 2018 and 2021 with the addition of Oroconuma that is from 2011. It is noteworthy that 5 of these 10 falls’ meteorites were recovered with the assistance of camera networks such as the Desert Fireball...
Network in Australia (Bland et al., 2012), or international networks such as FRIPON (Colas et al., 2020).

The meteorites listed in MB110 comprise 2014 ordinary chondrites (including one ungrouped ordinary chondrite), 220 carbonaceous chondrites (including 66 CM, 55 CV, 42 CK among which 9 CK3, 35 CO, 9 CR, and 11 ungrouped carbonaceous chondrites), 212 HED achondrites, 62 ureilites, 69 lunar meteorites (a record high), 43 iron meteorites, 35 Martian meteorites (including 5 nakhlites), 31 Rumuruti chondrites, 27 primitive achondrites, 24 mesosiderites, 15 pallasites, 13 enstatite chondrites, 11 ungrouped achondrites, 7 aubrites.

Compared to previous years, the number of ungrouped chondrites (12) and ungrouped achondrites (11) has increased significantly. The ungrouped chondrites include mostly chondrites that are on the border between type 2 and type 3, and that have oxygen isotopic composition distinct from CM2 (for instance Telakoast 001; see Irving et al., 2022).

NOTABLE METEORITES

Winchcombe (CM2) is the latest of a series of five CM falls since 2017. Another notable fall is the Motopi Pan howardite. Meteorite finds that are notable for their mass, rarity, and/or scientific interest include El Ali (15.2 t iron belonging to the IAB complex), Erg Atouila 001 (a 793 g ungrouped achondrite with a modal abundance of ~95% albitic alkali feldspar, making it the first meteoric albitite), Chug Chug 086 (only the 11th ungrouped ordinary chondrite), NWA 13758 (100 kg R3), NWA 14505 (24 kg CV3). Five new nakhlites have been registered in MB110, a very significant addition in view of the total numbers of known nakhlites (28 without considering pairing). The Nomenclature Committee now recognizes the CL carbonaceous chondrite group following the publication of Metzler et al. (2021). Five meteorites have been reclassified as CL in MB110: Coolidge, Loongana 001, Los Vientos 051, NWA 033, and NWA 13400. The large number of type 2/3 ungrouped carbonaceous in MB110 call for more work that may eventually lead to the definition of additional carbonaceous chondrite groups in peer-reviewed literature.

ALPHABETICAL TEXT ENTRIES FOR NON-ANTARCTIC METEORITES

See online version of this article.

NEW DENSE COLLECTION AREAS

In 2020, 38 new dense collection areas (DCA) were created, including 26 in the northwest Africa area: 11 in Algeria, 11 in Morocco and Western Sahara, 3 in Mali, 1 in Mauritania, 4 in China, 4 in Iran, 2 in the United Arab Emirates, 1 in Turkey, and 1 in Libya. A full list of all approved DCAs, with maps, can be found at https://www.lpi.usra.edu/meteor/DenseAreas.php.

LISTING OF INSTITUTES AND COLLECTIONS

An up-to-date index of collections and approved repositories (next to a green check mark) cited in the Meteorite Bulletin can be found here: https://www.lpi.usra.edu/meteor/MetBullAddresses. php?grp=country

Data Availability Statement—The data that support the findings of this study are available in the supplementary material of this article.
REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article.

Appendix S1. A complete copy of the text entries for non-Antarctic meteorites.

Appendix S2. Data including Antarctic meteorites. Information about the approved meteorites can be obtained from the Meteoritica Bulletin Database (MBD) available online at https://www.lpi.usra.edu/meteor/.