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ABSTRACT

We demonstrate how to use persistent homology for cosmological parameter inference in a tomographic cosmic shear survey. We
obtain the first cosmological parameter constraints from persistent homology by applying our method to the first-year data of the Dark
Energy Survey. To obtain these constraints, we analyse the topological structure of the matter distribution by extracting persistence
diagrams from signal-to-noise maps of aperture masses. This presents a natural extension to the widely used peak count statistics.
Extracting the persistence diagrams from the cosmo-SLICS, a suite of N-body simulations with variable cosmological parameters,
we interpolate the signal using Gaussian processes and marginalise over the most relevant systematic effects, including intrinsic
alignments and baryonic effects. For the structure growth parameter, we find S 8 = 0.747+0.025

−0.031, which is in full agreement with other
late-time probes. We also constrain the intrinsic alignment parameter to A = 1.54± 0.52, which constitutes a detection of the intrinsic
alignment effect at almost 3σ.
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1. Introduction

In the past decades, weak gravitational lensing has emerged as
an indispensable tool for studying the large-scale structure (LSS)
of the Universe. Weak lensing primarily relies on accurate shape
and distance measurements of galaxies. Ongoing and recently
completed surveys have provided the community with a sizeable
amount of high-quality data; for example, the Kilo Degree
Survey (KiDS, de Jong et al. 2013), the Dark Energy Survey
(DES, Flaugher 2005), and the Hyper Suprime-Cam Subaru
Strategic Program (HSC, Aihara et al. 2018). Further surveys
are scheduled to start observing in the next years; they will
probe deeper and larger areas enabling measurements of cosmo-
logical parameters with sub-per cent accuracy; for example, the
Vera Rubin Observatory’s Legacy Survey of Space and Time
(LSST, Ivezic et al. 2008), the Euclid survey (Laureijs et al.
2011), and the Nancy Grace Roman Space Telescope (RST)
survey (Spergel et al. 2013). These upcoming surveys are of
special relevance for solving tensions related to measure-
ments of the structure growth parameter S 8 = σ8

√
Ωm/0.3

(Hildebrandt et al. 2017; Planck Collaboration VI 2020;

Joudaki et al. 2020; Heymans et al. 2021; Abbott et al. 2022),
which is defined along the main degeneracy direction in con-
ventional weak lensing studies. Here, Ωm is the dimensionless
matter density parameter and σ8 parametrises the amplitude
of the matter power spectrum. Improved data and independent
analysis choices are crucial to determine whether this tension is
due to new physics, a statistical fluctuation, or the manifestation
of unknown systematics. For example, Joudaki et al. (2017)
showed that the current tension in S 8 between the CMB and the
local Universe could be lifted when allowing for a dynamical
dark energy model, meaning that measuring the equation of
state of dark energy is of the utmost importance in the next
decades.

Shear two-point statistics have emerged as the prime analysis
choice for cosmic shear as they present a number of key advan-
tages (e.g., Secco et al. 2022; Hikage et al. 2019; Asgari et al.
2021). Such statistics are physically motivated by the fact that
they describe the early Universe almost perfectly. The late
Universe, however, contains a considerable amount of non-
Gaussian information that is not captured by two-point statistics,
such that jointly investigating second- and higher-order statistics
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increases the constraining power on cosmological parameters
(see, e.g., Bergé et al. 2010; Pyne & Joachimi 2021). This addi-
tional information is currently explored with a variety of analy-
sis tools, which either use analytical models (e.g., Halder et al.
2021; Gatti et al. 2021; Burger et al. 2022) or rely on large
suites of numerical simulations. For this work, the most rele-
vant examples for a simulation-based analysis are peak statistics
(Martinet et al. 2021b, and references therein, hereafter M+21)
and Minkowski functionals (e.g., Shirasaki & Yoshida 2014;
Petri et al. 2015; Parroni et al. 2020), which are both based on
aperture mass maps constructed from shear fields. M+21 also
showed that a joint analysis of peaks and two-point correlation
functions (2PCF) improves cosmological constraints on S 8, Ωm,
and the dark energy equation-of-state parameter w0 by 46%,
57%, and 68%, respectively. Zürcher et al. (2021) showed that
a joint analysis using 2PCF with Minkowski functionals, a topo-
logical summary statistic, on aperture mass maps increases the
figure of merit in the Ωm–σ8 plane by a factor of 2. We note that
there exist many other promising simulation-based methods such
as bayesian hierarchical forward modelling (Porqueres et al.
2021, 2022), likelihood-free inference (Jeffrey et al. 2021), or
the scattering transform (Cheng et al. 2020).

In this paper, we focus on persistent homology, a topologi-
cal method that combines the advantages of peak statistics and
Minkowski functionals but also captures information about the
environment of topological features. Persistent homology spe-
cialises in recognising persistent topological structures in data
and we refer the interested reader to a recent review written
by Wasserman (2018), who highlights its diverse applications in
various fields. Following early concepts about persistent homol-
ogy and Betti numbers in cosmology (van de Weygaert et al.
2013), several groups have formalised the approach (Sousbie
2011; Pranav et al. 2017; Feldbrugge et al. 2019; Pranav 2021).
In particular, Kimura & Imai (2017) were the first to show
that the hierarchical topological structure of the galaxy distri-
bution decreases with increasing redshift using small patches
of Sloan Digital Sky Survey (SDSS). More recently, Xu et al.
(2019) developed an effective cosmic void finder based on per-
sistent homology, while Kono et al. (2020) detected baryonic
acoustic oscillations in the quasar sample from the extended
Baryon Oscillation Spectroscopic Survey in SDSS. Moreover,
Biagetti et al. (2020, 2022) showed with simulations that per-
sistent homology is able to identify primordial non-Gaussian
features. Heydenreich et al. (2021, hereafter H+21) performed
a mock analysis using persistent homology on cosmic shear
simulations, highlighting its potential to break the degeneracy
between S 8 and w0.

Persistent homology summarises the topological structure of
data in so-called persistence diagrams. There are different meth-
ods for performing statistical analyses on such diagrams (see
Sect. 3.2). In H+21, we worked with persistent Betti numbers.
In this work, we opted for ‘heatmaps’, which constitute a more
robust statistic for persistence diagrams. We extract heatmaps
from a series of mock data that match the DES-Y1 survey
properties (Flaugher 2005; Harnois-Déraps et al. 2021, hereafter
HD+21), including a Cosmology Training Set, a Covariance
Training Set, and a suite of Systematics Training Set, constructed
from the SLICS (Harnois-Déraps & van Waerbeke 2015), the
cosmo-SLICS simulations (Harnois-Déraps et al. 2019) and
the Magneticum hydrodynamical simulations (Biffi et al. 2013;
Saro et al. 2014; Steinborn et al. 2015, 2016; Dolag 2015;
Teklu et al. 2015; Bocquet et al. 2016; Remus et al. 2017;
Castro et al. 2018, 2021). Following HD+21, we then train
a Gaussian process regression (GPR) emulator, which is fed

to a Markov chain Monte Carlo (MCMC) sampler to obtain
cosmological parameter estimates. We significantly expand on
the results from H+21 by including the main systematic effects
related to cosmic shear analyses, namely photometric redshift
uncertainty, shear calibration, intrinsic alignment of galaxies,
baryon feedback and masking. These systematics, particularly
baryon feedback and intrinsic alignments, account for 25% of
our reported final error budget. Furthermore, as introduced in
M+21, our results are obtained for a tomographic topological
data analysis where we include the cross-redshift bins analy-
ses. This leads to the first cosmological parameter constraints
obtained from persistent homology based on analysing cosmic
shear data, here provided by the DES year-1 survey (Abbott et al.
2018).

The paper is organised as follows: In Sect. 2 we describe
the data and simulations; the theoretical background on persis-
tent homology, a description of our data compression methods,
the formalism for the two-point statistics and the cosmological
parameter estimation are presented in Sect. 3. In Sect 4 we dis-
cuss our mitigation strategies for systematic effects and show the
validation of our pipeline in Sect. 5. We finalise our work with
the results shown in Sect. 6 and our discussion in Sect. 7.

2. Data and simulations

2.1. DES-Y1 data

We use in this work the public1 Year-1 data released by DES
presented in Abbott et al. (2018, DES-Y1 hereafter). The pri-
mary weak lensing data consist of a galaxy catalogue in which
positions and ellipticities are recorded for tens of millions of
objects, based on observations from DECam mounted at the
Blanco telescope at the Cerro Tololo Inter-American Observa-
tory (Flaugher et al. 2015). The galaxies selected in this work
match those of Troxel et al. (2018, hereafter T+18) and HD+21,
applying the Flags select, Metacal, and the Redmagic fil-
ters to the public catalogues, yielding a total unmasked area of
1321 deg2 and 26 million galaxies.

The shear signal γ1/2 is inferred from the Metacalibration
technique (Sheldon & Huff 2017), which further provides each
galaxy with a Metacal response function S i that must be
included in the measurement. As explained in T+18, this method
requires a prior on an overall multiplicative shear correction of
m±σm = 0.012±0.023, which we then use to calibrate the mea-
sured galaxy ellipticities as ε1/2 → ε1/2(1 + m). We then assume
that these ellipticities are an unbiased estimator for the shear γ.

Following T+18, the galaxy sample is further split into four
tomographic bins based on their individual estimated photo-
metric redshift ZB, which is measured with the Bpz method
(Benítez 2000). At this point, the redshift distribution of the four
tomographic populations are estimated with the ‘DIR’2 method,
following Joudaki et al. (2020) and HD+21. As argued in these
two references, the DIR approach is more robust to poten-
tial residual selection effects in their training sample than the
DES-Y1 Bpz stacking method presented in Hoyle et al. (2018).
Although it could also be affected by incomplete spectroscopy
and colour pre-selection (Gruen & Brimioulle 2017), bootstrap
resampling of the spectroscopic samples points towards a sig-
nificantly smaller uncertainty in the mean redshift of the pop-
ulations, achieving σz = 0.008, 0.014, 0.011 and 0.009 for

1 DES-Y1 catalogues: des.ncsa.illinois.edu/releases/dr1.
2 This method relies on the direct calibration of the n(z) from a sub-
sample of DES-Y1 galaxies for which external spectroscopic data are
available. See Lima et al. (2008) for more details.
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tomographic bins 1..4, respectively (Joudaki et al. 2020).
Despite these important differences, the DIR n(z) is consistent
with the fiducial estimate presented by the DES collaboration. It
brings in excellent agreement the DES-Y1 and the KV-450 cos-
mic shear data (Hildebrandt et al. 2020, also based on the DIR
method). Asgari et al. (2020) showed that the inferred S 8 value
is affected by less than 1σ, which is certainly a considerable
effect but causes no internal tension between the two methods
of redshift estimation.

2.2. Mock galaxy catalogues

The analysis presented in this work largely follows the
simulation-based inference methods of HD+21, which com-
pletely relies on numerical weak lensing simulations for the
cosmology inference, the estimation of the uncertainty and the
mitigation of systematics and secondary effects. Most of the
mock data used in this work has been presented in HD+21,
which we review in this section.

2.2.1. Cosmology Training Set

This set of simulations is used to model the dependence
of the signal on cosmology. Based on the cosmo-SLICS
(Harnois-Déraps et al. 2019), it consists of weak lensing light
cones sampling 26 points in a wCDM cosmological model (i.e.
cold dark matter with dark energy beyond the cosmological con-
stant Λ), where 25 points are distributed on a Latin Hyper-
cube, covering the ranges Ωm ∈ [0.10, 0.55], S 8 ∈ [0.60, 0.90],
h ∈ [0.6, 0.82] and w0 ∈ [−2.0,−0.5], where h is the reduced
Hubble parameter. The last point is set manually to a fiducial,
ΛCDM cosmology. Each node consists of two independent N-
body simulations produced by Cubep3m (Harnois-Déraps et al.
2013), with initial conditions designed such as to suppress the
sampling variance. The code follows the non-linear evolution of
15363 particles in a 505 h−1 Mpc box, producing between 15 and
28 mass sheets of co-moving thickness equivalent to half the box
size, filling up a 10 × 10 deg2 light cone to z = 3.0. Random ori-
entations and shifting are introduced in this process such that
a total of 25 pseudo-independent light cones are generated per
N-body run. Five of these are used in the current paper, out of
25, which is sufficient to model the statistics within the DES-Y1
precision (as in HD+21). Validation tests revealed that the third
line of sight from the first N-body seed is a statistical outlier:
for example, the standard deviation of the convergence σκ dif-
fers from the mean of the full cosmo-SLICS light cones by more
than 4σ. Due to the limited size of our training sample, this par-
ticular line of sight could bias our cosmological model. We thus
skipped over it and verified afterwards that the results are not
strongly affected by this choice, although it slightly improves
the accuracy on S 8 during the validation test. In total, the Cos-
mology Training Set consists of 26×9 = 234 survey realisations.

2.2.2. Covariance Training Set

This suite is mainly used to estimate the sampling
covariance in the data vector. Based on the SLICS
(Harnois-Déraps & van Waerbeke 2015), it is produced
from 124 fully independent N-body realisations, with the same
mass resolution and simulation volume as the cosmo-SLICS.
All carried out at the same cosmology, these light cones started
from different noise realisations of the initial conditions, thereby
sampling the statistical variance in the data. The mean over
all measurements from the Covariance Training Set is also

independent of the Cosmology Training Set and well converged
towards the ensemble average, making this an ideal data set with
which we validate our cosmology inference pipeline later on.

2.2.3. Systematics Training Set – Mass resolution

The force resolution of N-body simulations is limited by
the number of particles, the choice of softening length and
the force accuracy setting. This inevitably translates into a
decrease in the clustering of dark matter in the highly non-
linear scales, which in turn affects the statistics under study. The
SLICS-HR are a suite of high-resolution simulations introduced
in Harnois-Déraps & van Waerbeke (2015), in which the force
accuracy of Cubep3m has been significantly increased, yielding
5 light cones with more accurate mass densities. As detailed in
Sect. 4, we verify that our training data are not strongly affected
by this known limitation.

2.2.4. Systematics Training Set – Baryons

Baryonic feedback processes from sustained stellar winds,
supernovae and active galactic nuclei are known to redistribute
the matter around over-dense regions of the Universe in a
manner that directly affects the weak lensing measurements
(Semboloni et al. 2011). If left unmodelled, these processes will
significantly bias the inferred cosmology in analyses based
on 2PCF or non-Gaussian statistics (e.g., Coulton et al. 2020;
Zürcher et al. 2021; Martinet et al. 2021a). In this work, our
approach consists of measuring our statistics in hydrodynam-
ical simulations in which the baryon feedback can be turned
on and off. The relative impact on the data vector is then used
to model the effect of baryons on our statistics. As in HD+21,
we use the Magneticum simulations3 to achieve this, more pre-
cisely the Magneticum Run-2 and Run-2b (Castro et al. 2021),
in which stellar formation, radiative cooling, supernovae and
AGN feedback are implemented in cosmological volumes of
352 and 640 h−1 Mpc, respectively, with a spatial resolution
that is high enough to capture the baryonic effects at scales
relevant to our study. The adopted cosmology is consistent
with the SLICS cosmology, with Ωm = 0.272, h = 0.704,
Ωb = 0.0451, ns = 0.963, and σ8 = 0.809. These simula-
tions reproduce a number of key observations, including many
statistical properties of the large-scale, intergalactic, and inter-
cluster medium (see Hirschmann et al. 2014; Teklu et al. 2015;
Castro et al. 2018, for more details). Moreover, the resulting
overall feedback is consistent with that of the BAHAMAS simu-
lations (McCarthy et al. 2017), which are based on a completely
independent sub-grid calibration method. The Baryons Training
Set and their dark-matter-only counterpart are used to inspect
the impact of baryonic physics on the data vector, from which
we extract a correction factor used to forward-model the effect
on dark-matter-only simulations. Full details on the treatment of
the systematics are presented in Sect. 4.

2.2.5. Systematics Training Set – Photometric redshifts

The redshift distribution of the data is known to a high preci-
sion within the DIR method however, the residual uncertainty
must be accounted for in the analysis. For this, we use the mocks
described in HD+21 in which the n(z) has been shifted by a small
amount in order to study the impact on the signal. These sam-
ple at ten points the posterior of the expected shifts in the mean

3 www.magneticum.org

A125, page 3 of 22

http://www.magneticum.org


A&A 667, A125 (2022)

redshifts of the DIR method itself (Joudaki et al. 2020), and in
each case, we construct 10 full survey realisations at the cosmo-
SLICS fiducial cosmology, from which we extract our statistics.
This approach allows us to measure the derivative of the persis-
tent homology statistics with respect to shifts in dz. The priors
on dz are listed in Table 1.

2.2.6. Systematics Training Set – Intrinsic Alignments

The assumption that the observed shapes of galaxies are ran-
domly aligned in absence of foreground lensing matter fails to
account for their intrinsic alignment (IA), an important con-
tribution that arises from a coupling between their shapes and
the large-scale structure they are part of (for a review see
Joachimi et al. 2015). This important secondary signal tends to
counteract the cosmic shear signal, which can therefore inter-
fere with the cosmological inference. Although there exist ana-
lytical models to describe this effect for two-point functions,
higher-order statistics must rely on IA-infused simulations to
account for this important effect. In this work, we use the infu-
sion method presented in Harnois-Déraps et al. (2022), where
intrinsic galaxy shapes are linearly coupled with the projected
tidal field, consistent with the non-linear alignment model of
Bridle & King (2007). Although the redshift distribution of
these mocks exactly follows that of the data, their construction
requires that the galaxy ellipticities linearly trace the simula-
tion density fields, whose positions therefore no longer replicate
that of the DES-Y1 data. These mocks have no masking, nor
Metacalibration responses included and are therefore used
to estimate the relative impact of IA on our persistent homol-
ogy measurements. They have an IA amplitude that is allowed
to vary, as controlled by the AIA parameter. We measure the per-
sistent homology statistics from 50 cosmo-SLICS light cones at
the fiducial cosmology, for values of AIA ∈ [−5.0, 5.0], and use
these to construct a derivative, similar to the way we handle the
photometric redshift uncertainty.

2.2.7. Creating the galaxy catalogues

The output of each simulation is a series of 100 deg2 lensing
planes that serve to assign convergence (κ) and shear (γ1/2) to
copies of the DES-Y1 data. As described in HD+21, the sur-
vey footprint is segmented into 19 regions, or tiles, which all
fit inside our simulated maps. The summary statistics are com-
puted individually on each tile and combined afterwards to con-
struct the data vector. In this construct, the galaxy positions,
ellipticities ε1/2 and Metacalibration weights S i in the mock
data exactly match that of the real data, avoiding possible biases
arising in non-Gaussian statistics when these differ (see e.g.,
Kacprzak et al. 2016, Appendix D of H+21). Mock ellipticities
are obtained by rotating the observed ellipticities by a random
angle and combining the resulting randomised signal εn with the
simulated (noise-free) reduced shear g via:

ε =
εn + g

1 + εng∗
, (1)

where bold symbols denote complex numbers (for example,
g = g1 + ig2). We calculate the reduced shear as g = γ/(1 − κ).
In total, we compute 10 shape-noise realisations for every sim-
ulated survey realisation, each using a different random seed in
the rotation. This procedure allows us to average out a large part
of the fluctuations introduced by the shape noise, improving both
our predictions and our estimate of the sample covariance while
preserving the data noise levels. Redshifts are assigned to every

Table 1. Prior ranges of cosmological and nuisance parameters in the
likelihood analysis.

Parameter Prior Type Prior range

Ωm uniform [0.1, 0.55]
h uniform [0.6, 0.82]
Ωb delta 0.0447
τ delta 0.08
ns delta 0.969
σ8 uniform [0.53, 1.3]
w0 uniform [−2.0,−0.5]
wa delta 0
S 8 uniform [0.6, 0.9]
AIA uniform [−5, 5]
baryon feedback uniform [0, 2]
∆m1 Gaussian µ = 0.12, σ = 0.023
∆m2 Gaussian µ = 0.12, σ = 0.023
∆m3 Gaussian µ = 0.12, σ = 0.023
∆m4 Gaussian µ = 0.12, σ = 0.023
dz1 Gaussian µ = 0, σ = 0.008
dz2 Gaussian µ = 0, σ = 0.014
dz3 Gaussian µ = 0, σ = 0.011
dz4 Gaussian µ = 0, σ = 0.009

Notes. Priors on cosmological parameters are provided by the range of
our Cosmology Training Set, prior on ∆mi and on AIA are from T+18,
while those on dzi are from Joudaki et al. (2020).

simulated galaxy by sampling from the DIR redshift distribution
corresponding to the tomographic bin they belong to.

2.3. Calculating maps of aperture masses

As in H+21, we perform our computations on signal-
to-noise maps of aperture masses (Schneider 1996;
Bartelmann & Schneider 2001), computing the signal Map(θ)
and noise σ

(
Map(θ)

)
on a grid as:

Map(θ) =
1

ngal
∑

i wiS i

∑
i

Q(|θi − θ|)wiεt(θi; θ) , (2)

σ
(
Map(θ)

)
=

1
√

2ngal
∑

i wiS i

√∑
i

|wiε(θi)|2Q2(|θi − θ|) , (3)

where the wi are optional weights assigned to measured galaxy
ellipticities (set to 1.0 in this work), S i are the respective
responses calculated by the Metacalibration shear estimator
(T+18), and the tangential component of the shear εt(θi; θ) is cal-
culated via

εt(θi; θ) = −(ε1 + iε2)
(θi − θ)∗

(θi − θ)
. (4)

We then compute the signal-to-noise map (S/N map) of aper-
ture masses as the ratio between the two quantities. As before,
we use the following Q-filter function (Schirmer et al. 2007;
Martinet et al. 2018, hereafter M+18):

Q(θ) =

[
1 + exp

(
6 − 150

θ

θap

)
+ exp

(
−47 + 50

θ

θap

)]−1

×

(
θ

xcθap

)−1

tanh
(

θ

xcθap

)
, (5)
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Fig. 1. Example signal-to-noise map of aper-
ture masses for a 5 × 5 deg2 sub-patch of one of
the Covariance Training Set catalogue (left), and
the same map when a threshold of 0.5 is applied
(right). The white ‘holes’ in the right map corre-
spond to local maxima of the map and give rise to
the topological ‘features’ that are summarised in
Dgm1.

with a concentration index of xc = 0.15 (Hetterscheidt et al.
2005), which was chosen to optimally select the mass profiles
of dark matter halos (Navarro et al. 1997). For the filter radius
we choose θap = 12.5′. As in H+21, we compute the S/N maps
by distributing both galaxy ellipticities εi and their squared mod-
uli |εi|

2 for each tile on a (600 × 600) pixel grid, and perform the
convolutions in Eqs. (2) and (3) via a Fast Fourier-Transform.
Contrary to previous work, we use a cloud-in-cell algorithm to
distribute the galaxy ellipticities on a grid, yielding more accu-
rate results for small scales when dealing with high-quality data.

As shown in M+21, the traditional approach of computing
the aperture mass statistics for individual tomographic bins only
(hereafter auto-bins) does not yield optimal results. Instead, we
perform the computation for all combinations of tomographic
bins by concatenating the respective galaxy catalogues (cross-
bins). This approach allows us to extract additional information
about correlated structures along the line of sight. For example,
a massive, nearby galaxy cluster can be detected as a peak in the
S/N maps for tomographic bins 1 and 2. However, if we were
only to analyse persistence heatmaps of the two respective bins,
both would register the cluster as a peak, but the information that
the peak is at the same position in both maps would be lost. To
utilise this information, we also need to analyse the S/N map of
a combination of both bins. Based on the four fiducial DES-Y1
redshift bins, this optimised method leads to 15 bin combinations
(1, 2, 3, 4, 1∪2, ..., 3∪4, ..., 1∪2∪3∪4) from which we extract
heatmaps.

As the galaxies in our mock data follow the exact positions
of the real galaxy catalogue, they are subject to the overall survey
footprint and internal masked regions. We only want to consider
the parts of our S/N maps where we have sufficient informa-
tion from surrounding galaxies, therefore we construct our own
mask in the following way: we combine the galaxy catalogues of
all four tomographic bins and distribute these galaxies on a grid.
Then we mask all pixels of the tile where the effective area con-
taining galaxies within the aperture radius θap is less than 50%.
In particular, we mask the boundary of each tile to ensure that
neighbouring tiles are treated as independent in the persistence
calculations (compare H+21). This mask is then applied to every
combination of tomographic bins of the respective survey tile.

With this method, we compute the S/N maps for each of
the 19 tiles of the DES-Y1 survey footprint, for each of the 15
tomographic bins and for each of the 10 shape noise realisa-
tions. The next section describes how cosmological information
is extracted from these maps with statistics based on persistent
homology.

3. Methods

We use methods from persistent homology to quantify the sta-
tistical properties of S/N maps of aperture masses and analyse
their dependence on the underlying cosmological parameters.
The main idea can be described as follows.

We take a S/N map of aperture masses and apply a threshold
to that map. We then cut off all parts where the value of the S/N
map exceeds that threshold (compare Fig. 1). This gives rise to
two types of topological features. The first types are connected
components, that is regions of low S/N that are surrounded by a
region of higher S/N, which is above the cut-off threshold. These
connected components correspond to local minima in the S/N
map, which in turn correspond to an under-density in the matter
distribution. The second type of topological features are holes,
that is regions of high S/N that are above the cut-off threshold,
with an environment of S/N that surrounds them and is lower
than the cut-off threshold. These holes correspond to the local
maxima of the S/N map, which indicate an overdensity in the
underlying matter distribution.

When the cut-off threshold is gradually increased, these fea-
tures change. Connected components start to show up (are born)
once the threshold is higher than their minimum S/N value. At
some higher threshold, the connected component will merge
with a different connected component (or die)4. Similarly, an
overdensity starts to form a hole once the cut-off threshold
exceeds the S/N value of its environment. This hole is com-
pletely filled in once the threshold exceeds the maximal S/N
value of the overdensity.

For each such topological feature, we write b for its birth (the
threshold at which it is born) and d for its death (the threshold
at which it dies). We plot the collection of all points (b, d) as a
scatter plot, called the persistence diagram Dgm; we write Dgm0
for the persistence diagram of connected components and Dgm1
for the one of the holes (see Fig. 2). In particular, it is straight-
forward to recover the peak count statistics from this: The death
of a hole corresponds to the maximal S/N value of an overden-
sity, so the set of deaths is the collection of all peaks in the S/N
map. However, persistent homology offers one crucial advan-
tage: the persistence of a feature, defined by d − b, yields infor-
mation about how much a peak protrudes from its surrounding
environment. In particular, features with a very small persistence
are more likely to be caused by noise fluctuations, which can be
taken into account in the following statistical analysis. Persistent

4 When two connected components merge, the one that was born at a
lower threshold survives. This is known as the elder rule.
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Fig. 2. Two persistence diagrams for the simulation shown in Fig. 1. The
blue crosses represent features of Dgm0, the orange crosses represent
features of Dgm1. For visibility, only every 500th feature is shown. We
note that all points in this diagram lie above the diagonal.

homology offers a natural way to account for masked regions,
which we describe in the next subsection. We denote the persis-
tence diagrams that account for the presence of masked regions
by DgmM

0 and DgmM
1 .

From the persistence diagrams DgmM
0 and DgmM

1 we then
create so-called heatmaps by smoothing the diagrams with a
Gaussian. Every point of the heatmap can now be used for sta-
tistical analysis of the persistent topological structure of the S/N
maps of aperture mass. In the next two subsections, we give a
slightly more formal introduction into these statistics derived
from persistent homology and describe their application.

3.1. Persistent homology

In this section, we give a short overview of the aspects of per-
sistent homology that we use in the present paper. More detailed
explanations can be found in Sect. 2.3 of H+21. For a general
introduction to the topic that is geared towards its applications in
data science, see Chazal & Michel (2021) or Otter et al. (2017);
further information about the mathematical background can be
found in Oudot (2015).

Persistent homology is a technique from topological data
analysis that allows summarising the topological features of a
sequence of spaces. This is a versatile tool that can be applied in
many different settings. However, the application that is relevant
for the present article is that persistent homology gives a sum-
mary of the topological features of a map f : X → R ∪ {±∞},
where X is in principle any (topological) space. (Here, the
sequence of spaces is given by taking subsets of X that consist
of points where the value of f lies below a certain threshold.) In
our setting, X is a (10 × 10 deg2) tile of the sky (which we inter-
pret as a subset of R2 and represent by a (600 × 600) pixel grid)
and f is the function that assigns to every point its S/N value as
defined in Sect. 2.3. An example of this can be found in Fig. 1.

The persistent homology of each such map f can be sum-
marised by two persistence diagrams Dgm0 = Dgm0( f ) and
Dgm1 = Dgm1( f ). Each of these persistence diagrams is a col-
lection of intervals [b, d), where b, d ∈ R ∪ {±∞}. As each such
interval is determined by the two values b < d, one can equiv-
alently see a persistence diagram as a collection of points (b, d)

in (R ∪ {±∞})2 that lie above the diagonal. We call such a point
(b, d) a feature of the persistence diagram; b is commonly called
the birth and d is its death. Roughly speaking, the points in Dgm0
correspond to the local minima of the function f , whereas the
points in Dgm1 correspond to the local maxima. In both cases,
the difference d−b of such a feature (b, d) is called its persistence
and describes how much the corresponding extremum protrudes
from its surroundings.

The actual computation of the Dgm0 or Dgm1 associated
with an S/N map f is done as follows: as explained in Sect. 2.3,
the S/N maps we compute are defined on a (600 × 600) pixel
grid, and a subset of these pixels are masked. We set the value
of every masked pixel to be −∞ and compute the persistence
diagrams Dgm0 and Dgm1 associated to this map5 (see Fig. 2).
As explained in H+21 (Sect. 2.3.3), relative homology offers a
natural way to work with persistent homology in the presence
of masks. The idea here is that a feature in Dgmi that is of
the form (−∞, d) corresponds to a minimum or maximum of f
that originates from a masked area as these are the only points
where f takes the value −∞. This is why we do not actually
work with Dgm0 or Dgm1 but instead define ‘masked’ persis-
tence diagrams DgmM

0 and DgmM
1 as follows: the persistence

diagram DgmM
0 is obtained from Dgm0 by simply removing all

features coming from the masks, meaning all points of the form
(−∞, d). To get DgmM

1 from Dgm1, we again start by remov-
ing all points of the form (−∞, d′), but then for every feature
of the form (−∞, d) in Dgm0 (so those that got removed when
transforming Dgm0 into DgmM

0 ), we add a new feature (d,∞)
to DgmM

1
6.

3.2. Persistence statistics

From the calculations described in the previous section, we
obtain for each S/N map two persistence diagrams DgmM

0 and
DgmM

1 . In order to carry out a statistical analysis of these persis-
tence diagrams, one needs to be able to compute expected values
and covariances. A priori, a persistence diagram is a particular
collection of points in (R ∪ {±∞})2, and there is no canonical
way of computing distances, sums and averages of such collec-
tions. There are different approaches to overcoming these dif-
ficulties. Most of them proceed by converting persistence dia-
grams into elements of a suitable vector space and then using
tools for statistics and data analysis in this space. An overview
of different options to perform statistics on persistence diagrams
can be found in Chazal & Michel (2021), in particular Sect. 5.9
and in Pun et al. (2018). For this work, we tested three different
approaches to the problem: persistent Betti numbers, persistence
landscapes and heatmaps. All of these convert persistence dia-
grams into elements of certain function spaces.

Persistent Betti numbers are probably the most direct
approach and were used in H+21. They represent a persistence
diagram Dgmi by the function βi : (R ∪ {±∞})2 → R, where
βi(x, y) is the number of points (b, d) in Dgmi that lie to the
‘upper left’ of (x, y), meaning that x ≤ b and d ≤ y. For
more explanations about persistent Betti numbers, see H+21,
Sect. 2.2.3 and Appendix B.

5 We use the Cubical Complexes module of the public software
Gudhi (Dlotko 2020).
6 DgmM

0 and DgmM
1 are the persistence diagrams associated to the per-

sistence modules of the homology relative to the masked regions M.
This is why DgmM

1 is not simply obtained by removing all mask fea-
tures from Dgm1. For more explanations, see H+21, Sect. 2.3.3.
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Fig. 3. Heatmap of the persistence diagram in Fig. 2
with a scaling parameter of t = 0.2 (for the com-
putation of the Heatmaps, all features are taken into
account, not just every 500th as in Fig. 2). The red
points correspond to the evaluation points that were
chosen by the χ2-maximiser outlined in Sect. 3.3. The
extracted data vector can be seen in Fig. 4.

Persistent landscapes are a more elaborate alternative,
introduced in Bubenik (2015) and already successfully used
in applications, for example in Chittajallu et al. (2018) and
Kovacev-Nikolic et al. (2016). However, we were not able to set
them up in a way that led to competitive results. We suspect
that the reason for this was the great number of features (around
500 000 per line of sight) in our persistence diagrams. The prob-
lem we were facing was that because of this number of features,
we obtained a very large and noisy data vector. We reduced
its dimension using a principal component analysis, similar to
Kovacev-Nikolic et al. (2016), but unfortunately, the quality of
the resulting data was not good enough to obtain sufficiently
tight bounds on the cosmological parameters. This might change
when the principal component analysis can be applied to a less
noisy data vector that is extracted from a larger training sample.

Heatmaps are the method that worked best for us in the
present setting. These are defined in the spirit of the multi-
scale kernel introduced in Reininghaus et al. (2015). The idea
is to replace each point in a persistence diagram with a Gaus-
sian. More precisely, one considers the diagram as a discrete
measure (i.e. a sum of Dirac delta distributions) on D ⊂ R2,
where D = {(x, y) ∈ R2|x < y} and convolves this with a two-
dimensional isotropic Gaussian distribution. The result is for
every value t > 0 a continuous function ut(x, y) : D→ R that can
be seen as a smoothed version of the persistence diagram. The
value t is called the scaling parameter and determines how much
smoothing is applied to the initial diagram. For an example of
such a heatmap, see Fig. 3.

We compute the heatmaps in the following way: we first
compute the persistence diagram DgmM for the S/N maps of
each tiled realisation of the DES-Y1 footprint and for each tomo-
graphic bin. For each of these, we create a two-dimensional
histogram of the persistence diagram with 100 × 100 bins. For
Dgm0 our bins cover the S/N range [−3, 2]2, for Dgm1 the bins
cover the S/N range [−1, 4]2. The upper limit of 4 in the S/N
maps avoids issues with source-lens coupling as elaborated in
Martinet et al. (2018). All persistence features that lie outside of
this range are projected to the edge of the respective bin ranges.
Afterwards, we convolve these histograms with a Gaussian ker-
nel of scaling parameter t = 0.2 using two-dimensional FFTs7.

3.3. Data compression

To perform a Bayesian cosmological parameter inference, we
compress the data provided by the persistence heatmaps. We

7 We tried different values between t = 0.05 and t = 0.4. The results
were stable with respect to these changes, and the value of 0.2 appears
to be a good compromise between stability and precision.

explored several compression methods, which are discussed in
Appendix A. In the end, we opted for an adaptation of our
method developed in H+21; we iteratively build a data vec-
tor in the following way: As a first step, for each pixel x of a
heatmap, we compute the mean squared difference between the
single cosmologies of cosmo-SLICS and their mean, weighted
by the inverse variance within the SLICS

∆xweighted ≡

25∑
i=0

(
xcosmoSLICS,i − 〈xcosmoSLICS〉

)2

σ2(xSLICS)
. (6)

This ∆xweighted describes the cosmological information content
of a pixel from the heatmap, as it quantifies how much its
value varies between different cosmologies with respect to the
expected standard deviation. As the first point of our data vec-
tor, we choose the one with the highest cosmological informa-
tion content. Then we proceed to add more points in the follow-
ing way: assuming we already have n entries in our data vector,
we determine the next entry from the mean squared difference,
weighted by the inverse sub-covariance matrix estimated from
the SLICS. In other words: Let ∆xi ≡ xcosmoSLICS,i−〈xcosmoSLICS〉

be the difference between the data vector of the ith cosmology
of cosmo-SLICS and the mean data vector of all cosmo-SLICS.
For each pixel in the heatmap that is not already part of the data
vector x, we create a new data vector x′ that contains this pixel,
and then we compute

χ̂2 =

25∑
i=0

∆x′iC
−1
SLICS∆x′i . (7)

The pixel yielding the highest χ̂2 is then added to the data vector,
and the procedure is repeated until we have reached the desired
amount of data points. Again, this serves to maximise the cos-
mological information content of our data vector with respect
to the expected covariance. To ensure that our data vector fol-
lows a Gaussian distribution, we only consider elements of the
heatmaps that count at least 100 features (compare Fig. A.2). We
found that 12 data points per tomographic bin combination yield
good results, but the dependence on the number of data points is
weak. An example of such a resulting data vector can be seen in
Fig. 4.

While this method certainly does not capture all of the infor-
mation residing in the heatmaps, this ‘χ2-maximiser’ manages
to capture most information and is therefore competitive with
the other data compression methods. A comparison is given in
Appendix A.
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Fig. 4. Data vector for the individual cosmologies from our Cosmology
Training Set, colour-coded by their respective value of S 8 (dotted lines)
and the measured values in the DES-Y1 survey (black). For better visi-
bility, the bottom panel shows the same data vector where all values are
divided by the mean of our Covariance Training Set.

3.4. Two-point statistics

The established methods to infer statistical properties of the
matter and galaxy distribution concentrate on the second-order
statistics such as the 2PCFs, their Fourier counterparts,
the power spectra, or derived measures such as COSEBIs
(Schneider et al. 2010; Asgari et al. 2020). The key advantage of
these statistics over others is that, although they capture only the
Gaussian information of the large-scale structure, they can be
calculated analytically from the well-understood matter power
spectrum P(k, z). Indeed, the lensing power spectrum between
galaxies of tomographic bin i with redshift distribution ni(z) and
those of tomographic bin j with n j(z) is modelled in the Limber
approximation as

Ci j
`

=

∫ χH

0

W i(χ)W j(χ)
χ2 P

(
` + 1/2
χ

, z[χ]
)

dχ , (8)

where χH is the co-moving distance to the horizon and W(χ) is
the lensing efficiency defined as

W(χ) =
3ΩmH2

0

2c2

∫ ∞

χ

dχ′
χ(χ′ − χ)
χ′a(χ)

q(χ′) . (9)

Here, q(χ) = n(z[χ]) dz[χ]
dχ is the line of sight probability density of

the galaxies, H0 the Hubble parameter and c the speed of light.
From the projected lensing power spectrum, the cosmic shear
correlation functions ξi j

± are computed as

ξ
i j
± (ϑ) =

1
2π

∫ ∞

0
Ci j
`

J0,4(`ϑ) ` d` (10)

where J0,4 are the Bessel functions of the first kind. To com-
pute the theoretical two-point correlation functions we calcu-
late the power spectrum P(k) using the public Halofit model
(Takahashi et al. 2012).

We use the software treecorr (Jarvis et al. 2004) to esti-
mate the 2PCF ξ̂

i j
± (ϑ) from the simulations and the DES-Y1

Fig. 5. Accuracy of the GPR emulator evaluated by a leave-one-out
cross-validation, shown here for the case where the aperture mass maps
are constructed from the concatenation of all four tomographic redshift
bins (i.e. no tomography). The x axis depicts the data vector entry, and
the y axis the relative difference between predicted and measured value.
The 26 individual dotted lines correspond to one cosmology that is left
out of the training set and then predicted, the solid black line is the mean
of all dotted lines. The black dashed lines depict the standard deviation
from the Covariance Training Set.

lensing data, computed as

ξ̂
i j
± (ϑ) =

∑
a,b wawb

[
ε i

t (θa)ε j
t (θb) ± ε i

×(θa)ε j
×(θb)

]∑
a,b wawbS aS b

, (11)

where the sums are over all galaxy pairs (a, b) in tomo-
graphic bins (i, j) that are inside the corresponding ϑ-bin. As
in HD+21, we used 32 logarithmically spaced ϑ-bins in the
range [0.5′, 475′.5], although not all angular scales are used in
the parameter estimation (see the following section).

3.5. Cosmological parameter estimation

As in H+21, we train a GPR emulator using data extracted
from the 26 different cosmo-SLICS models to interpolate our
data vector at arbitrary cosmological parameters within the train-
ing range. We refer the reader to H+21 and HD+21 for more
details on the emulator. We assess its accuracy by perform-
ing a leave-one-out cross-validation: we remove one cosmol-
ogy of the cosmo-SLICS from our training sample and let the
GPR-emulator predict this cosmology, training on the other 25.
We repeat this procedure for all 26 cosmologies and use the
mean squared difference between predictions and truth as an esti-
mate for the error of the emulator, which is typically well below
the statistical error (compare Fig. 5). We then add this to the
diagonal of our sample covariance matrix to account for uncer-
tainties in the modelling.

An alternative method to estimate the uncertainty of the pre-
dictions is to use the error provided by the GPR emulator itself.
We also tested this method and found that, while this method
is a bit slower (since the inverse covariance matrix needs to be
re-computed in every step of the MCMC), it provides compara-
ble, albeit slightly tighter constraints than the first method. In the
end, we opted for the more conservative choice of estimating the
modelling uncertainties via cross-validation.
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As in HD+21, we then integrate our GPR emulator into
the cosmoSIS analysis pipeline (Zuntz et al. 2015) and infer
the cosmological parameters by sampling the likelihood using
the polychord sampling method (Handley et al. 2015), which
constitutes a good compromise between speed and accuracy
(Lemos et al. 2022). A few relatively minor changes to the
cosmoSIS likelihood module allow for an easy and fast joint
analysis of both persistent homology statistics and shear two-
point correlation functions.

Finally, we estimate our sample covariance matrix from the
124 survey realisations of the Covariance Training Set. Specif-
ically, we compute a matrix for each of the 10 different real-
isations of the shape noise and use the average over those 10
covariance matrices as our best estimate. Here, we randomly
distribute the 124 lines of sight for the 19 regions to avoid over-
estimating the sample variance (compare HD+21). Further, since
the inverse of a simulation-based covariance matrix is generally
biased (Hartlap et al. 2007), we mitigate this effect by adopt-
ing a multivariate t-distribution likelihood (Sellentin & Heavens
2016). The extracted covariance matrix can be seen in Fig. 6, the
priors used for cosmological parameter estimation are listed in
Table 1.

4. Mitigating systematic effects

Our cosmological parameter analysis needs to account for sys-
tematic effects that are known to affect cosmic shear data. The
most important ones for this work are intrinsic alignments of
source galaxies, baryonic physics, multiplicative shear bias and
uncertainties in the redshift estimation of galaxies (Mandelbaum
2018). On top of these, limits in the force resolution of the
cosmo-SLICS might introduce a bias into our modelling, plus
source clustering can produce systematic differences between
the data and the simulations, in which the latter is absent. While
we investigate the former, the latter has been shown in HD+21
to be largely subdominant in the aperture mass statistics mea-
sured in the DES-Y1 data and is therefore neglected here. In
this section, we explain how these systematic effects affect our
2PCFs and persistent homology measurements and detail the
mitigation strategies we chose to account for their impact.

4.1. 2PCF

We use the public modules in cosmoSIS to marginalise over the
impact of intrinsic alignments. Following T+18, we model IA
with the non-linear alignment model (Bridle & King 2007, here-
after referred to as the NLA model), which adds a contribution
to the matter power spectrum that propagates into the lensing
signal following Eqs. (8) and (10). More sophisticated IA mod-
els, including tidal torque terms (notably the Tidal Alignment
and Tidal Torque model, or TATT Blazek et al. 2019) have been
used recently in cosmic shear analyses, but there is no clear evi-
dence that the data prefer such a model over the NLA (T+18,
Secco et al. 2022). The NLA model can have multiple param-
eters (amplitude, redshift dependence, luminosity dependence,
pivot scales, colour); however, we follow HD+21 and vary only
the amplitude (AIA) and luminosity (α) parameters, considering
no other dependencies. This is justified by the weak constraints
that exist on them in the DES-Y1 data (compare T+18). The
parameters AIA and α are allowed to vary in the range [−5.0, 5.0].

Following the fiducial DES-Y1 choices, the impact of baryon
feedback is minimised by cutting out angular scales in the
ξ± statistics where unmodelled baryonic physics with a strong

Fig. 6. Correlation matrix for a joint analysis with both persistent
homology and two-point correlation functions.

AGN model8 could shift the data by more than 2%. We, there-
fore, exclude from our analysis the same small scales as those of
T+18, which are different for ξ+ and ξ−, and further vary with
redshift.

The shear inference is obtained with the Metacalibration
method in this work, which has a small uncertainty that can
be captured by a shape calibration factor ∆m, which multiplies
the observed ellipticities as ε1/2 → ε1/2(1 + ∆m). As described
in T+18, ∆m is a nuisance parameter that we sample by a
Gaussian distribution with a width of 0.023, centred on 0.012
when analysing the data and on zero when analysing simula-
tions. cosmoSIS includes this nuisance on the two-point func-
tion model directly, namely ξi j

± → ξ
i j
± (1 + ∆mi)(1 + ∆m j). The

priors on m are listed in Table 1.
Photometric errors in the 2PCFs are mitigated by using the

generic module within cosmoSIS, which shifts the ni(z) by
small bias parameters ∆zi and updates accordingly the lensing
predictions. These bias parameters are sampled from Gaussian
distributions with widths corresponding to the posterior DIR
estimates of the mean redshift per tomographic bin ‘i’, also tab-
ulated in Table 1.

4.2. Persistent homology

As mentioned in Sect. 2.2, we assess the impact of systematics
on the topology of aperture mass maps by using the Systemat-
ics Training Set, which are numerical simulations specifically
tailored for this exercise. Following HD+21, we neglect the cos-
mology scaling of these systematics and only evaluate their rel-
ative impact at the fiducial cosmology. We find that the overall
impact of systematic effects is sufficiently well captured by a lin-
ear modelling strategy: for each systematic effect with respec-
tive nuisance parameter λ (i.e. AIA for intrinsic alignments, ∆z
for redshift uncertainties, ∆m for multiplicative bias and bbar for
baryons), we measure the impact xsys(λ) on the measured data
vector from the associated Systematics Training Set and fit each
point of the data vector with a straight line:

xsys(λ) = mxλ + xnosys . (12)

In particular, x(0) ≡ xnosys is the data vector which is not
impacted by any systematic effects. For a given set of val-
ues of the nuisance parameters, we combine these different

8 The power spectrum of the OWLS AGN model (van Daalen et al.
2014) is used for this assessment.
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Fig. 7. Impact of the main systematic effects on
the data vector. For each systematic, we show
the measured (solid line) and interpolated (dot-
ted line) ratio of the systematic-infused data vec-
tor over a reference data vector. For simplicity,
we only show the results for the combination
of all four tomographic redshift bins. The black
dashed lines correspond to the 1σ standard devia-
tion estimated from the Covariance Training Set.

sources of uncertainty to model our systematics-infused data
vector as:

xsys = xnosys + mIAAIA + mbarbbar + mdz∆z + m∆m∆m . (13)

While this certainly constitutes a simplified approach that does
not capture potential cross-correlations between different sys-
tematic effects nor any cosmology dependence, we consider it
sufficient at the current level of uncertainties (compare Fig. 7).
To compute mIAAIA, the Intrinsic Alignments mocks are infused
with AIA values of [−5.0, −2.0, −1.0, 0.5, 0.0, 0.5, 1.0, 2.0 and
5.0], however we set the redshift dependence to zero, given the
weakness of the constraints on this parameter in the DES-Y1
data (see T+18). In the upper left panel of Fig. 7 we report the
fractional effect on the signal and observe that positive IA sup-
presses the elements of the data vector. This is caused by the par-
tial cancellation of the lensing signal by IA, which attenuates the
contrasts in the aperture mass maps, which translates into a topo-
logical structure with fewer features. The figure also presents the
results as modelled by the linear interpolation, which reproduces
the nodes on which the training was performed to sufficient accu-
racy, indicating that our approach is adequate to model IA, at
least for the range of AIA values tested here.

The impact of shear calibration uncertainty is modelled by
measuring the statistics for ellipticities modified with four values
of ∆m, namely −0.025, −0.0125, 0.0125, and 0.025, and once
again fitting a straight line through each element of the homol-
ogy data vector as a function of ∆m. The results are presented in
the upper right panel of Fig. 7, showing that within this range,
shear calibration affects the statistics by less than one per cent
except for two elements, which are affected by up to 4%.

Photometric uncertainties are modelled from the dedicated
Systematics Training Set in which the n(z) in each tomographic
bin has been shifted by 10 values ∆zi, from which we are once
again able to fit a linear response for each element of the data
vector. In the case of cross-redshifts, the mean of all shifts is
used to compute the derivative, as in HD+21. The lower right
panel of Fig. 7 shows the impact on the data vector, which is
sub-dominant compared to the IA. This is largely due to the tight

priors on ∆zi that we are able to achieve with the DIR method,
as derived in Joudaki et al. (2020) and reported in Table 1.

The Magneticum simulations are used in a similar way to
test the impact of baryonic feedback, with the main difference
that we can only fit mbar on two points: the simulations with and
without baryons (bbar = 1 and 0, respectively). We neverthe-
less apply the same methodology here, which allows us to inter-
polate between these two cases to mimic milder models (e.g.,
bbar = 0.5) and even to extrapolate and explore stronger feedback
models (bbar > 1.0). The lower right panel of Fig. 7 shows that
baryonic feedback with bbar = 1.0 has almost as much impor-
tance as an IA model with AIA = 1.0 and should therefore not be
neglected in this analysis.

The last systematic effect that we include in this analysis is
the impact of the force accuracy in the N-body simulations that
are used in the modelling. We inspect the difference between the
data vector measured from the high-accuracy mocks to that of
the main Cosmology Training Sample at the fiducial cosmology
and find that the overall impact of this effect is sub-dominant to
the sample variance of the SLICS. Nevertheless, we measure the
ratio of the high-resolution data vector over the fiducial one and
apply it as a correction factor to re-calibrate our model in the
analysis of observed data.

4.3. Mitigation strategy

We further estimate the impact of the different systematic effects
on the cosmology inference by running likelihood analyses for
data vectors that have been infused with one systematic effect
while keeping these unmodelled. The results of these tests can
be seen in Fig. 8. We observe that the baryons have a small
impact on the inferred Ωm and can bias S 8 by 1σ, assuming
bbar = 1.0. Unmodelled IA (with AIA = 1.0) tend to bias both Ωm
and S 8 towards lower values; both photometric redshift uncer-
tainties and multiplicative shear bias have a minor impact on the
posterior constraints, given the tight priors available on ∆z and
∆m.

We finally investigate how marginalisation over the differ-
ent systematic biases changes the posterior contours in our
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Fig. 8. Impact of unmodelled systematic biases
on the posterior of a likelihood analysis with
heatmaps. In all cases, we do not marginalise
over any systematic effects. The target data vec-
tor is then infused with one systematic bias, and
we run a likelihood analysis for this infused
data vector. For comparison, we show the con-
straints on a data vector that is not infused by
systematics (grey). Note that the values of the
dz shifts are given in units of the standard devi-
ation of the dz prior (compare Table 1).
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Fig. 9. Effects of marginalising over different
systematic effects. In all cases, we perform a
likelihood analysis on mock data, marginalis-
ing over one systematic effect. For comparison,
we show the constraints we achieve when we
do not marginalise over any systematics (grey).
The case where we marginalise over all sys-
tematics corresponds to the blue contours in
Fig. 10.

likelihood analysis in Fig. 9. We find that marginalisation over
baryonic effects and intrinsic alignments both decrease the con-
straining power on Ωm and S 8 by about 25%, whereas the
marginalisation over multiplicative shear biases and photomet-
ric redshift uncertainties have a negligible impact. Both analyses
suggest that the impact of systematic effects on persistent homol-
ogy statistics is noticeable but not severe and that our marginali-
sation strategies work as expected.

5. Validation

In this work, we want to investigate whether a likelihood analy-
sis of tomographic cosmic shear data with persistent homology
is feasible and whether a joint analysis with two-point statistics
yields more information than an analysis that solely utilises two-
point statistics. For this purpose, we perform three likelihood
analyses of the same mock data extracted from the Covariance
Training Set: one solely with two-point correlation functions that
we model within the cosmoSIS pipeline, one solely with our
persistent homology method, and finally the combined analysis.

As can be seen in Fig. 10 and Table 2, the persistent homol-
ogy analysis is already able to constrain S 8 better than the two-
point analysis (S 8 = 0.817+0.040

−0.028 for persistent homology ver-
sus S 8 = 0.772 ± 0.043 for two-point statistics). However, a
joint analysis offers several additional benefits. While two-point
statistics are able to constrain the parameter to AIA = −0.19+0.90

−0.40,
persistent homology yields A = 0.47+0.64

−0.56 and a joint analysis
is able to reduce the error bars to AIA = 0.29 ± 0.36. Apart
from tighter constraints on S 8 (S 8 = 0.815+0.030

−0.021 for a joint anal-
ysis), a joint analysis also yields competitive lower limits on
the equation-of-state parameter of dark energy (w0 > −1.14 at
68% confidence), while two-point statistics are unable to place
any constraints on this parameter, with our choice of sampling
method. Most importantly, all cosmological and nuisance param-
eters are recovered within 1σ. We thus conclude that our analysis
pipeline has been validated and move on towards a cosmological
parameter analysis of real data.

6. Results

Having validated our analysis pipeline, we now use it to per-
form our cosmological parameter analyses using the DES-Y1
data. In order to do that, we split the source galaxy catalogue
into the same 19 tiles as our mock data and compute the persis-
tence statistics as well as the two-point correlation functions for
each tile individually.

The results can be seen in Fig. 11. We observe that neither
persistent homology nor two-point correlation functions are able
to place meaningful constraints on the equation of state param-
eter for dark energy, w0. For the matter clustering parameter S 8,
the constraints from persistent homology (S 8 = 0.747+0.025

−0.031) are
tighter than, but fully consistent with, the constraints from two-
point correlation functions (S 8 = 0.759+0.049

−0.042). The same goes
for the amplitude of galaxy intrinsic alignments (A = 1.54±0.52
for persistent homology and A = 1.33+0.92

−0.56 for two-point correla-
tion functions). In particular, this implies that persistent homol-
ogy detects the intrinsic alignment effect roughly at the 3σ
level. Interestingly, the constraints for the matter density param-
eters are not consistent (Ωm = 0.468+0.051

−0.036 for persistent homol-
ogy and Ωm = 0.256+0.034

−0.058 for two-point correlation functions).
Hamana et al. (2020) observed a similar trend when observing
data from the HSC: While a real- and Fourier-space analysis
yield perfectly consistent values for S 8, a slight tension between
the Ωm constraints can be observed in their Fig. 15. We observe
a much larger tension that prevents us from performing a joint
parameter analysis, which would tighten the S 8-constraints con-
siderably. We discuss this in more detail in Appendix B, where
we show that such a tension arises in about 0.5% of all cases due
to a mere statistical fluctuation. A visual inspection of the data
vector suggests that this tension might be caused by the high-
est signal-to-noise peaks (see Appendix B), but when excluding
these in a parameter analysis, we find only a marginal improve-
ment of the tension that is likely just due to the loss of constrain-
ing power. We note that the upper limit in the constraints for
Ωm from persistent homology barely passes our criterion not to
be dominated by the prior (compare Table 2). This means that a
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Fig. 10. Results of likelihood analyses for DES-Y1 mock data. We show the results for two-point statistics (red), persistent homology (blue), and
for the joint analysis (grey, filled). The dotted lines show the prior ranges, the solid black lines visualise the true value of each parameter, and the
black crosses denote the nodes of our Cosmology Training Set. The complete results can be seen in Fig. C.2, the marginalised posterior constraints
can be seen in Table 2.

Table 2. Posterior 68% confidence intervals on cosmological and nuisance parameters from the likelihood analyses in Figs. 10 and 11.

Method Ωm S 8 w0 A
Validation (mock data)

persistent homology 0.323+0.059
−0.053 0.817+0.040

−0.028 − 0.47+0.64
−0.56

ξ± 0.311+0.046
−0.069 0.772 ± 0.043 − −0.19+0.90

−0.40
joint 0.321 ± 0.040 0.815+0.030

−0.021 >−1.14 0.29 ± 0.36
DES-Y1 data
persistent homology 0.468+0.051

−0.036 0.747+0.025
−0.031 <−1.04 1.54 ± 0.52

ξ± 0.256+0.034
−0.058 0.759+0.049

−0.042 >−1.47 1.33+0.92
−0.56

Notes. Constraints are only cited if the value of the marginalised posterior does not surpass 13.5% at the edge of the priors (Asgari et al. 2021).
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Fig. 11. Results of our likelihood analyses for the DES-Y1 survey. We show the results for two-point statistics (red), persistent homology (blue)
and report as well the constraints achieved by HD+21 with peak count statistics (black). The dotted lines denote the prior ranges, the black
crosses denote the nodes of our Cosmology Training Set. The complete results including nuisance parameters can be seen in Fig. C.3, while the
marginalised posterior constraints can be seen in Table 2.

wider prior for Ωm would likely lead to a higher upper limit in
the constraints. The lower limit should not be strongly affected
by the prior, as the likelihood of Ωm already started falling for
Ωm > 0.5.

Comparing our results with the ones from peak count statis-
tics, where HD+21 measured S 8 = 0.737+0.027

−0.031 on the same data
set, we observe remarkably consistent results (compare Fig. 11).
The trend towards high values of Ωm can also be observed in
HD+21 (see in particular Fig. 17 and 18 in HD+21). This is par-
ticularly interesting since their constraints have been achieved
using a pipeline that is fully independent of ours, utilising a dif-
ferent statistic on signal-to-noise maps of aperture masses con-
structed with an independent code, albeit based on the same set
of N-body simulations. Furthermore, we can see that the con-
straints achieved from persistent homology outperform the ones

from peak statistics, albeit not by much. This improvement is
still significant since, contrary to HD+21, we include an error
estimate for the emulator and a marginalisation over intrinsic
alignments and baryonic effects, which decrease the constrain-
ing power of our analysis pipeline.

Comparing our results to T+18, we see that our results from
two-point statistics are a bit different (S 8 = 0.777+0.036

−0.038 in T+18
and S 8 = 0.759+0.049

−0.042 here), which is driven mainly by the dif-
ferent redshift distribution estimates (as shown in Joudaki et al.
2020). Considering the intrinsic alignment effect, we achieve
consistent, but tighter constraints (compare the NLA case of
Fig. 16 in T+18). Regarding the tension we measure for Ωm,
T+18 report Ωm = 0.274+0.073

−0.042, which is fully consistent with our
results from two-point correlation functions and also disagrees
with our constraints from persistent homology.
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Fig. 12. Comparison of the constraints on the matter clustering param-
eter S 8 from DES-Y1 survey data in a wCDM cosmology with fixed
neutrino mass.

7. Discussion

In this work, we carried out a likelihood analysis on tomo-
graphic cosmic shear data using persistent homology, including
the marginalisation over systematic effects, and have shown from
simulated data that the posterior constraints can be significantly
improved in a joint analysis. While this holds true especially for
the intrinsic alignment parameter AIA and the equation of state of
dark energy w0, the constraints on the matter clustering parame-
ter S 8 also improve substantially.

For our analysis, we had to make a number of choices,
including which persistence statistic to use, which smoothing
scale to apply to the heatmaps, and which data compression
method to utilise. We have noticed that the posterior constraints
achieved by a likelihood analysis do not strongly depend on
any of these choices, as can be seen for example in Fig. C.1.
While further fine-tuning could probably slightly improve the
constraining power of our analysis, we believe that this over-
all stability with respect to different analysis choices provides
strong evidence that we have reached the true sensitivity of per-
sistence statistics to cosmology.

When applying our analysis pipeline to real data, we find that
high values of the matter density parameter Ωm are preferred, as
observed in HD+21, where a fully independent pipeline and a
different summary statistic were utilised. The remarkable sim-
ilarity between these results suggests that peak count statistics
and persistent homology quantify similar aspects of the large-
scale structure distribution. The fact that both methods favour
larger values of Ωm may point to a statistical fluctuation in the
DES-Y1 data or an unknown effect modifying the topologi-
cal structure of the matter distribution. We investigate this in
Appendix B and show that the chance of such a tension aris-
ing due to a statistical fluctuation in the data is about 0.5%. We
also note that our underlying training data, the shear catalogues
of the Cosmology Training Sets, are the same as the ones used in
HD+21, so this bias might also point towards a statistical fluctu-
ation in this training set. A larger simulation suite would be able
to shine a light on this, even though this seems unlikely given the
fact that the tension does not exist when validating on simulated
data (see Fig. 10). Our analysis of the tension in Appendix B,
a visual inspection of the data suggests that the tension might
be at least partly driven by the high signal-to-noise peaks in the
aperture mass maps, which carry both the most cosmological
signal and are most affected by systematics. However, exclud-
ing those peaks did not remove the tension, which means that it
can certainly not be fully explained by these high signal-to-noise
peaks.

We performed several consistency checks to investigate
whether the tension is artificially created by our analysis

setup: We tried a parameter inference with two-point corre-
lation functions by measuring them in the Cosmology Train-
ing Set and emulating them via the same pipeline that we
used for persistent homology. Furthermore, we tried remov-
ing some nodes from the Cosmology Training Set and apply-
ing different methods of data compression. The results were
stable under all these tests, suggesting that the simulation-
based inference is not the driver of the tension we measure
for Ωm.

Another possible explanation is that the DES-Y1 data
include an effect that we have not accounted for. This might be
an unknown systematic or a sign of new physics. For example,
2PCF are not sensitive to primordial non-Gaussianities, whereas
persistent homology is (Biagetti et al. 2022).

Overall our constraints on S 8 are consistent with previous
works (see Fig. 12); the largest discrepancy is between our
analysis and the one from T+18, which is mainly driven by
a different method of estimating the source redshift distribu-
tion. When comparing our results to similar works with peak
count statistics, the constraining power of persistent homol-
ogy appears to be slightly better. In addition, there are a
few key differences between our work and HD+21. Firstly,
while HD+21 apply a boost factor to account for baryons, we
marginalise over continuous baryonic effects (and intrinsic align-
ments) with a wide prior, which is inflating our constraints. Sec-
ondly, we account for the emulator uncertainty as described in
Sect. 3.5; this is not done in HD+21. Comparing with H+21,
we see that this emulator uncertainty also inflates cosmologi-
cal parameter constraints, indicating that the contours reported
in HD+21 may be slightly too small. This effect is amplified
by the fact that we were only able to train our emulator on
9 lines of sight per cosmology, compared to the 50 lines of
sight in H+21. Lastly, and most importantly, we have shown
in H+21 that persistent homology excels in a high signal-to-
noise range, which is not accessible in a tomographic analysis of
current-generation surveys. We thus expect this method to out-
perform several other higher-order statistics in next-generation
surveys.
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Appendix A: Data compression of heatmaps

Fig. A.1. Cosmology dependence of the first four principal components.
Each point in the scatter plot represents one of the 26 cosmologies of
the cosmo-SLICS. In the top row, the x and y coordinates correspond to
the value of the first two principal components; in the bottom row, they
correspond to the values of the third and fourth principal components. In
the left column, the colours represent the value of Ωm of the respective
cosmo-SLICS simulation; in the right column, they denote the value
of S 8.

As the raw heatmaps contain 10100 entries per combination of
tomographic redshift bins, a direct cosmological parameter anal-
ysis with these maps is currently impossible. We, therefore, need
to explore different methods of compressing the raw data.

Our first approach to data compression is a principal com-
ponent analysis (PCA). This rather simple method is highly
efficient at reducing complex data to only a few manageable
dimensions (see e.g. Uzeirbegovic et al. 2020). For each com-
bination of tomographic redshift bins, we apply a PCA to the
heatmap extracted from all 19 regions. We see that the PCA cor-
rectly identifies that the differences between the S/N maps of the
different cosmo-SLICS are driven by the changes of the cosmo-
logical parameters Ωm and S 8.

A PCA is still an incredibly useful tool to not only extract
cosmological information from a data vector but also to under-
stand the behaviour of the data itself better. For example,
Fig. A.1 shows that the first principal component is almost
exactly antiproportional to S 8, whereas the second principal
component is proportional to Ωm. Comparing these findings with
Fig. A.3, we see that a high value of Ωm leads to a large num-
ber of features in Dgm1 (peaks) being born and dying between
signal-to-noise values of 1 and 2, whereas a low value of Ωm
leads to more features in Dgm1 being born and dying between
S/N values of −0.5 and 0.5. A similar analysis for the first prin-
cipal components yields the expected conclusion that a higher
value of S 8 leads to more peaks being born and dying at higher
S/N values and more voids being born and dying at lower
S/N values. One disadvantage of PCA is the fact that it is not
straightforward to include the internal covariance of the data vec-
tor: While the PCA might detect huge differences between two

Fig. A.2. Test results for the final data-vector’s Gaussianity. For each of
the 180 data vector entries, we take the set of 10 × 124 measurements
in the Covariance Training Sample and test the null hypothesis that this
sample was drawn from a normal distribution using the measured skew-
ness and kurtosis (D’Agostino 1971; D’Agostino & Pearson 1973). We
then plot a histogram of the corresponding p-values (blue). If each entry
of the data vector is Gaussian, then the distribution of p-values is uni-
form. For comparison, we show the results of the same test with a data
vector that contains only points with about 10 features (orange). While
the blue histogram may show small deviations from a uniform distribu-
tion (there appears to be a downward slope towards higher p-values),
we believe that the assumption of a normal distribution is reasonable.

different cosmo-SLICS simulations, these might just be caused
by the fact that this specific part of the data vector is particularly
noisy, and not by differences in the cosmological signal.

A more sophisticated method of data compression is the
Massively Optimized Parameter Estimation and Data compres-
sion (MOPED, Heavens et al. 2000, 2017; Ferreira et al. 2021).
Assuming a Gaussian likelihood, Gaussian posterior distribu-
tions and a constant covariance matrix C, this compression
method preserves the entirety of the Fisher information to Nparam
dimensions, where Nparam is the number of cosmological (and
nuisance) parameters present in the inference. However, this
method uses the Fisher formalism, and thus knowledge of the
inverse covariance matrix C−1 is required. As our uncompressed
data vector contains 151 500 entries and we can only estimate
C with about 103 sets of simulations, the matrix is singular and
thus not invertible (Hartlap et al. 2007). We, therefore, opted for
sub-sampling our data vector and performing a MOPED com-
pression for each individual combination of tomographic red-
shift bins, but doing this we neglected the information contained
in the cross-correlation between different combinations of red-
shift bins, yielding parameter constraints that were not competi-
tive with the ones from other data compression methods.

While MOPED is an elegant method to compress a data vec-
tor to the absolute minimum of required dimensions, this also
means that all additional information that was not part of this
data compression gets lost. In particular, imperfect knowledge
of the covariance matrix and noisy derivatives heavily affect
the constraining power of MOPED. Asgari & Schneider (2015)
analysed this loss of information and developed a method that
is more stable with respect to changes in the covariance matrix
and derivatives and offers more constraining power in the case
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Fig. A.3. First four (normalised) principal components of the heatmaps in a principal component analysis.

of non-linear parameter degeneracies (like the one between Ωm
and σ8).

All things considered, all data compression methods man-
age to extract a comparable amount of information out of the
raw data vector (see Fig. C.1). We thus opt for the χ2-maximiser
method as the data vector obtained from this method is easiest to
interpret.

Appendix B: On the observed Ωm tension in the
analysis of DES-Y1

When analysing DES-Y1 data, we observe a 3.2σ tension
between the values of Ωm estimated from 2PCF and persistent
homology. In principle, there are several possible scenarios that
can cause this tension. Our validation tests show that this is
unlikely to be caused by a bug in the pipeline. A second possi-
bility is that this is caused by a statistical fluctuation in the data.
The third and most interesting scenario would be the presence
of something unknown (and thus unaccounted for) in the DES-
Y1 data. This could either be a systematic effect that we have
not properly taken into account or a sign of deviations from the
wCDM cosmological model that affects the topological struc-
ture of the data, but not its two-point statistics. For example,
we know that persistent homology is very sensitive to primor-
dial non-Gaussianities in the large-scale structure (Biagetti et al.
2022), which can not be detected by two-point statistics.

B.1. Investigating the severity of the tension

The fact that we achieve extraordinarily consistent results with
HD+21 using a fully independent measurement and inference
pipeline points to the conclusion that this tension is not caused
by a bug in the pipeline. To investigate the probability of a statis-
tical fluctuation causing this effect, we run our inference pipeline
for both 2PCF and persistent homology on 100 individual lines
of sight of the Covariance Training Sample. For each individ-
ual line of sight, we then estimate the tension between 2PCF
and persistent homology on each cosmological parameter. The
results are shown in Fig. B.1. We observe that persistent homol-
ogy seems to favour higher values of Ωm and lower values of
σ8 than 2PCF, while S 8 remains relatively unbiased. We assume

Fig. B.1. Histogram of the tensions in cosmological parameters between
2PCF and persistent homology measured on 100 individual lines of
sight in the Covariance Training Set (blue) and a Gaussian fit to these
values (orange). The actual tension we measured in DES-Y1 is shown
by the dashed black line. No tension is observed when running our
pipeline on the mock data vector constructed from all simulations of
the Covariance Training Set, which is about 12× larger.

that these tensions follow a normal distribution and compute its
mean and variance, constructing a Gaussian fit to the values.
According to this analysis, the chance that the observed bias in
Ωm is due to a statistical fluctuation is at 0.5% (2.6% for σ8),
which is still unlikely, but not as unlikely as the initial 3.2σ ten-
sion we observed suggests. Recall that no tension is observed
when running our pipeline on the mock data vector constructed
from all simulations of the Covariance Training Set, which is
about 12× larger, suggesting that the observed tension results
from statistical fluctuations that are averaged down in our vali-
dation test.
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Fig. B.2. Same as Fig. 4, but we show the data vector for the individual
cosmologies from our Cosmology Training Set, colour-coded by their
respective value of S 8 (dotted lines) and the measured values in the
DES-Y1 survey (black). For a better visibility, all values are divided by
the mean of our Covariance Training Set. In addition, we predict with
the GPR Emulator a data vector where Ωm is increased by 80% with
respect to the cosmology of the Covariance Training Set (dashed line),
one where S 8 is increased by 10% (dash-dotted line), and one where Ωm
is increased by 80% and simultaneously S 8 is decreased by 10% (solid
line).

This effect certainly warrants further investigation. If some-
thing similar shows up in an analysis of KiDS-1000 (Harnois-
Déraps et al. in prep., Heydenreich et al. in prep.), an
investigation into potential causes for a bias in Ωm becomes

highly warranted. If, however, that analysis does not show any
bias in Ωm, we can assume that this tension is likely to be a mere
statistical fluctuation in the data.

B.2. Investigating the cause of the tension

When investigating Fig. B.2, we see that an increase in Ωm by
80% and a simultaneous decrease in S 8 by 10% almost can-
cels out, except for the very first point of the data vector. This
one corresponds to the point in the heatmap that measures the
very high, very persistent peaks (see Fig. 3). We observe this
behaviour consistently throughout all combinations of redshift
bins. However, when we remove the first entry (corresponding
to the high persistent peaks) from every tomographic bin com-
bination, the tension between the two-point correlation function
and persistent homology is reduced (see Fig. B.3) but does not
vanish, and most likely, the decrease in the tension is just due to
the lower constraining power. We can conclude that potentially
a part of the reason for the Ωm-tension is that we measure sig-
nificantly fewer high signal-to-noise peaks in the DES-Y1 data
than in the simulations, however, the tension is not caused by
those peaks. The most important unmodelled systematic effect
that would affect these peaks would be source-lens coupling
(Martinet et al. 2018), but that one would increase the number
of peaks in the simulations, not decrease it.

Although the exclusion of the high signal-to-noise peaks
would reduce the Ωm-tension without significantly affecting our
constraining power on S 8, we keep our fiducial analysis choices,
as switching to this analysis would constitute a major post-
unblinding change.
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Fig. B.3. Results of our likelihood analyses for the DES-Y1 survey. We show the results for two-point statistics (red), persistent homology (blue)
and report as well the constraints achieved by removing the first data point for each tomographic bin (black). The dotted lines denote the prior
ranges, the black crosses denote the nodes of our Cosmology Training Set.
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Appendix C: Complete parameter constraints of the MCMC

Fig. C.1. Comparison of the constraining power of different data compression methods. Our chosen method, the χ2-maximiser is shown in grey,
two alternative methods (PCA and Asgari & Schneider 2015, in red and blue, respectively).
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Fig. C.2. Same as Fig.10, but with all cosmological and nuisance parameters. We note that the constraints on the shear measurement bias parameters
(m1 - m4) and the photometric redshift errors (bias 1 - bias 4) are dominated by the (Gaussian) prior (compare Tab. 1).
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Fig. C.3. Same as Fig.11, but with all cosmological and nuisance parameters. We note that the constraints on the shear measurement bias parameters
(m1 - m4) and the photometric redshift errors (bias 1 - bias 4) are dominated by the (Gaussian) prior (compare Tab. 1).

A125, page 22 of 22


	Introduction
	Data and simulations
	DES-Y1 data
	Mock galaxy catalogues
	Cosmology Training Set
	Covariance Training Set
	Systematics Training Set – Mass resolution
	Systematics Training Set – Baryons
	Systematics Training Set – Photometric redshifts
	Systematics Training Set – Intrinsic Alignments
	Creating the galaxy catalogues

	Calculating maps of aperture masses

	Methods
	Persistent homology
	Persistence statistics
	Data compression
	Two-point statistics
	Cosmological parameter estimation

	Mitigating systematic effects
	2PCF
	Persistent homology
	Mitigation strategy

	Validation
	Results
	Discussion
	References
	Data compression of heatmaps
	On the observed m tension in the analysis of DES-Y1
	Investigating the severity of the tension
	Investigating the cause of the tension

	Complete parameter constraints of the MCMC

