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Abstract
Satellite remote sensing provides real-time information on the extent of the snow cover. However,
the period of record is generally too short to build a reference climatology from these data alone,
preventing their use as climatic indicators. Here we show that reanalysis data can be used to
reconstruct a 30 year snow cover time series that fits well with the satellite observations. This
climatology can then be used to put the current state of the snow cover into perspective. We
implemented this approach to provide real-time information on the snow cover area in the Alps
through a web application.

1. Introduction

Various stakeholders including citizens seek real-
time information on the current state of the envir-
onment (Hewitt et al 2012, Vaughan and Dessai
2014). The availability of real-time meteorological
data, accompanied by their climatic context con-
tributes to increasing environmental awareness and
provides relevant information for the real-time man-
agement of challenging situations (Overpeck et al
2011). Social media now allows a swift dissemina-
tion of such information reducing barriers between
scientific organizations and society (Pearce et al
2019).

In situ meteorological observations are critically
relevant but they often provide sparse sampling of
hydrometeorological variables, especially in moun-
tain regions (Hik and Williamson 2019). Satellites
provide real-time, spatially continuous data on some
essential climate variables (Bojinski et al 2014). How-
ever, satellite observation time periods are often too
short to characterize climatological references, espe-
cially at the local scale. On the other hand, meteor-
ological reanalyzes provide information over longer
time scales but are often not available in real-time.
For example, the global Modern-Era Retrospective
analysis for Research and Applications (MERRA-2) is
published with a latency of a few weeks (Reichle et al
2017). ERA5 is updated with a shorter latency of 5 d.

However, the fully quality-checked final product is
released two months later (Hersbach et al 2020). In
addition, the MERRA-2 and ERA5 spatial resolu-
tions are approximately 50 km and 30 km respect-
ively, which is too coarse for some applications.
More advanced reanalyzes are updated with longer
latency. For example, ERA5-Land (approximately
9 km resolution) is available with a 2–3 month delay
(Muñoz-Sabater et al 2021), which makes it unsuit-
able for real-time applications.

Hence, there is often a gap between the availab-
ility of real-time products and long-term records at
the climactic time scale due to the lack of immediate
real time availability. Many environmental variables
are related to these time scales, making this situ-
ation unfortunate; however, the combination of vari-
ous sources of information can be used to bridge this
gap and build upon their benefits across temporal
and spatial scales (AghaKouchak and Nakhjiri 2012,
Notarnicola 2022).

Here, we exemplify such an approach, focusing on
the development of real-time monitoring of the snow
cover area based on the combination of satellite and
reanalysis data. The current well-establishedmethods
used to retrieve the snow cover extent from space-
borne sensors have been developed since the 1980s. In
particular, the Moderate-Resolution Imaging Spec-
troradiometer (MODIS) multispectral optical sensor
onboard Terra has enabled the daily measurement of
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Figure 1. Tweets published on 5 March 2022 and 10 June 2022 to communicate on the current status of snow cover in the Alps.

the snow cover area at 500 m resolution since 2000
(cloud-permitting). MODIS snow products are dis-
tributed by the National Snow and Ice Data Center
(NSIDC) to alleviate the processing of the MODIS
data by end users. These products indicate the pres-
ence of snow along with a cloudmask (Hall and Riggs
2015).

Based on MODIS data only, the first author has
developed aweb-based tool to analyze in real-time the
snow cover area in the Alps (Alps SnowMonitor n.d.).
This tool has attracted some attention, especially in
the context of the severe drought that affected theAlps
during the winter of 2022 (European Commission.
Joint Research Centre 2022). For example, this tool
allowed us to reveal that on 2 March 2022, the snow
cover area in the Alps had reached its lowest value
since 2001. This finding was published on 5 March
2022 (Gascoin 2022). Later, we showed that the 2022
snow cover area in the Alps reached its minimum
earlier than any other year since 2001 (figure 1).

Other similar tools use the MODIS record to
provide information to the general public, e.g. ‘Snow-
CloudMetrics’ (Crumley et al 2020) or ‘Snow Today’
(Snow Today Article | NSIDC Reports n.d.). How-
ever, although the MODIS data record already spans
22 years, it does not reach the 30 year standards
that are used by meteorological agencies to define
climatological references. Hence, it could lead to

non-robust assessments of the true extend of a
given situation. Given the interest in having real-
time information regarding snow cover in the Alps,
we sought to provide a more robust contextual-
ization of the MODIS observations. To this end,
we used longer reanalysis data spanning the entire
European Alps domain at a sufficiently fine spatial
resolution for this mountain environment, namely,
the Uncertainties in Ensembles of Regional ReAna-
lysis (UERRA) reanalysis at 5.5 km resolution (Soci
et al 2016, Morin et al 2021). A 30 year-long snow
cover area climatology was generated from this data-
set using machine learning to de facto generate
MODIS-like data using the reanalysis for the time
period before the onset of the MODIS observa-
tions. Here, we describe the tool and the method
for generating this contextualization dataset. We
discuss the implications of bringing together the
best of the two worlds of space-borne observations
(real-time, short time periods) with reanalysis data
(longer-term).

2. Method

2.1. Remote sensing data
Our application was designed to map and plot the
evolution of the snow-covered area over a large region
(>104 km2), such as the entire Alps range or one of
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Figure 2.Map of the five regions of interest used to compute the snow cover area.

its main river catchments (figure 2). At this scale,
the Terra/MODISMOD10A1 snowproducts offer the
best compromise in terms of accuracy, spatial resolu-
tion, revisit and duration (Dietz et al 2012, Dumont
and Gascoin 2016).

From the MOD10A1 snow product, we extrac-
ted the NDSI_Snow_Cover field. This field indic-
ates the normalized difference snow index (NDSI) for
snow-covered pixels. The NDSI is computed using
the green and shortwave infrared bands and is used
to identify snow, based on its higher reflectance in
the visible portion of the spectrum compared to the
shortwave infrared (Hall et al 2002). Approximately
50% of the pixels were flagged as clouds; therefore,
we implemented a gap-filling algorithm using linear
interpolation in the time dimension and on a pixel
basis. This algorithm was limited to fill a maximum
of 10 d, which is usually sufficient to fill approxim-
ately 90% of the cloud pixels in temperate regions
(Gascoin et al 2015). Although more sophisticated
algorithms exist to fill the gaps in MODIS snow cover
products, linear interpolation in the time dimen-
sion is an acceptable trade-off between efficiency
and accuracy and sufficient for our scale of analysis
(Parajka and Blöschl 2008, Gascoin et al 2015). The
linear interpolation was bounded to a time window
of 5 d to limit the computation time. The resulting
series of daily gap-free NDSI was converted to a series
of binary snow covermaps (snow/no-snow) using the

threshold NDSI > 0.2. This threshold corresponds to
a snow cover fraction of approximately 30% follow-
ing the relationship which was used in the previous
MOD10A1 products (Salomonson and Appel 2004).
This threshold is arbitrary but necessary as a binar-
ization of the snow cover fraction must be done to
allow for the computation of a snow cover duration
map. Then, daily gap-filled snow cover maps over
2000–2021 were aggregated to a 5 km resolution by
majority resampling. The snow-covered fraction of a
given region was computed from this time series of
5 km resolution snow maps and subsequently used
as training data for the machine learning algorithm
described below.

2.2. Reanalysis data
We used the UERRA 5.5 km reanalysis data, which
covers all of Europe and is available from 1961 to
2015 (Soci et al 2016, Lopez 2019, Morin et al
2021). This reanalysis uses the ERA-40 (from 1961
to 2002) and ERA-Interim (from 2002 to 2015)
global reanalyzes as input to the regional numerical
weather prediction system HARMONIE (Bengtsson
et al 2017) at 11 km resolution, downscaled to
5.5 km resolution. These predictions were com-
bined with an analysis system enabling correc-
tion of the raw predictions of HARMONIE using
in situ observations of temperature, relative humid-
ity and precipitation (Bazile et al 2017). During a

3
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second step, the reanalysis of near-surface atmo-
spheric variables at 5.5 km resolution was used to
drive the snow covermodel Interactions between Soil,
Biosphere and Atmosphere-Explicit Snow (ISBA-
ES) as part of the SURFEX modeling platform
(Masson et al 2013). ISBA-ES snow cover model is
an intermediate complexity 12 layers snow scheme
(Boone and Etchevers 2001, Decharme et al 2016).
This reanalysis provides estimates of daily snow
depth values at 5.5 km resolution (Bazile et al
2017). The full documentation is available along
the UERRA dataset in the Copernicus Climate Data
Store (Lopez 2019). The UERRA snow depth data
available from 1961 to 2015, were used as a pre-
dictor for the machine learning approach described
below.

2.3. Model
We trained a statistical model to predict the snow
cover area of a given region of interest at the daily
time step. For a given day, the input samples (predict-
ors) are the snow depth values on that day extracted
over the region of interest from the UERRA reana-
lysis.We tried linear regression and gradient boosting,
two commonly used machine learning algorithms in
geosciences and ecology. Gradient boosting is a flex-
ible and efficient nonparametric statistical learning
technique for classification and regression (Friedman
2001). We used the implementation of the linear
regression and gradient boosting regression functions
in the Scikit-learn Python module (Pedregosa et al
2011). The model was optimized by minimizing the
squared error between the training and predicted
data. The data were randomly split into training
(75%) and test (25%) subsets. For the gradient boost-
ing, we set the learning rate to 0.1 (default value), the
number of boosting stages to 100 (default value) and
did not activate stochastic subsampling. The function
tomeasure the quality of a split was kept to the default
Friedman mean squared error.

We fit a different model for each region of interest
using the same workflow. We considered five regions
of interest: (a) the entire Alps range and the intersec-
tions of theAlps range polygonwith the river basins of
the Rhine, Rhône, Danube and Po. The Alps and the
river basin polygons were sourced from the European
Environmental Agency.

Indeed, we chose to divide the Alps domain
into river basins to characterize the spatial vari-
ability of the snow cover within the Alps range
and to strengthen the link with external water
resource monitoring tools in a more meaningful way
than an aggregation at the scale of the entire Alps
domain.

We used the region-calibrated model to predict
the snow-covered fraction of each region from1991 to
2018. This series was completedwith theMODIS data

to generate a 30 year climatology until 2021. We con-
sidered that a snow season starts on 1 November and
ends on 1 July. Although the seasonal snow cover can
last beyond July in the Alps, we restricted our analysis
to the core of the snow season to reduce computa-
tional cost. In addition, our method is not adapted
to detect patchy snow cover, which is predominant
during late summer. The predicted snow cover time
series were then aggregated by day of year in the form
of percentile values corresponding to 0 (minimum),
25 (first quartile), 50 (median), 75 (third quartile)
and 100 (maximum). These daily statistics formed
the climatology that was used below. The climatology
was uploaded as a public asset to the Earth Engine
server.

2.4. Real-time implementation
The real-time application was implemented in
Google Earth Engine (Gorelick et al 2017).
MOD10A1 products are quickly ingested in Earth
Engine so that the latency between sensing time and
the availability of the images is usually below 4 d
(see appendix).

The user must select a region of interest (Alps,
Rhine, Po, Rhône or Danube). Then, the application
computes the snow cover area from the beginning
of the snow season until the latest available MODIS
snow product using the same method as described
above, i.e. after linear interpolation of the cloud
pixels. The resulting series is concatenated to the cli-
matology and transferred from the server to the client,
i.e. any web browser that calls the application. The
application returns the data as an interactive chart,
which displays the plotted values if the user hovers
the mouse on the lines. If the user enlarges the chart,
the plotted data can be exported as comma separ-
ated values for further analyses. The computationwas
split into two periods from 1November to 31 Decem-
ber and from 1 January to 1 July to avoid hitting
current Earth Engine usage limits for noncommer-
cial users. The charts were embedded in a webpage
of the Séries Temporelles blog (Alps Snow Monitor
n.d.) but can be run in a separate window of a web
browser.

3. Results

3.1. Evaluation of the model
Figure 3 shows the performance of the gradient
boosting regressor that was used to predict the
snow-covered fraction of the Alps from UERRA
data. The predicted samples were not used in the
model optimization. The model performance is high,
with R2 = 0.98 and a root mean squared devi-
ation (RMSD) value of 4%. A linear regression
model was also tested but performed poorly, with
an R2 value of −1.41 and RMSD value of 39%.
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Figure 3. Evaluation of the predicted snow cover fraction with the gradient boosting regression using the test samples (the entire
domain of the Alps).

Figure 4. Comparison of the linear (left) and gradient boosting (right) regression methods to predict the snow cover fraction
during the snow season 2000–2001 over the entire Alps region.

Figure 4 compares the output of the linear regres-
sion against the gradient boosting regression for the
first year of the training dataset as an example, show-
ing the large noise level in the linear regression
model.

We also obtained an accurate model for every
river basin subregion (figure 5). The perform-
ances were slightly lower, with R2 values ran-
ging from 0.96 to 0.97 and RMSD values ran-
ging from 4% to 6%. Figure 6 shows an example
of the predicted snow cover fraction during
two snow seasons 2004–2006 for the Rhône
subregion.

3.2. Output of the application
Figure 7 shows a screenshot of the application as
of 31 July 2022 when the Po subregion was selec-
ted. Figure 8 compares the output of the application
before and after the introduction of the 30 year clima-
tology. In the former version, 20 years ofMODIS data
were used to provide a range of variability. In the new
version, we plot the current year over the percent-
iles from the 30 year climatology (1991–2020). This
new version reveals the exceptional trajectory of the
snow cover area in the Alps during the hydrological
year 2021–2022, as it remained well below themedian
during almost the entire melt season and eventually

5
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Figure 5. Evaluation of the predicted snow cover fraction using the test samples for every subregion.

Figure 6. Observed and predicted snow cover fraction over the Rhône region during two consecutive snow seasons (2004–2005,
left, and 2005–2006, right).

dropped below the 30 year minimum in June. The
new application also indicates that the snow deficit
was even more severe in the Po river basin since the

snow cover fraction remained below the 30 year min-
imum during most of the snow melt season in 2022
(figure 7).

6
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Figure 7. Screenshot of the application (here the Po river basin subregion was selected). The red line shows the daily snow cover
area of the current hydrological year, whereas the blue line shows the daily median snow cover area from the 30 year climatology
(1991–2020).

Figure 8. Alps snow monitor application before (left) and after (right) the upgrade including the 30 year climatology. Note that
the new application was upgraded to start on 1 October, whereas the previous version only started on 1 November, which explains
why the red curves do not look similar, but they are identical over the common period (1 October–1 July).
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4. Discussion and conclusion

Cloud computing platforms enable the development
of services based on remote sensing data streams
without having to develop infrastructure (data stor-
age, updating, cataloging, processing, publishing).
We developed our application in the Google Earth
Engine, but it could be implemented in another server
since it uses only public data and standard remote
sensing image processing algorithms that are imple-
mented in open-source software.

We find that the error of our statistical model
data slightly increased from the entire Alps domain to
the river basin subdomains. These minimal perform-
ance losses were expected due to the reduction of the
domain size, which tends to increase the uncertainty
in MODIS data. It also reflects the effect of the uncer-
tainties in the UERRA reanalysis at the local scale.
This suggests that further reductions in the domain
size could lead to increased errors, limiting the rel-
evance of this approach for local-scale real-time snow
covermonitoring. Ourmodel was trained after apply-
ing a NDSI threshold of 0.2 to capture lower snow
fractions than the standard 0.4 threshold, however it
may fail to retrieve areas with less than 30% of snow
cover (Salomonson and Appel 2004). The gradient
boosting should be trained again if this threshold is
changed to capture lower snow fractions. We provide
the source code of the entire pipeline to do this (see
Data and code availability below). The integration of
higher resolution remote sensing products is a solu-
tion to focus on more local scales (e.g. ski resorts,
national parks, etc.). Methods exist that allow down-
scaling MODIS to 20 m resolution in real time using
Sentinel-2 products (Revuelto et al 2021). Predictions
into the future are the next step to this approach,
which could be feasible using numerical weather pre-
diction output instead of reanalysis data (Andersson
et al 2021).

Another key limitation of this application is that
it does not provide information on the snow water
equivalent or streamflow. Both variables would be
more directly useful for water management. In snow-
dominated catchments, streamflow can be simulated
in real time using MODIS data and the Snowmelt
Runoff Model (Rango and Martinec 1979, Sproles
et al 2016). This could be done with the same plat-
form if stream gauge data are available to calibrate
the model parameters. Mapping the distribution of
the snow water equivalent might be more challen-
ging, especially inmountain catchments, and requires
a more advanced combination of model and remote
sensing data (Dozier et al 2016).

Despite these limitations, the current application
is relevant to characterize the snow cover and indir-
ectly the status of theAlpswater resources in real time.
This is especially relevant during periods of extreme
weather, such as the 2022 snow drought. It allows
everyone to figure how extreme the current condition

is, thereby contributing to a better understanding of
the climate system and its evolution.

Given the increasing availability of remote sens-
ing products and land surface reanalysis, a similar
approach could be implemented to characterize the
evolution of other key variables such as soil mois-
ture, surface water area, evapotranspiration, vegeta-
tion phenology, etc.

Data and code availability

A pre-release of the application and its previous
version are available at https://labo.obs-mip.fr/
multitemp/apps/alps-snow-monitor/. The data and
Python code to train the model and infer the snow
cover fraction climatology is publicly available onGit-
Hub (https://github.com/sgascoin/ModisExtension/
releases/tag/v1). Earth Engine JavaScript code to
compute the snow cover fraction from MODIS
products and the code of the web application are
publicly available in this git repository (https://
earthengine.googlesource.com/users/sgascoin/apps).
We acknowledge Dongdong Kong (China University
of Geosciences) for sharing the temporal interpola-
tion code (https://github.com/gee-hydro/gee_docs).

Data availability statement

The data that support the findings of this study are
openly available at the following URL: https://github.
com/sgascoin/ModisExtension.
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Appendix

Latency ofMOD10A1 snow products inGoogle Earth
Engine

We define latency as the difference between the
acquisition time of the raw data by the MODIS
sensor and the ingestion time in Earth Engine. This
latency includes the time to generate and distribute
the products from the raw MODIS observations by
the NASA National Snow and Ice Data Center Dis-
tributed Active Archive Center (NSIDC DAAC).

In Earth Engine, MODIS image collections con-
tain a list of daily global mosaics. The ‘version’ field in
the properties of eachmosaic (i.e. image) in the inges-
tion epoch in microseconds. However, each mosaic’s
granules were obtained at different times within the
time range that the mosaic covers (24 h). Since this
information is not preserved in Earth Engine, we
approximate the acquisition time of a MODIS image
as themean of the end and start time properties of the
image.
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Figure A1. Histogram of latency times of MOD10A1 products available in Earth Engine. Latency values were computed from all
products acquired in 2021 (365 images).

We computed latency times for all MOD10A1
images acquired in 2021 that are available in Earth
Engine (figure A1). We found that the images were
available with a median time of 2.34 d, and 90% of
the images were available with a latency of 4.36 d. For
the current set of images acquired in 2022 (on 3 July
2022), the median latency was 3.39 and 90th percent-
ile was 9.07 d. In 2017 and 2018, Earth Engine engin-
eers reported authentication problems with NSIDC
downloads which significantly delayed the availabil-
ity of MOD10A1 products, but this did not happen
again in the recent years.
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