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Abstract 19 

 Accurate implementation of river interactions with subsurface water is critical in large-scale 20 

hydrologic models with a constant horizontal grid resolution when models apply kinematic wave 21 

approximation for both hillslope and river channel flow. The size of rivers can vary greatly in the 22 

model domain, and the implemented grid resolution is too coarse to accurately account for river 23 

interactions. Consequently, the flow velocity is underestimated when the width of the rivers is 24 

much narrower than the selected grid size. This leads to inaccuracy and uncertainties in 25 

calculations of water quantities. In addition, the rate of exfiltration and infiltration between the 26 

river and the subsurface may be overestimated as the modeled area of water exchange between 27 

rivers and subsurface is larger than reality. Therefore, the present study tests the approximation 28 

of subscale channel flow by a scaled roughness coefficient in the kinematic wave equation. For 29 

this purpose, a relationship between grid cell size and river width is used to correct flow velocity, 30 

which follows a simplified modification of the Manning-Strickler equation. The rate of 31 

exfiltration and infiltration between the subsurface and river is also corrected across riverbeds by 32 

a scaled saturated hydraulic conductivity based on the grid resolution even though the grid size is 33 

relatively large. The scaling methodology is implemented in a hydrological model coupling 34 

ParFlow (PARallel FLOW) v3.5 and the Community Land Model (CLM) v4.5. The model is 35 

applied over the Upper Rhine Basin (between France and Germany) for a time period from 2012 36 

to 2014 and at a spatial resolution of 0.055° (~6 km). The validity of the results is examined with 37 

satellite and in situ data through an innovative application of the First Order Reliability Method 38 

(FORM). The scaling approach shows that soil moisture estimates have improved, particularly in 39 

the summer and autumn seasons when cross-validated with independent soil moisture 40 

observations provided by the Climate Change Initiative (CCI). The results underline the use of a 41 
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simple scaling procedure of the Manning coefficient and saturated hydraulic conductivity to 42 

account for the real infiltration/exfiltration rate in large-scale hydrological models with constant 43 

horizontal grid resolution. The scaling procedure also shows overall improvements in 44 

groundwater level estimation, particularly where the groundwater level is shallow (less than 5 45 

meters from the surface). By using the scaling approach, the average bias in soil moisture for the 46 

study domain was decreased from 0.17 mm3/mm3 to 0.1 mm3/mm3. The FORM results show that 47 

the probability of a substantial divergence between the ParFlow-CLM-S soil moisture results and 48 

the CCI-SM observation, which is defined as more than 0.25% of the CCI-SM observation value, 49 

is less than 0.05, 0.11, 0.15, and 0.08 for autumn, winter, spring, and summer, respectively. 50 

Keywords: Hydrological Modeling, Scaling River Parametrization, the Upper Rhine Basin, First 51 

Order Reliability Method 52 

1.  Introduction 53 

Hydrological modeling is an important tool for managing both environmental and water 54 

resources (Soltani, et al., 2021). Hydrological models may be applied on a large global scale 55 

(e.g., Dӧll et al., 2003; Kollet and Maxwell, 2006; Van Dijk et al., 2013) or on small regional 56 

scales (e.g., Christiansen et al., 2007; Huang et al., 2017). Models are still being developed to 57 

better simulate physical processes since they consider the interaction components of the water 58 

cycle, e.g., the relationship between runoff, evapotranspiration, and precipitation is included in 59 

these models (Simmons et al., 2020). 60 

The interaction between subsurface and surface water is a numerically challenging task because 61 

surface and subsurface water do not exist as separate components of the hydrologic cycle, but 62 

rather, interact in response to topographic, soil, geologic, and climatic conditions (Eagleson, 63 
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1978). A common approach is to use river-routing codes, like Hydrologic Engineering Center 64 

(HEC) codes, as well as MODFLOW and its River Package, to determine the head in the river 65 

and then take this as the upper boundary condition of the subsurface modeling. This approach 66 

does not consider the feedback between surface and subsurface models, and a better 67 

representation of the physical processes in these kinds of problems is still a key challenge for 68 

modelers (Kuffour et al., 2020). An integrated approach is possible, either by fully integrated 69 

strong coupling where the surface and subsurface equations are solved simultaneously using a 70 

nonlinear solver (Ababou et al. 2015) or by a two-way iterative coupling where the equations are 71 

solved sequentially. Among the parallel integrated two-way coupled hydrologic models, ParFlow 72 

simulates the surface and subsurface flow (saturated and unsaturated zone) simultaneously in 3D 73 

(Maxwell et al., 2009).  ParFlow has been extended to the coupled surface–subsurface flow to 74 

enable the simulation of hillslope runoff and channel routing in a truly integrated fashion (Kollet 75 

and Maxwell, 2006). ParFlow simulates variably saturated groundwater flow in 3D using the 76 

Richard’s equation (Richards, 1931). Overland flow generated by Manning's equation and the 77 

kinematic wave formulations of the dynamic wave equation is considered as a boundary 78 

condition in the Richard’s equation (Kollet and Maxwell, 2006). This boundary condition 79 

connects the subsurface flow with the land surface flow, and it removes the exchange flux term 80 

from Richard’s equation and calculates the movement of ponded water's free surface at the land 81 

surface. The capacity of ParFlow in performing efficient 3-D simulations is relevant, as in most 82 

existing models (i.e., MIKE SHE), the unsaturated flow is still calculated in 1D (Graham and 83 

Butts, 2005). In addition to this capability, ParFlow is an open-access integrated model. The 84 

documentation of ParFlow is relatively extensive, and it has been tested on the various surface 85 

and groundwater problems in large domains (e.g., over 600 km2) (Ferguson and Maxwell, 2012), 86 
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small basins (e.g., 30 km2) (Kollet and Maxwell, 2006; Engdahl et al., 2016), and even 87 

subsurface–surface and atmospheric coupling (Williams et al., 2013; Shrestha et al., 2015). Since 88 

ParFlow cannot account for surface processes (e.g., evaporation) in integrated studies, ParFlow is 89 

often coupled with a land surface model and, in particular, the Common Land Model (CLM) 90 

(Kollet and Maxwell, 2008). The coupling of a surface and subsurface model improves the 91 

model complexity, bringing potentially more realism regarding the physical processes occurring 92 

at the interface between the deeper subsurface and the surface (Sulis et al., 2017; Beisman, 93 

2007). 94 

ParFlow is originally a grid-based hydrogeological model, and it usually calculates overland 95 

flow at much larger grid scales than the width of the rivers (Schalge et al., 2019). On the other 96 

hand, other hydrological models usually employ routing schemes for separate channels that are 97 

not related to the grid resolution (Schalge et al., 2019). When performing realistic overland flow 98 

simulations, the high computational demand of increasing the spatial resolution limits such 99 

simulations (Clark et al., 2015; Wood et al., 2011). Therefore, using the subgrid digital elevation 100 

model (DEM) was suggested for the ISBA–TRIP (Decharme et al., 2012) model, both of which 101 

are run at relatively low resolution. Neal et al. (2012) have studied the effect of subgrid scale 102 

channel routing on flood dynamics. They have shown the improvement of model performance by 103 

considering smaller channels. Therefore, applying coarse grids would increase the hydrodynamic 104 

dispersion, which indirectly reduces the peaks in the surface flows. 105 

As an alternative to explicit subgrid channel routing, one can consider the scaling of parameters 106 

when using grid-scale river routing models (Niedda, 2004). The subscale parametrization has 107 

been suggested based on the subgrid scale topographic index by Niedda (2004). The subscale 108 

parametrization has been also used with the kinematic wave formulation for flow in rivers and 109 
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channels (Schalge et al., 2019). Thus, an approximation of the subscale channel flow by scaling 110 

Manning’s roughness is used. The scaling coefficient is obtained using the relationship between 111 

the river width and the grid cell size. In order to compensate for the rate of the exfiltration and 112 

infiltration rate across the riverbeds, a grid resolution-aware scaling of saturated hydraulic 113 

conductivity is applied for the top layer (Schalge et al., 2019). By supposing a rectangular-114 

shaped river channel cross-section, it is possible to scale both the roughness coefficient and the 115 

hydraulic conductivity. This method adds no computational cost to the model (Schalge et al., 116 

2019). This method improves the overland-flow parametrization for the distributed hydrological 117 

models with constant horizontal grid resolution. When the subscale parametrization is not 118 

employed, the model output shows smaller river flow velocities when the streams are narrower 119 

than the horizontal grid resolution. Furthermore, the surface areas that exchange water with the 120 

subsurface in a model with wide rivers are usually larger, which causes the error of unrealistic 121 

vertical flows (Schalge et al., 2019). Scaling the roughness coefficients is appropriate when the 122 

surface water flow is governed by the open channel hydraulic performance, and therefore, it does 123 

not address the challenge of the width of the ponded area and subsequent exchanges. 124 

To our knowledge, the scaling approach has not been tested before to improve soil moisture and 125 

groundwater level simulations, though a similar approach with substantial simplifications has 126 

been recently used to improve surface run-off in some idealized test cases (Schalge et al., 2019). 127 

In Schalge et al. (2019), without coupling by any land surface, the ParFlow model has been used 128 

to investigate the impact of scaling river parametrization. In this work, we investigate the impact 129 

of the scaling approach over the main components of the model’s water budget in a real case 130 

study. We implement the scaling approach in  ParFlow (Ashby and Falgout, 1996; Jones and 131 

Woodward, 2001; Kollet and Maxwell, 2006; Maxwell, 2013) version 3.5 (Kuffour, 2019), 132 
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which has been coupled (Maxwell and Miller, 2005; Kollet and Maxwell, 2008) with CLM (Dai 133 

et al., 2003) version 4.5 (Oleson et al., 2013). The model is used to simulate the subsurface flow 134 

with 0.055° (~6 km) spatial resolution over the Upper Rhine Basin between France and Germany. 135 

ParFlow and CLM have been coupled to better understand the physical processes that occur at 136 

the interface between the deeper subsurface and the surface. The basin studied is an important 137 

hydrosystem that exists in Western Europe. Alluvial hydrosystems such as this can store large 138 

quantities of water, although they are vulnerable to excessive abstraction and pollution. In the 139 

present work, the domain is constructed entirely of available data sets, including topography, soil 140 

texture, and hydrogeology.  141 

The paper is organized as follows. Section 2 describes the geographical location of the study area 142 

with an emphasis on the long-term climate condition. Section 3 provides a brief overview of the 143 

equations used in the model with an emphasis on variably saturated groundwater flow, shallow 144 

overland flow, and its integration in the fully coupled land surface–subsurface modeling 145 

framework, and the scaling approaches for Manning's coefficient and hydraulic conductivity. In 146 

addition, the land surface data and atmospheric forcing and evaluation dataset including CCI soil 147 

moisture data and in situ groundwater level data are also presented. Section 4 provides details of 148 

the first-order reliability method (FORM), which is a novel probabilistic validation framework 149 

for validation purposes. Section 5 presents the effect of applying scaling approaches on the 150 

model’s results, including the temporal and spatial pattern of soil moisture and groundwater level 151 

data, which is cross-validated with observations. A discussion of this paper’s results with 152 

previous studies is also presented in Section 5. Finally, concluding remarks are summarized in 153 

Section 6. 154 
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2. Study Area: Geographical and climate condition  155 

A major part of the Upper Rhine Basin with an area of 32.400 km2 is located in the east of 156 

France and along the France–Germany border from Lauterbourg (north) to Basel (south), as 157 

shown in Fig. 1. The basin is separated in the west by the Vosges Mountains and in the east by 158 

the Black Forest. The Rhine alluvial aquifer is mostly made of quaternary sands and gravels. 159 

This aquifer is represented with high hydraulic conductivity from k=10-4 to 10-3 m/s (Majdalani 160 

and Ackerer, 2011). The aquifer is 200 m thick at the center at the east of Colmar; however, it 161 

has a smaller thickness near the alluvial plain borders (Majdalani and Ackerer, 2011). The 162 

groundwater’s main flow is toward the northern direction. In the north of the basin, the 163 

groundwater aquifer is shallow and the water surface is close to the surface. The (natural) 164 

groundwater level varies between 0 and 20 m from the surface. In other words, the mid and north 165 

parts of the aquifer have a wetlands characteristic because of the shallow groundwater depth.  166 

Several of the river tributaries are fed by groundwater, and the river network is very dense (see 167 

Fig. 1); therefore, there is a great deal of water exchange between the surface water and 168 

groundwater resources. The River Ill is the main Rhine tributary, which originates in Sundgau, 169 

France (Thierion et al., 2012).  170 

Precipitation is highly variable over the basin. The mountains of Vosges and the Black Forest 171 

have over 2 m per year of rainfall, whereas the annual plain average is 550 mm per year. The 172 

river changes are hugely affected by the snowfall, and it is important to consider this component, 173 

both the snowfall and melting processes. The snowfall makes up to 3% of the total precipitation 174 

in the plain, but it is much higher near the mountain peaks (37%). Therefore, the groundwater 175 

recharge is very much affected by the mountain streams. In addition, the Alpine snow melt is a 176 

significant source of large quantities of water for the Rhine River, especially at the end of spring.  177 
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 178 

Fig. 1. Geographic location of the Upper Rhine Basin, overlaid by the Digital Elevation Model 179 

(DEM) of the basin as well as the river network.  180 

3. Methods and data 181 

3.1 Model Description 182 

In this study, the coupled surface–subsurface ParFlow (v3.5)–CLM (v4.5) hydrological model is 183 

used. The CLM is a land surface model which represents the moisture, energy, and momentum 184 

balances at the land surface (Dai et al., 2003). ParFlow is a groundwater model, which simulates 185 

variably saturated groundwater flow in 3D using the Richard’s equation (Richards, 1931). 186 

ParFlow cannot account for land surface processes (e.g., evapotranspiration and snow water 187 

equivalent), and the CLM generally does not simulate deeper subsurface flows. Therefore, none 188 

of these models can simulate the physical processes occurring at the interface between the deeper 189 

subsurface and the surface alone (Ren and Xue, 2004; Beisman, 2007; Shi et al., 2014).  190 
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Here we provide a brief description of ParFlow (Ashby and Falgout, 1996; Maxwell, 2013). It is 191 

a groundwater flow model that considers both saturated and unsaturated flow. The surface water 192 

simulator is a 2D model (Kollet and Maxwell, 2006) that uses the kinematic wave equation, and 193 

the groundwater part is a 3D Richards equation solver. The Richards equation formulation 194 

implemented in ParFlow is equivalent to the one in (Kollet and Maxwell, 2006) 195 

(
( ) .(q
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p W p

S W p s
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t t
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where Ss is the specific storage coefficient [L−1], Sw is the relative saturation [-], pψ is the 197 

subsurface pressure head of water [L], t is time [T], ϕ is porosity of the medium [-], q is the 198 

specific volumetric (Darcy) flux [LT−1], and qs is the general source/sink term (includes wells 199 

and surface fluxes, e.g., evaporation and transpiration) [T−1].  200 

The water velocity is simulated using Darcy’s law:  201 
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 Where sK  is the saturated hydraulic conductivity, which depends on soil texture [LT−1]; rK is 203 

the relative permeability [-]; qs is the general source or sink term [T−1] (includes wells and 204 

surface fluxes, e.g., evaporation and transpiration); and z is depth below the surface [L].  205 
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 where ssat [–] is the relative saturated water content, sres [–] is the relative residual saturation, and210 

α  [L-1] and n [–] are soil parameters. Shallow overland flow is now represented in ParFlow by 211 

the kinematic wave equation. In two spatial dimensions, the continuity equation can be written as 212 

s

s s
v q

t

ψ ψ∂ = ∇ +
∂

r
                                                                                                                          213 

(5) 214 

where  v is the depth-averaged velocity vector [LT−1],  sψ is the surface ponding depth [L], t is 215 

time [T], and qs is a general source/sink (e.g., rainfall) rate [LT −1]. If diffusion terms are 216 

neglected, the momentum equation can be written as 217 

, ,f i o iS S=                                                                                                                                       218 

(6) 219 

which is commonly referred to as the kinematic wave approximation. In Eq. 6, So,i is the bed 220 

slope (gravity forcing term) [−], which is equal to the friction slope Sf,i [L]; i stands for the x and 221 

y direction. Manning’s equation is used to establish a flow depth-discharge relationship: 222 

2
, 3f x

x s

S
v

n
ψ=                                                                                                                               223 

(7) 224 

2
,

3
f y

y s

S
v

n
ψ=                                                                                                                              (8) 225 

where n is the Manning roughness coefficient [TL−1/3]. In ParFlow, the overland flow equations 226 

are coupled directly to the Richards equation at the top boundary cell under saturated conditions. 227 

Conditions of continuity of pressure (i.e., the pressures of the subsurface and surface domains are 228 

equal right at the ground surface) and flux at the top cell of the boundary between the subsurface 229 

and surface systems are assigned. When coupled with ParFlow, the 1D soil column moisture 230 
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prediction in CLM is replaced by the ParFlow approach (in 1D or 3D formulation). In the 231 

sequential information exchange procedure, ParFlow sends the updated relative saturation ( W
S ) 232 

and pressure (ψ ) for the top 10 layers to CLM. In turn, CLM sends the depth-differentiated 233 

source and sink terms for soil moisture [top soil moisture flux (qrain), soil evapotranspiration (qe)] 234 

for the top 10 soil layers to ParFlow (see Fig. 2a). More details on the numerical aspects and 235 

other features of the model can be found in Kollet and Maxwell (2006).  236 

We run ParFlow for a long time (100 years) with a steady recharge force to establish the 237 

(natural) groundwater level until (natural) groundwater level and groundwater storage stop 238 

changing. Following that, we run ParFlow with CLM, performing a 5-year spin-up by simulating 239 

the time period from 2012 to 2013 five times in order to acquire equilibrium initial state 240 

variables. We have to repeat it until the differences between years are negligible (Ajamii et al., 241 

2014; Seck et al., 2015) (here we consider differences between years to be less than 0.01 annual 242 

precipitation) to ensure that we are not gaining or losing substantial volumes of water to the 243 

subsurface over time before we start running test cases.  244 

3.2 Land surface data and atmospheric forcing 245 

The land surface input data include topography, land cover, soil characteristics, and 246 

physiological parameters of the canopy, which are static variables. Global Multiresolution 247 

Terrain Elevation Data 2010 (Danielson et al., 2011) was used for the Digital Elevation Model 248 

(DEM), which has a resolution of 1 km (see Fig. 1). The Moderate Resolution Imaging 249 

Spectroradiometer (MODIS) satellite land-use classification (Friedl et al., 2002) was also used, 250 

wherein it was converted to Plant Functional Types (PFT). In order to include the soil 251 

characteristics, the percentage of soil and clay were obtained using the FAO/UNESCO Digital 252 

Soil Map of the World (Batjes, 1997). This map consist of 19 classes and it is on Schaap and Leij 253 
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(1998)’s pedotransfer functions. For hydraulic characteristics of soil, such as saturated hydraulic 254 

conductivity and Van-Genuchten parameters, the Soil Grids 250 m, as well as the dataset 255 

aggregated to a 1-km resolution (Hengl et al., 2017),  were used by utilizing the European 256 

pedotransfer functions (EU-PTFs; Tóth et al., 2015). For the Manning’s coefficient, the proposed 257 

relationship between landcover type and Manning’s coefficient is used (Asante et al., 2008). 258 

The atmospheric forcing of the coupled ParFlow model with CLM is provided from the 259 

COSMO-REA6 data, which have a spatial resolution of 0.055° (~6 km) and daily  temporal 260 

resolution, and covers the domain defined by CORDEX EUR-11(Gutowski et al., 2016). The 261 

COSMO-REA6 dataset (Bollmeyer et al., 2015), which is a reanalysis with high resolution from 262 

the Hans-Ertel Center for Weather Research, is used for the time period 2012-2014 (HErZ; 263 

Simmer et al., 2016).  264 

German Weather Service data were used to obtain the barometric pressure, wind speed, 265 

precipitation, specific humidity, downward shortwave and longwave radiations, and air 266 

temperature near the surface. These meteorological data are available to download from the 267 

German Weather Service (DWD; ftp://ftp-cdc.dwd.de/pub/REA/). There are some uncertainties 268 

in the COSMO-REA6 data, especially the precipitation data which are used in this study 269 

Bollmeyer et al. (2015). They showed that the precipitation data from COSMO-REA6 have a 270 

relatively good performance when compared with the Global Precipitation Climatology Centre 271 

data; however, they underestimates the precipitation in middle and southern Europe and 272 

overestimate it in Scandinavia, Russia, and the beaches of Norway. 273 

Additionally, Springer et al. (2017) assessed the closure of the water budget in the 6-km 274 

COSMO-REA6 and compared it with the global reanalysis (Interim ECMWF Reanalysis (ERA-275 

Interim), Modern-Era Retrospective Analysis for Research and Applications, Version 2 276 
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(MERRA-2)) for major European river basins. In their study, Springer et al. (2017) found that 277 

the COSMO-REA6 closes the water budget within the error estimates, whereas the global 278 

reanalysis underestimates the precipitation minus the evapotranspiration deficit in most river 279 

basins. A more comprehensive assessment of the precipitation of the HErZ reanalysis can be 280 

found in Wahl et al. (2017). This analysis is based on the 2-km data product and only available 281 

for central Europe. The input datasets discussed in this section are summarized in Table 1. All 282 

model inputs were reprojected to have an equal cell size of 0.055° (~6 km). In this study, the 283 

model was directed at the Upper Rhine Basin for a total thickness of 100 m over 300 model 284 

layers with different thickness. The thickness of the soil layers increases with increasing depth. 285 

The model was implemented with a horizontal resolution of 6 km with nx=31, ny=32 for a total 286 

model dimension of 186 km *192 km * 100 m. This corresponds to a total number of 35712 287 

cells. The hydraulic characteristics, such as saturated hydraulic conductivity and Van-Genuchten 288 

parameters provided by the Soil Grids, are available only for the first two meters of soil, these 289 

hydraulic characteristics for the layers are located lower than 2m are the same as the layer is 290 

located at 2m under surface. Fig. 2b shows a visualization of the model. The porosity and 291 

specific storage are constant and equal to 0.35 and 10-5, respectively.  ParFlow allows the user to 292 

specify the permeability tensor. In this study, permeability is considered heterogeneous and 293 

symmetric in all directions (x, y, and z), and it is specified for the whole domain and considered 294 

isotropic.  295 

 In the ParFlow model, there is no ability to define variable depths in the domain. The only way 296 

for overcoming this limitation is to define a constant depth and to assign a small value of 297 

hydraulic conductivity for the layers located below the bedrock. However, this approach induces 298 

numerical instabilities, leading to convergence issues. Thus, in our model, for the soil layers 299 
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below the bedrock, we used the same properties as for the upper layers. In other words, the 300 

bedrock is located at a depth of 100 m. The hydraulic characteristics of the soil, such as saturated 301 

hydraulic conductivity and Van-Genuchten parameters, are provided by the Soil Grids. These 302 

parameters are available only for the first two meters of soil. Thus, the same characteristics are 303 

assumed for the layers located lower than 2 m. This assumption may affect the model output, and 304 

more accurate predictions could be obtained with a real database of soil characteristics for deeper 305 

soil layers. Uncertainties related to the soil characteristics would certainly affect the model 306 

predictions. This issue can be managed by calibrating models against observations or by data 307 

assimilation. Also, uncertainty propagation or quantification analysis can be performed to 308 

investigate the effect of uncertainties on the model outputs. However, this is not the objective of 309 

the current study that aims at evaluating, with available data, the performance of the suggested 310 

scaling approach.  Two distinct boundary conditions are applied: i) In the south at Basel, the 311 

Rhine River discharge is subjected to temporal variation. Rhine River discharge is implemented 312 

based on streamlines of simulated fluid flow by Koltzer et al. (2019).  ii) In the northern and 313 

southern boundaries, a constant piezometric head is applied. A constant head boundary condition 314 

is imposed based on hydraulic head measurements, which is discussed in section 3.5.1. These in 315 

situ measurements are collected from observation wells in the form of sparse points and are then 316 

interpolated. 317 

 318 

 319 

 320 

 321 
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Fig. 2  a) Schematic of the coupled ParFlow-CLM model from Kuffour et al. (2020). In the bottom rectangle, ParFlow depicts the root 325 

zone, deeper vadose zone, and saturated zone. The top rectangle depicts CLM's atmospheric forcing and land surface processes. It's 326 

worth noting the root zone, where the two models exchange information about fluxes and state variables at the conceptual boundaries 327 

of the respective compartment models. The downward and upward arrows represent the pathways of information transmission 328 

between models. b) Visualization of the model including dimensions of the domain and parametrization of the aquifer. Porosity and 329 

specific storage coefficient are constant and the hydraulic characteristics such as saturated hydraulic conductivity and Van-Genuchten 330 

parameters are isotopic and non- homogenous and as the same as layer 6 for the layers 7-300. 331 
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Table 1. The input data for ParFlow-CLM  332 

Input Data Data Source Download Link or Reference 

Atmospheric forcing (specific 

humidity, near-surface air 

temperature, barometric pressure, 

wind speed, precipitation, longwave 

and shortwave radiation) 

COSMO-REA6 

dataset 
ftp://ftp-cdc.dwd.de/pub/REA/ 

Plant Functional Type 
MODIS satellite (land-

use classification) 

https://lpdaac.usgs.gov/products/mcd12q1v0

06/ 

Soil Texture Data, Sand and Clay 

Percentage 

FAO/UNESCO 

Digital Soil Map of 

the World 

 (Batjes, 1997) 

Hydraulic conductivity 
European Soil Data 

Centre (ESDAC) 

https://esdac.jrc.ec.europa.eu/content/3d-

soil-hydraulic-database-europe-1-km-and-

250-m-resolution 

Van-Genuchten Parameters (n, α) 
European Soil Data 

Centre (ESDAC) 

https://esdac.jrc.ec.europa.eu/content/3d-

soil-hydraulic-database-europe-1-km-and-

250-m-resolution 

DEM 

 

Global Multiresolution 

Terrain Elevation Data 

2010 

https://earthexplorer.usgs.gov/ 

Manning’s coefficient 

Relationship between 

landcover type and 

Manning’s coefficient 
(Asante et al., 2008) 

3.3. River Parametrization 333 

Since ParFlow does not address the flow condition (e.g., river network) for the river, ParFlow 334 

does not distinguish between hillslope runoff and river flow, and the same horizontal grid 335 

resolution applies to the subsurface and surface water domains. Forcing the same coarse 336 

horizontal grid resolution for the subsurface and surface water domains results in an 337 

underestimation of the flow velocities, while the rate of exfiltration and infiltration between the 338 

river and the subsurface is overestimated. 339 

Subgrid scaled river channel geometries, such as exchange fluxes with the subsurface, through 340 

the use of scaled grid scale parameters, are incorporated in modeling to compensate for this large 341 

rate of exfiltration and infiltration between the river and the subsurface. As a result, to use the 342 

overland flow boundary condition in ParFlow, we use a derived scaled Manning’s coefficient (n) 343 

and saturated hydraulic conductivity (Ksat) by Schalge et al. (2019). 344 
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3.3.1 Manning's Coefficient Scaling 345 

In order to correct the flow velocity (v) in the grid cell of model, which is usually greater than 346 

the river width (W1), a scaling of Manning’s coefficient is used. In an ideal high-resolution 347 

simulation, the width of the river channel (W1) and Manning’s coefficient (norg), as well as the 348 

flow velocity (v1), is considered to be the same as the real river channel.  In a low-resolution 349 

model, the width of the river is considered W2, which is equal to the width of the grid cell and 350 

greater than W1. In this less resolution model, if we consider the same norg, the flow velocity (v2) 351 

is lower than the flow velocity in the river (v1) because the water depth is smaller in the wider 352 

channel. Therefore, the flow velocity can be corrected by reducing norg to nscale. As a result, in a 353 

lower resolution simulation (grid cell is W2), flow velocity equals v1 (for more details refer to 354 

Schalge et al. (2019)). A simple equation is used to scale the roughness coefficient as follows: 355 

 
2/31

2

.( ) .
scale org org

W
n n n

W
λ= =                                                                                                            (9) 356 

where 2/31

2

( )
W

W
λ =  is the scaling coefficient for Manning's roughness coefficient, which corrects the 357 

river flow velocity in a lower resolution simulation, which is independent of the channel slope 358 

(Sf ) and discharge (Q) .  359 

3.3.2 Hydraulic Conductivity Scaling 360 

Because the width of the model river is often larger than the actual river width, a larger surface 361 

area will exchange water with the subsurface than the real river. Scaled (lower) hydraulic 362 

conductivity can be used to correct. The evaluation of the infiltration/exfiltration fluxes in the 363 

river is improved, by using scaled Ksat, resulting in 364 
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2 1

_ 2 _ 1sat scaled sat org

A A

K dA K dA=∫ ∫                                                                                                       (10) 365 

where A2= W2 × W2 is the area of the river in the model and A1 = W2 × W1 is the area of the real 366 

river. Substitution of the A2 and A1 in the equation above results in  367 

2 2 2 1

_ _

0 0 0 0

( , ) ( , )

W W W W

sat scaled sat orgK x y dxdy K x y dxdy=∫ ∫ ∫ ∫                                                                         368 

(11) 369 

Where Ksat is homogeneous in each grid cell and, by assuming a rectangular river channel cross-370 

section, the scaling coefficient is  371 

1

2

.
satscale satorg

W
K K

W
=                                                                                                                     (12) 372 

where
1

2

W

W
χ = is the scaling coefficient for the hydraulic conductivity (for more details refer to 373 

Schalge et al. (2019)). 374 

3.3.3 Finding River Width 375 

By using the Hydro SHEDS river topology dataset (database available at 376 

http://gaia.geosci.unc.edu/rivers/), as well as geomorphic relationships between parameters such 377 

as the area, discharge, width, and depth of the river, a simple database containing the widths and 378 

depths of the rivers has been created, which can be used when there are no reliable 379 

measurements available to input the initial estimation for the hydrological models. The database 380 

does not intend to replace detailed estimations of the river width and depth; instead, it maps the 381 

river characteristics with near-global coverage. However, this database provides estimations with 382 
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a 95% confidence interval, which gives a reasonable estimate of the width and depth of the 383 

rivers. 384 

The spatial width of the river for the Upper Rhine Basin is shown in Fig. 3a, and it ranges from 385 

6.5 m to 325 m. In this simulation, narrow rivers with less than 10-m widths have not been 386 

considered, as they only appear during and after rain.  387 

Fig. 3b and 3c show the resulting scaling parameter for saturated hydraulic conductivity and 388 

Manning's coefficient following Eq. (9) and Eq. (12) ranges from 0.01 to 0.16 and 0.001 to 389 

0.065, respectively. Fig. 3d shows the scaling approach to which cells in the basin have been 390 

applied. In this figure, the effective cells whose rivers are more than 10 m wide are blue in color, 391 

and these cells have been applied to the scaled Manning coefficient and saturated hydraulic 392 

conductivity. The red color in this figure indicates cells in which the width of the river is less 393 

than 10 meters. 394 
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Fig. 3 a) River width (W1) in unit of meter, b) scaling coefficient of saturated hydraulic 396 

conductivity, c) scaling coefficient of Manning’s coefficient and d) effective and non-effective 397 

cells in scaling approach over the Upper Rhine Basin 398 
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3.4. Probabilistic Framework of the Validation: First Order Reliability Method (FORM) 399 

In this approach, a Limit State Function (LSF) is defined as the mathematical formulation of a 400 

system state limit beyond which the system reliability criteria are no longer satisfied in this 401 

method (Abdelkhalak and Bouchaïb, 2013). Analogous to the simulation results of a 402 

hydrological model, the standard deviation (SD) can be used as a criterion to examine the 403 

reliability of the model by defining LSF less than 10% as the state limit for the 404 

simulated groundwater level and 25% for the simulated soil moisture.  The FORM method 405 

provides a probabilistic framework in which the LSF can be changed according to the problem. It 406 

can be defined as a combination of errors and other influencing factors. This criterion is 407 

expressed as 408 

                                                                                        409 

Model ( ) ( )
( ) 0.1

( )

Model ( ) ( )
( ) 0.25

( )

Estimation SM Observation SM
SD SM

Observation SM

Estimation Gr Observation Gr
SD Gr

Observation Gr

− = ≤
 − = ≤


                                                410 

(13) 411 

Based on the assumption that LSF is continuous and first-order differentiable, FORM uses a 412 

linear approximation (i.e., first-order Taylor expansion) expressed as 413 

( ) ( ) ( ) ( ) .( )
T

m m mG y L y G y G y y y= = +∇ −                                                                                  (14) 414 

where L(y) is the linearization of the LSF, 1 2 3( , , ,... )
n

y y y y y y=  is the vector of n variables 415 

defining the G function, ym is the expansion point, and ∇G(y) is the first-order gradient vector of 416 

G(y).  417 

The two critical FORM requirements are explained in detail in the following paragraphs. (For 418 

more details refer to Soltani et al. (2020)).  419 
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1. First, project the variables X (in this case, soil moisture or groundwater level) to the 420 

independent standard normal space Y. In order to implement FORM, non-normally distributed 421 

variables should be transformed into standard normal variables (Madsen et al., 2006) via, e.g., 422 

the NATAF transformation (Nataf, 1962). 423 

2. Next, find a point on the transformed LSF with the shortest distance to the origin in the 424 

uncorrelated standard normal space (Shinozuka, 1983). This point is called the design point (or 425 

the most probable point), and it can be obtained by solving the following constrained 426 

optimization problem: 427 

* arg min{ }y y=                                                                                                                      (15)                                                                       428 

where *y  is the design point, which has the shortest distance to the origin in the uncorrelated 429 

standard normal space. Various approaches have been developed during the past decades to solve 430 

the constrained optimization problem described in Eq. (10). The iHLRF (Zhang and Kiureghian, 431 

1997) is a state-of-the-art method, which can be used to obtain the point on the failure surface 432 

that is closest to the origin. In this approach, the design point is found by a generic search 433 

algorithm via the following iterative equation: 434 

1m m m m
y y s d+ = + ⋅                                                                                                                                (16) 435 

where m is the iteration number, s is the step length, and d is the direction of the search. Let y* 436 

be the answer to this optimization problem, and β be the optimal point's distance from the origin. 437 

As a result, the estimated probability of failure is expressed as 438 

  ( )
f

P β= Φ −                                                                                                                      (17) 439 

where Φ is the cumulative probability distribution function of β. The limitation of FORM is that 440 

it can only give an exact solution if the initial limit state is linear and the basic variables are 441 
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normally distributed. The extent of error, on the other hand, is determined by the curvature of the 442 

limit state and the method of projecting X to Y. Fig. 4 shows the general procedure of the FORM 443 

implementation. 444 

Select a starting point in the standard normal space

Transform into the original space

Evaluate the LSF

Evaluate the gradient of the LSF

Set the scaling factor for the first converge criterion

Check the convergence

Is convergence 

acheived?
No

YES
                                Compute  1m m m my y s d+ = + ⋅

Compute    fP

 m=1

First Step

Second Step

The iHLRF 

Algorithm 

 445 

Fig. 4 Steps to implement the FORM algorithm. After defining LSF, the variables are transformed to the 446 
independent standard normal space in the first step and in the second step, a point on the transformed LSF 447 
with the shortest distance to the origin is found. The iHLRF (Zhang and Kiureghian, 1997) is used to 448 
obtain this point on the LSF. 449 
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3.5 Evaluation Dataset 450 

3.5.1 Groundwater Level Measurements 451 

Piezometric level data came from 190 observation wells sampled weekly, with only a few of 452 

them giving daily data. These observation wells are managed mainly by the APRONA 453 

(Association pour la PROtection de la Nappe d’Alsace) on the French side and by the LUBW-454 

Baden-Württemberg (Landesanstalt für Umwelt, Messungen, und Naturschutz in Baden-455 

Württemberg) on the German side. In this case study, the fluctuation of groundwater level is 456 

limited to less than few meters.  457 

3.5.2 ESA CCI Microwave Soil Moisture  458 

The ESA’s (European Space Agency’s) CCI program (Climate Change Initiative) provides soil 459 

moisture (SM) data from 1978 and on a spatial resolution of 0.25°. The CCI-SM data is the daily 460 

soil moisture for the top milli/centimeters of the soil. The CCI-SM version 05.2 uses microwave 461 

wavelengths to obtain soil moisture data using data from several sensors (Dorigo et al., 2017; 462 

http://www.esaoilmoisture-cci.org). CCI-SM uses passive microwave measurements (i.e., DMSP 463 

SSM/I, TRMM TMI, Aqua AMSR-E, Coriolis WindSat, SMOS, and SMAP). On the other hand, 464 

active data products are obtained using scatter meters in the C-band, which are installed on ERS-465 

1, ERS-2, and ASCAT A-B satellites (Wagner et al., 2013). Cumulative density function 466 

matching was used to rescale the absolute soil moisture. For this purpose, the 0.25° resolution 467 

land surface soil moisture modeled data were used as a reference (GLDAS-NOAH, Rodell et al., 468 

2004). In addition, both passive and active soil moisture products are merged herein, which was 469 

better than either one alone (Liu et al., 2011). Resampling and regridding to the target resolution 470 

of 0.0275° were done on the SM values in order to match the spatial resolution. This was done 471 

via the conservative interpolation of first-order (Jones, 1999). In this technique, the interpolation 472 
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weights are based on the fractional area overlap of the source and destination grid cells. The 473 

regridding in the conservative scheme allows for the preservation of flux fields of physical 474 

quantities between both the destination and source grids. The CCI-SM data reveal significant 475 

data gaps over the Upper Rhine Basin in all seasons. In the time period of 2012-2014, the 476 

temporal coverage (i.e., the ratio between the number of days with valid data and the number of 477 

total days) ranged from less than 10% (southern regions) to over 60% (northern regions) in Fig. 478 

5. Finally, Fig. 6 shows the overall scheme of this study, which was given in the methods and 479 

data section. 480 

 481 

Fig. 5 Fraction of days that ESA-CCI SM data was reported over the time period of 2012-2014. 482 
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Fig. 6 Overall scheme of this study. Overall scheme to identify the used land surface and atmospheric 484 
forcing, methodology of research and validation. Abbreviations: RMSE, root-mean-square deviation; 485 
FORM, first order reliability method. 486 
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4. Results  487 

4.1 Evaluation of Soil Moisture  488 

4.1.1 Seasonal Mean Comparison 489 

The seasonal volumetric soil water content (SWC) (mm3/mm3) from ParFlow-CLM without 490 

parameter scaling (ParFlow-CLM) and ParFlow-CLM with n and KSat scaling (ParFlow-CLM-S) 491 

is shown in Fig. 7, compared with the seasonal mean CCI-SM data. 492 

In general, the ParFlow-CLM simulation has a higher SWC in all seasons (DJF, MAM, JJA, and 493 

SON) over most parts of the Upper Rhine Basin compared with the ParFlow-CLM-S simulation. 494 

When comparing the ParFlow-CLM-S simulations with the CCI-SM observations, the spatial 495 

distribution of SWC in summer and autumn is better represented in the ParFlow-CLM-S 496 

simulations than in the ParFlow-CLM simulations (Fig. 7). Naz et al. (2018) assimilated the 497 

CCI-SM data into CLM to improve soil moisture and runoff simulations. The assimilation results 498 

showed a slightly better agreement with the CCI-SM data in the summer and autumn seasons 499 

than the spring and winter seasons. In this regard, data assimilation and n and KSat scaling 500 

improve soil moisture simulations in similar seasonal patterns. 501 

  For the time period of 2012-2014, Fig. 8 compares the temporally averaged SWC simulated by 502 

ParFlow-CLM and ParFlow-CLM-S to the CCI-SM data over the Upper Rhine Basin. In general, 503 

the SWC values were overestimated by ParFlow-CLM in all seasons. This overestimation was 504 

decreased with scaled n and KSat, as shown using ParFlow-CLM-S. It is worthy of note that the 505 

narrow spread of quartiles of the ParFlow-CLM-S-calculated SWC compared with the ParFlow-506 

CLM in Fig. 8 indicates that scaling of n and KSat did not diminish spatial variability. Similarly, 507 

when validating models with CCI-SM data, the ParFlow-CLM improvements vary depending on 508 

the season. However, improvements were more noticeable for all seasons. 509 
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Fig. 7 Seasonally averaged SM simulated by ParFlow-CLM and ParFlow-CLM-S for the upper soil layer (0-5 cm) and compared to 512 

CCI-SM data for the DJF (December, January, and February), MAM (March, April, May), JJA (June, July, and August), and SON 513 

(September, October, and November) seasons from 2012 to 2014. 514 

 515 
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CCI-SM

ParFlow-CLM

ParFlow-CLM-S

 516 

Fig. 8 Boxplot of seasonally averaged SWC simulated by ParFlow-CLM, ParFlow-CLM-S, and CCI-SM data from 2012 to 2014. DJF 517 

(December, January, and February) represents winter; MAM (March, April, May) represents spring; JJA (June, July, and August) 518 

represents summer and SON (September, October, and November) represents autumn. The central, bottom, and top marks on each box 519 

represent the median and extreme values, respectively. 520 

Cross-validation with CCI-SM observations was undertaken to assess the skill of ParFlow-CLM-S relative to ParFlow-CLM, and the 521 

root mean square error (RMSE) and BIAS for soil moisture were calculated using daily values for the Upper Rhine Basin and all 522 

seasons, as shown in Fig. 9. Note that the model data were only utilized to calculate these statistics on days when satellite data were 523 

available. For all seasons in the Upper Rhine Basin, ParFlow-CLM-S had a consistently lower RMSE than ParFlow-CLM, with the 524 

exception of winter, when the SWC benefits were relatively minor (Fig. 9 c and d). 525 
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For all regions, the mean RMSE decreased from 0.03 mm3/mm3 (ParFlow-CLM) to 0.005 mm3/mm3 (ParFlow-CLM-S). The BIAS 526 

shows a substantial overestimation of soil moisture in comparison to the satellite CCI-SM observations (Fig. 9 a and b), while the 527 

BIAS for soil moisture from ParFlow-CLM-S is considerably decreased (Fig. 9 a and b). For all regions, the mean BIAS decreased 528 

from 0. 17 mm3/mm3 (ParFlow-CLM) to 0. 1 mm3/mm3 (ParFlow-CLM-S). In addition, an innovative implementation of the FORM is 529 

used to examine the LSF failure probability as a criterion for verifying the model's results closure. By defining r less than 0.25, r can 530 

be used as a criterion to assess the reliability of the model's results. 531 

To this end, the first-order reliability method finds failure probability (Pf) of the model’s results closure. Table 2 shows the results of 532 

the FORM implementation for soil moisture simulations of ParFlow-CLM and ParFlow-CLM-S over all seasons. Since Pf in ParFlow-533 

CLM-S is lower than ParFlow-CLM, the closure and consistency of the model’s results using the scaling approach are acceptable. The 534 

FORM results show that the probability of a substantial divergence between the ParFlow-CLM-S soil moisture results and the CCI-535 

SM observation, which is defined as more than 0.25% of the CCI-SM observation value, is 0.05, 0.11,0.15, and 0.08 for autumn, 536 

winter, spring, and summer, respectively. The failure probability of the defined LSF in winter is a little more than that of the other 537 

seasons.  538 

 539 
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 540 

Fig. 9 RMSE and BIAS for daily soil water content for the DJF (December, January, and February), MAM (March, April, May), JJA 541 

(June, July, and August), and SON (September, October, and November) seasons from 2012 to 2014. (a) BIAS for ParFlow-CLM and 542 

(b) BIAS for ParFlow-CLM-S (c) RMSE for ParFlow-CLM and (d) RMSE for ParFlow-CLM-S simulations over the years 2012-543 

2014. 544 
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Table 2. The results of FORM implementation for soil moisture simulations of ParFlow-CLM 545 

and ParFlow-CLM-S over DJF (December, January, and February), MAM (March, April, May), 546 

JJA (June, July, and August), and SON (September, October, and November). 547 

 Pf  

Months ParFlow-CLM-S ParFlow-CLM 

SON 0.15 0.05 

DJF 0.25 0.11 

MMA 

JJA 

0.22 

0.19 

0.15 

0.08 

 548 

4.1.2 Daily Validation 549 

The daily SM averaged from January 2012 to December 2014 over the Upper Rhine Basin (Fig. 550 

10), as simulated by ParFlow-CLM and ParFlow-CLM-S and as observed by CCI-SM, is 551 

presented in Fig. 10. 552 

In ParFlow-CLM-S, the scaling approach improved the simulations of SWC. The daily SWC 553 

patterns predicted by ParFlow-CLM-S are very similar to the CCI-SM data, with general 554 

agreement across the basin. 555 

When compared with the entire period, the CCI-SM observations show increased variability and 556 

drier soil moisture values during the summer. In general, the daily soil moisture predicted by the 557 

ParFlow-CLM-S agree with the CCI-SM data relatively better in the summer and autumn 558 

seasons than in the spring and winter seasons. 559 
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Due to dense vegetation, frozen soil, and/or model errors associated to modeling soil moisture in 560 

colder climates, ParFlow-CLM-S performs worse in the winter season (Oleson et al., 2008). 561 

For the time period 2012-2014, Table 3 compares some important statistical parameters, such as 562 

mean and variance of the spatially averaged soil moisture simulated by ParFlow-CLM and 563 

ParFlow-CLM-S, to the CCI-SM data over the Upper Rhine Basin. In general, the soil moisture 564 

of the first soil layer simulated by ParFlow-CLM is higher than the CCI-SM data in all seasons. 565 

This overestimation was decreased by using scaled n and KSat, as shown using ParFlow-CLM-S. 566 

It is worthy of note that the soil moisture simulated by ParFlow-CLM-S compared with ParFlow-567 

CLM in Table 3 indicates that improvements were more noticeable for all seasons. 568 

1/1/2012 12/31/201410/1/20134/1/2012 7/1/2012 4/1/2013 7/1/20131/1/2013 10/1/2014

 569 

Fig. 10 Spatially averaged daily SWC simulated with ParFlow-CLM-S and ParFlow-CLM and 570 

compared to CCI-SM data for the Upper Rhine Basin from 2012 to 2014. 571 

 572 
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Table 3. Some statistical parameters for soil moisture simulations of ParFlow-CLM and 573 

ParFlow-CLM-S and CCI-SM data for DJF (December, January, and February), MAM (March, 574 

April, May), JJA (June, July, and August), and SON (September, October, and November). 575 

Months 
      CCI-SM ParFlow-CLM ParFlow-CLM-S 

Mean variance  Mean variance  Mean variance  

DJF 0.327 0.047  0.44 0.025  0.39 0.019  

MMA 0.306 0.0253  0.417 0.022  0.357 0.02  

JJA 0.288 0.033  0.354 0.027  0.334 0.023  

SON 0.318 0.0247  0.384 0.023  0.354 0.023  

 4.2 Evaluation of Groundwater Level: Annual mean comparison 576 

Fig. 11 shows the groundwater level estimates of ParFlow-CLM and ParFlow-CLM-S, compared 577 

with the groundwater level (from sea level) from well observations. ParFlow-CLM simulates 578 

higher magnitudes of groundwater level (on average 146 m) over most parts of the basin 579 

compared with ParFlow-CLM-S (on average, 143 m). 580 

The overestimation in the ParFlow-CLM simulations was more significant in the central regions 581 

of the basin (Fig. 11). Compared with ParFlow-CLM, regional groundwater-level patterns 582 

simulated by ParFlow-CLM-S agree better with groundwater-level observations. When 583 

compared with well data in the central and northern regions of the basin, the ParFlow-CLM-S 584 

performs better. 585 

As shown in Fig. 11, the scaling approach clearly resulted in an overall improvement in the 586 

simulated groundwater level for all regions. 587 

Averaged annual groundwater level improvements are especially noticeable over the central and 588 

northern regions, where ParFlow-CLM-S reduced the discrepancy between the well data and the 589 
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model’s result, from 6 m to 3 m. The groundwater level from well observations was interpolated 590 

using the Kriging method (Krige, 1951). Some part of this difference is related to Kriging 591 

uncertainty. Several studies have addressed errors raised from uncertainty in random function 592 

estimation steps of the Kriging methodology (Loquin and Dubois, 2010; Lloyd and Atkinson, 593 

2001). As a result, uncertainty of the used model by using scaled parameters in groundwater-594 

level estimation is less than 3 m.   595 

Where the groundwater table is not shallow (more than 5 meters), the improvements over other 596 

regions of the basin, such as the southern regions, were relatively small. These results highlight 597 

the potential of the scaling approach in improving shallow groundwater where the surface–598 

subsurface coupling is most impactful. 599 

The failure probability of LSF is investigated as a criterion to assess the reliability of the model's 600 

results by using a novel application of the First Order Reliability Method (FORM). By 601 

specifying r smaller than 0.1, it can be used as a criterion to assess the reliability of the model's 602 

results. 603 

 604 

 605 
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 High:  445m 

Low: 98 m

Well Data ParFlow-CLM ParFlow-CLM-S
 606 

Fig. 11 Temporally averaged annual groundwater level from the sea level (m) simulated by 607 

ParFlow-CLM and ParFlow-CLM-S for the years 2012 – 2014 over the Upper Rhine Graben. 608 

Temporally averaged groundwater level from well data is shown for comparison. 609 

 610 

To achieve this, the FORM calculates the failure probability (Pf) of the model's results closure. 611 

The results of the FORM implementation show that the failure probability of simulated annual 612 

groundwater level by ParFlow-CLM and ParFlow-CLM-S is 0.05 and 0.1, respectively. Since Pf 613 

in ParFlow-CLM-S is lower than in ParFlow-CLM, the scaling approach is sufficiently accurate 614 

for model closure and consistency. 615 

For the time period 2012-2014, Table 4 compares some important statistical parameters, such as 616 

the mean, maximum, and minimum of the temporally averaged groundwater level simulated by 617 

ParFlow-CLM and ParFlow-CLM-S to the well data over the Upper Rhine Basin. 618 

In general, the groundwater-level values (from the sea level) decreased by the ParFlow-CLM in 619 

all seasons. This overestimation was decreased with scaled n and KSat, as shown using ParFlow-620 

CLM-S, because groundwater level is closed to the surface. It is worthy of note that the 621 

groundwater level simulated by ParFlow-CLM-S compared with ParFlow-CLM in Table 4 622 
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indicates that scaling of n and KSat did not diminish the spatial variability. Improvements were 623 

more noticeable for all seasons. 624 

Table 4. Some statistical parameters for groundwater-level simulations of ParFlow-CLM and 625 

ParFlow-CLM-S and well data for DJF (December, January, and February), MAM (March, 626 

April, May), JJA (June, July, and August), and SON (September, October, and November). 627 

Months 
Well data ParFlow-CLM-S ParFlow-CLM 

Mean Max Min Mean Max Min Mean Max Min 

DJF 165.1 708.64 99.98 170.3 713.84 105.18 175.1 718.64 109.98 

MMA 163.6 708.01 99.26 168.4 712.81 104.06 171.7 716.11 107.36 

JJA 163.09 707.95 99.78 166.99 711.85 103.68 169.89 714.75 106.58 

SON 164.46 708.86 99.84 168.96 713.36 104.34 173.46 717.86 108.84 

 628 

Fig. 12 depicts a weekly groundwater-level time series that shows that ParFlow-CLM greatly 629 

overestimates the magnitude of the groundwater level. Over all regions, the ParFlow-CLM-S 630 

decreases these biases, and the groundwater-level simulations with ParFlow-CLM-S are more 631 

consistent with the well observations. Certainly, better agreement with the observations would be 632 

obtained with the real soil characteristics for layers deeper than 2 m. This improvement would be 633 

observed not only with the results of the new model, based on the scaling approach, but also on 634 

the results of the standard model (i.e., without the scaling approach). 635 
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 636 

Fig. 12 Spatially averaged weekly groundwater levels simulated with ParFlow-CLM-S and 637 

ParFlow-CLM and compared to CCI-SM data for the Upper Rhine Basin from 2012 to 2014.  638 

5. Discussion 639 

The hydrologic community is particularly interested in continental-scale hydrologic simulations 640 

for a variety of socioeconomic, scientific, and practical reasons. Condon et al. (2015) and 641 

Condon and Maxwell (2017) used the coupled hydrology-land surface model ParFlow-CLM 642 

configured to investigate scale-dependent connections between water table depth, topography, 643 

recharge, and evapotranspiration, as well as the effects of anthropogenic aquifer depletion on the 644 

water and energy balance. These studies have enabled for a high-resolution and process-based 645 

knowledge of the continental water cycle. 646 

O'Neill et al. (2020) conducted the most extensive review of ParFlow-CLM performance to date 647 

over the continental United States, comparing thousands of in situ observations and many remote 648 

sensing products with a variety of statistical performance indicators. Comparisons of ParFlow-649 
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CLM with these datasets show that the model is dependable and capable of accurately 650 

reproducing the continental-scale water balance at high resolution. 651 

This study and some other recent studies (e.g., Koch et al., 2016; Gebler et al., 2017) highlight 652 

the capabilities of the coupled ParFlow-CLM model in studying different water budget 653 

components or hydrologic fluxes.  Koch et al. (2016) have studied the performance of the 654 

ParFlow-CLM model, compared with other models such as the HydroGeoSphere (Panday and 655 

Huyakorn, 2004; Therrien et al., 2010) and MIKE SHE (Abbott et al., 1986; Graham and Butts, 656 

2005) for estimation of soil moisture. ParFlow-CLM provided a more accurate prediction of soil 657 

moisture in terms of temporal dynamics and heterogeneity at the catchment scale. The 658 

HydroGeoSphere and MIKE SHE models delivered more detailed soil moisture estimates at the 659 

local scale. Generally, their findings showed that topography is one of the key influential factors 660 

on soil moisture variability which have overemphasized feedback in ParFlow-CLM.  661 

Gebler et al. (2017) evaluated the effect of different soil hydraulic parametrization methods in 662 

the ParFlow-CLM model and showed that the variability in soil hydraulic parameters, rather than 663 

topography or other causes of variability, dominates spatial variability in soil moisture content at 664 

the subcatchment scale. 665 

Foster and Maxwell (2019) have proposed a scaling method for effective hydraulic conductivity 666 

and Manning’s coefficient to compensate for the loss of topographic gradients in coarse 667 

resolution simulations. In this study, simulations have been done using different hydraulic 668 

conductivity over four orders of magnitude in a real case study at 1-km and 100-m resolution. 669 

These findings indicate that, when simulations are done at a coarse resolution, effective 670 

hydraulic conductivity must be biased higher. This study is in a good agreement with our 671 
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findings and shows that scaling of hydraulic properties, such as hydraulic conductivity, 672 

obviously improves the results of the ParFlow-CLM model in less resolution simulations. 673 

Other studies have also applied different hydrological models to estimate groundwater level in 674 

the Rhine-Meuse Basin. Sutanudjaja et al. (2011) used a MODFLOW transient groundwater 675 

model, which was forced to recharge, and the surface water level, which was calculated by the 676 

land surface model. Absolute mean bias for some parts of the basin is higher than 50 m, while 677 

the maximum absolute mean bias is lower than 3 m in our study. This can be attributed to the use 678 

of an offline coupling technique in MODFLLOW that oversimplifies the dynamic feedback 679 

between surface water and groundwater loads, and between the moisture state of soil and the 680 

groundwater level. In the coupled ParFlow-CLM approach, the interaction between surface and 681 

subsurface is more suitable for the case study. It could also be due to differences in model 682 

parameters and calibration. 683 

Considering the model calibration, several studies investigated methods to improve the 684 

hydrological models’ predictions. Sutanudjaja et al. (2014) have investigated the possibility of 685 

calibrating the PCRaster Global Water Balance (PCR-GLOBWB) (Van Beek & Bierkens, 2009), 686 

which is coupled with the MODFLOW (McDonald and Harbaugh, 1988)  (PCR-GLOBWB-687 

MOD) model (Sutanudjaja et al., 2011), by using remotely sensed soil moisture data and in situ 688 

runoff observations. Calibration is performed by executing the model 3045 times with various 689 

parameter values that affect the dynamics of the groundwater level in the Rhine-Meuse Basin. In 690 

this work, the scaling approach is used without calibration. It shows better agreement with 691 

observations than the standard model (i.e., without the scaling approach). Thus, this approach 692 

will better reproduce the observations when it is used for model calibration. In order to improve 693 

model performance, Tangdamrongsub et al. (2015) have assimilated total water storage (TWS) 694 
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data obtained from the Gravity Recovery and Climate Experiment (GRACE) data into the 695 

OpenStreams wflow-hbv model, which is a distributed version of the HBV-96 model 696 

(Schellekens, 2014), using an ensemble Kalman filter (EnKF) method over the Rhine River 697 

basin. Although their results highlighted the benefit of assimilating GRACE data into 698 

hydrological models, they could be improved if limitations such as the lack of sufficient 699 

constraints on the soil moisture component did not exist.  In the current implementation of 700 

ParFlow-CLM-S, the enhancement did not rely on the use of additional spatial information, but 701 

on the better parametrization and scale change, which renders it robust, as the inaccessibility to a 702 

specific dataset does not affect the results. Nevertheless, it would be of interest to test whether 703 

the combined use of scale change and earth observation data would yield better predictions or a 704 

reduction of uncertainties.  705 

Selecting the threshold value for effective width affects the number of cells used in the scaling 706 

process. If a large threshold value is considered for the effective width, the number of cells for 707 

which the scaling process is performed will decrease, and if threshold value is small, the number 708 

of these cells will increase. Depending on the climatic conditions of the study area and the 709 

density of the river network, the simulation time period, and the resolution of the model, the 710 

effect of the threshold value on the model simulation results changes. For example, if the study 711 

area has an arid or semi-arid climate that has been experiencing drought for a long time or a 712 

seasonal river is flowing in the study area at a specific time of year, more care should be taken to 713 

select the threshold value.  Therefore, if a low threshold value is considered, the scaling process 714 

is performed for a period when the river is not flowing and thus affects the model simulation 715 

results. This is also important for regions that experience severe flooding during a specific time 716 
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period. In these areas, if the threshold value is considered high, the number of pixels used during 717 

the flood and wet season decreases and influences the model simulation results. 718 

There is no certain criterion for choosing this low limit; however, it is suggested that rivers that 719 

do not exist in more than 50% of the simulation time period and flow for a short time due to 720 

floods and seasonal variations in rainfall should not be considered in scaling operations. 721 

According to Schalge et al.’s (2019) study, model resolution is one of the most critical factors, 722 

and the success of the scaling process decreases when the river width is less than 1/10th of the 723 

model resolution. However, our findings show that the success of the scaling process is 724 

acceptable even if the width of the rivers is less than 1/10th of the model resolution. It might be 725 

related to the high density of the river network in our case study, which exchanged much water 726 

between the surface and the subsurface. In this regard, it is suggested that a comprehensive study 727 

be done to investigate the effect of model resolution and the river network density on the 728 

performance and accuracy of the scaling process. 729 

In this study, we used an integrated ParFlow-CLM model, which is physics based and requires 730 

the many input data listed in Table 1. Calibration of these models, unlike concept models, due to 731 

the huge computational cost, is not widely used. Only the two parameters (porosity and specific 732 

storage) should be evaluated when the scaling approach is used for calibration. If the number of 733 

these scenarios is high, the computational load will increase significantly. However, a calibration 734 

with a limited number of scenarios may help to improve the results.  735 

6. Summary and Conclusions 736 

We suggested an approach to improve soil moisture and groundwater-level predictions from a 737 

distributed hydrological model using an objective scaling of Manning's coefficient and saturated 738 
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hydraulic conductivity. This approach was applied for the Upper Rhine Basin at approximately a 739 

6-km resolution for the years 2012 to 2014. Since the interaction between the surface and 740 

subsurface is significant in this case study, because of the presence of shallow aquifers, an 741 

integrated surface–subsurface model, ParFlow, was used.  ParFlow is a grid-scale model that 742 

calculates overland flow at a constant horizontal grid resolution and employs the kinematic wave 743 

approximation for both hillslope and river channel flow. Since the width of rivers is much 744 

narrower than the grid size of the model, the exchange between the river and subsurface is 745 

approximated as higher than realistic rivers, resulting in an erroneously large 746 

infiltration/exfiltration rate. The scaling parameters approach is used to compensate for this 747 

limitation. The impact of the scaling approach on the soil moisture and groundwater level was 748 

evaluated and cross-validated with the CCI-SM data and the groundwater-level data from well 749 

observations at seasonal scales. Furthermore, the reliability of the used scaling approach was 750 

examined by a novel probabilistic framework (FORM). Using this scaling approach, the 751 

conclusions of this study are as follows. 752 

1. This study showed that scaling of Manning's coefficient and saturated hydraulic conductivity 753 

improved the soil moisture simulations and groundwater level over most parts of the Upper 754 

Rhine Basin relative to the model’s simulations without parameter scaling. The ParFlow-CLM 755 

simulations overestimated the SM in most parts of the Upper Rhine Basin and in all seasons. 756 

Major improvements in the groundwater level have been made over most of the basin's regions, 757 

particularly in the central and northern regions. Our simulation results of ParFlow-CLM and 758 

ParFlow-CLM-S in these regions may show that scaling is more successful in a shallow 759 

groundwater simulation. The average bias in soil moisture for the study domain was decreased 760 
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from 0.017 mm3/mm3 in ParFlow-CLM simulations to 0.01 mm3/mm3 in ParFlow-CLM-S 761 

simulations. 762 

2. The ParFlow-CLM-S soil moisture simulations performed better in the summer and autumn 763 

seasons than in the winter and spring seasons on a seasonal time scale. The FORM results show 764 

that the accuracy of the ParFlow-CLM soil moisture simulations by using scaling approach is 765 

more than 0.05, 0.11, 015, and 0.08 for autumn, winter, spring and summer, respectively. 766 

The ParFlow-CLM model simulations of soil moisture and groundwater level over the Upper 767 

Rhine Basin benefit from scaling of Manning's coefficient and saturated hydraulic conductivity, 768 

as demonstrated in this work. However, there are a few limitations in this research. The spatial 769 

mismatch between our high-resolution land surface model and the coarser resolution CCI-SM 770 

was addressed by rescaling the CCI-SM data to the model resolution (6 km) without bias 771 

correction. In addition to inconsistencies at the spatial scale, data gaps in satellite soil moisture 772 

retrievals, which are limited in regions of pronounced topography, standing water, dense 773 

vegetation, snow-covered areas, and frozen soil, can cause inaccuracies in soil moisture 774 

estimations (Dorigo et al., 2017). 775 

When the width of a river is known with adequate accuracy, this concept can simply be used in 776 

all models that do not explicitly resolve the true river width for river routing. Only a preparation 777 

step is necessary in practice, which does not add to the computational load during runtime. No 778 

equivalent solutions have been tried to our knowledge because most approaches rely on 779 

dedicated channel parametrizations, which are far more difficult to implement. Finally, the 780 

results indicate that a modification of model parametrization to take into account the impact of 781 

scale on hydrodynamic parameters should be done prior to multivariate assimilation approaches. 782 

The current work investigates the effect of the scaling approach on soil moisture and 783 
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groundwater budget. Future extensions of this work could include the effect of the scaling 784 

approach on stream discharge.  785 
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