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We here inter-compare four different tracking algorithms by applying them35

onto the precipitation fields of an ensemble of convection-permitting regional36

climate models (cpRCMs) and on high-resolution observational datasets of pre-37

cipitation. The domain covers the Alps and the northern Mediterranean and38

thus we here analyse heavy precipitation events, that are renowned for caus-39

ing hydrological hazards. In this way, this study is both, an inter-comparison40

of tracking algorithms as well as an evaluation study of cpRCMs in the41

Lagrangian frame of reference.42

The tracker inter-comparison is performed by comparison of two case stud-43

ies as well as of climatologies of cpRCMs and observations. We find that that44

all of the trackers produce qualitatively equal results concerning characteristic45

track properties. This means that, despite of quantitative differences, equiva-46

lent scientific conclusions would be drawn. This result suggests that all trackers47

investigated are reliable analysis tools of atmospheric research.48

With respect to the model ensemble evaluation, we find an encouraging per-49

formance of cpRCMs in comparison to radar-based observations. In particular50

prominent hotspots of heavy precipitation events are well-reproduced by the51

models. In general most characteristic properties of precipitation events have52

positive biases. Assuming the under-catchment of precipitation in observations53

in a domain of such complex orography, this result is to be expected. Only the54

mean area of tracks is underestimated, while their duration is overestimated.55

Mean precipitation rate is estimated well, while maximum precipitation rate is56

overestimated. Furthermore, geometrical and rain volume are overestimated.57

We find that models overestimate the occurrence of precipitation events over58

all mountain chains, whereas over plain terrain in summer precipitation events59

are seen underestimated. This suggests that, despite the convection-permitting60

resolution, thermally driven thunderstorms are either not triggered or their61

dynamics still under-resolved. Eventually we find that biases in the spatio-62

temporal properties of precipitation events appear reduced when evaluating63

cpRCMs against Doppler radar-based and rain gauge-adjusted observational64

datasets of comparable spatial resolution, strengthening their role in evaluation65

studies.66
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1 Introduction67

Moist deep convection in the atmosphere (Stevens, 2005), manifesting in68

storms of all scales, is responsible for the most severe precipitation events.69

However, as convection is by nature scarce in space and time, it is challeng-70

ing to describe its properties, being fluxes of heat, momentum and water,71

appropriately. It is thus common to estimate convective heavy or extreme pre-72

cipitation by e.g. the 99th or 99.9th percentile of hourly precipitation rate, or,73

to apply thresholds on precipitation rate and the frequency of their exceeding74

is then representative of the frequency of extreme events (Ban et al., 2020;75

Pichelli et al., 2021). However, statistical analyses in the Eulerian frame of76

reference remain limited to the description of the time series of each grid cell77

separately, and no information is retained about the underlying events and78

their spatial structure. Instead, information about the convective events them-79

selves can be yielded through the application of a tracking algorithm, here80

referred to simply as tracker. By this, precipitation events are identified and81

tracked in time, meaning the analysis is transferred from the Eulerian into the82

Lagrangian frame of reference. Through the use of trackers the precipitation83

events themselves and their properties are in focus, rather than conditions at84

specific locations. Many studies (Prein et al., 2017a; Crook et al., 2019; Purr85

et al., 2019; Guo et al., 2022) have shown the benefit of this idea.86

Tracking algorithms were originally developed in order to evaluate precip-87

itation events in numerical weather predictions (Davis et al., 2006a,b; Wernli88

et al., 2008; Johnson et al., 2013). By the use of a tracker modelled precip-89

itation objects can be compared against observations regarding their spatial90

structure, intensity, propagation and location. Any model output or observa-91

tional field that is typically associated with a precipitation event may serve as92

the tracker input field. Although typically precipitation rate itself is used, also93

indirect proxies, like outgoing longwave radiation (Morel and Senesi, 2002a;94

Chen et al., 2019), or mid-level vertical velocity or vorticity, are suitable. On95

even finer resolutions individual updrafts of convective systems can be ana-96

lyzed, along with their merging and splitting dynamics (Moseley et al., 2013).97

Another important application of tracking algorithms is the detection and98

observation of tropical and extra-tropical cyclones (Neu et al., 2013). Further-99

more also droughts are operationally monitored using trackers (Abatzoglou100

et al., 2017).101

The dynamical downscaling approach allows for investigating the impact102

of climate change on local scales and to derive actionable information for a103

variety of sectors (Giorgi, 2019, 2020). During the last decades convection-104

permitting Regional Climate Models (cpRCMs) were established, solving the105

non-hydrostatic equations of the atmosphere on grids with horizontal grid106

spacing smaller than 4 km and allowing to turn off flawed parameterizations of107

deep convection (Prein et al., 2015). At first, year-long integrations of distinct108

regions were realized (Grell et al., 2000), then decade-long integrations (Ras-109

mussen et al., 2011) and decade-long integrations of entire continents (Prein110

et al., 2017a), and recently robust ensembles of cpRCMs (Coppola et al., 2020;111
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Kendon et al., 2021) have been achieved. cpRCMs brought great advances and112

still need further exploration of their capabilities (Lucas-Picher et al., 2021):113

significant added value (Rummukainen, 2016; Ciarlo et al., 2020) lies in the114

representation of precipitation, in particular regarding its diurnal cycle, inten-115

sity and extremes (Ban et al., 2015; Kendon et al., 2017; Fumière et al., 2020;116

Reder et al., 2022) and over complex orography (Reder et al., 2020; Adinolfi117

et al., 2020). However, due to a more realistic orography, improvements are also118

found concerning surface temperature (Hohenegger et al., 2008) and mesoscale119

wind systems (Belušić et al., 2018). Through the application of trackers on120

cpRCMs, the climate change signal of convective storms can be analyzed in121

great detail (Prein et al., 2017a,b; Purr et al., 2019). Along with advances122

in model development, novel observational precipitation datasets, based on123

Doppler radar measurements, providing comparable spatial and temporal res-124

olution emerged and allow for a rigorous evaluation of cpRCMs. Still, their125

impact on the evaluation of cpRCMs must be considered carefully (Prein and126

Gobiet, 2017d).127

This present study uses an ensemble of cpRCMs, developed by the128

CORDEX - Flagship Pilot Study on Convective phenomena at high reso-129

lution over Europe and the Mediterranean (CORDEX-FPSCONV, Coppola130

et al. (2020)), conducted on a domain covering the Alps and the northern131

Mediterranean Sea. This region is renowned for its severe precipitation events132

(Drobinski et al., 2014) and for being a climate change hotspot (Giorgi, 2006).133

Several research groups set up trackers in order to evaluate the behaviour134

of cpRCMs in simulating precipitation events and storms. This study takes135

advantage of this opportunity and carries out an inter-comparison study on136

a set of four trackers. They will be applied both to the model ensemble’s137

evaluation runs, driven by ERA-Interim reanalysis data, and to a composite138

of high-resolution observational datasets. Thus the scientific objective of this139

study is two-fold:140

1. Tracker-Inter-comparison: we inter-compare four different trackers in order141

to find out about their reliability: do different trackers yield the same142

scientific conclusions?143

2. Model-Evaluation: we evaluate an ensemble of convection-permitting144

regional climate models against observations in the Lagrangian frame of145

reference by using the trackers, and focus on the following aspects:146

• how good are cpRCMs at simulating the basic properties of precipitation147

events (intensity, spatial and temporal scales, rain volume)?148

• how good are cpRCMs at simulating the spatial patterns and the annual149

cycle of basic properties of precipitation events?150

The paper is organized as follows. In section 2 we introduce the model151

ensemble and observational datasets used, as well as the two historic events152

that serve as case studies. In section 3 we explain the workflow of the tracking153

algorithms and motivate the setup chosen in order to identify the precipitation154

events of interest. In section 4 we present our results concerning the tracker155
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inter-comparison and in section 5 we present results on the model ensemble156

evaluation. Finally we summarize our findings and give conclusions in section157

6.158

2 Model Ensemble, Observational Datasets and159

Historical Events160

In this section we briefly describe the CORDEX-FPSCONV ensemble of161

cpRCMs as well as the composite of datasets of precipitation measurements162

that in this study serve the input fields for the tracker analyses. Moreover we163

here introduce two historical heavy precipitation events, that we use as case164

studies for the tracker inter-comparison.165

2.1 Ensemble of convection-permitting Regional Climate166

Models167

The CORDEX-FPSCONV community produced a first-of-its-kind ensemble168

of cpRCMs for the domain studied herein, that is covering the Alps and the169

northern Mediterranean (Coppola et al., 2020). Its Eulerian evaluation of pre-170

cipitation is found in (Ban et al., 2020) and (Pichelli et al., 2021), which we here171

build upon and extend into the Lagrangian frame of reference. Importantly172

both studies demonstrate how the cpRCMs reduce model biases in compari-173

son to the driving RCMs. Therein may also be found detailed information on174

the models. We here analyze the evaluation runs, whose boundary conditions175

are derived from ERA-Interim reanalysis data, through intermediate driving176

simulations at coarser resolution (RCM) (Ban et al., 2020). The ensemble con-177

tains several members using the COSMO-CLMcom and WRF model, which178

differ in their nesting strategy and physics parameterizations respectively. The179

model ensemble is summarized in Table 1.180
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Institute cpRCM dx(cpRCM)[km] Driving RCM dx(RCM)[km] RCM domain

AUTH WRF381BJ (A) 3 WRF 15 EURO-CORDEX
FZJ WRF381BB 3 WRF 15 EURO-CORDEX
IPSL WRF381BE (A) 3 WRF 15 EURO-CORDEX
UHOH WRF381BD 3 WRF 15 EURO-CORDEX
BTU COSMO-CLM (B) 3 COSMO-CLM 12 EURO-CORDEX
CMCC COSMO-CLM (B) 3 COSMO-CLM 12 EURO-CORDEX
GUF COSMO-CLM (B) 3 COSMO-CLM 12 Med-CORDEX
JLU COSMO-CLM (B) 3 ERAINT - -
KIT COSMO-CLM (B) 3 COSMO-CLM (B1) 25 Europe
ETHZ COSMO-pompa 5.0 (C) 2.2 COSMO-CLM 12 Europe
CNRM CNRM-AROME41t1 (C) 2.5 CNRM-ALADIN62 (C1) 12 Med-CORDEX (spectral nudging)
HCLIM-Com HCLIM38-AROME (D) 3 ALADIN62 12 Europe
KNMI HCLIM38-AROME (D) 2.5 RACMO 12 Europe
ICTP RegCM4 (E) 3 RegCM4 (A) 12 Europe
UKMO UM (F) 2.2 ERAINT - -

Table 1 Summary of numerical models used in this study. ”dx” denotes the grid spacing of the respective model. Model documentation references:
(A) (Powers et al., 2017); (B) (Rockel et al., 2008; Baldauf et al., 2011); (B1) (Keuler et al., 2016); (C) (Caillaud et al., 2021); (C1) (Nabat et al.,
2020); (D) (van Meijgaard et al., 2008; Van Meijgaard et al., 2012; Belušić et al., 2020); (E) (Coppola et al., 2021); (F) (Chan et al., 2020)

181
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Prior to the tracker analysis we remapped each of the models from their182

native grid onto the analysis grid ALP-3i, using distance weighted average183

remapping. It is a ”regular lat-lon grid”, spanning in longitude from 1◦E to184

17◦E in 582 grid cells, and in latitude from 40◦N to 50◦N in 364 grid cells.185

This results in a grid spacing of 0.0275◦ in both latitude and longitude, which186

translates on average to about 3 km.187

2.2 High-resolution observational datasets of188

precipitation189

We use a composite of four observational datasets of precipitation covering190

France, Germany, Switzerland and Italy respectively, over a common time191

period from 2001 to end of 2009. Their original spatial resolution is comparable192

to that of the convection-permitting models, with native grid spacings ranging193

from 1 to 3 km, and their temporal resolution is hourly. Thus the observational194

datasets can be neatly compared to hourly precipitation rates of the models.195

All of the datasets except of one (GRIPHO) are based upon Doppler radar196

measurements and adjusted with rain gauge measurements. The spatial and197

temporal resolution of these datasets are the highest currently available for198

the respective regions. Still, Doppler radar observations are known to system-199

atically underestimate precipitation amounts over mountainous terrain, e.g.200

through the shielding effect (Germann et al., 2022), and underestimate partic-201

ularly heavy precipitation rates (Schleiss et al., 2020). Further, also rain gauges202

under-catch orographic precipitation and are moreover affected by windy con-203

ditions (La Barbera et al., 2002). Furthermore, interpolation methods used204

to map station data onto regular grids induce an underestimation of high205

intensities (smoothing effect) and an overestimation of low intensities (moist206

extension into dry areas) (Isotta et al., 2014). A brief summary of the individ-207

ual datasets, including their specific spatial resolution and references is given208

in Table 2.209

Abbreviation Coverage dx [km] Reference

COMEPHORE France 1 (Tabary et al.,
2012; Fumière
et al., 2020)

RADKLIM RW Germany 1 (Winterrath et al.,
2018)

RdisaggH Switzerland 2 (Wüest et al., 2010)
GRIPHO Italy 3 (Fantini, 2019)

Table 2 Summary of observational datasets of hourly precipitation rate used in this
study. dx [km] denotes the original grid spacing.

Prior to the tracker analysis each of the datasets was remapped onto the210

analysis grid ALP-3i, again using distance weighted average remapping. Then211

we merged them and use their arithmetic mean for regions along the borders212
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of the nations, where measurements overlap. In this way, both the observations213

and the models, were mapped onto the same grid.214

GRIPHO over Italy and posteriori masking215

We here inform about two shortcomings of our analysis and show how we deal216

with them when interpreting the results.217

Firstly, the observational dataset covering Italy, GRIPHO, is based on218

quality-controlled rain gauge measurements solely. The station density is219

greater in the north than in the south of Italy, and on average it is estimated220

to about 1 per 9×9 km2. It is then remapped onto a convection-permitting221

grid with a 3 km grid spacing. In comparison to that, the other datasets are222

based upon Doppler radar measurements and rain gauges and their original223

spatial resolution is even finer than that of the analysis grid. We here must224

expect differences in the spatio-temporal characterization of the precipitation225

field observed by GRIPHO with respect to the other datasets. Nonetheless,226

GRIPHO is the most accurate observational dataset available for Italy and in227

particular the representation of extreme events was found improved (Fantini,228

2019), especially over Northern Italy where the station density is higher and229

where the most extreme precipitation events occur. In terms of domain com-230

plexity though, we note that Italy is surrounded by the Mediterranean Sea231

and the Alps, intersected by the Apennine Mountains and further shows both232

steep coastlines and a large plain area (Po Valley). Due to this high degree233

of complexity, which translates into very complex and local interactions, the234

precipitation events are renowned for being particularly severe and their mod-235

elling particularly challenging (see e.g. Morgan, 1973; Buzzi and Alberoni,236

1992; Medina and Houze Jr, 2003; Rotunno and Houze, 2007; Panziera et al.,237

2015; Miglietta et al., 2016; Pichelli et al., 2017).238

Secondly, the observations do not cover the entire domain simulated by the239

models, in particular not the Mediterranean sea. We consider this by posteriori240

applying a mask onto the tracker analyses of models, meaning that only tracks241

whose centroid is located within the domain of the observations are considered.242

This implies that in models events entering the observational domain and here243

particularly those making landfall, are expected to be overestimated in their244

scales, but little in their averaged properties. Note further that for the Swiss245

dataset RDisaggH, there is no data available for the period up to June 2003,246

which is also accounted for through masking.247

We account for both of these two shortcomings by presenting the relative248

biases of the model ensemble not only for the entire domain of observations,249

but also separately without GRIPHO as well as for GRIPHO exclusively, which250

we consider representative of the most extreme precipitation events within the251

domain. By this we account for and understand both, the specific model biases252

due to the complex Italian domain as well as specific biases associated with the253

GRIPHO drawbacks. Further, by doing so the overestimation of landfalling254

tracks can be estimated, because by excluding GRIPHO we also exclude the255

greatest part of the coastline.256
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2.3 Historical Heavy Precipitation Events257

In the following we introduce the two historical heavy precipitation events that258

share these characteristics: both occurred along the Mediterranean coastline,259

both regions affected show steep orographic features and both happened in260

autumn. Coincidentally they both occurred along the same degree of latitude261

and the one happened just a little more than one year after the other.262

2.3.1 Gard, France in September 2002263

The first case study is a heavy precipitation event that occurred in south-264

eastern France, in the Gard region, during the 8th and 9th of September265

2002 (Delrieu et al., 2005; Chancibault et al., 2006). Lasting more than a day,266

the event was particularly remarkable due to its rain amounts greater than267

200mm within 24 h spread over an area of 5500 km2. The maximum rain268

rates of 600–700mm observed locally by rain gauges are among the highest269

daily records in the region. The propitious slow-evolving synoptic-scale situa-270

tion combined an upper-level south-westerly diffluent flow over south-eastern271

France with a moist and warm low-level south-easterly flow. The rain event272

can be characterized by three phases (Delrieu et al., 2005): at first a Mesoscale273

Convective System (MCS) developed over the Gard plains, second a displace-274

ment of the MCS toward the Cévennes mountain ridge took place and third,275

the passage of a cold front with embedded convection swept the convective276

activity out of the region. This catastrophic event resulted in 24 fatalities and277

an economic damage estimated at 1.2 billion €(Sauvagnargues-Lesage, 2004).278

2.3.2 Carrara, Italy in September 2003279

A second case study we carry out by looking at a heavy precipitation event280

that happened in Carrara, Italy, in September 2003, and which caused severe281

flash flooding and landslides. Cortopassi and Daddi (2008) investigated how282

the extensive quarrying activities of the region destabilize the terrain and pro-283

mote hydro-geological hazards. It may be described as a landfalling convective284

system. A trough extending from a well structured low pressure centered over285

Northern Europe, advected hot and humid air from the Mediterranean sea286

and provided large-scale lifting. At the steep orography of the Apuan Alps287

the convective instability was triggered and the propagation of the storms was288

blocked. As a consequence, the region was affected by torrential rain, accumu-289

lating up to about 200mm within a period of only 2 hours. The event claimed290

two fatalities and caused major damage to the local infrastructure.291
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3 Trackers292

We here describe the basic functionality of the four tracking algorithms inves-293

tigated in this study, which are referred to as MODE, OSIRIS, DYMECS and294

celltrack. Their functionalities are summarized in Table 5 and we provide a295

detailed description of each tracker in the appendix (Section 8). The trackers296

are completely independent developments and are here applied with setups297

that are as similar as possible, in order to compare the same precipitation298

objects. In Section 4, we compare the trackers individually against each other,299

while in Section 5, we evaluate the model ensemble by the mean of all four300

trackers, which we refer to as the ”tracker ensemble mean”.301

The 1-hour accumulated precipitation fields (from observations or models)302

are used as input for all trackers. The principle operations of all trackers inves-303

tigated include a first step of masking through a specified threshold, followed304

by a step of clustering in space to form objects and then tracking of those in305

time to form tracks. Prior to that the input field is smoothed in space. The306

treatment of cell merging and splitting is done by the allocation of metatracks,307

which can be understood as the smaller branches of merged or split tracks. It308

is a functionality that is not available in all trackers.309

We designed the tracker setup such that it is able to identify precipitation310

events, that cause high impact weather situations like flash floods. For this311

reason we chose the (relatively large) precipitation threshold of 5mmh−1. On312

the other hand we want to investigate the small-scale isolated thunderstorms313

that cpRCMs are capable of resolving, and to this end, we chose a (relatively314

small) minimum space-time volume threshold of 100 cells. The input field is315

smoothed across 3× 3 grid cells prior to the analysis.316
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The common tracker setup is summarized in Table 3:

spatial smoothing 3×3 grid cells
precipitation threshold 5mmh−1

minimum space-time volume threshold 100 grid cells

Table 3 Summary of the tracker setup.

317

The characteristic track properties we are investigating in this study are318

defined in Table 4, with pr describing the precipitation field of a track:

Track Property Definition

NT the number of tracks T identified
OF [time−1] the Occurrence Frequency, defined as the

number of tracks identified per unit time
OFD [time−1 area−1] the Occurrence Frequency Density, defined

as the number of tracks identified per unit
time and unit area

prc [mmh−1] the Mean Precipitation Rate of a track,
with c being the mean over all grid cells
associated with a track

maxc(pr) [mmh−1] the Maximum Precipitation Rate of a
track, with max c being the maximum over
all grid cells associated with a track

D [h] the Duration of a track. (A track occur-
ring only for a single time step will be
attributed with 1 hour of duration.)

PT [m3] the Rain Volume of a track, given by the
integration of its precipitation field

A
D
[km2] the Mean Area of a track, averaged over its

Duration, D
Vol [km2 h] the Space-Time Volume of a track, given

by integrating the area of all grid cells, in
space and time

Table 4 Definitions of characteristic track properties.

319
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Institute
Tracker

space/time
smoothing

metatrack at
splitting/merging

statistics
boundary
treatment

reference

ICTP
MTD

yes/yes no/no original smoothed (Clark et al., 2014)

CNRM
OSIRIS

yes/no
yes/yes
off/off

smoothed no (Morel and Senesi, 2002a)

UKMO
DYMECS

yes/no
yes/yes
on/on

original smoothed (Stein et al., 2014)

KNMI
celltrack

no/no
yes/yes
off/off

smoothed no
(Moseley et al., 2013)
(Lochbihler et al., 2017)

Table 5 Summary of Trackers investigated in this study: ”Institute” denotes the group
executing the analysis using ”Tracker”, representing the abbreviation of the respective
tracker. ”space/time smoothing” denotes whether the tracker has an option for smoothing
the input field prior to the analysis in space or time. ”metatrack at splitting/merging”
denotes whether the tracker assigns separate metatracks when tracks merge or split, with
the second line indicating whether this functionality is switch on or off. Column
”statistics” indicates whether the statistical properties of the tracks are derived from the
original or from the smoothed input field. In ”reference” the original description of the
tracking algorithm is found.

4 Results on Tracker Inter-Comparison320

In this section we inter-compare the four trackers in two steps: first, we compare321

their performance at analyzing the two historic events, Gard 2002 and Carrara322

2003 (subsection 4.1), and second, we compare their climatological properties,323

derived from the tracker-analyses of the entire 9-year periods of observations324

and model ensemble (subsection 4.2).325

4.1 Tracker Inter-Comparison using Case Studies Gard326

2002 and Carrara 2003327

We apply the four trackers on the observational dataset and investigate only328

the region and time periods of the respective historic events. In Figure 1, we329

show for both events the accumulated total precipitation along with the loca-330

tion of tracks and their respective rain volume. Note that we do not show331

the full path of propagation for the tracks, as for the stationary precipitation332

systems investigated here, the paths of propagation appear erratic and the333

information added does not bring relevant insight. In general we recommend334

that propagation features of multi-celled convective systems (e.g. distance trav-335

elled or propagation velocity) must be interpreted with caution, as the correct336

identification of their center is challenging. In Table 6, we summarize the337

properties of all tracks associated with the two historic events.338

We first note, that all of our trackers do identify both historic events and339

attribute several tracks to them. OSIRIS and particularly DYMECS identify340

more tracks than MTD and celltrack, which can be explained for DYMECS341

by the allocation of metatracks in case of track merging or splitting. We find342

that the number of tracks identified reflects in the sum of duration and sum of343

mean track area. For each event, one main track is responsible for the major344
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Gard 2002 / Carrara 2003

Tracker
NT

[−]
maxT prc

[mmh−1]
maxT c(pr)
[mmh−1]

∑
T PT

[m3 e6]

∑
T A

D

[km2 e3]

∑
T D

[h]

∑
T Vol

[km2 h e3]

MTD 3/4 11.0/9.0 96.0/57.6 5046/210 12/4 44/19 402/20
OSIRIS 10/7 8.8/6.9 85.0/52.0 3396/172 17/7 65/27 283/22
DYMECS 13/6 8.8/7.7 96.0/57.6 4476/240 25/7 141/20 335/24
celltrack 3/4 9.7/7.9 88.9/52.7 4587/190 7/5 45/19 415/22

Table 6 Averaged and integrated track properties, as defined in Table 4, associated with
historic events Gard 2002 and Carrara 2003. max xT and

∑
xT denote the maximum value

and summation of property x over all tracks T.

part of the rain volume and all the trackers agree well on these most severe345

tracks. Focusing on intensities, lower intensities with OSIRIS can be explained346

by the calculation of the diagnostics on the smoothed precipitation field.347
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Fig. 1 Historical events Gard 2002 (left panel) and Carrara 2003 (right panel) using the
observations. Shading illustrates accumulated total precipitation, P(total) [mm]. Filled cir-
cles indicate the location of the centroid of a track and their radius is proportional to their
respective rain volume. Filled contours indicate the elevation of the model terrain in inter-
vals of 250 m.

Still overall and as listed in Table 7, we find that all trackers agree on the348

following relations:

Compared to the Carrara 2003 case, the Gard 2002 case is greater in all
scales: it is longer-lived, larger in area, and consequently also in Space-Time
volume.

Compared to the Carrara 2003 case, the Gard 2002 case is more intense:
i.e., its mean and maximum precipitation rates are greater.

As a consequence of both greater scales and intensity, the integrated rain
volume of the Gard 2002 case is much greater than that of the Carrara 2003
case.

Table 7 Qualitative attribution of track properties to the two historical events, Carrara
2003 and Gard 2002.

349

Thus, all trackers describe the two events with equivalent track properties and350

moreover the properties attributed and the relations found agree well with351

the description of the events in literature: the smaller and less intense event,352

Carrara 2003, is attributed with smaller spatial scales and less intensity than353

the larger and more intense event, Gard 2002. Based upon these results, the354

choice of the trackers seems irrelevant, meaning that from any of the trackers’355

analyses, equivalent scientific conclusions would be derived. In other words,356

with the differences being only of quantitative nature, the scientific conclusions357

are found to be independent of the choice of the tracker.358
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Model Ensemble / Observations

Tracker
NT

[year−1]
prc

T

[mmh−1]
maxc(pr)

T

[mmh−1]

PT

T

[m3 e6]
A

D
T

[km2 e3]

D
T

[h]
Vol

T

[km2 h e3]

MTD 2742/2536 8.3/7.8 21.3/17.3 74/56 1.2/1.6 4.4/3.1 8.3/6.8
OSIRIS 3347/2911 7.0/6.7 16.1/13.9 43/40 1.1/1.5 4.1/3.0 5.6/5.6
DYMECS 5095/3618 7.9/7.4 19.6/16.1 43/36 1.3/1.6 3.6/2.7 4.7/4.4
celltrack 2953/2550 7.7/7.3 17.2/14.7 72/54 1.1/1.6 4.5/3.1 8.8/7.1

Table 8 Climatology of track properties derived from both the model ensemble and the
observations. In Table 4, definition of the respective properties are given.

a) Mean b) P90

Fig. 2 Relative bias in characteristic of a) the mean and b) the 90th percentile of track

properties of each tracker with respect to the observations ModEns − Obs

Obs
[%]. Black solid

lines are increments of +-5%, with the thick black line representing the tracker ensemble
mean of the observations, i.e. 0%.

4.2 Tracker Inter-Comparison using the Climatologies of359

Model Ensemble and Observations360

We continue the tracker inter-comparison over climatological scale through the361

ensemble of cpRCM simulations and the observations for the common time362

period 2001-2009. Table 8 shows the climatological means of characteristic363

track properties of each tracker and, in Figure 2, we show the relative biases of364

each tracker for the mean and 90th percentile of track properties with respect365

to the observations.366
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Fig. 3 Annual Cycle of track occurrence frequency, OF [month−1], for all trackers analyz-
ing the observations. Error bars indicate inter-annual variability by the temporal standard
deviation.

With respect to characteristic track properties, for both their mean and367

90th percentile, all trackers identify the following qualitative biases, shown in368

Table 9, when comparing the model ensemble against observations:

underestimation overestimation

mean area track occurrence
maximum precipitation rate
mean precipitation rate
space-time volume
rain volume

Table 9 Qualitative biases of characteristic track properties that are consistent across all
trackers.

369

This means that all trackers derive for all properties of precipitation events370

the same qualitative biases, but these can differ in magnitude.371

Looking only at tracker results of the observation-based climatology (Table372

8), the characteristic track properties are overall similar between trackers. Par-373

ticularly mean area, mean and maximum precipitation rates and duration are374

estimated similarly by the trackers. Some pronounced quantitative differences375

can still be found and attributed to tracker characteristics: firstly, due to the376

allocation of metatracks at track merging and splitting, the number of tracks is377

highest with DYMECS, whereas the space-time volume is smallest. Secondly,378

because of the calculation of the characteristics from the smoothed field, the379

intensities are lowest with OSIRIS.380

Figure 3 shows the annual cycle of track occurrence frequency identified381

in the observations. For all four trackers, we find that the distribution is uni-382

modal, with a peak in August and a minimum in February. Similarly to what383

we found for the two single historic events in Section 4.1, a tracker that allo-384

cates metatracks at splitting and merging (DYMECS) identifies more tracks385

in total than those that do not (MTD, celltrack and OSIRIS). It also shows386

greater inter-annual variability. Again, despite the differences of quantitative387
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Fig. 4 Annual cycles for the tracker ensemble mean of both the model ensemble (dashed
line) and observations (solid line), with panel a) showing track occurrence frequency, OF
[month−1], panel b) accumulated precipitation of tracks, P(tracks) [mm month−1], panel c)
heavy precipitation fraction, P(tracks)/P(total) [%], and panel d) accumulated total precip-
itation, P(total) [mm month−1]. Error bars for the model ensemble indicate the temporal
standard deviation of the model ensemble mean across years, and likewise for the observa-
tions error bars display inter-annual variability by the temporal standard deviation across
years.

nature among trackers, the scientific conclusions when comparing climatolo-388

gies of model ensemble and observations are mainly independent of the choice389

of the tracker.390
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5 Results on Model Evaluation391

In this section, we evaluate the representation of precipitation events in the392

cpRCM ensemble. To this end, we use the mean of the tracker analyses (tracker393

ensemble mean) and compare the entire 9-years periods of the model ensemble394

against the composite of observations.395

In Figure 4a) we show the annual cycle of track occurrence for the tracker396

ensemble mean, of both the model ensemble and observations. We find that the397

number of events occurring in spring and fall is overestimated, whereas for July398

and August the occurrence frequency of tracks in the models is close to that399

of the observations. The annual cycle of the model ensemble shows two peaks,400

one in June and one in August, whereas the annual cycle of the observations401

is unimodal. With respect to the estimate of inter-annual variability, given by402

the temporal variance across years, we find that the model ensemble exceeds403

the observations.404

Figure 4b) and d) show accumulated precipitation of tracks (PT) and total405

accumulated precipitation (P(total)), whereas panel c) shows their fraction.406

In this domain and time period there is no pronounced annual cycle found in407

P(total). If anything it is rather the models that show a dry summer w.r.t.408

a wet winter. In other words, the model ensemble overestimates P(total) in409

winter and underestimates it in summer. In contrast to that, PT shows a410

strong seasonality, with the model ensemble showing a broad peak from May to411

November and the observations peaking from July to October. Here we find an412

overestimation of PT throughout the whole year. Consequently their fraction,413

PT/P(total), also shows strong seasonality, again with a peak in summer, and414

once more we identify a substantial overestimation by the model ensemble.415

Moreover we from this see that our setup chosen attributes only about 5%416

(observations) and 10% (model ensemble) of the annual precipitation amount417

to tracks. This overestimation was already of intense precipitation was already418

found in (Berthou et al., 2018; Meredith et al., 2020). Eventually we also see419

that this tracker setup serves well in identifying heavy precipitation events, as420

the fraction of precipitation amount identified is relatively low.421

Figure 5 shows the track occurrence frequency density of the tracker ensem-422

ble mean for the model ensemble and observations, as well as their difference.423

Panel d) shows the normalized difference, i.e. as if there were as many tracks424

in model ensemble as in observations, and by this emphasizes qualitative dif-425

ferences. Moreover in panel e) we show the difference in track occurrence for426

different seasons and different elevations. It is evident from observations (Fig.427

5b) that track occurrence is strongly correlated to the topography, meaning428

that the orographic forcing plays a major role for precipitation events to occur;429

this is well captured by the models as well (Fig. 5a). Prominent hotspots of430

heavy precipitation are the Julian Alps (North-East Italy), the Western Alps431

(especially the Italian side and the southern Maritime Alps between Italy and432

France) and the Massif Central (South France). Also Corsica and the Apen-433

nines can be identified as hotspots. However, also dry spots, located in the434
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c) Bias d) normalized Bias

e)

a) Model Ensemble b) Observations

Fig. 5 Panel a) shows the track occurrence frequency density, OFD [month−1 pixel−1], of
the tracker ensemble mean for the model ensemble and panel b) shows the same for the
observations. Panel c) shows their difference and panel d) show the difference, but with model
ensemble and observations being normalized by their total number of tracks, respectively.
A pixel is here defined as the reference area of 0.36◦ × 0.36◦. The green iso-line shows the
model elevation at 1000m.a.s.l.. Panel e) shows the model-observation difference in track
occurrence by model elevation.

interior of the Alps, like in Tyrol in Austria, or in the Western Alps are promi-435

nent in observations and re-produced well by the cpRCMs. Track occurrence436

appears overestimated over orography, particularly in the Maritime Alps, the437

Tyrolean Alps, the Apennines, the Black Forest and to a lesser extent, in the438

southern Massif Central. In contrast to this, in plains ahead of mountains,439

like in northern Italy, occurrence frequency is underestimated. We have seen440

already in the annual cycle of occurrence frequency (Figure 4 a)), that cpRCMs441

most strongly overestimate track occurrence in spring (MAM) and estimates442

OF well in summer (JJA). We now in panel e) of Figure 5 identify clearly that443
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cpRCMs in all seasons overestimate tracks above 1000 m.a.s.l., whereas in sum-444

mertime, below 1000 m.a.s.l. OF is underestimated. This behaviour may be445

explained through the following considerations: numerical models easily trig-446

ger convection through orographic lifting. However, they appear to struggle447

to trigger thunderstorms or to resolve complex thunderstorm dynamics over448

plain terrain in summer, even at convection-permitting resolution (see also449

Craig et al., 2012; Heim et al., 2020; Prein et al., 2021). On the other hand,450

observational datasets under-catch rainfall amounts in mountainous regions.451

Therefore, model performance over orography is expected to be better than452

it seems. This finding is in line with Lundquist et al. (2019), who propose453

that well-tuned cpRCMs may outperform observational datasets over complex454

mountain terrain, in terms of total precipitation amounts.455

The statistics of characteristic track properties of the tracker ensemble456

mean, for the climatologies of both model ensemble and observations, are listed457

in Table 8. Relative model biases of mean track properties are illustrated in458

panels a) and b) of Figure 6 and are summarized in Table 10.

Property Relative Bias
(all over)

Relative Bias
(w/o GRIPHO-
Italy)

Relative Bias
(only
GRIPHO-Italy)

NT +22% +43% −11%
prc +6% +3% +12%
maxc(pr) +20% +13% +36%
D [h] +37% +29% +56%

A
D

−27% −24% −34%
Vol +8% +0% +29%
PT +17% +8% +43%

Table 10 Relative biases [%] of characteristic track properties, as defined in Table 4,
using the tracker ensemble mean, for the whole domain, as well as without GRIPHO and
exclusively for GRIPHO.

459

We find that the biases of mean track properties are mostly positive (see460

Figure 6b) and Table 10). Biases of the 90th percentile of track properties are461

still much larger (see Figure 6d), suggesting that extreme events are strongly462

overestimated regarding their scales and intensity. Considering the complex463

orography of the domain investigated (Rotunno and Houze, 2007), in combi-464

nation with the known issue of under-catchment of orographic precipitation465

in observations, the positive biases were to be expected. Despite this, we find466

it important to note that mean precipitation rate of tracks is well-estimated467

(+6% allover the domain, +3% w/o GRIPHO-Italy). The absolute number of468

events, maximum precipitation rate, track duration and rainfall volume are469

considerably overestimated (>17%). Only the mean area of tracks is under-470

estimated. Model biases with respect to GRIPHO-Italy differ from those of471

the other datasets and regions qualitatively only in terms of number of tracks,472

showing here an underestimation. It is worth to note that the model spread473

is particularly large in terms of number of tracks (Figure 6a). For all other474
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properties we find smaller biases over regions with radar-based datasets, i.e.475

France, Germany and Switzerland (w/o GRIPHO-Italy) than over Italy (only476

GRIPHO-Italy). It is particularly the spatio-temporal properties (duration,477

mean area, space-time volume) and maximum precipitation rate, that show478

the greatest differences. We assume that the bias reduction in spatio-temporal479

properties, particularly in mean area, is associated with improvements that480

the spatially continuous radar measurements ensure. Larger model biases over481

Italy might be also attributed to some higher degree of complexity not well482

captured by some or all cpRCMs within the ensemble. Certainly the optimal483

spatial-temporal representation of precipitation events in radar-based datasets484

constitutes an advantage in the evaluation of models in a context of Lagrangian485

analysis. Our findings confirm the key role of observational datasets with com-486

parable spatial resolution in evaluation studies of RCMs (Torma et al., 2015;487

Prein and Gobiet, 2017d).488

The probability density functions in Figure 6 give more detailed insight489

into the models’ behaviour. Looking at track duration, we find that cpRCMs490

simulate precipitation events of temporal scales longer than 50 hours, that are491

not found in observations. In turn simulated precipitation events are generally492

too small regarding their area, whereas we see only a minor overestimation of493

the distribution’s tail. As a combination of the biases of duration and area,494

the bias of geometrical volume is still positive. It is mostly the overestimation495

of track duration that causes to the positive biases in geometrical volume and496

also biases in rain volume are mostly found in the tails of the distribution. In497

other words, cpRCMs are found to simulate precipitation events of large scales498

that are not seen in observations. This finding is also reflected in the high499

biases of the 90th percentile of track properties shown in Figure 6 c) and d).500

We in Figure 8 (in the Supplementary Material Section 9) provide the rel-501

ative biases of mean properties for each model individually and we here would502

like to address the 2 cpRCM families WRF and CCLM. While the WRF mod-503

els differ in their physics parameterizations, the CCLM models differ only in504

their nesting strategy. Among the WRF models the variability in mean biases505

is considerably large, with e.g. the IPSL-WRF and UHOH being particularly506

different. In turn the biases among the CCLM model family look much more507

similar. We from this conclude that physics parameterizations have a large508

effect on model behaviour and thus can generate greater ensemble variability509

than differing nesting strategies.510

The spatial mapping of model biases in Figure 7 allows us to further under-511

stand impacts of the technical shortcoming mentioned in Section 2.2. Note that512

we in Figure 9 (in the Supplementary Material Section 9) show the mapping of513

the respective properties for observations and model ensemble. The posteriori514

masking of tracks means that landfalling tracks are overestimated in their spa-515

tial and temporal scales. In fact we find that along the coasts rain volume and516

geometrical volume are overestimated, whereas the other averaged variables517

appear unaffected. Over Italy we again find the pronounced underestimation of518

track mean area and overestimation of track duration. We here can speculate519
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a) b)

c) d)

g) h)

i) j)

e) f)

Fig. 6 Panels a) and c): The purple shaded area illustrates the relative bias of a) the
tracker ensemble mean of the model ensemble mean and c) the 90th percentile, with

respect to the observations: ModEns
Tr

− Obs
Tr

Obs
Tr

[%], while purple lines indicate the individ-

ual models and green lines individual years of the observations. Panels b) and d) shows

also ModEns
Tr

− Obs
Tr

Obs
Tr

[%] for the mean and 90th percentile of characteristic properties,

with the Italian dataset GRIPHO excluded as well as for GRIPHO only. Black solid lines
are increments of +-5%, with the thick black line denoting 0%. Panels e) to j): probability
density functions of Duration [h], Area [km2], Rain Volume [m3 E6], Space-Time Volume
[km2 h], Maximum Precipitation Rate [mmh−1] and Mean Precipitation Rate [mmh−1].

that GRIPHO’s interpolation method smoothens the field strongly, enlarging520
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a) b)

c) d)

f)e)

Fig. 7 The spatial biases of the tracker ensemble mean of the model ensemble w.r.t. obser-
vations. Panels a) to f): duration [h], (mean) area [km2], rain volume [m3 E6], (geometrical)
volume [km2 h], mean and maximum precipitation (rate) [mmh−1]. Again a pixel is here
defined as the reference area of 0.36◦ × 0.36◦ and the green iso-line shows the model eleva-
tion at 1000m.a.s.l..

the spatial extent of events. Also positive biases in mean and maximum pre-521

cipitation are pronounced over Italy, but are not dramatically different from522

the other sub-regions in the domain.523
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6 Summary and Conclusions524

The present study has a two-fold scientific objective: on the one hand we525

provide an inter-comparison of tracking algorithms and on the other hand we526

present an evaluation of an ensemble of convection-permitting regional climate527

models in terms of Lagrangian precipitation events. We here summarize our528

findings and give conclusions.529

With respect to the tracker inter-comparison (see Section 4) we were able to530

show through both, the comparison of two historic events and the comparison531

of climatologies of model ensemble and observations, that all trackers inves-532

tigated produce equal relations of characteristic track properties and model533

biases (see Tables 7 and 9 and Figures 1, 2 and 3). Thus all trackers produce534

qualitatively equal results. In other words, differences among the trackers were535

found to be only of quantitative nature, which could be addressed to certain536

specifications of the algorithms. From this we infer that from each tracker anal-537

ysis the equivalent scientific conclusion would be derived. This result suggests538

that all trackers investigated are reliable analysis tools of atmospheric research.539

The choice of tracker depends here much on whether metatracks, allocated540

when tracks are splitting or merging, are of interest. Further code availability,541

portability and user support also play a major role.542

We find that the setup chosen here, given through smoothing, precipitation543

rate and volume threshold (Table 3), identifies an abundance of precipitation544

events all over the domain, of which only a fraction would be considered an545

extreme event. In our analysis of two historical events, we see that those are546

represented by several tracks. We recommend to consider that a tracker would547

identify fewer or only a single track, if thresholds on precipitation rate and548

minimum volume were raised and smoothing strengthened. The choice of setup549

depends upon the user-specific application. Certainly though, the most intense550

events are retained. In turn, reducing thresholds and weakening smoothing will551

result in a setup that identifies more and greater tracks and a greater fraction552

of precipitation will be attributed to the events.553

With respect to model evaluation (see Section 5) we summarize the fol-554

lowing findings. Looking into the spatial representation of precipitation events555

(see Figure 5), we found that cpRCMs perform well in reproducing hotspots of556

heavy precipitation, which are generally associated with orographic features.557

At the same time though, cpRCMs appear to overestimate the occurrence558

of precipitation events over orography. However, the under-catchment of oro-559

graphic precipitation in radar-based and rain gauge observations (Creutin560

et al., 1997; La Barbera et al., 2002; Prein and Gobiet, 2017d; Germann et al.,561

2022) suggests that cpRCMs perform better than it seems. The idea of cpRCMs562

outperforming observations in complex terrain, particularly in terms of total563

precipitation amounts, is strongly supported in Lundquist et al. (2019). In con-564

trast to this, we found the occurrence of precipitation events underestimated565

over plain terrain and ahead of orographic features, particularly in summer.566

The same model behaviour was found by Prein et al. (2017a) for North Amer-567

ica, where the occurrence frequency of MCSs was underestimated in the central568
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plains but overestimated over the Appalachians. We here assume that, despite569

of the convection-permitting resolution, complex thunderstorms (e.g. super-570

cells or squall lines) in plain terrain are either not triggered or their dynamics571

still under-resolved (see also Bryan and Morrison (2012); Pichelli et al. (2017);572

Prein et al. (2021)). Moreover, the correct prescription of sea surface temper-573

atures is crucial for the intensity and evolution of characteristic landfalling574

Mediterranean heavy precipitation events (Lebeaupin et al., 2006). Looking575

into the seasonal representation of precipitation events, we find that cpRCMs576

overestimate the occurrence of tracks and associated precipitation amounts577

particularly in late spring (AMJ), and also in fall. In late summer months578

(JAS) the domain-wide occurrence appears estimated well, as the overestima-579

tion in regions over 1000 m.a.s.l. is compensated by the underestimation in580

regions below 1000 m.a.s.l..581

In terms of characteristic properties of precipitation events we found the582

following biases (listed in Table 10 and illustrated in Figure 6) and give ref-583

erence to tracker studies using convection-permitting models. The occurrence584

frequency of events is overestimated with respect to radar-based observations585

(in line with Clark et al. (2014); Prein et al. (2017a); Caillaud et al. (2021))586

and under-estimated over Italy, although the models spread is large around587

this property. The mean area of tracks is underestimated (in line with (Crook588

et al., 2019), but in contrast to Caillaud et al. (2021)), while their duration is589

overestimated (in line with Crook et al. (2019); Purr et al. (2019)). Still, we590

have identified that both of these biases are particularly pronounced over Italy.591

In turn, the cpRCMs agree much better with the radar-based observational592

datasets in terms of track area and duration. The tracks’ space-time volume,593

that is the combination of area and duration, as well as the rain volume,594

are overestimated. However, we here find considerable impact by the differing595

representation of landfalling tracks in models and observations, and exclud-596

ing a major part of the coastline (the Italian sub-region) reduces the biases597

much. Mean precipitation rates show only small positive biases, with cpRCMs598

aligning again even better with radar-based observations. Maximum precipi-599

tation rate is overestimated in models and here again biases are much reduced600

when using radar-based observations as benchmark (in line with (Davis et al.,601

2006b; Prein et al., 2017a; Crook et al., 2019; Caillaud et al., 2021). Still602

we find that cpRCMs simulate precipitation events of scales and intensities603

that are not seen in observations, which means an overestimation of extreme604

event properties. Overall, the results on cpRCM evaluation are encouraging.605

On the one hand the (mostly) positive biases we find are to be expected, when606

assuming underestimated precipitation amounts in observations in a region of607

such complex orography. On the other hand we find that biases of the spatio-608

temporal properties of precipitation events in cpRCMs appear much reduced609

when using high-resolution observational datasets, based upon Doppler radar610

measurements.611
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A. Alias, D. Belušić, S. Berthou, C. Caillaud, R. M. Cardoso, S. Chan,939

O. B. Christensen, A. Dobler, H. de Vries, K. Goergen, E. J. Kendon,940

K. Keuler, G. Lenderink, T. Lorenz, A. N. Mishra, H.-J. Panitz, C. Schär,941

P. M. M. Soares, H. Truhetz, and J. Vergara-Temprado. The first942

multi-model ensemble of regional climate simulations at kilometer-scale res-943

olution part 2: historical and future simulations of precipitation. Climate944

Dynamics, 56(11-12):3581–3602, June 2021. ISSN 0930-7575, 1432-0894.945

doi: 10.1007/s00382-021-05657-4. URL https://link.springer.com/10.1007/946

s00382-021-05657-4.947

J. G. Powers, J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia, D. O.948

Gill, J. L. Coen, D. J. Gochis, R. Ahmadov, S. E. Peckham, and others.949

The weather research and forecasting model: Overview, system efforts, and950

future directions. Bulletin of the American Meteorological Society, 98(8):951

1717–1737, 2017.952

A. Prein, R. Rasmussen, D. Wang, and S. Giangrande. Sensitivity of orga-953

nized convective storms to model grid spacing in current and future climates.954

Philosophical Transactions of the Royal Society A, 379(2195):20190546,955

2021. Publisher: The Royal Society Publishing.956

A. F. Prein and A. Gobiet. Impacts of uncertainties in European gridded pre-957

cipitation observations on regional climate analysis. International Journal958

of Climatology, 37(1):305–327, 2017d. Publisher: Wiley Online Library.959

https://journals.ametsoc.org/doi/10.1175/BAMS-D-11-00154.1
https://journals.ametsoc.org/doi/10.1175/BAMS-D-11-00154.1
https://journals.ametsoc.org/doi/10.1175/BAMS-D-11-00154.1
https://onlinelibrary.wiley.com/doi/10.1002/qj.2351
https://onlinelibrary.wiley.com/doi/10.1002/qj.2351
https://onlinelibrary.wiley.com/doi/10.1002/qj.2351
https://onlinelibrary.wiley.com/doi/10.1002/qj.3096
https://onlinelibrary.wiley.com/doi/10.1002/qj.3096
https://onlinelibrary.wiley.com/doi/10.1002/qj.3096
https://link.springer.com/10.1007/s00382-021-05657-4
https://link.springer.com/10.1007/s00382-021-05657-4
https://link.springer.com/10.1007/s00382-021-05657-4


Springer Nature 2021 LATEX template

Evaluation of Precipitation Events using Tracking Algorithms 35

A. F. Prein, W. Langhans, G. Fosser, A. Ferrone, N. Ban, K. Goergen,960

M. Keller, M. Tölle, O. Gutjahr, F. Feser, E. Brisson, S. Kollet, J. Schmidli,961

N. P. M. Lipzig, and R. Leung. A review on regional convection-permitting962

climate modeling: Demonstrations, prospects, and challenges. Reviews of963

Geophysics, 53(2):323–361, June 2015. ISSN 8755-1209, 1944-9208. doi:964

10.1002/2014RG000475. URL https://onlinelibrary.wiley.com/doi/10.1002/965

2014RG000475.966

A. F. Prein, C. Liu, K. Ikeda, R. Bullock, R. M. Rasmussen, G. J. Holland,967

M. Clark, and others. Simulating North American mesoscale convective968

systems with a convection-permitting climate model. Climate Dynamics,969

pages 1–16, 2017a. Publisher: Springer.970

A. F. Prein, C. Liu, K. Ikeda, S. B. Trier, R. M. Rasmussen, G. J. Holland,971

and M. P. Clark. Increased rainfall volume from future convective storms in972

the US. Nature Climate Change, 7(12):880–884, 2017b. Publisher: Nature973

Publishing Group.974

C. Purr, E. Brisson, and B. Ahrens. Convective Shower Characteristics Simu-975

lated with the Convection-Permitting Climate Model COSMO-CLM. Atmo-976

sphere, 10(12):810, Dec. 2019. ISSN 2073-4433. doi: 10.3390/atmos10120810.977

URL https://www.mdpi.com/2073-4433/10/12/810.978

R. Rasmussen, C. Liu, K. Ikeda, D. Gochis, D. Yates, F. Chen, M. Tewari,979

M. Barlage, J. Dudhia, W. Yu, K. Miller, K. Arsenault, V. Grubǐsić,980
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de Septembre 2002 par les services de Sécurité Civile. La Houille Blanche,1012

90(6):107–113, Nov. 2004. ISSN 0018-6368, 1958-5551. doi: 10.1051/1013

lhb:200406015. URL https://www.tandfonline.com/doi/full/10.1051/lhb%1014

3A200406015.1015

M. Schleiss, J. Olsson, P. Berg, T. Niemi, T. Kokkonen, S. Thorndahl,1016

R. Nielsen, J. Ellerbæk Nielsen, D. Bozhinova, and S. Pulkkinen. The1017

accuracy of weather radar in heavy rain: a comparative study for den-1018

mark, the netherlands, finland and sweden. Hydrology and Earth System1019

Sciences, 24(6):3157–3188, 2020. doi: 10.5194/hess-24-3157-2020. URL1020

https://hess.copernicus.org/articles/24/3157/2020/.1021

T. Stein, R. Hogan, K. Hanley, P. Clark, C. Halliwell, H. Lean, J. Nicol,1022

and R. Plant. The three-dimensional microphysical structure of convective1023

storms over the southern United Kingdom. Monthly Weather Review, 142:1024

3264–3283, 2014.1025

B. Stevens. ATMOSPHERIC MOIST CONVECTION. Annual Review1026

of Earth and Planetary Sciences, 33(1):605–643, May 2005. ISSN 0084-1027

6597, 1545-4495. doi: 10.1146/annurev.earth.33.092203.122658. URL https:1028

//www.annualreviews.org/doi/10.1146/annurev.earth.33.092203.122658.1029

P. Tabary, P. Dupuy, G. L\rqHenaff, C. Gueguen, L. Moulin, O. Laurantin,1030

C. Merlier, and J.-M. Soubeyroux. A 10-year (1997–2006) reanalysis of quan-1031

titative precipitation estimation over France: methodology and first results.1032

IAHS Publ, 351:255–260, 2012.1033

C. Torma, F. Giorgi, and E. Coppola. Added value of regional climate mod-1034

eling over areas characterized by complex terrain-Precipitation over the1035

Alps: ADDED VALUE OF RCM OVER COMPLEX TERRAIN. Journal1036

of Geophysical Research: Atmospheres, 120(9):3957–3972, May 2015. ISSN1037

http://www.nature.com/articles/273287a0
http://www.nature.com/articles/273287a0
https://onlinelibrary.wiley.com/doi/10.1002/qj.67
https://onlinelibrary.wiley.com/doi/10.1002/wcc.378
https://www.tandfonline.com/doi/full/10.1051/lhb%3A200406015
https://www.tandfonline.com/doi/full/10.1051/lhb%3A200406015
https://www.tandfonline.com/doi/full/10.1051/lhb%3A200406015
https://hess.copernicus.org/articles/24/3157/2020/
https://www.annualreviews.org/doi/10.1146/annurev.earth.33.092203.122658
https://www.annualreviews.org/doi/10.1146/annurev.earth.33.092203.122658
https://www.annualreviews.org/doi/10.1146/annurev.earth.33.092203.122658


2169897X. doi: 10.1002/2014JD022781. URL http://doi.wiley.com/10.1002/1038

2014JD022781.1039

E. van Meijgaard, L. Van Ulft, W. Van de Berg, F. Bosveld, B. Van den Hurk,1040

G. Lenderink, and A. Siebesma. The KNMI regional atmospheric climate1041

model RACMO, version 2.1. KNMI De Bilt, The Netherlands, 2008.1042

E. Van Meijgaard, L. Van Ulft, G. Lenderink, S. De Roode, E. L. Wipfler,1043

R. Boers, and R. van Timmermans. Refinement and application of a regional1044

atmospheric model for climate scenario calculations of Western Europe.1045

Number KVR 054/12. KVR, 2012.1046

H. Wernli, M. Paulat, M. Hagen, and C. Frei. SAL—A Novel Quality Mea-1047

sure for the Verification of Quantitative Precipitation Forecasts. Monthly1048

Weather Review, 136(11):4470–4487, Nov. 2008. ISSN 1520-0493, 0027-0644.1049

doi: 10.1175/2008MWR2415.1. URL http://journals.ametsoc.org/doi/10.1050

1175/2008MWR2415.1.1051

T. Winterrath, C. Brendel, M. Hafer, T. Junghänel, A. Klameth, K. Lengfeld,1052

E. Walawender, E. Weigl, and A. Becker. RADKLIM Version 2017.002:1053

Reprocessed gauge-adjusted radar data, one-hour precipitation sums (RW).1054

Deutscher Wetterdienst (DWD), 2018.1055
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8 Tracker Descriptions1165

We here provide detailed descriptions of the tracking algorithms and supple-1166

mentary material.1167

8.1 MTD1168

The Method for Object-Based Diagnostic Evaluation (MODE) time domain1169

tool (MTD) is part of the Model Evaluation Tools (MET, see https://1170

dtcenter.org/community-code/model-evaluation-tools-met). It is developed,1171

maintained and made freely available by the Developmental Testbed Center1172

and used here by ICTP. The toolbox comprises various analysis tools developed1173

for the evaluation of numerical atmospheric models. (Davis et al., 2006a,b) first1174

introduce the basic methodology of MODE and demonstrate the advantages1175

of an object-based evaluation in numerical weather predictions. Later on the1176

tracking of objects in time was added and the capability of MTD in describing1177

the characteristic properties of rain systems in both simulations and observa-1178

tions on a continental scale was explored in (Clark et al., 2014). Finally (Prein1179

et al., 2017a) applied MTD in order to identify mesoscale convective systems1180

in convection-permitting climate simulations of North America.1181

The algorithm can be summarized as follows:1182

1. the field is smoothed by convolution in space, across a radius (here: 1 grid1183

cell, which means smoothing across 3×3 grid cells) and in time across a1184

number of time steps (here: +-0).1185

2. a precipitation threshold (here: 5mmh−1) is applied and thereafter only1186

grid cells exceeding the threshold are considered1187

3. adjacent cells in space and time are clustered to form objects.1188

4. a minimum volume threshold is applied (here: 100 grid cells), meaning that1189

all object that are too small will be dropped.1190

The output of the analysis is a set of tracks, that represent precipitation events,1191

along with information about their respective location, scale, intensity and1192

propagation.1193

The location of a track is given through the geometrical centroid across all1194

grid cells associated with the track in space and time. Due to computational1195

limitations the tracker only processes periods of 10 days at a time. Since we are1196

here looking at events with time scales much shorter than that, we don’t expect1197

the analysis being deteriorated much due to this. The mask for comparison1198

of observations against models was applied after the analysis. All statistical1199

properties presented here are derived from the raw un-smoothed precipitation1200

field, whereas the grid cells associated with the event are identified from the1201

smoothed field. Along the boundaries and 1 smoothing radius inwards the1202

input field is set to zero before applying the smoothing.1203

https://dtcenter.org/community-code/model-evaluation-tools-met
https://dtcenter.org/community-code/model-evaluation-tools-met
https://dtcenter.org/community-code/model-evaluation-tools-met
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8.2 OSIRIS1204

The precipitating system detection and tracking algorithm used by CNRM1205

is based on the algorithm developed at CNRM (Morel and Senesi, 2002a,b)1206

applied in precipitation nowcasting at Meteo-France and for the evaluation1207

of the numerical weather prediction model AROME (Brousseau et al., 2016).1208

It has also been recently used in an evaluation study of CNRM-AROME on1209

Mediterranean Heavy Precipitation Events (Caillaud et al., 2021). The 1-hour1210

accumulated precipitation fields are used as input of the tool and the method1211

can be summarised as follows:1212

1. Smoothing : first, each grid cell is replaced by a weighted average of the1213

3×3 adjacent grid cells and second, a Gaussian filter is applied with a small1214

standard deviation (0.5) allowing for a slight smoothing;1215

2. Detection of the precipitating systems every hour with a minimum surface1216

of 20 km2 and contiguous grid points exceeding several intensity thresholds1217

(here: 5mmh−1);1218

3. Tracking of system trajectories by identifying links between systems at dif-1219

ferent time steps according to overlapping and correlation conditions. The1220

overlapping condition uses the velocity of the cells calculated between dif-1221

ferent time steps with a minimum recovery rate of 15%. The correlation1222

condition is based on spatial correlation calculation between cells at differ-1223

ent time steps present in a research box around the cell, with a minimum1224

correlation of 0.4;1225

4. Minimum volume threshold applied (here: 100 grid cells),1226

5. Diagnostics: each cell is schematized as an ellipse: centre of gravity, length1227

of the minor axis and the major axis, angle and the main characteristics1228

of each trajectory can be calculated (location, duration, area, mean and1229

maximum intensity, velocity, ...). The different characteristics are calculated1230

on the smoothed field.1231

A further description of the algorithm can be found in (Caillaud et al., 2021).1232

8.3 celltrack1233

The tracker (celltrack) used by KNMI is described in detail in (Lochbihler1234

et al., 2017) and is inspired by the work of (Moseley et al., 2013). By default1235

celltrack does not use prior smoothing of the input field. To make celltrack1236

comparable to the other trackers, the input field was smoothed using a 3×31237

box-smoothing. This smoothed input field is used in all subsequent steps. First1238

individual cells above a precipitation threshold (5mmh−1) are diagnosed, not1239

considering a specific minimum area. These cells are subsequently linked into1240

tracks. A six-fold iterative advection correction is implemented using advec-1241

tive velocities derived on a coarse-grained grid. After the linking, various track1242

types can be diagnosed (e.g., single ”clean” tracks, mergers, splits, etc) follow-1243

ing a specific taxonomic classification (Lochbihler et al., 2017). The optional1244

diagnostics of sub-cell and mainstream detection are not used in this study.1245

The Fortran code is available on GitHub.1246
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8.4 DYMECS1247

The precipitation system detection and tracking algorithm was originally1248

developed for sub-hourly radar and forecast model precipitation data (Stein1249

et al., 2014). Since then, it has been applied to hourly climate model data with1250

resolutions as coarse as 25km (Crook et al., 2019).1251

The algorithm is divided into two parts: the detection of objects-of-interest1252

for each image and the tracking of these objects-of-interest between consecutive1253

images. The detection algorithm is based on the ”local table method” (Har-1254

alick and Shapiro, 1992), labelling pixels-of-interest by line-by-line scanning.1255

The tracking component is based on the windowed cross-correlation between1256

consecutive precipitation images (Rinehart and Garvey, 1978). Windowed cor-1257

relations between consecutive images are computed, and velocities between1258

images estimated. Objects identified in the previous image are then moved by1259

those estimated velocities. Areal overlap of objects between the two images1260

are computed. If the object overlapping fraction exceeds 0.6, the overlapping1261

objects are considered part of the same track, with splitting and merging1262

allowed if there are multiple overlapping. If two or more objects can be traced1263

back to a single object in the previous image, a split occurs with the object1264

with higher area overlap retaining the same track identifier (i.e., metatrack)1265

and the other objects labelled as new tracks. For the opposite case of two or1266

more objects from the previous image tracing to a single object in the cur-1267

rent image, a merge occurs, and retains the identifier with the track with the1268

highest overlap; other merged objects and their identifiers cease to exist.1269

Smoothing is not originally part of the algorithm. This is added for this1270

study, using the same Gaussian blurring approach as in (Caillaud et al., 2021).1271

Smoothing is applied to the detection phase only, affecting only pixel labelling1272

without changing the underlying precipitation intensities.1273

The code is written in MATLAB/OCTAVE and is available from the Met1274

Office upon request.1275
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9 Supplementary Material1276

Fig. 8 Relative Biases of each model w.r.t. to the model ensemble mean using the tracker

ensemble mean: Model
Tr

− ModEns
Tr

ModEns
Tr

[%]. Black solid lines are increments of +-5%, with

the thick black line representing the tracker ensemble mean of the model ensemble, i.e. 0%.
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Fig. 9 Spatial mapping of characteristic track properties using the tracker ensemble mean,
for the model ensemble (left column) and the observations (right column), From top to
bottom: Duration [h], Area [km2], Rain Volume [m3 E6], (geometrical) Volume [km2 h], Mean
Precipitation Rate [mmh−1] and Maximum Precipitation Rate [mmh−1].
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