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Abstract
Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies 
and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statisti-
cal downscaling methods and Regional Climate Models (RCMs). In the longer term, the final aim of this tool is to enlarge 
the high-resolution RCM simulation ensembles at low cost to explore better the various sources of projection uncertainty at 
local scale. Using a neural network, we build a statistical RCM-emulator by estimating the downscaling function included in 
the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of 
interest over the RCM domain in present and future climate. The RCM-emulator developed in this study is trained to produce 
daily maps of the near-surface temperature at the RCM resolution (12 km). The emulator demonstrates an excellent ability 
to reproduce the complex spatial structure and daily variability simulated by the RCM, particularly how the RCM refines 
the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there 
is a substantial computational benefit of running the emulator rather than the RCM, since training the emulator takes about 
2 h on GPU, and the prediction takes less than a minute. However, further work is needed to improve the reproduction of 
some temperature extremes, the climate change intensity and extend the proposed methodology to different regions, GCMs, 
RCMs, and variables of interest.

Keywords  Emulator · Hybrid downscaling · Regional climate modeling · Statistical downscaling · Deep neural network · 
Machine learning · EURO-CORDEX · FPS convection · CORDEX

1  Introduction

Climate models are an essential tool to study possible evolu-
tions of the climate according to different scenarios of green-
house gas emissions. These numerical models represent the 
physical and dynamical processes present in the atmosphere 
and their interactions with other components of the Earth 
System. The complexity of these models involves compro-
mises between the computational costs, the horizontal reso-
lution and, in some cases, the domain size.

Global climate models (GCMs) produce simulations cov-
ering the whole planet at reasonable cost thanks to a low 
spatial resolution (from 50 to 300 km). The large number of 
different GCMs developed worldwide allows to build large 
and coordinated ensembles of simulations, thanks to a strong 
international cooperation. These big ensembles (CMIP3/5/6, 
Meehl et al. 2007; Taylor et al. 2012; Eyring et al. 2016) are 
necessary to correctly explore the different sources of vari-
ability and uncertainties in order to deliver reliable informa-
tion about future climate change at large spatial scales. How-
ever, the resolution of these models is too coarse to derive 
any fine scale information, which is of primary importance 
for impact studies and adaptation policies. Consequently, it 
is crucial to downscale the GCM outputs to a higher resolu-
tion. Two families of downscaling have emerged: empirical-
statistical downscaling and dynamical downscaling. Both 
approaches have their own strengths and weaknesses.

Empirical Statistical Downscaling methods (ESD) esti-
mate functions to link large scale atmosphere fields with 
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local scale variables using observational data. Local impli-
cations of future climate changes are then obtained by 
applying these functions to GCM outputs. Gutiérrez et al. 
(2019) present an overview of ESD methods and evaluate 
their ability to downscale historical GCM simulations. The 
great advantage of these statistical methods is their compu-
tational efficiency, which makes the downscaling of large 
GCM ensembles possible. On the other hand, they have two 
main limitations due to their dependency on observational 
data. First of all, they are applicable only for regions and 
variables for which local long-term observations are avail-
able. Secondly, they rely on the stationary assumption of 
the large-scale/local-scale relationship, which implies that 
a statistical model calibrated in the past and present climate 
remains reliable in the forthcoming climate. Studies tend to 
show that the calibration period has a non-negligible impact 
on the results (Wilby et al. 1998; Schmith 2008; Dayon et al. 
2015; Erlandsen et al. 2020).

Dynamical downscaling (DD) is based on Regional Cli-
mate Models (RCMs). These models have higher resolution 
than GCMs (1–50 km) but are restricted to a limited area 
domain to keep their computational costs affordable. They 
are nested in a GCM, e.g., they receive at small and regu-
lar time intervals dynamical information from this GCM at 
their lateral boundaries. One key advantage of RCMs is to 
rely on the same physical hypotheses as the one involved 
in GCMs. They provide a complete description of the state 
of the atmosphere over their domain through a large set of 
variables at high temporal and spatial resolution. The added 
value of RCMs has been demonstrated in several studies 
(Giorgi et al. 2016; Torma et al. 2015; Prein et al. 2016; Fan-
tini et al. 2018; Kotlarski et al. 2015, for examples). In order 
to deliver robust information about future local responses 
to climate change, it is necessary to explore the uncertainty 
associated with RCM simulations. Déqué et al. (2007) and 
Evin et al. (2021) assess that four sources of uncertainty are 
at play in a regional climate simulation: the choice of the 
driving GCM, the greenhouse gas scenario, the choice of the 
RCM itself and the internal variability. Their relative impor-
tance depends on the considered variables, spatial scale, and 
timeline. According to these results, it is important (Déqué 
et al. 2012; Evin et al. 2021; Fernández et al. 2019) to com-
plete 4D matrices [SCENARIO, GCM, RCM, MEMBER] to 
deliver robust messages, where members are several simula-
tions of each (SCENARIO, GCM, RCM) triplet. However, 
the main limitation of RCM is their high computational costs 
which makes the completion of such matrices impossible.

This study proposes a novel hybrid downscaling method 
to enlarge the size of RCM simulation ensembles. The idea 
is to combine the advantages of both dynamical and sta-
tistical downscaling to tackle their respective limits. This 
statistical RCM-emulator uses Machine Learning methods 
to learn the relationship between large scale fields and local 

scale variables inside regional climate simulations. It aims 
to estimate the downscaling function included in the RCM in 
order to apply it to new GCM simulations. This framework 
will allow to learn this function on the entire RCM domain, 
in past and future climate, under different scenarios. Besides, 
the emulator relies on Machine Learning algorithms with 
low computational costs, which will enable to increase RCM 
simulation ensembles and to better explore the uncertainties 
associated with these high resolution simulations.

Hybrid statistical-dynamical downscaling methods have 
already been proposed. They are methods which combine, 
in different ways, regional climate models and statistical 
approaches to obtain local climate information. Several stud-
ies such as Pryor and Barthelmie (2014), Vrac et al. (2012) 
or Turco et al. (2011) perform 2-step downscaling by apply-
ing ESD methods to RCM simulations. Colette et al. (2012) 
apply bias correction methods to GCM outputs before 
downscaling with RCMs. Maraun and Widmann (2018) are 
among the first to mention the concept of emulators. Few 
studies have combined ESD and DD for the same purpose 
as in this study. For instance, Walton et al. (2015) propose 
a statistical model which estimates from GCM outputs, the 
high resolution warming pattern for each month in Califor-
nia. It is calibrated using RCM simulations and relies on a 
simple linear combination of two predictors from the GCM 
(the monthly mean over the domain and an indicator for the 
land/sea contrast) plus an indicator for the spatial variance 
(obtained thanks to PCA). Berg et al. (2015) adapt the same 
protocol for monthly changes in precipitation over Califor-
nia. With respect to those pioneer studies, we propose here 
to further develop this approach by using a neural network 
based method and by emulating the full time series at the 
input time scale, allowing to explore daily climate extremes.

In recent years, climate science has taken advantage of 
the recent strides in performances of Deep Learning algo-
rithms (see Lecun et al. 2015, for an overview). Indeed, 
thanks to their capacity to deal with large amounts of data 
and the strong ability of Convolutional Neural Network 
(CNN) (LeCun et al. 1998) to extract high level features from 
images, these algorithms are particularly adapted to climate 
and weather sciences. Reichstein et al. (2019) present a com-
plete overview of the climate studies applying Deep Learning 
and future possibilities. In particular, Vandal et al. (2017, 
2019) and Baño-Medina et al. (2020, 2021) showed the good 
ability of Convolutional Neural Network (CNN) architecture 
to learn the transfer function between large scale fields and 
local variables in statistical downscaling applications. Baño-
Medina et al. (2021) confirms the suitability of CNN for ESD 
in an inter-comparison study, while Vandal et al. (2017) dem-
onstrates the good performances of CNN in front of a state-
of-the-art bias correction method. The concept of emulator 
is mentioned in Reichstein et al. (2019) as surrogate models 
trained to replace a complex and computationally expensive 



Regional climate model emulator based on deep learning: concept and first evaluation of a novel…

1 3

physical model (entirely or only parts of it). Once trained, this 
emulator should be able to produce simulations much faster 
than the original model. In this context, the RCM-emulator 
proposed here is based on a different fully convolutional 
neural network architecture known as UNet (Ronneberger 
et al. 2015). Wang et al. (2021) propose a different emula-
tor following a different strategy than ours as they train it 
using a low and high-resolution version of the same RCM 
and another type of neural network (namely CGAN).

This study presents and validates the concept of statistical 
RCM-emulator. We will focus on emulating the near-surface 
temperature in a RCM over a specific domain, including 
high mountains, shore areas, and islands in Western Europe. 
This domain regroups areas where the RCM presents added 
value compared to GCM but remains small enough to per-
form quick sensitivity tests. This paper is organized as fol-
lows: Sect. 2 presents the whole framework to define, train 
and evaluate the emulator, while Sect. 3 shows the emulator 
results. Finally, Sects. 4 and 5 discuss the results of the emu-
lator and provide conclusions.

2 � Methodology

This section provides a complete description of the UNet-
based RCM-emulator used in this paper. The notations are 
summarised in Table 1. The RCM-emulator uses a neu-
ral network architecture to learn the relationship between 
large-scale fields and local-scale variables inside regional 
climate simulations. RCMs include a downscaling function 
(F) which transforms large scale information (X,Z) into high 
resolution surface variables (Y). The statistical RCM-emu-
lator aims to solve a common Machine Learning problem

which is to estimate F by F̂ in order to apply it to new GCM 
simulations. The following paragraphs describe the list of 

Y = F(X, Z)

predictors used as inputs and their domain, the predictand 
(or target) and its domain, the neural network architecture, 
the framework used to train the emulator and the metrics 
used to evaluate its performances.

2.1 � Models and simulations

This study focuses on the emulation of the daily near-surface 
temperature from EURO-CORDEX simulations based on 
the CNRM-ALADIN63 regional climate model (Nabat et al. 
2020) driven by the CNRM-CM5 global climate model used in 
CMIP5 (Voldoire et al. 2013). The latter provides lateral bound-
ary conditions, namely 3D atmospheric forcing at 6-hourly fre-
quency, as well as sea surface temperature, sea ice cover and 
aerosol optical depth at monthly frequency. The simulations 
use a Lambert Conformal grid covering the European domain 
(EUR-11 CORDEX) at the 0.11◦ (about 12.5 km) scale (Jacob 
et al. 2014). The historical period runs from 1951 to 2005. The 
scenarios (2006–2100) are based on two Representative Con-
centration Pathways from the fifth phase of the Coupled Model 
Intercomparison Project (CMIP5): RCP4.5 and RCP8.5 (Moss 
et al. 2010). The monthly aerosol forcing evolves according to 
the chosen RCP and the driving GCM.

2.2 � Predictors

Neural Networks can deal with large datasets at low compu-
tational time. During their self optimisation, they are able 
to select the important variables and regions for the predic-
tion. In this way, a large number of raw predictors can be 
given to the learning algorithm, with minimum prior selec-
tion (which could introduce some bias) or statistical pre-
work (which might delete some of the information). Several 
ESD studies (Lemus-Canovas and Brands 2020; Erlandsen 
et al. 2020) show that the right combination of predictors 
depends strongly on the target region and the season. The 
RCM domains are often composed of very different regions 
in terms of orography, land types, distance to the sea, etc. 

Table 1   Notations

Notation Description Dimensions

i, j Spatial indexes over input grid {i, j} ∈ [[1 , I]] × [[1 , J]]

k, l Spatial indexes over target grid {k, l} ∈ [[1 , K]] × [[1 , L]]

t Temporal index, daily t ∈ ℕ

x 2-D variables index List of 2D variables : V2D
z 1-D variables index List of 1D variables : V1D
X Set of 2D input for the emulator Xt,i,j,x ∈ {ℕ × [[1 , I]] × [[1 , J]] × V2D}

Z Set of 1D input for the emulator Zt,z{ℕ × V1D}

Y Target: daily near-surface temperature Yt,k,l ∈ {ℕ × [[1 , K]] × [[1 , L]]}

F Downscaling function of the RCM
F̂ Emulator: estimation of F
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For these reasons, we decided to give all potentially needed 
predictors to the emulator and leave the algorithm to deter-
mine the right combination to be used to predict each RCM 
grid point.

The set of predictors (X, Z) used as input in the emulator 
is composed of 2 dimensional variables X, and 1D predictors 
Z (Table 2). The set of 2D variables includes atmospheric 
fields commonly used in ESD (Baño-Medina et al. 2020; 
Gutiérrez et al. 2019) at different pressure levels. We also 
added the total aerosol optical depth present in the atmos-
phere since it constitutes a key regional driver of the regional 
climate change over Europe (Boé et al. 2020). It leads to 19 
2D predictors. These variables are normalised (see Eq. 1) 
according to their daily spatial mean and standard devia-
tion so that they all have the same importance for the neural 
network before the training.

The set of 1D variables includes external forcing also 
given to the RCM: the total concentration of greenhouse 
gases and the solar and ozone forcings. It also includes a 

cosinus, sinus vector to encode the information about the 
day of the year. Given that the 2D variables are normal-
ised at each time step by their spatial mean, they don’t 
carry any temporal information. For this reason, the daily 
spatial means and standard deviations time series for each 
2D variable are included in the 1D input, bringing the 
size of this vector to 43. In order to always give normal-
ised inputs to the emulator, Z is normalized (see Eq. 2 
) according to the means and standard deviations over 
a reference period (1971–2000 here) chosen during the 
emulator training. The same set of means and standard 
deviations will be used to normalise any low resolution 
data to be downscaled by the emulator.

This decomposition of the large scale information con-
sists in giving separately the spatial structure of the atmos-
phere (X) and the temporal information (Z) to the emula-
tor. Thanks to the neural network architecture described in 
Sect. 2.4.3, we force the emulator to consider both items of 
information equally.

Table 2   List of predictors

Field Altitude levels Variables notation Units Temporal aggregation Dimension

2D variables
 Geopotential 850, 700, 500 hPa zg500 m Daily mean [i, j]

zg700
zg850

 Specific humidity 850, 700, 500 hPa hus500 Daily mean [i, j]
hus700
hus850

 Temperature 850, 700, 500 hPa ta500 K Daily mean [i, j]
ta700
ta850

 Eastward wind 850, 700, 500 hPa + Surface ua500 m/s Daily mean [i, j]
ua700
ua850
uas

 Northward wind 850, 700, 500 hPa + Surface va500 m/s Daily mean [i, j]
va700
va850
vas

 Sea level pressure Surface psl Pa Daily mean [i, j]
 Total aerosol optical depth forcing TAOD Monthly mean [i, j]

1-D variables
 Daily spatial means of 2D variables x with x ∈ V2D Daily [#V2D]

 Daily spatial standard deviation of 2D variables ∙
x with x ∈ V2D Daily [#V2D]

 Total anthropogenic greenhouses gas forcings ant_ghg Yearly [1]
 Solar and ozone forcings sol, oz Yearly [2]

 Seasonal indicators Cos( 2�t
365

) ; Sin( 2�t
365

) cos,sin Daily [2]
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The aim of the emulator is to downscale GCM simulations. 
Klaver et al. (2020) shows that the effective resolution of 
climate models is often larger (about 3 times) than its nomi-
nal resolution. For instance, CNRM-CM5 is more reliable 
at a coarser resolution, probably about 450–600 km, than at 
its own horizontal resolution ( ≈ 150 km ). For this reason, 
the set of 2D predictors are smoothed with a 3 × 3 moving 
average filter. The grid of the GCM is conserved, with each 

(1)

X̃t,i,j,x =
Xt,i,j,x − Xt,x

∙

Xt,x

with Xt,x =

∑I

i=1

∑J

j=1
Xt,i,j,x

I × J

and
∙

Xt,x =

�∑I

i=1

∑J

j=1
(Xt,i,j,x − Xt,x)

2

I × J

(2)

Z̃t,z =
Zt,z − Zref ,z

∙

Zref ,z

with Zref ,z =

∑
t∈R Zt,z

nb days in R

and
∙

Zref ,z =

�∑
t∈R(Zt,z − Zref ,z)

2

nb days in R

where R is the reference period.

point containing a smoother information than the raw model 
outputs.

For this study the input domain is defined around 
the target domain (described in Sect. 2.3). It is a 16 × 16 
( J = I = 16 in Table 1) CNRM-CM5 grid box visible on 
Fig. 1. Each observation given to the emulator (see Fig. 1 
for an illustration) is a day t and it is composed of a 3D array 
( Xi,j,x ), where the two first dimensions are the spatial coor-
dinates and the third dimension lists the different variables 
chosen as predictors, and a 1D array ( Zz ) regrouping all the 
1 dimensional inputs.

2.3 � Predictands

In this study, to assess the ability of the RCM-emulator to 
reproduce the RCM downscaling function, we focused on the 
emulation of the daily near surface temperature over a small 
but complex domain. The target domain for this study is a 
box of 64 × 64 RCM grid points at 12 km resolution (about 
600,000 km2 ) centred over the south of France (Fig. 1). It gath-
ers different areas of interest for the regional climate models. 
It includes three mountain massif (Pyrenees, Massif Central 
and French Alps) which are almost invisible at the GCM scale 
(specially the Pyrenees). The domain also includes coastlines 
on the Mediterranean side and on the Atlantic side. Thanks to 
a better representation of the coastline at the RCM resolution, 
it takes better into account the sea effect on the shore climate. It 
was also important for us to add small islands on our evaluation 

Fig. 1   Illustration of an observation for a randomly-chosen day. Left: each map represents a 2D input variables (X), on the input domain, and the 
blue numbers correspond to the 1D variables (Z). Right: an example of Y, the near surface temperature on the target domain
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domain, such as the Baleares (Spain), since they are invisible 
on the GCM grid and the RCM brings important information. 
Finally, three major rivers (plotted in blue in Fig. 1) are on the 
domain with interesting impacts on climate (commented in 
Sect. 3): the Ebro in Spain, the Garonne in southwest of France 
and the Rhone on the east of the domain. This domain should 
therefore illustrate the added value brought by a RCM at local 
scale and be a good test-bed on the feasibility of emulating 
high resolution models.

2.4 � Deep learning with UNet

2.4.1 � Neural network model as a black‑box regression 
model

The problem of statistical downscaling and of emulation 
of daily near-surface variables may be seen as a statistical 
regression problem where we need to build the best relation-
ship between the output response Y and the input variables 
(X, Z). When looking at the L2 loss between the prediction 
Ŷ  and the true Y, the optimal link (denoted by F below) is 
theoretically known as the conditional expectation:

Unfortunately, since we will only have access to a limited 
amount of observations collected over a finite number of 
days, we shall work with a training set formed by the col-
lected observations ((Xt, Zt), Yt)1≤t≤T and try to build from 
the data an empirical estimation F̂ of the unknown F.

For this purpose, we consider a family of relationship 
between (X, Z) and Y generated by a parametric deep neu-
ral network, whose architecture and main parameters are 
described later on. We use the symbol � to refer to the values 
that describe the mechanism of one deep neural network, 
and Θ as the set of all possible values of � . Hence, the family 
of possible relationships described by a collection of neural 
networks correspond to a large set (F�)�∈Θ . Deep learning 
then corresponds to the minimization of a L2 data-fidelity 
term associated to the collected observations:

2.4.2 � Training a deep neural network

To train our emulator between low resolution fields and one 
high resolution target variable, we used a neural network 
architecture called UNet whose architecture is described 
below. As usual in neural networks, the neurons of UNet 
are organised in layers. Given a set E

�
 of input variables 

denoted by (xi)i∈E
�

 of an individual neuron � , the output of � 

(3)F(X, Z) = E[Y |(X, Z)].

(4)F̂ = arg min
F𝜃 ,𝜃∈Θ

T�

t=1

‖Yt − F𝜃(Xt, Zt)‖2.

corresponds to a non-linear transformation � (called activa-
tion function) of a weighted sum of its inputs:

The connection between the different layers and their neu-
rons then depends on the architecture of the network. In 
a fully connected network (multilayer perceptron) all the 
neurons of a hidden layer are connected to all the neurons of 
the previous layer. The deepness of a network then depends 
on the number of layers.

As indicated in the previous paragraph, the machine 
learning procedure corresponds to the choice of a particular 
set of weights over each neuron to optimise a data fidelity 
term. Given a training set, a deep learning algorithm then 
solves a difficult multimodal minimisation problem as the 
one stated in (4) with the help of gradient descent strategies 
with stochastic algorithms. The weights associated with each 
neuron and each connection are then re-evaluated according 
to the evolution of the loss function, following the back-
propagation algorithm (Rumelhart and Hinton 1986). This 
operation is repeated over all the examples until the error 
is stabilized. Once the neural network is trained, it may be 
used for prediction, i.e., to infer the value Y from new inputs 
(X, Z).

We emphasize that the bigger the dimension of the inputs 
and outputs, the larger the number of the parameters to be 
estimated and so the bigger the training set must be. There-
fore, the quality of the training set is crucial: missing or 
wrong values will generate some additional fluctuation and 
errors in the training process. Moreover, we also need to 
cover a sufficiently large variety of scenarios in the input 
variables to ensure that our training set covers a wide range 
of possible inputs. For all these reasons, climate simulation 
datasets are ideal to train deep learning networks.

2.4.3 � UNet architecture

The emulator proposed in this study relies on a specific 
architecture called UNet introduced by Ronneberger et al. 
(2015). It is a fully convolutional architecture, i.e. all lay-
ers are convolutional layers known for their strength to 
deal efficiently with image data. UNet is known for its 
good ability to identify different objects and areas in an 
image. It involves gathering pixels that correspond to 
the same object. This key feature is naturally interesting 
for meteorological maps. The emulator needs to identify 
the different meteorological structures present in the low 
resolution predictors for a given day in order to predict 
the corresponding high resolution near-surface tempera-
ture. Moreover, the good performances of UNet have been 

(5)�

�
(xi)i∈E

�

�
= �

�
⟨(wi)i∈E

�

, (xi)i∈E
�

⟩
�
= �

�
�

i∈E
�

wixi

�
.
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demonstrated in problems such as pixel-wise regression 
(Yao et al. 2018) or super-resolution (Hu et al. 2019), 
which are comparable to ours.

The original UNet architecture is illustrated in the red 
frame in Fig. 2 and more precisely described in Appendice. 
It is composed of an encoding part on the left side, which 
reduces the spatial dimension of the input image while the 
pixel dimension gets deeper. On the right side, the expan-
sive path decodes the encoded information to reconstruct the 
target image. Each encoding step is recalled in the decoding 
part, allowing the network to find the best way to the target 
image through different levels.

The architecture we propose is adapted from the origi-
nal UNet to suit our problem. Firstly, the input object is a 
description of the climate conditions leading to the target 
image. It is then a 3D object while the classical UNet takes 
a single image as input. This aspect differs from the natural 
use of UNet but does not modify its construction. Secondly, 
we added a second source of input, the set of 1D predic-
tors (see Table 2) which is given at the bottom of the UNet 
(see Fig. 2). This 1D object is encoded by a dense network 
and then concatenated with the encoded 2D inputs. The “U” 
shape of the UNet architecture allowed us to give this infor-
mation such that the network treats equally the two sources 
of input. Finally, we extended the expansive part of the UNet 

to reach the higher resolution of the output as illustrated in 
Fig. 2.

We chose the mean square error (MSE) as the loss func-
tion to train the network, as we have a regression problem. 
Moreover, it is well adapted for variables following Gauss-
ian-like distribution, such as temperature. The neural net-
work was built and trained using the Keras Tensorflow envi-
ronment in Python (https://​keras.​io). The network trained for 
this study has about 25 million parameters to fit.

2.5 � Training of the emulator: perfect model 
framework

As any statistical downscaling and any machine learning 
method, the emulator needs to be calibrated on a training set. 
It consists in showing the emulator many examples of pre-
dictors and their corresponding target such that the param-
eters of the network can be fitted as mentioned in Sect. 2.4.2. 
The emulator is trained in a perfect model framework, with 
both predictors and predictands coming from the same RCM 
simulation. The intuitive path to train the emulator is to use 
GCM outputs as predictors and its driven RCM outputs as 
predictands, but there are many reasons for our choice. First 
of all, it guarantees a perfect temporal correlation between 
large scale predictors and a local scale predictand. Indeed, 

Fig. 2   Scheme of the neural network architecture used for UNet emulator. The part of the network in the red frame corresponds to the original 
UNet defined in Ronneberger et al. (2015)

https://keras.io
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Fig. 3 shows that GCM and RCM large scales are not always 
well correlated, with an average correlation of 0.9 and 10% 
of the days with a coefficient of correlation lower than 0.75. 
These mismatches are quite well known and often due to 
internal variability as explained by Sanchez-Gomez et al. 
(2009); Sanchez-Gomez and Somot (2018). Moreover, there 
are more consistent biases (discussed in Sect. 4.1) between 
GCM and RCM large scales. It is of primary importance 
that the inputs and outputs used to calibrate the model are 
perfectly consistent, otherwise, the emulator will try to learn 
a non-existing or non-exact relationship. In this context, the 
perfect model framework allows us to focus on the down-
scaling function of the RCM, specifically. This approach 
is similar to the “super-resolution downscaling” mentioned 
by Wang et al. (2021) and deployed by Vandal et al. (2017) 
using observational data in a empirical statistical downscal-
ing framework.

The training protocol is summarised in Fig. 4. In a first 
step, the RCM simulation outputs are upscaled to the GCM 
resolution (about 150 km) thanks to a conservative inter-
polation. This first step transforms the RCM outputs into 
GCM-like outputs. This upscaled RCM is called UPRCM 
in the rest of this paper. In the second step, these UPRCM 
outputs are smoothed by a 3 × 3 moving average filter to 
respect the protocol described in Sect. 2.2. This smoothing 

also targets to delete any local scale information which 
might persist through the upscaling step (as discussed in 
Sect. 4.3).

The near-surface temperature on the target domain 
is extracted from the same RCM simulation. Following 
this procedure, the emulator is trained using the ALA-
DIN63 simulation forced by CNRM-CM5, covering the 
1950–2100 period with the RCP8.5 scenario from 2006. 
As shown in Fig. 4, we will use a different simulation 
driven by a different RCP scenario for the evaluation. We 
chose the two most extreme simulations (historical and 
RCP8.5) for the training in order to most effectively cover 
the range of possible climate states since the emulator 
does not target to extrapolate any information. Future stud-
ies could explore the best combination of simulations to 
calibrate the emulator.

2.6 � Evaluation metrics

The emulated temperature series ( ̂Y ) will be compared to the 
original RCM series (Y) (mentioned as “RCM truth” in the 
rest of this paper) through statistical scores described below. 
Each of these metrics will be computed in each point over 
the complete series:

Fig. 3   Time series of spatial correlation of the atmospheric temperature at 700 hpa between ALADIN63 and its driving GCM, CNRM-CM5, 
over the input domain

Fig. 4   Scheme of the protocols for the training (left) and the two steps of evaluations (center and right)
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–	 RMSE: The root mean squared error measures the stand-
ard deviation of the prediction error (in ◦C): 

–	 Temporal anomalies correlation: This is the Pearson 
correlation coefficient after removing the seasonal cycle: 

 with � the Pearson correlation coefficient and Ya and Ŷa 
are the anomaly series after removing a seasonal cycle 
computed on the whole series.

–	 Ratio of variance: It indicates the performance of the 
emulator in reproducing the local daily variability. We 
provide this score as a percentage. 

–	 Wasserstein distance: It measures the distance between 
two probability density functions (P, Q). It relies on the 
optimal transport theory (Villani 2009) and measures 
the minimum required “energy” to transform P into Q. 
The energy here corresponds to the amount of distribu-
tion weight that is needed to be moved multiplied by 
the distance it has to be moved. In this study we use the 
1-d Wasserstein distance, and its formulation between 
two samples becomes a rather simple function of ordered 
statistics: 

 with f (∙) the probability density function associated with 
the sample ∙.

–	 Climatology: We compare the climatology maps over 
present (2006–2025) and future (2081–2100, not shown 
in Sect. 3) climate. The RCM truth and emulator maps 
are shown with their spatial correlation and RMSE. The 
error (emulator minus RCM) map is also computed.

–	 Number of days over 30◦C : Same as climatology for the 
maps showing the number of days over 30 ◦C.

–	 99th Percentile: Same as climatology for the maps show-
ing the 99th percentile of the daily distribution.

–	 Climate Change: Climate change maps for the clima-
tology, the number of days over 30 ◦ C and the 99th per-
centile (delta between future (2080–2100) and present 
(2006–2025) period).

These metrics are at the grid point scale and are presented 
as maps. However, to summarise these maps with few num-
bers we can compute their means and their super-quantile of 

(6)RMSE(Y , Ŷ) =

√
1

T

∑

t

(Yt − Ŷt)
2

(7)ACC(Y , Ŷ) = �(Ya, Ŷa) ,

(8)RoV(Y , Ŷ) =
Var(Ŷ)

Var(Y)
∗ 100

(9)W1(f (Y), f (Ŷ)) =

T∑

i=1

|Y(i) − Ŷ(i)| ,

order 0.05 (SQ05) and 0.95 (SQ95). The super-quantile � is 
defined as the mean of all the values larger (resp. smaller) 
than the quantile of order � , when � is larger (resp. smaller) 
than 0.5. These values are shown in the Figures of Sect. 3 
and Tables SM.T1 and  SM.T2 in supplementary material.

2.7 � Benchmark

For this study, we propose as benchmark the near surface 
temperature from the input simulation (before the moving 
average smoothing), interpolated on the target grid by bilin-
ear interpolation. As this study is the first to propose such 
an emulator, there is no already established benchmark. The 
one proposed here is a naive high-resolution prediction given 
available predictors (low-resolution), it is used as a basic 
reference and not a potential competitor for the emulator. 
It allows the reader to locate the emulator somewhere in 
between the simplest possible downscaling (simple interpo-
lation of the original low resolution simulation) and the most 
complex one (RCM simulation). All the metrics introduced 
in Sect. 2.6 will be applied to our benchmark.

3 � Results

This section presents the emulator performances in terms of 
its computational costs (in Sect. 3.1) and its ability to repro-
duce the near surface temperature time series at high resolu-
tion. As illustrated in Fig. 4, we will evaluate the emulator 
in two steps, (1) in the perfect model world (Sect. 3.2) and 
(2) when the emulator inputs come from a GCM simulation 
(Sect. 3.3). The RCM simulation used to evaluate the model 
(also called target simulation) is the ALADIN63, RCP45, 
2006–2100 forced by the GCM simulation CNRM-CM5, 
RCP45, 2006–2100. Note that the emulator never saw the 
target simulation during the training phase. This evaluation 
exercise illustrates a potential use of the emulator: downscal-
ing a scenario that the RCM has not previously downscaled.

3.1 � Computational efficiency

The emulator is trained on a GPU (Nvidia, GeForce GTX 
1080 Ti). About 60 epochs are necessary to train the net-
work, and each epoch takes about 130 s with a batch size of 
100 observations. The training of the emulator takes about 
2 h. Once the emulator is trained, the downscaling of a new 
low resolution simulation is almost instantaneous (less than 
a minute). It is a significant gain in time compared to RCM, 
even if these time lengths do not include the preparation of 
the inputs, which depends mainly on the size of the series 
to downscale and on the data accessibility. It would, when 
including the input preparation, take only a few hours on a 
simple CPU or GPU to produce a simulation with the trained 
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emulator, while it takes several weeks to perform a RCM 
simulation on a super-computer.

3.2 � Evaluation step 1: perfect model world

In a first step, the emulator is evaluated in the perfect model 
world, meaning that the inputs come from the UPRCM sim-
ulation. This first evaluation step is necessary to control the 
performances of the emulator in similar conditions as during 
its training. Moreover, the perfect model framework guaran-
tees perfect temporal matches between the large scale low 
resolution fields (the inputs) and the local scale high resolu-
tion temperature (the target). The emulator should then be 
able to reproduce perfectly the temperature series that is 
simulated by the RCM. This first evaluation of the emula-
tor is divided in two parts. In the Sect. 3.2.1 we analyse the 
ability of the emulator to reproduce the RCM simulation. 
The Sect. 3.2.2 compares the specific emulator proposed 
in this study with two others emulators relying on standard 
empirical statistical downscaling methods.

3.2.1 � Ability to reproduce the RCM simulation

The emulator aims to learn and reproduce the downscaling 
function included in the RCM, i.e., to transform the low 
resolution daily information about the state of the atmos-
phere into high-resolution daily surface temperature. We 
dedicate this first evaluation section to comparing the pre-
diction of the emulator with the RCM truth in perfect model. 
The benchmark for this first evaluation is the UPRCM near 
surface temperature re-interpolated on the RCM grid. It is 
referred as “I-UPRCM”. We are aware that the “I-UPRCM” 
field is a very simple benchmark and can not compete 
with the emulator in terms of realism but it allows to sim-
ply measure the action of the emulator regarding the input 
simulation.

Figure 5a illustrates the production of the emulator for 
a random day regarding the target and the benchmark. The 
RCM truth map presents a refined and complex spatial 
structure largely missing in the UPRCM map. Moreover, 
it is evident on the I-UPRCM map that the simple bilinear 
interpolation does not recreate these high resolution spatial 
patterns. The emulator shows for this given day an excel-
lent ability to reproduce the spatial structure of the RCM 
truth. It has very accurate spatial correlation and RMSE 
and estimates the right temperature range. On Fig. 5b, we 
show the daily time series for four specific points shown on 
the RCM truth map (Marseille, Toulouse, a high Pyrenees 
grid point and a point in Majorca) during a random year. 
The RCM transforms the large scale temperature (visible on 
I-UPRCM) differently over the four points. In the Pyrenees, 
the RCM shifts the series and seems to increase the vari-
ance. In Marseille, it appears to produce a warmer summer 

without strongly impacting winter characteristics, and it 
seems to be the exact opposite in Majorca. On the contrary, 
in Toulouse, I-UPRCM and RCM are close. For each of 
these 4 cases, the emulator reproduces the sophistication of 
the RCM series almost perfectly.

Figure 5a gives the impression that the emulator has 
a good ability to reproduce the complex spatial structure 
brought by the RCM, and we can generalise this result 
with the other Figures. First of all, the performance scores 
(Fig. 6b) of the emulator confirm that this good representa-
tion of the temperature’s spatial structure is robust over the 
whole series. The spatial homogeneity of the score maps 
tends to show that the emulator does not have particular dif-
ficulties over complex areas. The spatial correlation (equal to 
1) and the very low spatial RMSE (0.07 ◦ C) of the climatol-
ogy maps in Fig. 7 in the present climate support this result. 
In particular, it is worth noting on the climatology maps that 
the altitude dependency is well reproduced as well as the 
warmer patterns in the Ebro and Rhone valley or along the 
coastlines. Moreover, the comparison with the interpolated 
UPRCM shows the added-value of the emulator and in par-
ticular its ability to reinvent the fine-scale spatial pattern of 
the RCM truth from the large-scale field. Indeed, the score 
maps of the I-UPRCM (Fig. 6c) or the present climatology 
error map (Fig. 7a) shows strong spatial structures, high-
lighting the regions where the RCM brings added value and 
that the emulator reproduces successfully.

The RCM resolution also allows to have a better represen-
tation of the daily variability at the local scales over critical 
regions. The difference in variance between the I-UPRCM 
and the RCM is visible on Fig. 6c. The I-UPRCM underesti-
mates the variability and is poorly correlated over the higher 
reliefs, the coastlines and the river valley. In contrast, the 
emulator reproduces more than 90% of the RCM variance 
over the whole domain. The RMSE and temporal correla-
tion maps of the emulator confirm the impression given by 
Fig. 5b that it sticks almost perfectly to the RCM truth series. 
Moreover, the RCM daily variability is strongly dependent 
on the region. Indeed, the RCM transforms the “I-UPRCM” 
pdfs in different ways across the domain (visible on Fig. 6a, 
c). Figure 6a, b show that the emulator succeeds particularly 
well in filling these gaps.

The emulator’s good representation of the daily variabil-
ity and temporal correlation involves a good representation 
of the extreme values. The probability density functions 
of the four specific points on Fig. 6a show that the entire 
pdfs are fully recreated, including the tails. The Wasser-
stein distance map extends this result to the whole target 
domain. The two extreme scores computed for the present 
climate on Fig. 7b, c confirm these results. The 99th per-
centile emulated map is almost identical to the target one 
verified by the difference map, with a maximum difference 
of less than 1 ◦ C for values over 35 ◦ C. The spatial pattern 
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of the 99th percentile map is here again correctly captured 
by the emulator, particularly along the Garonne river that 
concentrates high extremes. The number of days over 30 ◦ C 
is a relatively more complicated score to reproduce since it 
involves an arbitrary threshold. The emulator keeps perform-
ing well with a high spatial correlation between the emulator 
and the RCM truth. However, it appears that the emulator 
misses some extreme days, involving a lack in the intensity 
of some extremes metrics.

Finally, the high-resolution RCM produces relevant 
small-scale structures in the climate change maps. In par-
ticular, RCMs simulate an elevation-dependent warming 
(see the Pyrenées and Alps areas Kotlarski et al. 2015), a 
weaker warming near the coasts (see the Spanish or Atlantic 

coast) and a specific signal over the islands as shown in the 
second lines of Fig. 7a, c. It can be asked if the emulator 
can reproduce these local specificities for the climate change 
signal. The emulator is able to capture this spatial structure 
of the warming but with a slight lack of intensity which 
is general over the whole domain. The reproduction of the 
climate change in the extremes suffers the same underestima-
tion of the warming but also offers the same good ability to 
reproduce the spatial structure, with high spatial correlation.

This first evaluation step shows that if the emulator is 
still perfectible, in particular when looking at extremes 
or climate change intensity, it is able to almost perfectly 
reproduce the spatial structure and daily variability of the 
near surface temperature in the perfect model world.

Fig. 5   Randomly chosen illustration of the production of the emulator 
(in evaluation step 1) with inputs coming from UPRCM: a tempera-
ture ( ◦ C) at a random day over the target domain for the raw UPRCM, 

the interpolated UPRCM, the emulator and the RCM truth and b ran-
dom year time series ( ◦ C) for 4 particular grid points
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3.2.2 � Comparison to simpler emulators

This section validates the UNet-based emulator by compar-
ing its performances to two other emulators based on stand-
ard empirical statistical downscaling methods. The perfect 
model framework allows comparing different emulators 
since the RCM truth is the ideal reference when downscal-
ing the UPRCM simulation.

The two comparison emulators proposed here rely on 
very classical ESD methods. The first one is CDFt (Michel-
angeli et al. 2009; Vrac et al. 2012), which belongs to the 
Model Output Statistic family of methods. It can be consid-
ered as an extended “quantile-quantile” method. It trans-
forms the low resolution temperature cumulative distribution 
function into the high resolution one. The second method is 
a simple Multiple Linear Regression (MLR Huth 2002; Huth 

Fig. 6   a Daily probability density functions from the RCM truth, the 
emulator (in evaluation step 1) and the I-UPRCM at 4 particular grid 
points over the whole simulation period. b (Resp. c) Maps of perfor-
mance scores of the emulator (resp. of the I-UPRCM) with respect to 

the RCM truth computed over the whole simulation period. For each 
map, the values of the spatial mean and super-quantiles (SQ05 and 
SQ95) are added
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et al. 2015), which belongs to the Perfect Prognosis family 
of method. The inputs used for the MLR are the same as for 
the UNet emulator, but only the closest low resolution point 
is used for the 2D variables. The methods and the way we 
used them as RCM-emulator are more precisely described in 
Appendice. Both methods are evaluated in the VALUE pro-
ject (Gutiérrez et al. 2019), showing reasonable results. They 
are trained in the same conditions as the UNet emulator, fol-
lowing the perfect model framework described in Sect. 2.5.

The results are illustrated on Fig. 8 and a more complete 
evaluation can be found in the Appendice. As for the neu-
ral network emulator, both CDFt and MLR emulators pre-
sent a good ability to reproduce the small scale information 
brought by the RCM. They present a good variance ratio 
and temporal correlation leading to a good RMSE. The cli-
mate change maps (Fig. 8c) show that both methods are also 
able to reproduce the RCM climate change maps, even if 
the MLR method seems to have more difficulties and par-
ticularly over the relief. These results are expected as these 
methods showed good performances in statistical downscal-
ing and both methods could constitute reasonable emulators. 
However, the neural network emulator performs better in 
most metrics. Indeed, the UNet Emulator presents a lower 
RMSE showing a better accuracy to fit the original RCM 
series. It also better captures the spatial structure of the 
RCM truth, as shown by the spatial correlation scores on the 
climatology, and extremes maps (Figs. 7, 8 and Appendice).

According to this comparison, we conclude that the three 
approaches may constitute good RCM-emulators but the one 
based on the UNet approach is far better, especially for the 
correlation with the RCM truth. As the UNet-approach is not 
significantly more complex to apply and not costly to train, 
we decide to select it as our main emulator for the follow-
ing of the article, that is to say to illustrate the way RCM-
emulators can be applied in practical to downscale GCM 
simulations. Furthermore, the UNet based emulator, as well 
as the two simpler emulators, are possible emulator among 
many other options. We invite the statistical downscaling 
community to propose other emulators, relying on different 
statistical methods, trained in different ways, to find the best 
tool to emulate RCMs.

3.3 � Evaluation step 2: GCM world

In this second evaluation step, we directly downscale a GCM 
simulation. The benchmark for this evaluation is the near 
surface temperature from the GCM, interpolated on the tar-
get grid. It will be referred to as I-GCM. The emulated series 
and the benchmark are compared to the RCM simulation 
driven by the same GCM simulation.

Figure  9a illustrates the production of the emulator 
regarding the benchmark and RCM truth for the same day 
as Fig. 5a. First of all, as for the I-UPRCM, the I-GCM map 

does not show any of the complex RCM spatial structures. 
The I-GCM is less correlated with the RCM and warmer 
than the I-UPRCM. In contrast, the emulator reproduces 
the complex spatial structure of the RCM very well with 
a spatial correlation of 0.98 but appears to have a warm 
bias with respect to the RCM truth. The four time series 
are consistent with the previous section, with fundamental 
differences between I-GCM and RCM, which the emulator 
captured very well. However, the correlation between the 
emulator and the RCM is not as good as in the perfect model 
framework.

Figure 9b is a very good illustration of the RCM-GCM 
large scale de-correlation issue presented in Sect. 2.4.2. 
Indeed the less good correlation of the emulator with the 
RCM is probably due to mismatches between GCM and 
RCM large scales. For instance,in the beginning of Novem-
ber, on the time series shown on Fig. 9b, the RCM seems to 
simulate a cold extreme on the whole domain, which appears 
neither in the interpolated GCM nor in the emulator. The 
same kind of phenomenon occurs regularly along the series 
and is confirmed by lower temporal correlations between 
the RCM truth and the I-GCM (Fig. 10c) than with the 
I-UPRCM (Fig. 6c). According to this, the emulated series 
can not present a good temporal correlation with the RCM 
truth since it is a daily downscaling of the GCM large scale. 
Keeping in mind these inconsistencies, it is still possible to 
analyse the performances of the emulator if we leave aside 
these scores which are influenced by the poor temporal cor-
relation (RMSE, ACC).

As in the first step of the evaluation (Sect. 3.2), the spatial 
structure of the RCM truth is well reproduced by the emu-
lator. The present climatology map (Fig. 11a) has a perfect 
spatial correlation with the RCM. The added value from 
the emulator is clear if compared to the interpolated GCM. 
The spatial temperature gradients simulated by the GCM 
seem to be mainly driven by the distance to the sea. On 
the other hand, the emulator manages to recreate the com-
plex structures created by the RCM, related to relief and 
coastlines. The emulator capacity to reproduce the RCM 
spatial structure seems as good as in Sect. 3.2. The scores in 
Fig. 10b present a good spatial homogeneity, exactly like in 
the previous Sect. 6b.

The error map in Fig. 11a shows that the emulator is 
warmer in the present climate than the RCM truth (+0.96 ◦

C). This bias presents a North-South gradient with greater 
differences over the North of the target domain, which is 
consistent with the Wasserstein distance map on Fig. 10b. 
The Wasserstein metric shows that the density probability 
functions from the emulated series are further away from the 
RCM truth with GCM-inputs than in UPRCM mode. The 
similarities between the Wasserstein scores and the present 
climatology difference map indicate that the emulator shifts 
the mean.
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The daily variability is well reproduced by the emula-
tor. As mentioned before, the weaker RMSE (Fig. 10b) 
is mainly due to the lower correlation between GCM and 
RCM. But the ratio of variance demonstrates that the emula-
tor manages to reproduce the daily variability over the whole 
domain. The RCM brings a complex structure of this vari-
ability (higher variability in the mountains than in plains, 
for example), and the emulator, as in the first evaluation 
step, recreates this fine scale. Moreover, the daily pdfs of the 
emulator (Fig. 10a) are very consistent with the RCM ones, 
and the same range of values is covered for each of the four 
particular points.

This good representation of daily variability tends to 
suggest that the emulator can reproduce the local extremes. 
Fig. 11b, c confirm these results, with a very high spatial 
correlation between the emulator and the RCM truth maps 
in present climate. The warmer extremes along the three 
river valleys are present in both RCM and emulator maps, 
while they are absent from the I-GCM maps. The warm bias 
observed in the present climatology map also impacts these 
scores. The emulator map of the number of days over 30 ◦ C 
in the present climate shows more hot days than the RCM 
but the same spatial structure. The map of the 99th percen-
tile over the 2006–2025 period shows the same observation, 
with a warm bias (+ 0.82) slightly lower than the climatol-
ogy bias.

Finally, the climate change signal is also well captured 
by the emulator. The different spatial patterns that bring 
the high resolution of the RCM in the Fig. 11a–c are also 
visible in the emulator climate change Figures. The emu-
lator represents a weaker warming than the RCM, observ-
able in average warming but also on the map of extremes. 
This underestimated warming is mainly due to the warm 
bias between GCM and RCM, which is less intense in the 
future. For instance, the warming from the emulator is 0.27 
◦ C weaker on average over the domain (with almost no spa-
tial variation) than in the RCM. This number corresponds 
approximately to the cold bias from the I-GCM (0.19 ◦ C) 
plus the missed warming by the emulator in the perfect 
model framework (0.07). This tends to show that the emu-
lator performs well in the GCM world but reproduces the 
GCM-RCM biases.

This section shows that the emulator remains robust 
when applied to GCM inputs since it provides a realistic 

high-resolution simulation. As in the first step, the emulator 
exhibits several desirable features with an outstanding ability 
to reproduce the complex spatial structure of the daily vari-
ability and climatology of the RCM. We also showed that 
the emulator remains consistent with its driving large scale, 
which leads to inconsistencies with the RCM. In the next 
section, we will develop this discussion further.

4 � Discussion

4.1 � On the inconsistencies between GCM and RCM

Several recent studies (Sørland et al. 2018; Bartók et al. 
2017; Boé et al. 2020) have highlighted the existence of 
large scale biases for various variables between RCMs and 
their driving GCM, and have discussed the reasons behind 
these inconsistencies. From a theoretical point of view, it is 
still controversial as to whether these inconsistencies are for 
good or bad reasons (Laprise et al. 2008) and therefore if the 
emulator should or should not reproduce them. In our study, 
the emulator is trained in such a way that it focuses only on 
learning the downscaling function of the RCM, i.e., from the 
RCM large scale to the RCM small scale. Within this learn-
ing framework, the emulator can not learn GCM-RCM large-
scale inconsistencies, if there should be any. Therefore, when 
GCM inputs are given to the emulator, the estimated RCM 
downscaling function is applied to the GCM large scales 
fields, and any GCM-RCM bias is conserved between the 
emulated serie and the RCM one. Figure 12 shows the biases 
for the present-climate climatology between the GCM and 
the UPRCM over the input domain for TA700 and ZG700, 
at the GCM resolution. The GCM seems generally warmer 
than the UPRCM, which could partly explain the warm bias 
observed between the emulator results and the RCM truth 
in present climate (e.g., Fig. 11). These large scale biases 
between GCM and RCM raise the question of using the 
RCM to evaluate the emulator when applied to GCM data. 
Indeed, if these inconsistencies are for bad reasons (e.g., 
inconsistent atmospheric physics or inconsistent forcings), 
the emulator somehow corrects the GCM-RCM bias for the 
emulated variable. In this case, the RCM simulation cannot 
be considered as the targeted truth. However, if the RCM 
revises the large scale signal for good reasons (e.g., upscal-
ing of the local added-value due to refined representation of 
physical processes), then the design of the emulator should 
probably be adapted.

In future studies, we plan to use RCM runs with spectral 
nudging (Colin et al. 2010), two-way nested GCM-RCM 
runs or global high-resolution simulations for testing other 
modelling frameworks to further develop and evaluate the 
emulator.

Fig. 7   a Maps of long-term mean climatologies, b number of days 
over 30 ◦ C and c 99th percentile of daily near-surface temperature 
for a present-climate period (2006–2025) and for the climate change 
signal (2080–2100 minus 2006–2025), for the RCM truth, the emula-
tor (in evaluation step 1) and the I-UPRCM. On each line, the two 
last maps show the error map of the emulator and the I-UPRCM. For 
each map, the spatial mean and super-quantiles (SQ05 and SQ95) 
are added, as well as the spatial correlation and spatial RMSE for the 
emulator and I-UPRCM maps

◂
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4.2 � On the stationary assumption

In the introduction of this paper, we state that the stationary 
assumption is one of the main limitations of empirical statistical 
downscaling. The emulator proposed here is similar in many 
ways to a classical ESD method, the main difference being that 
the downscaling function is learnt in a RCM simulation. The 
framework used to train the emulator is a good opportunity to 
test the stationary assumption for the RCM-emulator. We train 

the same emulator, with the same neural network architecture 
and same predictor set, but on the historical period (1951–2005) 
only. Results are reported in Tables SM.T1 and SM.T2 in the 
supplementary material, this version being named ‘Emul-Hist’.

The perfect model (Table SM.T1) evaluation consti-
tutes the best way to evaluate the validity of this assump-
tion properly. Emul-Hist has a cold bias over the whole 
simulation regarding the RCM truth and the range of 
emulators described in Sect.  4.4. Moreover, this bias 

Fig. 8   a (Resp (b)) Maps of performance scores of the CDFt emula-
tor (resp. of the MLR emulator) with respect to the RCM truth com-
puted over the whole simulation period in perfect model evaluation. 
For each map, the values of the spatial mean and super-quantiles 

(SQ05 and SQ95) are added. c Climate change maps and the differ-
ence maps with respect to the RCM truth for the CDFt emulator and 
the MLR emulator. As on Figs. 6 and 7 the spatial scores are added 
on the maps
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is much stronger for the future period (from 0.3 ◦ C in 
2006–2025 to 1.3 ◦ C in 2080–2100). Emul-Hist manages 
to reproduce only 30% of the climate change simulated by 
the RCM. It also fails to capture most of the spatial struc-
ture of the warming since the spatial correlation between 
the Emul-hist and RCM climate change maps (0.86) is 
closer to the I-UPRCM (0.82) and than the main emulator 
(0.95) (see Fig. 13). The Emul-hist average RMSE (1.35 
◦ C) over the whole series is also out of emulator range 
( [0.8;0.86] ). Results in GCM evaluation are also presented 
(Table SM.T2), but due to the lack of proper reference, it 
is difficult to use them to assess the stationary assump-
tion. However, it presents the same cold bias regarding 
the ensemble of emulators. These results demonstrate the 

importance of training the emulator in the wider range of 
possible climate states.

We underline that not all ESD methods are expected to 
behave that poorly with respect to projected warming. How-
ever learning in the future is one of the main differences 
between our RCM emulator approach and the standard ESD 
approach that relies on past observations.

4.3 � On the selection of the predictors

For this study, we chose to use a large number of inputs 
with almost no prior selection, leaving the emulator to 
select the right combination of inputs for each grid point. 
However, we are aware that it involves a lot of data, which 

Fig. 9   Randomly chosen illustration of the production of the emulator 
(in evaluation step 2) with inputs coming from the GCM: a near-sur-
face temperature ( ◦ C) at a random day over the target domain for the 

the GCM, the interpolated GCM, the emulator, and RCM truth and b 
random year time series ( ◦ C) for 4 particular grid points
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is not always available, and leads to several computa-
tions due to the different preprocessing steps described in 
Sect. 2. For this reason, we tried to build an emulator with 
fewer inputs in X including only the variables from Table 2 
at 700 hpa and removing the solar and ozone forcings from 
Z. The results are reported in Tables SM.T1 and SM.T2. 
They show that having more inputs increases the qual-
ity of the emulated series, but the “cheap” emulator 

Fig. 10   a Daily probability density functions from the RCM truth, 
the emulator (in evaluation step 2) and the I-GCM at 4 particular grid 
points over the whole simulation period. b (Resp. c) Maps of per-
formance scores of the emulator (resp. of the I-GCM) with respect 

to the RCM truth computed over the whole simulation period. For 
each map, the spatial mean and super-quantiles (SQ05 and SQ95) are 
added

presents satisfying results and can be considered as a 
serious option. For instance, in the first step of evaluation 
(Table SM.T1), the cheap emulator provides a good rep-
resentation of the spatial structure (S-Cor = 0.94 vs 0.96 
for the main emulator) but is more biased than the main 
emulator ( −0.3 versus −0.18 ◦C). Having a specific selec-
tion of inputs for specific areas would probably increase 
the performance of the cheap emulator. However, this is 
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not in the spirit of the tool proposed here, which aims to 
be as simple and as general as possible.

Moreover, we also wanted to discuss the smoothing of 
the 2D inputs mentioned in Sects. 2.2 and 2.5. There are 
two reasons behind it. First of all, it allows getting closer to 
the effective resolution of the GCM models (Klaver et al. 
2020). Secondly, it deletes any local scale information that 
could remain after the upscaling step when constructing the 
UPRCM inputs for the training (see Sect. 2.5). To verify 
the usefulness of this step, we trained an emulator with-
out prior smoothing of the inputs. The results are reported 
under the name “No_Smoothing” in Tables SM.T1 and SM.
T2, in Online Appendix. The “No_smoothing” emulator 
performs slightly better than the main emulator in perfect 
model world. It has for example a slightly better RMSE 
(0.76 ◦ C versus 0.82 ◦ C for the main emulator) and a bet-
ter ratio of variance (96.2% versus 95.2%). However, in the 
GCM world, the “No_smoothing” emulator shows less good 
results than the original emulator. The ratio of variance and 
the spatial correlation over the different maps are the most 
adapted scores to compare two emulators in GCM world (see 
Sects. 3.3 and 4.1). The ratio of variance of the “No_smooth-
ing” emulator falls to 83% for the worst points, while it is 
95% for the main emulator. The spatial correlation also con-
firms that it fails to reproduce the entire spatial structure of 
the RCM. For example, when looking at the climate change 
map, the main emulator’s spatial correlation is equal to 98% 
while the one of the No_smoothing emulator is 72%.

Finally, the last test on the inputs concerns the non-
inclusion of the low resolution surface temperature in the 
predictors. The motivation behind this choice comes from 
the perfect model training detailed in Sect. 2.5. The intui-
tion is that too much high resolution information remains in 
TAS_UPRCM. The emulator uses undoubtedly this informa-
tion, leading to a less accurate downscaling of GCM fields. 
To test this hypothesis, we trained an emulator including 
TAS, and the results are referred as “TAS_included” in 
Tables SM.T1 and SM.T2. The “TAS_included” emulator 
performs better in the perfect model world but not in the 
GCM world. The most striking score is probably the vari-
ance ratio. In GCM world, it ranges from 83 to 120% which 
is closer to our very basic benchmark ( [72;128] %) than to 
the main emulator ( [95;106]%). Moreover, the spatial cor-
relations are also much less good than for the main emulator. 
These results confirm clearly our hypothesis.

4.4 � On the non reproducibility of neural network 
training

While neural networks have experienced considerable suc-
cess over the last decades and the number of applications is 
constantly increasing, they have also been largely criticised 
for their lack of transparency due to an excessive number 

of parameters. Several studies (see Guidotti et al. 2018, for 
review) have tried to provide the keys to “open the black 
box”. However, users of deep neural networks should also 
be aware of their non-reproducibility. Indeed the training of 
deep neural networks with GPUs involves several sources of 
randomness (initialisation, operation ordering, etc.). A few 
recent studies have raised the issue for medical applications 
with a UNet (Marrone et al. 2019; Bhojanapalli et al. 2021), 
but to the best of our knowledge, no study has addressed it.

In order to document this issue for the RCM emulator 
developed in this paper and assess its robustness, we propose 
a Monte Carlo experiment where the same configuration of 
the emulator (as described in Sect. 2) is trained 31 times, 
resulting in 31 emulators. The results of this experiment 
are illustrated in Fig. 14 and summarised in Tables SM.T1 
and SM.T2. The results of Sect. 3 are based on a randomly 
picked emulator, mentioned as the main emulator in appen-
dix and plotted in darker green in Fig. 14. All the emulators 
from the Monte Carlo experiment show consistent results 
with the ones presented in Sect. 3. The RMSEs (and corre-
lated scores such as variance) are really close to each other 
( [0.8;0.86]◦C ), which is expected since it is the loss func-
tion used to fit the neural network. However, the path taken 
to minimise the loss during training might vary from one 
emulator to another, leading to bigger differences in clima-
tological metrics (see tables). For instance, in the UPRCM 
evaluation step, the average error in the future climatology 
varies from 0.003 to 0.139 ◦ C. The results from the GCM 
world evaluation step (Table SM.T2) are similar to those 
in the perfect model framework. This stability shows again 
the robustness of the emulator when using GCM large scale 
fields.

We believe that the readers of this study and any potential 
emulator users should be aware of this characteristic of deep 
learning neural networks. However, it is worth mentioning 
that this randomness in the training of the network does not 
impact the key conclusions of the results (Sect. 3), which 
prove their robustness.

5 � Conclusion

This study aims to explore a novel hybrid downscaling 
approach that emulates the downscaling function of a RCM. 
That is to say learning the transformation of the large-scale 
climate information into a local climate information per-
formed by a regional climate model. Here, we develop this 
approach for the near surface temperature and a Southwest 
European domain. This new method, called RCM-emulator, 
is designed to help increase the size of the high-resolution 
regional simulation ensembles at a lower cost.

To achieve this overall goal, we develop a specific con-
ceptual framework. The emulator is trained using existing 
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RCM simulations which allows it to learn the large scale/
local scale relationship in different climates and in particular 
in future climate. Simply speaking, the general functioning 
of a RCM can be broken down into a large scale transfor-
mation and a downscaling function. To focus on the down-
scaling function, the emulator is trained in a perfect model 
framework, where both predictors and predictand come 
from the same RCM simulation. This framework implies to 
carefully prepare and select the predictors, to ensure that no 
unwanted high resolution information remains in the training 
predictors. The emulator takes daily large-scale and low-
resolution information as input and produces daily maps of 
the near surface temperature at the RCM resolution. It is 
worth noting that the downscaling function likely depends 
on the RCM choice. So the emulator developed in this study 
is RCM-dependent.

Technically speaking, the RCM-emulator is based on a 
fully convolutional neural network algorithm, called UNet. 
A key point of the emulator is the substantial computational 

gain regarding RCM computational cost. Training the emu-
lator used in this study took two hours on a GPU. While this 
time depends on the target domain size it will never exceed 
some hours even for much bigger domains. Once the emula-
tor is trained, the downscaling of a new low resolution simu-
lation takes less than a minute. These time lengths do not 
include the preparation of the inputs; nevertheless the gain 
remains evident when a RCM simulation involves weeks of 
computation on a super-computer.

The emulator is evaluated in both perfect model and 
GCM worlds. The results show that the emulator generally 
fulfils its mission by capturing very well the transforma-
tion from low resolution information to the high resolution 
near surface temperature. Firstly, the emulator is robust to 
different sources of input, which validates our conceptual 
framework. Secondly, the emulator succeeds very well in 
reproducing the high resolution spatial structure and daily 
variability of the RCM. The perfect model evaluation shows 
that the emulator is able to reproduce the original series 
almost perfectly. Moreover, it appears clearly that training 
the emulator in future climate improves its ability to repro-
duce warmer climate. Nevertheless the emulator shows some 
limitations in accurately simulating extreme events and of 
the complete climate change magnitude. Future work should 
focus on these two aspects to further improve the emulator 
ability. It is worth noting that similar emulators could easily 
be built over different domains, for different RCMs and for 
surface variables other than near-surface temperature.

Fig. 11   a Maps of long-term mean climatologies, b number of days 
over 30 ◦ C and c 99th percentile of daily near-surface temperature for 
a present-climate period (2006–2025) and for the climate change sig-
nal (2080–2100 minus 2006–2025), for the RCM truth, the emulator 
(in evaluation step 2) and the I-GCM. On each line, the two last maps 
show the error map of the emulator and the I-GCM. For each map, 
the spatial mean and super-quantiles (SQ05 and SQ95) are added, as 
well as the spatial correlation and spatial RMSE for the emulator and 
I-GCM maps

◂

Fig. 12   Present (2006–2025) climatology differences for the atmospheric temperature and geopotential at 700 hpa: CNRM-CM5 RCP45 minus 
ALADIN63 driven by CNRM-CM5 RCP45 upscaled on the GCM grid
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This UNet emulator has been compared to two other 
possible emulators based on more classical ESD methods 
using the well adapted perfect model framework. The exer-
cise allows us to put into perspective the result of the UNet 
emulator and validate our choice as it outperforms these 
simpler emulators. Moreover, it is worth mentioning that this 
study does not target to identify the best possible emulator 
but aims to shed light on the feasibility to emulate the RCM 
complexity at high-frequency and high-resolution, and to 
propose one good technical solution to do it. We are fully 
aware that our method will certainly be one among others 
and we hope that the scientific community will propose new 
and probably better solutions for RCM emulators in the next 
years.

Finally, and even if it was not our original goal, this study 
highlights, as others before, the RCM-GCM inconsistencies 
at large scales. As the emulator focuses on the downscaling 
function of the RCM, it does not learn to reproduce these 
large scale transformations. This raises the question of how 
to evaluate the emulator when downscaling GCM simula-
tion. An RCM run might not be the correct reference in such 
a case. Secondly, it also puts into question the final role of a 
RCM-emulator. Under the strong hypothesis that the large 
scale transformation carried out by the RCM results from 
physics or forcings inconsistencies—which will require fur-
ther investigation—the emulator provides a high-resolution 

simulation that is corrected from the GCM-RCM large-scale 
inconsistencies.

Appendices

Emulators inter‑comparison

In order to validate the neural network based emulator 
presented in this study, we proposed two other emula-
tors relying on standard empirical statistical downscal-
ing methods: CDFt and a Multiple Linear Regression. 
The idea is not to identify the best emulator, but to give 
a baseline and put into perspective the performance of 
the UNet architecture. The methods were chosen because 
both are well established and have been widely applied. 
Moreover they are good example of to two different fami-
lies of ESD methods, Model Output Statistic (MOS, for 
CDFt) and Perfect Prognosis (PP, for MLR). Both meth-
ods are part of the large ESD method intercomparison 
project, VALUE (Gutiérrez et al. 2019).

CDFt was introduced by Michelangeli et al. (2009) and 
used in several studies as Vrac et al. (2012), Lavaysse et al. 
(2012), Vigaud et al. (2013) and Famien et al. (2018). It is 
based on the transformation of the Cumulative Distribution 

Fig. 13   Maps of climatologies over present period (2006–2025) and 
climate change signal (2080–2100 versus 2006–2025), for the RCM 
truth, the Emulator presented in Sect. 3 and the Emul-Hist. The two 
last columns correspond to the error maps of the Emulator and Emul-

Hist with respect to the RCM truth. For each map, the spatial mean 
and super-quantiles (SQ05 and SQ95) are added, as well as the spatial 
correlation and spatial RMSE for the Emul-Hist and I-UPRCM maps
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Function (CDF) of the low resolution variable into the CDF 
of the high resolution variable. In our case the low resolu-
tion variable is the smoothed surface temperature from the 
UPRCM conservatively interpolated on the RCM grid. We 
took the smooth TAS in order to be as coherent as possible 
with the UNet emulator inputs. The high resolution variable 
we try to reproduce is then the RCM near surface tempera-
ture TAS.

To understand the theory behind CDFT, let FT ,Lr be the 
CDF of the low resolution surface temperature from the 
training set, and FT ,Hr the CDF of the high resolution sur-
face temperature from the training set. Then CDFt relies 

on the assumption that there exists a transformation T such 
that

Then by replacing x by F−1
T ,Lr

(u) , with u any probability in 
[0, 1] we get a simple definition of T :

And under the assumption that T is the same in the training 
set than in the evaluation set it comes that:

(10)T(FT ,Lr(x)) = FT ,Hr(x).

(11)T(u) = FT ,Hr(F
−1
T ,Lr

(u)).

(12)T(FE,Lr(x)) = FE,Hr(x),

Fig. 14   Illustration of the results for the Monte Carlo experiment. a 
Present a year time series for 4 given points and b the pdfs on the 
whole serie. The red line refers to the RCM truth, the dark green line 

is the main emulator, and the light green lines are the 30 emulators 
from the Monte Carlo experiment
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with FE,Lr (resp FE,Hr ) the CDF of the low (resp high) reso-
lution surface temperature in the evaluation set. Then FE,Hr 
can be determined as :

It is then possible to reconstruct the high resolution series 
from the low resolution one, following a Quantile-Quantile 
approach between FE,Hr and FE,Lr.

The second method is a Multiple Linear Regression 
(MLR), which has also been used in multiple studies (Huth 
2002; Huth et al. 2015; Manzanas et al. 2018; Joshi et al. 
2015). It takes exactly the same list of inputs as the UNet 
emulator (Table 2), but by taking a single grid point for the 
2D variables. The predicted high resolution temperature is 
then:

with M the number of predictors.
Both CDFt and MLR emulators are trained in the same 

conditions as the UNet emulator. The simulation used for 
training is the ALADIN63 simulation forced by CNRM-
CM5, covering the 1950–2100 period with the RCP8.5 
scenario from 2006. The ALADIN63 simulation forced 
by CNRM-CM5, covering the 2006–2100 period with the 
RCP4.5, is used to evaluate and compare the emulators. 
The evaluation is made in perfect model framework as it 
gives the best conditions to properly compare the results. 
The results are reported in Figs. 15 and 16, where the 
two simpler emulators are compared to the UNet Emulator 
used in the study. Figure 15 is showing the performances 
of the three emulators regarding the performance metrics 
defined in Sect. 2.6. Both MLR and CDFt show a good 
reproduction of the pdfs, the daily variance of the original 
RCM truth, as well as a good temporal correlation. How-
ever regarding all these scores the UNet emulator performs 
better, and this is well summarized by the RMSE maps, 
where the UNet Emulator shows much more accurate 
results. Figure 16 presents the ability of the emulators 
to reproduce some climatological statistics that are usu-
ally studied in climate studies. The conclusions are very 
similar, the MLR and CDFt emulators have good results. 
However the UNet emulator captures better the complexity 
of the high resolution temperature simulated by the RCM. 
This results is clear when watching at the spatial correla-
tion of the Fig. 16.

To conclude, both MLR and CDFt are reasonable 
candidates for the emulator, as they were for statisti-
cal downscaling, however the UNet emulator provides 
better results, specially in the more complex regions. 
Moreover, as a comparison, the very simple multiple 

(13)FE,Hr(x) = FT ,Hr(F
−1
T ,Lr

(FE,Lr)).

(14)Ŷ = 𝛼0 +

M∑

i=0

𝛼iPi,

linear regression involves 233 thousand parameters over 
the whole target domain when it uses a single grid point 
as input for each of the 2D variables used. However, 
if we want to fit a MLR with the full 2D grid of input 
as for UNet, the model would imply about 250 times 
more parameters (16*16), so more than the UNet. For 
these reasons we decided to mainly present the UNet 
emulator.

Description of the UNet‑emulator architecture

We describe here with more details the Fig. 2, which 
schematize the UNet architecture used for the emulator. 
On the figure, the different blocks are represented by 
colorful arrows. Each arrow is described below :

–	 Each blue arrow ⇒ corresponds to a convolution 
block composed of a layer built with a set of con-
volutional 2 × 2 f i l ters.  The number of f ilters 
increases all along the contracting part (the number 
of filters is respectively 64, 128, 256, 512 and 1024 
and is given on the top of each block in Fig. 2). The 
outputs of this layer are then normalised with a 
batch normalisation layer (see e.g. Ioffe and Sze-
gedy 2015) to improve the statistical robustness of 
the layer. Finally the ReLu activation function com-
pletes this block. 

–	 Each red arrow  is a Maxpooling layer. It performs 
2 × 2 pooling on each feature map, which simply 
divides by 2 the spatial dimension by taking the maxi-
mum of each 2 × 2 block. It is applied through all con-
volution block outputs in the encoding path. The size 
of the images is indicated on the side of each block on 
Fig. 2.

–	 Each green arrow  is a transpose convolution layer. It 
allows to perform up-sampling in the expansive part of 
the algorithm. It multiplies the spatial dimension by 2 
by applying the same connection as the classical con-
volution but in the backward direction.

–	 The black arrow =⇒ represents a fully connected dense 
network of 4 layers which is applied on the 1-dimen-
sional inputs (Z).

–	 The grey arrow ⇒ represents a simple concatenation 
layer which recalls the layers from the encoding path 
in the decoding one.

–	 Finally, the light blue arrow ⇒ is the output layer, 
which is a simple convolutional layer with a single fil-
ter and a linear activation function.

ReLu ∶ R(z) = max(0, z)
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Fig. 15   a Daily probability density functions from the RCM truth, the 
UNet, the CDFt and the MLR emulators at 4 particular grid points 
over the whole simulation period. b (resp. (c and d)) Maps of perfor-
mance scores of the UNet emulator (resp. the CDFt and MLR) with 

respect to the RCM truth computed over the whole simulation period. 
For each map, the spatial mean and super-quantiles (SQ05 and SQ95) 
are added
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Fig. 16   a Maps of climatologies, b number of days over 30 ◦ C and 
c the 99th percentile of daily temperature, for the present-climate 
period (2006–2025) and for the climate change signal (2080–2100 
minus 2006–2025), for the RCM truth, the UNet, the MLR and CDFt 

emulators in perfect model mode. On each line, the two last maps 
show the error maps of the emulators. For each map, the spatial mean 
and super-quantiles (SQ05 and SQ95) are added, as well as the spatial 
correlation and spatial RMSE with respect to the RCM truth maps
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