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ABSTRACT

Context. The details of the effect of the bar and spiral arms on the disc dynamics of the Milky Way are still unknown. The stellar
velocity distribution in the solar neighbourhood displays kinematic substructures, which are possibly signatures of these processes
and of previous accretion events. With the Gaia mission, more details of these signatures, such as ridges in the Vφ − R plane and thin
arches in the Vφ − VR plane, have been revealed. The positions of these kinematic substructures, or moving groups, can be thought of
as continuous manifolds in the 6D phase space, and the ridges and arches as specific projections of these manifolds.
Aims. Our aim is to detect and characterize the moving groups along the Milky Way disc, sampling the galactocentric radial and
azimuthal velocities of the manifolds through the three dimensions of the disc: radial, azimuthal, and vertical.
Method. We developed and applied a novel methodology to perform a blind search for substructure in the Gaia EDR3 6D data, which
consists in the execution of the wavelet transform in independent small volumes of the Milky Way disc, and the grouping of these
local solutions into global structures with a method based on the breadth-first search algorithm from graph theory. We applied the
same methodology to simulations of barred galaxies to validate the method and for comparison with the data.
Results. We reveal the skeleton of the velocity distribution, uncovering projections that were not possible before. We sample nine main
moving groups along a large region of the disc in configuration space, covering up to 6 kpc, 60 deg, and 2 kpc in the radial, azimuthal,
and vertical directions, respectively, extending significantly the range of previous analyses. In the radial direction we find that the
groups deviate from the lines of constant angular momentum that one would naively expect from an epicyclic approximation analysis
of the first-order effects of resonances. We reveal that the spatial evolution of the moving groups is complex and that the configuration
of moving groups in the solar neighbourhood is not maintained along the disc. We also find that the azimuthal velocity of the moving
groups that are mostly detected in the inner parts of the disc (Arcturus, Bobylev, and Hercules) is non-axisymmetric. For Hercules we
measure an azimuthal gradient of −0.50 km s−1 deg−1 at R = 8 kpc. We detect a vertical asymmetry in the azimuthal velocity for the
Coma Berenices moving group, which is not expected for structures originating from a resonance of the bar, supporting the previous
hypothesis of the incomplete vertical phase mixing of the group. In our simulations we extract substructures corresponding to the
outer Lindblad resonance and the 1:1 resonances and observe the same deviation from constant angular momentum lines and the
non-axisymmetry of the azimuthal velocities of the moving groups in the inner part of the disc.
Conclusions. This data-driven characterization is a starting point for a holistic understanding of the moving groups. It also allows for
a quantitative comparison with models, providing a key tool to comprehend the dynamics of the Milky Way.
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1. Introduction

The stellar velocity distribution in the solar neighbourhood
(SN) has long been a key element in our understanding of the
structure of the Milky Way (MW) (Dehnen & Binney 1998;
Skuljan et al. 1999; Famaey et al. 2005; Antoja et al. 2008).
Historically, several overdensities in this velocity distribution
have been identified and discussed (Pleiades, Hyades, Sirius).
These moving groups, as they are usually called, can be
related to the orbital resonances of the bar and spiral arms of
the Galaxy (Kalnajs 1991; Dehnen 2000; Antoja et al. 2011;
Fragkoudi et al. 2019; Monari et al. 2019a) and/or attributed
to ongoing phase mixing related to external perturbations
(Minchev et al. 2009; Gómez et al. 2012; Antoja et al. 2018;

Ramos et al. 2018; Hunt et al. 2018a; Khanna et al. 2019;
Laporte et al. 2019, 2020).

The latest releases of the Gaia mission (Gaia Collaboration
2018a, 2021a) have provided a full 6D phase-space catalogue
of 7.2 million stars, increasing the size and precision of any
previous survey by several orders of magnitude. This has been
a game changer in many fields of astrophysics. In the SN the
new high resolution velocity distribution has revealed a com-
plex substructure with several thin arches never observed before
(Gaia Collaboration 2018b). When extending the study to the
entire disc, large ridges appeared in the R − Vφ (respectively,
galactocentric radius and azimuthal velocity) diagram cover-
ing several kiloparsecs (Antoja et al. 2018; Kawata et al. 2018;
Fragkoudi et al. 2019).
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Orbits in a barred potential can be trapped into resonances
(Weinberg 1994). Dehnen (2000) showed that in a short–fast bar
scenario (i.e. Ωb = 50 km s−1 kpc−1) the transition between two
types of non-axisymmetric orbital families across the bar’s outer
Lindblad resonance (OLR) can explain the bi-modality formed
by Hercules and the rest of the velocity distribution in the SN
if the Sun is placed just outside the OLR of the bar (ROLR ≈

7.2 kpc). This scenario was consistent with the gas dynamics
measurements of the inner MW at the time. Later on, studies
of star counts and the kinematics of the inner MW suggested
that the bar might be longer and slower than previously thought
(Portail et al. 2017). In this case, the OLR would be placed
further out (ROLR ≈ 10.5 kpc, perhaps matching other groups
such as the Arch/Hat instead of Hercules) and co-rotation (CR)
would be closer to the SN (RCR ≈ 6 kpc). Pérez-Villegas et al.
(2017) and Monari et al. (2019a) then explained Hercules as the
overdensity formed by the orbits trapped at the CR, librating
around the Lagrangian points of a long–slow bar. This moving
group created by CR seems to be less pronounced than the one
produced by the OLR (Binney 2018; Hunt et al. 2018b). How-
ever, Hunt et al. (2018a) showed that the addition of spiral struc-
ture in combination with the CR might create a strong distinct
Hercules, and Chiba et al. (2021) showed that a decelerating
Galactic bar could enhance the occupation on resonances, being
able to reproduce Hercules through the CR resonance. This
shows that the value of the pattern speed (Ωb) of the MW bar
and the exact link between substructures and resonances are still
a matter of debate, and more observables are needed to obtain a
final answer.

In this direction, Ramos et al. (2018, hereafter R18), used the
wavelet transform (WT, Starck & Murtagh 2002; Chereul et al.
1999) to detect and characterize the kinematics of the moving
groups along the disc. They matched the spatial evolution of
the groups with the ridges in the R − Vφ plane. They claimed
that some of the arches follow lines of constant energy at a
given volume, which could be related to phase mixing processes
(Minchev et al. 2009; Gómez et al. 2012), and that others follow
lines of common angular momentum in the radial direction, as
expected approximately in the case of resonant kinematic sub-
structures (e.g. Quillen et al. 2018a). They also claimed that the
observed changes in the azimuthal direction for the Hercules
moving group are consistent with being produced by the OLR
of a short–fast bar (Dehnen 2000; Fux 2001; Antoja et al. 2014).
The long–slow paradigm is relatively recent and there have been
few analyses on the azimuthal variations of a substructure caused
by CR. Monari et al. (2019b) found that the Hercules angular
momentum changes significantly with azimuth as they predicted
analytically for the co-rotation resonance of an old long–slow
bar. They showed that the only way to obtain a similar change in
azimuth for an OLR origin of Hercules would be if the orbits are
still far from phase-mixed in the bar potential (bar perturbation
younger than 2 Gyr; see also Trick et al. 2021).

The link between the moving groups across the neighbour-
hoods in R18 was made visually, using a scatter plot of two vari-
ables and colour as a third variable. Therefore, the analysis of
the moving groups link was restricted to three variables. Since
VR and Vφ are compulsory to select the moving groups, this lim-
itation restricted the analysis to one dimension in space (either
radial or azimuthal). The vertical direction was not explored.

The correlation between the position of the moving groups
(overdensities in VR−Vφ) and the ridges (overdensities in R−Vφ)
indicate that both are projections of the same substructure in
the 6D phase-space onto different planes. The positions of these
kinematic substructures, also known as moving groups, can be

described as continuous manifolds in 6D phase space, and the
ridges and arches as specific projections of these manifolds. Our
goal in this article is to extend the idea introduced in R18 by
automatizing the n-dimensional link of the moving groups to
avoid the limitation of projecting the data. Using this process, we
intend to move from a ridge-moving group paradigm to a mani-
fold paradigm, where we sample the position of these manifolds
in the (R, φ,Z,VR,Vφ) space for each moving group.

We present a novel methodology of detecting these mani-
folds in a dataset. It is based on the execution of the WT in
independent small volumes, and the relation of these local solu-
tions in global substructures with an algorithm based on the
breadth-first search (BFS) algorithm from graph theory. With
this methodology we processed the Gaia EDR3 6D data and
detect the positions of the groups across the MW disc. We also
sampled the manifolds of two test particle simulations with a fast
(Ωb = 50 km s−1 kpc−1) and a slow (Ωb = 30 km s−1 kpc−1) bar,
both to test our methodology and to compare it to the data.

The Gaia DR3 (Gaia Collaboration 2022a) catalogue
includes a larger and updated sample of radial velocities (33 M
of stars, Gaia Collaboration 2022b), which covers a larger region
of the MW disc and increases the resolution (number of stars
and precision) of Gaia EDR3. This provides finer observables to
untangle the different contributions in the complex dynamics of
the Galaxy. To exploit these data in their totality new strategies
must be developed (e.g. Contardo et al. 2022), such as the one
we present here, to avoid the current limitations of the analysis.

This paper is organized as follows. In Sect. 2 we describe the
observational data we used. In Sect. 3 we introduce the method-
ology we developed. In Sect. 4 we show the results of the appli-
cation of the method to Gaia EDR3 data. In Sect. 5 we present
and analyse the simulations. In Sect. 6 we compare the results
from the data and the simulations, and with previous results in
the literature. Finally, in Sect. 7 we list the main conclusions of
this work.

2. Data and sample preprocessing

The Gaia Early Data Release 3 (EDR3) consists of an updated
and enlarged source list, with improved astrometry and photom-
etry. About 7.2 million stars have proper motion and a radial
velocity measurements in the Gaia DR2, most of which are
transferred to EDR3 (Seabroke et al. 2021; Torra et al. 2021).
For this section we use a subset of these stars with photo-
geometric distances from Bailer-Jones et al. (2021), derived
from a probabilistic approach including colour and apparent
magnitude information.

Distance is a critical parameter in the computation of the
motion and position of the star in the 6D study of the MW, and
a major source of uncertainty. This is why, in order to improve
the quality of the sample, we also apply a cut in relative parallax
error:

$

σ$
> 5. (1)

The resulting sample contains 6 059 648 sources.
In Appendix A, we study the errors that an overestima-

tion or an underestimation of the distance could produce in our
results. We determine that, in general, this error would be below
2 km s−1 for a distance bias of ±10%, and that it would not affect
the overall trend of the groups.

We use a cylindrical galactocentric coordinate system, fix-
ing the reference at the Galactic Centre with the radial direction
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(R) pointing outwards from it, the azimuthal (φ) negative in the
direction of rotation, and the vertical component (Z) positive
towards the north galactic pole. To transform Gaia observables
to positions and velocities in this reference frame, we take the
Sun to be at R� = 8.178 kpc (GRAVITY Collaboration 2019),
φ� = 0◦ and Z� = 0.0208 kpc (Bennett & Bovy 2019). For the
solar motion, we use U� = 11.1, vcirc + V� = 248.5,W� =
7.25 km s−1 (Schönrich et al. 2010; Reid & Brunthaler 2020).

3. Method

The data described in the previous section contains the 6D vari-
ables of position (R, φ,Z) and velocity (VR,Vφ,VZ) of the stars.
Inside small volumes, cuts in (R, φ,Z), the moving groups appear
as well-defined overdensities in the velocity distribution VR −Vφ

(R18), which are easy to detect. However, we know that at large
spatial scales the position of the overdensities in the velocity
space changes (ridges in R − Vφ). Therefore, if we use larger
volumes to construct the velocity distribution, the overdensities
will blur and become undetectable.

In this section we present the novel method that we devel-
oped to extract these large kinematic substructures from a
dataset. It is divided into two steps: the execution of the WT
in independent small volumes of the MW disc, and the relation
of these local solutions in global substructures with an algorithm
based on the BFS algorithm from graph theory (Moore 1959,
described in Sect. 3.2).

3.1. Local wavelet transform

We partition the data in a dense grid of small volumes (hereafter
pixels) in the spatial coordinates. We construct it as follows:

– Radial direction (Ri): [5, 14] kpc in steps of 0.04 kpc,
Rbin = ±0.24 kpc around each centre;

– Azimuthal direction (φ j): [−34, 34] deg in steps of 0.8 deg,
φbin = ±2.4 deg around each centre;

– Vertical direction (Zk): [−1, 1] kpc in steps of 0.08 kpc,
Zbin = ±0.24 kpc around each centre.

This produces a dense grid of 2 700 000 pixels, with a max-
imum volume overlap between consecutive pixels of 83.3%.
This bin size is bigger than that used in R18. When reaching
regions far from the Sun, the statistical significance of the mov-
ing groups decreases and a bigger bin is the only way to obtain
a robust determination of the group velocity. The drawback for
this enlarged bin is that any inhomogeneity of the sample within
a volume (e.g. due to the local extinction, the selection func-
tion, a change in the sampled populations) can bias the mean
position of the stars, and therefore its kinematics. We tested this
effect using a smaller bin, and we estimate the impact to be below
2 km s−1 for the bin size used.

For each pixel we construct the velocity distribution (VR,Vφ)
diagram of the stars in it as a 2D histogram with bins of 1 km s−1

(see background histogram in Fig. 1). R18 showed that the over-
densities form thin arches elongated around large ranges of VR,
with a small variation in Vφ. The use of 2D peak detection algo-
rithms (like the one in R18) is sub-optimal for arch-like struc-
ture detection. When analysing regions with few observations,
the search for peaks is translated into a very noisy determina-
tion of VR, and uncontrollable correlations between VR and Vφ

(movement along the arch). To avoid this, we slice each VR − Vφ

diagram in vertical columns (bins in VR), and run a 1D WT in
the Vφ histogram of each column: radial velocity (VR): −100 –

100 km s−1 in steps of 10 km s−1, VR bin = ±15 km s−1 around
each centre.

Since we are detecting each part of the arch separately,
we avoid the movement along the arch of the overdensities,
breaking the degeneracy between VR and Vφ in the detec-
tion. To detect the peaks, we use the algorithm developed in
Du et al. (2006) implemented in scipy (Virtanen et al. 2020) as
find_peaks_cwt. This method performs the 1D WT in a range
of length scales. A peak is then selected if it is present in enough
scales consecutively. In our execution, we use a range of scales
of [5, 10] km s−1, with steps of 1 km s−1. We keep the peak if it is
present in more than two scales consecutively. With this configu-
ration of scales, we lose the thin resolution that we could extract
in regions with a large number of sources, but we gain robustness
in the detection of the large structures in poorly sampled regions.
Since the scope of this work is the large-scale behaviour of the
groups, we consider this approach to be better.

At the end of the execution, the peak p inherits the spatial
position from the pixel, VR from the position of the radial veloc-
ity bin, and Vφ from the result of the WT detection. Therefore, a
peak has the coordinates

p = (R, φ,Z,VR,Vφ)p. (2)

3.2. Breadth-first search resolution with online interpolator

We defined the pixels to have large overlaps; for example, two
adjacent pixels will share 83.3% of their volume. Therefore,
a given substructure in consecutive pixels will have an almost
identical shape.

We consider a pair of peaks from consecutive pixels to be
adjacent if they are in the same VR bin and if their distance in Vφ

is smaller than 4 km s−1. In R18, the maximum slope found in a
moving group is 33 km s−1 kpc−1. In our grid the step is 0.04 kpc,
which translates into a maximum change of ≈1 km s−1 between
adjacent pixels. This 4 km s−1 limit in the adjacency is a com-
promise between including very steep groups (about 4 times that
detected in R18) and reducing the number of adjacencies, which
will determine the computational cost of the next step.

It sometimes occurs, especially in poorly sampled regions,
that a peak from one pixel can be exactly in the middle of two
peaks in the other pixel. In these cases we do not consider any of
the peaks adjacent. With this consideration, two adjacent peaks
are always strong candidates to belong to the same substructure.

This adjacency information constructs an enormous net of
linked peaks. Ideally, substructures will be isolated subsets of
peaks in this net. These are groups of peaks with no adjacencies
to any peak outside their group.

In graph theory these nets of linked points are called graphs
and the isolated groups are the connected components of a graph.
A very common algorithm to extract these connected compo-
nents is the BFS algorithm, which proceeds as follows:
1. Add (enqueue) the initial peak p to the queue1 Q;
2. Select (dequeue) the top peak ptop of the queue Q;
3. Visit all the peaks padj adjacent to ptop. For each adjacent

peak, if we have already visited it, ignore the peak. If it is the
first time we see the peak, enqueue it;

4. If there are still peaks in the queue, return to step 2;
5. If the queue is empty, our connected component is the list of

visited peaks.

1 A queue is a data structure similar to an array with limited access to
the positions. One end is always used to insert data (enqueue) and the
other is used to remove data (dequeue). Queue follows a first-in-first-out
methodology, such that the data item stored first will be accessed first.
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Given an initial peak p0, Algorithm 1 (see below) returns the
entire substructure where it belongs. By repeating the process for
all the non-matched peaks we can extract all the substructures.

Algorithm 1 – Breadth-first search
1: queue Q
2: list V
3: add p0 to V and enqueue in Q
4: while Q not empty do
5: pit ← dequeue Q (remove and assign)
6: for all pad j adjacent to pit do
7: if pad j not in V then
8: add pad j to V , enqueue in Q
9: end if

10: end for
11: end while
12: return V

This solution would be enough in an ideal case, but in prac-
tice undersampling and Poisson noise especially in regions far
from the Sun produce confusion and jumps between structures
that a straightforward BFS implementation cannot filter out.

In order to avoid these jumps between structures, we include
an extra step in the algorithm. While the BFS is running, the
peaks already matched give us information about the structure.
Therefore, in order to accept a new peak, we require it to be
consistent with the current structure.

Let us suppose we have a group V of already-visited peaks
(the current substructure we are extracting). To see if a peak p is
consistent with this substructure we select all the peaks in V in
a small subset S ⊂ V around p. With this local sample we can
compute a linear fit

Vφ ≈ a0 + a1R + a2φ + a3Z (3)

of the subset S around p and predict the expected Vφ of the sub-
structure in a given position. This works under the assumption
that the manifold that follows the substructure is derivable and
we can compute its first-order approximation locally.

This prediction is already absorbing the offset in the struc-
ture position produced by its slope in a certain direction. There-
fore, the criterion in the acceptance of a new peak should be
stricter than that in the first adjacency step. Our limit in the res-
olution is the 1 km s−1 bin in the Vφ histogram, and we include
an extra tolerance of 0.5 km s−1. If the distance between the peak
azimuthal velocity Vφ,p (Eq. (2)) and the prediction is smaller
than 1.5 km s−1, we consider the peak to be consistent with the
structure. We encapsulate this in the is_consistent_with function
(Algorithm 2). We provide a summary of the final algorithm in
pseudocode (Algorithm 3).

Algorithm 2 – is_consistent_with(pad j,V)
1: S = V

(
|Rpad j − RV | < R f it &
|φpad j − φV | < φ f it &
|Zpad j − ZV | < Z f it

)
2: f (R, φ,Z) = Vφ ← linear_ f it(S |pad j )
3: if | f ((R, φ,Z)pad j ) − Vφ,pad j | < d then
4: return True
5: else
6: return False
7: end if
8: R f it = 1 kpc, φ f it = 4 deg, Z f it = 0.2 kpc, and d =

1.5 km s−1.

Algorithm 3 – Breadth-first search with online interpolator
1: queue Q
2: list V
3: add p0 to V and enqueue in Q
4: while Q not empty do
5: pit ← dequeue Q (remove and assign)
6: for all pad j adjacent to pit do
7: if pad j not in V and is_consistent_with(pad j,V) then
8: add pad j to V , enqueue in Q
9: end if

10: end for
11: end while
12: return V

4. Results

Within the 3D grid the method extracted hundreds of structures,
covering 2.5 to 6 kpc in R and 30 to 60 deg in φ. In R18 the
arches in the SN and the radial direction were carefully char-
acterized and matched to the groups previously studied in the
literature. We rely on this matching to associate the results of
our methodology with the different groups and arches.

We end up with a sample of 99 structures, each one asso-
ciated with one of the nine main moving groups: Arcturus,
Bobylev, Hercules, Horn, Hyades, Sirius, Coma Berenices,
Arch/Hat (R18, and references therein), and AC (see Anti-Centre
newridge 1 in Gaia Collaboration 2021b). Each structure traces
the position of the moving group along the space at a given VR.
Therefore, each group of structures traces the manifold of the
position of the moving groups in the (R, φ,Z,VR,Vφ) space. For
each moving group we selected the largest structure as its repre-
sentative. These representatives were used to study the behaviour
of the groups in R − φ and R − Z projections, and are described
in the following sections.

In Fig. 1 we show the selected groups in several neighbour-
hoods in the radial direction. In each arch we highlight its repre-
sentative with a large black border. As explained in Sect. 3.1, our
goal in this work is to be able to perform this analysis in a large
extent of the disc, so we tuned the detection parameters to obtain
a robust detection of the main structures in noisy regions (see
R > 10 kpc in Fig. 1), and this required the use of larger spa-
tial bins. Because of this, the thin arches observed in the Gaia
velocity distribution in the SN are slightly washed out.

The methodology links the structures in a given VR, but does
not provide the link of the arches in VR−Vφ. The complex nature
of the arches formed by the moving groups at different positions
in the disc and the high level of noise result in a sub-optimal
global link of the arches in the velocity distribution. Therefore,
we only provide a tentative manual link of the structures, based
on the study of R18. In the rest of the paper we use this arch link
as a qualitative tool in the analysis, but the main conclusions
are based on the properties of the individual parts of the arches,
which are determined by the described methodology.

This linking procedure provides interesting results, different
than in previous studies. For instance, the evident link of the
Arch/Hat at R = 9.4 kpc creates an asymmetric arch shape for
this structure at the SN. This could be an artefact of the detec-
tion of Arch/Hat at VR > 60 km s−1 or physical evidence of an
unknown behaviour related to its origin. We note that tagging the
groups in the SN and assuming that they remain united across the
disc is a clear oversimplification. In the data we see that Sirius is
formed by two arches at SN, but these arches merge into a sin-
gle one at the outer parts of the disc (pannels R = 8.16, 9.4 kpc
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Fig. 1. Moving group detection in different neighbourhoods along the radial direction. For each moving group a parabolic fitting of the substructures
associated with each group is included (highlighted in grey). Each moving group contains several structures, corresponding to different VR bins.
The largest structure in each group is used as its representative (dots with larger black contours and the moving group name on top). There are
two examples of bimodalities, which serve as evidence of the complex evolution of the arch morphology (Sirius at R = 8.16 kpc and Arch/Hat at
R = 10.4 kpc).

in Fig. 1). The same happens for Arch/Hat at R = 10.4 kpc. In
the simulation (Sect. 5) we observe the same behaviour for the
overdensities related to the OLR. So far, this simplification is
useful for the discussion and comparison to the state of the art.
Moreover, the lack of data far away from the SN does not allow
a robust arch characterization. In future releases an automatized
arch detection will be needed to disentangle the complex orbit
distribution.

4.1. Radial direction

The first evidence of large-scale substructure in the dynamics of
the disc was the presence of ridges in the R − Vφ plane, directly
related to the moving groups observed in the SN. Therefore,
the first exercise we were able to do with the manifolds was
to extract their subsets in the radial direction (i.e. φ = 0 deg,
Z = 0 kpc) and plot them in R−Vφ plane, coloured by VR (Fig. 2).
In the top panel, we show the representative groups, tagged with
their literature names. In the bottom panel, we show the rest of
the structures as beams of lines that define the morphology of
the corresponding moving groups. As expected, when tracing
the different moving groups along R we observe diagonal lines
in R − Vφ, matching the already known ridges.

After comparison with R18, we detected the same moving
groups, but we managed to extend their detection by several
kiloparsecs. The results in the inner and outer part of the disc
(R < 6.5 kpc and R > 10 kpc) are noisy due to Poisson noise.

The Gaia DR3 release will improve the detection of groups in
these regions, but even if we exclude this part the groups extend
far beyond the range seen in other studies (see Fig. 6 in R18).
This extension of the structures is due to a major improvement
in the methodology and to the use of the updated astrometric
Gaia EDR3 data. The lower error in proper motion and parallax
increases the concentration of the moving groups in the under-
sampled regions.

In Fig. 2 we can see how the slope of the lines in radius is not
constant across the different groups. In the top plot groups like
Arcturus, Hercules, and Arch/Hat present slopes that are signif-
icantly steeper than Sirius and AC. However, this slope is not a
common characteristic in all the parts of the arch of a group. For
instance, in the bottom plot we can see that Arcturus is very steep
at VR = 30−40 km s−1 (orange lines) and flattens for the negative
part of the arch (VR = −20 km s−1, blue lines). We observe that
secondary peaks have very different azimuthal and radial veloc-
ities when they start to show up at the inner radius, but end up
having very similar azimuthal velocity at larger radii. This corre-
sponds to a flattening of the arches in the velocity distribution as
R increases. This is not observed in the simulations (Sect. 5), and
could be an effect of the centroid of the distribution dominating
in the case of undersampling in these regions.

As for the global shape of the lines, the resonant effects
of the bar and spiral arms are expected to create kinematic
substructures that, from an epicyclic approximation analysis of
the first-order effects, have an almost constant vertical angular
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Fig. 2. Azimuthal velocity of the kinematic substructures in the radial direction, φ = 0◦, Z = 0 kpc as a function of the radius and coloured by their
radial velocity. Each dashed grey line corresponds to the best fit of a structure’s constant angular momentum line. Top: structures corresponding
to the main peak of a moving group, tagged with the name from the literature. Bottom: secondary peaks of the moving groups. The usual way to
observe this projection is using the number of stars or the mean VR in each bin (see Fig. 1 in Fragkoudi et al. 2019). The different lines delineate
the skeleton of the distribution and its complexity.

momentum LZ = RVφ (Sellwood 2010; Quillen et al. 2018b).
Thus, if the moving groups have a bar resonance origin, we
might naively expect their azimuthal velocities to follow lines
∝R−1 (dashed grey lines in Fig. 2 top panel). In Ramos et al.
(2018) (their Fig. 6), this trend is observed for Hercules and
Hyades. When extending the analysis to a larger region, we
find that the groups deviate from the lines of constant angular
momentum. In Appendix B we compute the reduced chi-squared

(χ2
ν) parameter for all the groups. The only group that is statis-

tically well approximated globally by this Vφ ∝ R−1 trend is
Arch/Hat. We come back to this in Sect. 6.

The ridges are usually studied in R − Vφ diagrams coloured
by density or mean VR (see Fig. 1 in Fragkoudi et al. 2019). By
doing these projections, the complexity of the moving groups
(e.g. arch curvature, bi-modalities, arch disruption) is lost,
offering only a partial understanding of the sample. With our
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methodology we can now visualize this complexity in a single
plot. For instance, we can observe how the VR − Vφ arch cor-
responding to the Arcturus moving group is a horizontal arch
at R = 8 kpc (structures with different VR and common Vφ), but
that it curves towards the inner radius (the different structures fan
out). This spreading clearly depends on the VR, which is a sign
of a curved arch. Mixed with Arcturus, we are able to observe
the morphology of Bobylev at VR > 50 km s−1. In the previously
mentioned projections, the visualization of both structures is not
possible since the mean VR blends the two contributions.

Beyond the detection and characterization of ridges in the
radial direction, the main contribution of our method is the blind
search of these kinematic structures in the three spatial dimen-
sions at the same time. Next we focus on the representative of
each moving group and study their kinematics in 3D space: the
azimuth submanifold (Z = 0 kpc) in Sect. 4.2 and the vertical
submanifold (φ = 0 deg) in Sect. 4.3.

4.2. Azimuth submanifold

We first do a cut in the structures around Z = 0 kpc (|Z| <
0.2 kpc) to observe the behaviour of the different moving groups
as a function of R and φ. We obtain surfaces covering up to
±25 deg (≈3.5 kpc at solar radius). This is the first time that the
moving groups are traced along the Z = 0 kpc plane with this
completeness.

In Fig. 3, apart from the already studied decrease in Vφ with
R, we can see how the Arcturus, Bobylev, and Hercules mov-
ing groups present a slope in the azimuthal velocity along the
azimuth, whereas the Horn, Sirius, and Arch/Hat moving groups
present an axisymmetrical behaviour of the azimuthal velocity
along the azimuth, as expected in an axisymmetric potential.

It is interesting to quantify the variation of Vφ with φ for
the structures. We evaluate this slope2 ∂Vφ/∂φ at a given R
by restricting the structure to this R value and doing a linear
fitting of the surfaces in φ − Vφ. We compute the slope in
the radius that minimizes the error in the fitting. The result-
ing values are −0.40 km s−1 deg−1 at R = 7 kpc for Arcturus,
−0.63 km s−1 deg−1 at R = 7 kpc for Bobylev,−0.50 km s−1 deg−1

at R = 8 kpc for Hercules, −0.04 km s−1 deg−1 at R = 10 kpc for
Sirius, and −0.01 km s−1 deg−1 at R = 10 kpc for Arch/Hat.

In Monari et al. (2019b) they study the mean angular
momentum evolution in φ for Hercules in an analytical model.
In the case of a co-rotation origin, they predict that the angu-
lar momentum Jφ of Hercules at the solar radius must signifi-
cantly decrease with increasing azimuth. Their model predicts
the slope to be around −8 km s−1 kpc deg−1, and they observe a
similar trend in the Gaia DR2 data. Our equivalent value in angu-
lar momentum would be −4 km s−1 kpc deg−1, which is smaller
than the predicted value.

In some parts of the disc the mean azimuthal velocity in the
plane for the total 6D sample decreases with increasing azimuth
at a constant radius (see Fig. 10 in Gaia Collaboration 2018b,
R = 8−10 kpc). This is the behaviour that we observe for Arc-
turus, Bobylev, and Hercules. It would be worth investigating the
relative contribution of each moving group to the total sample to
understand the relation between these individual groups and the
total average motion, but we will postpone this to a future study.

2 In our reference system a negative ∂Vφ/∂φ slope corresponds to an
increase in |Vφ| with φ (a moving group with negative ∂Vφ/∂φ moves
upwards in the velocity distribution with φ).

Fig. 3. Mean azimuthal velocity of the representative groups in the
R − φ projection, for |Z| < 0.2 kpc. The contours of regions with the
same velocity are shown for clarity (in white). The Arcturus, Bobylev,
and Hercules moving groups present a constant slope in the variation
of azimuthal velocity along azimuth, whereas the Horn, Sirius, and
Arch/Hat moving groups present an axisymmetrical behaviour of the
azimuthal velocity along azimuth.

4.3. Vertical submanifold

We also studied the projection in the R − Z plane (|φ| < 10 deg,
see Fig. 4). In all the structures but Coma Berenices (see below),
we observe decreasing |Vφ| values for increasing |Z|. In addi-
tion, Arcturus, Bobylev, and Hercules, the same structures that
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Fig. 4. Mean azimuthal velocity of the groups in the R−Z projection, for
|φ| < 10 deg. The contours of regions with the same velocity are shown
for clarity (in white). Coma Berenices clearly presents an increasing
|Vφ| with Z, and thus strong vertical asymmetry. We measure a constant
vertical slope of ∂Vφ/∂Z = −15 km s−1 kpc−1. The rest of the structures
show vertical symmetry.

show steeper slope in azimuth, present a clear symmetry around
Z = 0 kpc. Arch/Hat is also very symmetric in Z. Instead,
Horn, Hyades, and Sirius present a steeper decrease in |Vφ| for
Z > 0 kpc with respect to the other moving groups, and a more
constant value for Z < 0 kpc. Finally, AC does not have enough
signal at this point to analyse it properly.

Coma Berenices clearly presents an increasing |Vφ| with Z,
and thus strong vertical asymmetry. We note that outside the
range of R = [7, 10] kpc, this moving group shows a change
in behaviour in all the spatial projections (Figs. 2–4) possibly
because our methodology is linking it to other close structures.
Therefore, focusing only on the [7, 10] kpc range, we measure
a constant vertical slope of ∂Vφ/∂Z = −15 km s−1 kpc−1, clearly
different to the other groups and to the predictions from models
with vertical symmetry.

It would be interesting to obtain a measurement of the ver-
tical curvature of the moving groups at each radius, as is done
in the previous section with the slope in azimuth and with the
vertical slope in Coma Berenices. With noisy data, each order
of derivatives increases its uncertainty and the measurements we
obtained were not significant enough. In the future, with better
data and/or a robust analytical model to fit the curvature at all
radii at the same time, this measurement could be produced.

5. Simulations

In this section we apply the same methodology to the simu-
lations. This has two main goals: evaluating the performance
of our method in a case where there are no selection effects,
and allowing a comparison of the data to a model where a
particular and known perturbation is present. In our case we
used a series of test particle simulations with 60M particles.
The initial conditions and the Galactic potential are described
in Romero-Gómez et al. (2015). In particular, the disc has a
local radial velocity dispersion of σVR = 30.3 km s−1 at the
radius of 8.5 kpc. We integrated the initial conditions, first in the
axisymemtric potential of Allen & Santillan (1991) for 10 Gyr;
then we introduced the Galactic bar potential adiabatically dur-
ing 4 bar rotations (2.46 Gyr for the slow bar and 1.47 Gyr for the
fast bar), to finally integrate another 4 bar rotations. The Galactic
bar consists of the superposition of two aligned Ferrers ellipsoids
(Ferrers 1877), one modelling the triaxial bulge with semi-major
axis of 3.13 kpc and the second modelling the long thin bar with
semi-major axis of 4.5 kpc. We used two simulations, where the
bar rotates as a rigid body with a constant pattern speed of 30 and
50 km s kpc−1. For the slow bar, the CR was located at 7.3 kpc
and the OLR at 12.2 kpc. For the fast bar, the CR was located at
4.3 kpc and the OLR at 7.6 kpc. We used the final snapshot of the
simulations, and assumed that the bar is 30 deg in azimuth with
respect to the Sun in the direction of rotation, close to the estima-
tions for the MW (Bland-Hawthorn & Gerhard 2016, references
therein).

In these final snapshots we execute the methodology
described in Sect. 3 and obtain an optimal detection of the mov-
ing groups in a large range of the sample. These robust results
match the predictions from previous works, and validate the per-
formance of our methodology in a known dataset. However, we
found some substructures related to the centroid of the veloc-
ity distribution whose changes with azimuth, radius, and height
are mostly related to the rotation curve of the model. In this
section we only show the substructure related to bar resonances
and ignore the rest of the groups extracted by the methodology.

The selected moving groups are shown in the VR − Vφ pro-
jection in Fig. 5 (as done in Fig. 1 for the real data). In the
simulation the moving groups also show arches in this projec-
tion, which we are able to detect at several radii. Again, we can
show the groups projected in the radial direction (Fig. 6, com-
pare Fig. 2). In Figs. 5 and 6, the top panels show the structures
of the fast bar model (depicting the effects of the OLR and 1:1
resonance); the bottom panels show the structures of the slow
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Fig. 5. Moving group detection in different neighbourhoods along the radial direction in the simulations (compare Fig. 1). Top row: fast bar model.
Bottom row: slow bar model.

Fig. 6. Azimuthal velocity of the kinematic substructures in the radial direction (φ = 0◦, Z = 0 kpc) for the test particle simulations as a function
of the radius, and coloured by their radial velocity. We include dashed grey lines corresponding to constant angular momentum lines as a guide.
Top: structures for the fast bar model. Bottom: structures for the slow bar model. The detections of the OLR (for both the fast and slow model) and
the 1:1 (only detected for the fast case) are marked on top of the lines. Here the complex morphology of the arches appears in a single image.

bar model (only the effects of the OLR appear). In the following
sections we analyse the fast bar model (Sect. 5.1) and the slow
bar model (Sect. 5.2) in detail.

As explained in the introduction, a fast bar model places
Hercules near the OLR of the bar. In this model Arch/Hat can
be explained as the 1:1 resonance. Instead, the slow bar model

places Hercules in the CR of the bar and Arch/Hat in the OLR.
Therefore, in this paper we use the term ‘Hercules-like’ for
structures in the simulation that can be related to Hercules in
the data (i.e. generated by OLR for the fast bar model and by
CR for the slow bar model), and ‘Arch/Hat-like’ for the struc-
tures that can be related to the Arch/Hat (i.e. induced by the
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1:1 for the fast bar model and by the OLR for the slow bar
model).

In Fig. 6 it is clear that the global position of the overdensi-
ties does not follow exactly the lines of constant angular momen-
tum predicted for small epicyclic amplitudes (Vφ ∝ R−1). In
the radial direction the curvature of the OLR_bott structures is
opposite in the two models. In addition, the fact that the struc-
tures merge at some radius is clear evidence that they follow
a trend that is different from ∝R−1. The first-order prediction
for resonances is suboptimal for Vφ values far from the circu-
lar velocity. In Fig. 6 we observe how the radial slope of the
structures differs more from the prediction at small and large Vφ

values.

5.1. Fast bar model

In the fast rotating bar simulation (Ωb = 50 km s−1 kpc−1) we
are able to detect substructures related to the OLR and the 1:1
resonance with our methodology. As expected, both structures
present an arch shape in the VR − Vφ diagram (Fig. 5, top). The
complete sampling and the simplicity of the simulation allows us
to trace these arches unequivocally and observe their morphol-
ogy in ranges up to 6 kpc in the radial and azimuthal directions,
characterizing with strong robustness not only their position in
the velocity space, but also the trend of the central and outer part
of the arch separately. We note that the simulation has been inte-
grated for 4 bar rotations, which places this model in the regime
of a young fast bar, as defined in Monari et al. (2019b).

In the top part of Fig. 6, the bi-modality of the OLR and the
1:1 resonance are clearly observed. For the OLR, at R < 7 kpc
we observe a Hercules-like arch (OLR_bott), extending to a max-
imum VR of 40 km s−1 (orange line at top). In this same region
we also observe a symmetric arch at the top of the distribution
labelled OLR_top, with a maximum in VR = 0 km s−1 (green
line at top). At R between 7 and 8 kpc, the VR-negative part of
the bottom arch (VR around −10 km s−1) continues to decrease in
|Vφ|, and the positive part of the arch (VR > 20 km s−1) merges
with the top arch (OLT_top) to form a unique structure cover-
ing the whole radial velocity range. This unique arch, labelled
OLR_comm, has its maximum at VR = −40 km s−1 (blue line at
top). The arch configurations at R = 7, 9, and 11 kpc can also be
seen in the top row of Fig. 5.

The signature of the 1:1 resonance (Arch/Hat-like structure)
is less prominent than in the case of the OLR. In Fig. 5 (top row,
R = 11 kpc) we observe a bi-modality in the histogram, with the
upper part of the distribution being more prominent at negative
VR values and the lower part more prominent in the positive VR
range. In the R−Vφ diagram (Fig. 6, top panel) we see that at the
inner radius we mostly detect negative VR, and at the outer parts
mostly positive VR, giving more evidence of this bi-modality.
Due to the small prominence of the resonance, we are not able
to detect it when it is located in the centre of the distribution.

As we did with the real data, we exploit the 3D extent of the
structures and show their trends in the azimuth submanifold. In
Fig. 7 we show the R−φ projection of the azimuthal velocity for
different parts of the arches (compare Fig. 3). The black lines in
these panels show the azimuthal slope of Vφ in each radius (right
vertical axes).

The OLR_comm structures present a discontinuity around
R = 8 kpc. In Fig. 6 this can be seen as the sudden drop
in Vφ in the green-turquoise lines at R ∼ 8 kpc (VR =

−20,−10, 0 km s−1). A similar discontinuity is present in two
panels of the OLR_bott structure in Fig. 7. The peak detection
algorithm guarantees a minimum distance between peaks for

Fig. 7. Fast bar model. Mean azimuthal velocity of a selection of groups
in the R − φ projection, for |Z| < 0.5 kpc. The contours of regions with
the same velocity are shown for clarity (in white). The slope of the
linear fitting (φ,Vφ) is shown (in black) for every R column, in units
of [km s−1 deg−1]. The 3σ error of the slope is shown in a translucent
region around the line.

robustness. Therefore, when two arches merge, the algorithm
stops detecting one of them a short time before the merge. Even
so, a few spurious detections can act as a bridge for the algo-
rithm and and make it join the two structures. Since the arches
are merging, the algorithm described in Sect. 3.2 (Algorithm 3)
detects a continuity and the structures are detected together.
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It is important to remember that Fig. 7 shows a young fast
bar, which is known to introduce azimuth correlations, especially
around the OLR (see Fig. A1 in Trick et al. 2021). For most of
the structures, we see an azimuth slope of Vφ that depends on
radius. Interestingly, some structures have negative ∂Vφ/∂φ, such
as Hercules in the real data, and others have a positive slope. We
observe three main structures with different patterns:

– Rows 1–4, and 7. Upper part of the OLR bimodality. Before
crossing the rotation curve (R ≈ 8 kpc), the ∂Vφ/∂φ slope
of the structure is constant along all the VR values. For R >
8 kpc, a correlation appears between ∂Vφ/∂φ and VR. This is
a sign that the OLR_comm arch shown in Fig. 5 (top row,
R = 9 kpc) is moving to negative VR values in the VR − Vφ

diagram as φ increases (when VR is more positive, its |Vφ|

decreases faster with φ).
– Rows 5–7 (R < 8 kpc). Hercules-like part of the distribu-

tion. The slope in azimuth decreases as R increases. The
contour lines merge when approaching the bar’s long axis
(φb = −30 deg).

– Rows 8 and 9. Arch/Hat-like part of the distribution. The
slope in azimuth is constant along the different detected parts
of the arch, and tends to flatten for increasing R values.

5.2. Slow bar model

In the slow rotating bar simulation (Ωb = 30 km s−1 kpc−1), we
are able to detect the Arch/Hat-like overdensity caused by the
OLR along a wide range of radius values, covering up to 6 kpc
(Figs. 5 and 6, bottom panels). In the radial direction we observe
three different structures related with the OLR. Two of them have
negative VR and the other has positive VR. The negative VR struc-
tures (OLR_top and OLR_bott) present a clear bi-modality in Vφ.
In the VR − Vφ diagram (Fig. 5, bottom), the OLR_top forms a
flat arch and the OLR_bott forms a curved arch. In the positive
VR regime (orange-red lines), we observe one single structure
(OLR_comm) compatible with OLR_top at R = 10 to 11 kpc,
which continues to decrease its azimuthal velocity with R in a
constant slope and merges OLR_bott from R = 12 kpc to the
outer parts of the disc.

Again, we can exploit the 3D extension of the manifolds
to study how these groups are evolving in the R − φ projec-
tion. In Fig. 8 (as in Fig. 7, but for the slow bar model) we
observe two main structures, corresponding to the different parts
of the OLR bi-modality (whose upper part corresponds now to
the Arch/Hat-like group). Rows 1–3 are the top part of the OLR
bi-modality. It presents a constant slope in azimuth (∂Vφ/∂φ =

−0.1 km s−1 deg−1 at R = 12 kpc), flattening as R increases, sim-
ilar to the Arch/Hat-like part observed in Fig. 7 for the fast bar.
Rows 4–7 show the bottom part of the bi-modality. The slope is
less constant, and we observe the same decrease in R as in the
Hercules-like part of the fast bar model.

We do not detect overdensities caused by CR. In general,
the expected Hercules-like moving group caused by CR is
less prominent than when formed by the OLR (Binney 2018;
Hunt et al. 2018b), especially if higher order modes are missing
from the bar model. In addition, if the velocity dispersion of the
disc is too large in this region, we could have less trapping and
less resolution. Another explanation could be that the length of
the bar in our models does not favour CR trapping. In the future,
we aim to perform the same analysis with other models to anal-
yse this effect (e.g. Sormani et al. 2022).

In Fig. D.1 we show the Vφ −R projection coloured by mean
VR. In this figure we observe a very faint red overdensity in the

Fig. 8. Slow bar model. Mean azimuthal velocity of a selection of
groups in the R − φ projection, for |Z| < 0.5 kpc (compare Fig. 7).
In this simulation the shape of the arches is maintained along φ (same
slope for all VR values), with a constant displacement to bigger |Vφ| as φ
increases.

CR region, but much weaker compared to the rest of the detected
resonances in the fast and the slow bar models.

6. Discussion

Simulations that contain only a bar perturber offer us the possi-
bility to characterize its effects in a robust way. With this char-
acterization, we can then compare the manifolds extracted from
the simulation with those seen in the data. As explained in the
introduction, one of our goals with the characterization of the
manifolds is to search for kinematic observables that distinguish
resonances from short/fast or long/slow bars.

Radial direction. First, we focus on the slope, shape, and
evolution of the moving groups in the data and the simulation
along the radial direction (Figs. 2 and 6).

The global gradient of the structures in the radial direction
deviates from the first-order prediction for resonances (curves
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following Vφ ∝ R−1) in the data and the simulations, as expected
in more realistic cases, even if they have a resonance origin. In
the simulations we see that the lines are less curved than the
simple prediction and some parts of the OLR_bott have even the
opposite curvature. This is also observed in the data, where all
the moving groups are less steep in the inner parts of the disc
than the prediction, and Hercules and Arcturus present the same
opposite curvature pattern as the OLR_bott.

We see in the Vφ − R projection coloured by mean VR of
the slow bar scenario of our simulations (Fig. D.1) that the
co-rotation overdensity is not significant enough. This is dis-
cussed in the Introduction and in the previous section, and could
be related to the specificities of the model considered here.
In the fast bar scenario a Hercules-like structure is formed at
R = [6, 8] kpc, which shows an arch shape with a maximum
in VR = 40 km s−1 (Fig. 5, top left panel), consistent with the
Hercules moving group in the data. In this same radial region the
top part of the OLR forms an arch in negative VR, which can be
related to Horn. Finally, from R = 8 kpc towards the outer parts
of the disc, the OLR forms a single arch with a maximum in
VR = −20 km s−1. A similar arch, present at all the radial veloci-
ties, was already observed in the models by Bovy (2010). In the
data this region (R > 9 kpc, Vφ < −170 km s−1) contains very
few stars, and we did not detect any group there.

The other feature commonly associated with bar resonances
is the Arch/Hat moving group. For a fast bar, it can be explained
by the 1:1 resonance trapping region, and for a slow bar it
matches the position of the OLR. In the data, the number of stars
with R > 10 kpc is low. Therefore, the quality of the shape char-
acterization of the Arch/Hat moving group is poor. Even so, in
the panel R = 10.4 kpc in Fig. 1 our method finds a tentative
arch split around VR = 10 km s−1. This would match the split we
detect between the OLR_comm and OLR_top structures in the
slow bar model (Fig. 6, bottom panel at R = 11 kpc). In the fast
bar simulation, the prominence of the 1:1 resonance is low and
we can only detect it in regions far from the centroid of the dis-
tribution. Even with this limited detection, we do not observe a
bi-modality in the negative VR region, which would be a way to
discriminate between resonances.

Azimuth submanifold. In both simulation models, for the
Arch/Hat-like moving groups we observe a constant positive
slope of |Vφ| in azimuth which tends to flatten (get closer to
0 km s−1 deg−1) as R increases. In these Arch/Hat-like groups,
the slope of the azimuthal velocity in azimuth does not depend
on VR (Figs. 7 and 8). In the data (Fig. 3), the Arch/Hat group
is very noisy. Therefore, as discussed in the previous paragraph
it is still complicated to use the Arch/Hat velocities for a final
relation to a specific resonance.

In Fig. 7 we can observe the different parts of the OLR
resonance in the fast bar. The Hercules-like overdensity (R =
[6, 8] kpc) shows a constant positive slope of |Vφ| in azimuth
common along all VR. In opposition, the trapping region of the
resonance OLR_comm has a slope that depends on the VR. This
can be interpreted as the arch moving along VR in the VR-Vφ dia-
gram when moving in azimuth, which is observed at the OLR in
other simulations of a young bar far from phase-mixed (Dehnen
2000; Bovy 2010; Trick et al. 2021). Since we have the complete
information of the moving groups in the data, we can repro-
duce the same analysis of the moving group slope at different
VR for some moving groups in the data. In Figs. C.1 and C.2, we
show this slope for Hercules and Hyades, respectively. We do
not observe this dependence in VR for any of the groups. In the
velocity distribution this can be observed as the moving group

arches increasing their |Vφ| along the azimuth, but no displace-
ment along VR.

Vertical submanifold. For the resonces of the bar, the verti-
cal displacement of Vφ should be dominated to first order by the
vertical potential of the Galaxy (Al Kazwini et al. 2022). In our
results the vertical curvature of all the moving groups (except
for Coma Berenices) at a common radius is very similar, thus
matching the analytical prediction. This means that this data is
a good candidate to constrain the 3D structure of the potential.
To second order, we could try to distinguish different curvatures
of different resonances. In Al Kazwini et al. (2022) the displace-
ment of the resonances at Z = 1 kpc with respect to the galac-
tic plane is measured to be 8 km s−1 kpc−1 for the corotation,
6 km s−1 kpc−1 for the OLR, and 4 km s−1 kpc−1 for the 1:1 res-
onance. Our maximum resolution, given by the Vφ histogram
at each pixel, is 1 km s−1 kpc−1. Therefore, disentangling which
resonances create each moving group with the vertical informa-
tion is beyond our current capabilities.

In the vertical behaviour of the moving groups, a clear outlier
is Coma Berenices. In Quillen et al. (2018b) (also Monari et al.
2018; Laporte et al. 2019), the Coma Berenices moving group
is observed to be present only at negative galactic latitudes,
showing evidence of incomplete vertical phase mixing. With the
new EDR3 data and our methodology, we are able to detect
the group in a larger extension and at positive and negative
galactic latitudes, but it does show a clear vertical asymmetry
in its azimuthal velocity. We measure a constant vertical slope
of ∂Vφ/∂Z = −15 km s−1 kpc−1. In the plots of a phase spiral
coloured by Vφ (Antoja et al. 2018), it is seen that there must be
a correlation between Z and Vφ (higher |Vφ| values at positive Z).
This slope in Coma Berenices could be a projection of this cor-
relation.

7. Conclusions

We have sampled, with the Gaia EDR3 6D data, the man-
ifolds tracing the main moving groups in the SN along the
(R, φ,Z,VR,Vφ) space, in an automatic way. We have revealed the
skeleton of the velocity distribution in a multidimensional space
that we can then explore along the radial direction, and character-
ize in the azimuth and vertical submanifolds. This methodology
was successfully tested with two simulations of the effects of a
dynamically young bar. We were able to observe and quantify
the spatial evolution of the observed moving groups in a large
range of about 3 kpc around the sun. Our main results and con-
clusions are the following:

– The azimuthal velocity of the moving groups in the radial
direction does not follow lines of constant angular momen-
tum, deviating from our naive first-order prediction for res-
onances. In the simulations, resonant structures also deviate
from this simple prediction, demanding more complex ana-
lytic predictions.

– The spatial evolution of the moving groups is complex. The
moving group configuration observed in the SN is not main-
tained throughout the disc. The relative position between the
arches and their curvature changes across space, and the dif-
ferent moving groups split and merge several times. This
is expected in a context of bifurcating orbital families, for
example in the case of resonances.

– In our slow bar simulation we observe a bi-modality created
by the OLR in the outer parts of the disc. This bi-modality is
also observed in the Arch/Hat moving group in the data. This
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intriguing agreement could favour the slow bar scenario, and
opens the possibility of a test with future data.

– The Arcturus, Bobylev, and Hercules moving groups present
a positive slope of their Vφ location with the azimuth. We
measure this slope to be −0.50 km s−1 deg−1 at R = 8 kpc for
Hercules.

– The azimuthal velocity of the Horn, Sirius and Arch/Hat
moving groups presents an axisymmetrical behaviour. In
both our simulations we observed a small azimuthal gradient
in Vφ in the Arch/Hat-like structures, although it approches 0
as R increases. This could be related to the young bar model
we are using.

– The vertical curvature of the moving groups is similar at the
same R. These curvatures are dominated by the gravitational
potential to first order, independently of the observed res-
onance. However, we find that the Coma Berenices group
deviates from this behaviour, which points to a different
dynamical origin that deserves further investigation.

– In the fast bar simulation a correlation between ∂Vφ/∂φ and
VR is observed for the OLR trapping region. The region
where this correlation is observed in the simulation (R >
9 kpc, Vφ < −170 km s−1) is poorly sampled in Gaia EDR3,
but this could potentially be used to give information on the
pattern speed of the bar with better data.

Spiral arms, resonances with the bar, accretion events, and
possibly other effects can contribute to the present phase space
distribution from which we obtain our observables. Disentan-
gling all the contributions of these dynamical processes is
difficult. In this work we have shown the complexity of the
phase-space structure that even a single mechanism (namely the
bar) can produce. Our methodology allows a quantitative and
robust measurement of the observed phase space substructure to
be extracted, which can be then compared and/or fit to different
models.

In this paper we have developed the methodology for the
study of the disc with the Gaia data, and its formulation is eas-
ily generalizable. The same approach can be exported to other
substructures in astrophysics (e.g. blind search for streams and
shells in the halo) and even to datasets outside this field.

In the following months Gaia DR3 will revolutionize once
again our field of research. The new 6D sample contains about
33M stars, covering a significantly larger region of the disc. Dur-
ing the review process, this new data was already being used in
Lucchini et al. (2022) to reveal four new moving groups candi-
dates in the SN. With this work, we are ready to process the Gaia
DR3 data and extract its full potential.
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Appendix A: Distance Bias

Fig. A.1. Peak detection of the methodology for the original, −10%
bias, and +10% bias samples, in the radial, azimuthal, and vertical
directions.

We should be more worried about systematic errors in distance
than about random errors since random errors would in principle
only blur the structures. Systematic errors in distance may arise
from the conversion from parallax to distance and the use of pri-
ors in the Bayesian procedures, for example. While it is difficult
to evaluate the systematics in the distances that we used, one
can perform some simple tests. In order to estimate the impact
of a systematic error in the distance estimation we regenerated
the sample using two worst-case scenarios: an overestimation of
all distances by +10% and an underestimation by −10%. When
comparing distances from StarHorse (Anders et al. 2022) and

the photogeometric distances from Bailer-Jones et al. (2021), we
see that for 80% of the stars the distance differences are smaller
than 4% at 2 kpc and smaller than 7% at 3 kpc. The error that we
consider in this test is thus larger than this difference.

In Fig. A.1 we show the results of the peak detection part of
our methodology in the radial, azimuthal, and vertical directions
for the three samples (original, −10% bias, and +10% bias). In
the figure we observe that introducing this bias produces a con-
traction or expansion of some dimensions of the phase-space,
thus slightly modifying the position of the moving groups.

Quantifying the difference in the position of the peaks, we
can estimate the error that this bias could introduce. In gen-
eral, the bias is more significant if the azimutal velocity of the
group is far from the solar azimuthal velocity. For ridges in the
|Vφ| < |Vφ,�| region, an underestimate of the distance increases
the |Vφ| of the ridge, and a overestimate decreases the ridge
|Vφ|. For Hercules, this produces a bias of 3 km s−1 in the SN
(Vφ = −200 km s−1), for Arcturus the bias increases to 8 km s−1.
The opposite effect is seen for stars in the |Vφ| > |Vφ,�| region. For
Arch/Hat, this bias is 5 km s−1 at R = 9 kpc (Vφ = −280 km s−1).
It is important to note that we only detect kinematic structures
at these low and high azimuthal velocities close to the Sun, pre-
cisely in the region where a bias in the distance measurement is
less likely, mitigating the possibility of a distance bias.

In the radial direction, both R and Vφ are proportional to
the distance. Therefore, when computing the slope ∂Vφ/∂R the
dependence on distance cancels out. This is why the slopes
that we observe for the structures in the plane R-Vφ (ridges)
are maintained when the bias in the distance is introduced. In
the azimuthal direction, an underestimation or overestimation of
the distance produces a small negative or positive curvature of
2 km s−1 at |φ| = 20 deg. In the vertical direction, an underesti-
mate or overestimate of the distance produces a small positive or
negative curvature of 2 km s−1 at Z = ±0.7 kpc.

Appendix B: Epicyclic approximation discrepancy

Table B.1. Reduced chi-squared (χ2
ν) parameter for each group, from

lowest to highest.

Group χ2
ν

Arch/Hat 3.60
Arcturus 20.52
Bobylev 31.12
AC 32.44
Hercules 89.54
Coma 148.61
Sirius 216.46
Hyades 252.12
Horn 259.56

Here we test whether the structures in the radial direction
(ridges) follow lines of constant angular momentum. To do this
we use a reduced chi-squared (χ2

ν) test, considering a constant
error in the detection of σ = 5 km s−1, which is half of the
largest scale used in the wavelet. We compute the Lz which pro-
vides the best Vφ = Lz/R fitting for each group (i.e. it minimizes
the χ2

ν parameter). The best fitting curves are shown in Fig. 2.
In Table B.1, we show the χ2

ν parameter for each group. With
this parameter we can now compare the goodness of fit for each
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structure. There are three groups of results. In the first group
the Arch/Hat is clearly well fitted by a line of constant angular
momentum. A second group, formed by Arcturus, Bobylev, and
AC, presents low chi-squared values, but is clearly incompatible
with an optimal fitting. Finally, the shape of the rest of the struc-
tures is absolutely different from the lines of constant angular
momentum.

Appendix C: Azimuth submanifold along a group

Fig. C.1. Mean azimuthal velocity of the groups in Hercules in the R−φ
projection, for |Z| < 0.2 kpc. The contours of regions with the same
velocity are shown for clarity (in white). The slope of the linear fitting
(φ,Vφ) is shown (in black) for every R column, in units of [km s−1 deg−1].
The 3σ error of the slope is shown in a translucent region around the line.
The group has the same slope at all VR. This corresponds to a vertical
displacement of the moving group in the VR-Vφ diagram.

In Figure 3 we show the azimuth submanifold of a represen-
tative for each group. In this appendix we extend this analysis

Fig. C.2. As in Fig. C.1, but for the mean azimuthal velocity of the
groups in Hyades in the R − φ projection, for |Z| < 0.2 kpc.

and show how each part of the Hercules and Hyades arches is
evolving. In addition, since we have already shown these plots,
we include the extra information on the slope of Vφ in azimuth at
each radius. With this information, we can compare these groups
to the resonances studied in the simulations (Figs. 7 and 8).

The Hercules moving group (Fig. C.1) presents a stable and
constant slope of Vφ in azimuth at the centre of the sample (R =
[6.5, 8] kpc). In the limits of the sample, where the significance
of the group is smaller compared to the sample, this slope tends
to flatten for the regions with VR ≈ 0 and to become more steep
in the large VR parts of the arch.

The Hyades moving group (Fig. C.2) also presents a stable
behaviour at all VR. In the negative VR end of the arch (top two
rows in the figure) the group has a very low significance, thus
leading to a noisy detection.
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Appendix D: Extra projections of the simulations

This is the first time that a simulation has been studied using the
projection shown in Fig. 6. In general, these studies are done in
projections of 〈VR〉. In order to compare both results, in Fig. D.1
we show this projection for the simulation.

In the top panel of Fig. D.1, in red, we see the Hercules-
like overdensity, which steeply decreases in Vφ around R =
8 kpc. The upper part of the OLR bi-modality continues to

decrease in a less steep trend, with negative 〈VR〉 values above
and positive values below the resonance. Finally, in the outer
part of the disc we observe the effect of the 1:1 resonance,
which shows a swap in 〈VR〉 sign when crossing the rotation
curve.

In the bottom panel of Fig. D.1, CR should appear at R =
7.3 kpc, but we cannot see any significant structure in this region.
In the outer parts of the disc we do observe the OLR placed at
12.2 kpc.

Fig. D.1. Mean radial velocity of the kinematic substructures in the radial direction (φ = 0◦, Z = 0 kpc) for the test particle simulations as a
function of the radius and the azimuthal velocity. Top: Fast bar simulation. Bottom: Slow bar simulation.
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