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The rise of Indian summer monsoon 
precipitation extremes and its 
correlation with long‑term changes 
of climate and anthropogenic 
factors
Renaud Falga & Chien Wang*

The trends of extreme precipitation events during the Indian summer monsoon measured by two 
different indicators have been analyzed for the period of 1901–2020, covering the entire India 
in 9 regions segregated by a clustering analysis based on rainfall characteristics using the Indian 
Meteorological Department high‑resolution gridded data. In seven regions with sufficiently high 
confidence in the precipitation data, 12 out of the 14 calculated trends are found to be statistically 
significantly increasing. The important climatological parameters correlated to such increasing trends 
have also been identified by performing for the first time a multivariate analysis using a nonlinear 
machine learning regression with 17 input variables. It is found that man‑made long‑term shifting 
of land‑use and land‑cover patterns, and most significantly the urbanization, play a crucial role in 
the prediction of the long‑term trends of extreme precipitation events, particularly of the intensity 
of extremes. While in certain regions, thermodynamical, circulation, and convective instability 
parameters are also found to be key predicting factors, mostly of the frequency of the precipitation 
extremes. The findings of these correlations to the monsoonal precipitation extremes provides a 
foundation for further causal relation analyses using advanced models.

The amount and distribution of precipitation during the Indian summer monsoon (ISM) have a substantial 
impact on the region’s agricultural systems and thus the livelihood of more than a billion  people1. These clima-
tological parameters have high interannual and interdecadal  variabilities2,3 and a part of these could be explained 
by natural climate variability. Nevertheless, there is a high probability that man-made global or regional climate 
changes could have also affected these quantities with an extent yet to be  examined4–8. While the overall ISM 
rainfall is believed to have decreased during the twentieth  century9 then reversed since the turn of this  century10, 
it has been indicated that the extreme precipitation events might have been rising in some parts of  India11,12, 
with hypothesized causes ranging from  urbanization13–16, increase in dew point  temperature17,18, to climate 
 variability19,20. These hypotheses, as indicated in a recent review by Singh et al. (2019)21, were largely proposed 
based on comparing the trends of extremes with that of a single isolated explanatory variable and thus tended to 
disagree with each other. Understanding the variation alongside the causes of these extreme events is essential 
not only for predicting future climate change, but also for making effective mitigation strategies. Here, by apply-
ing advanced data science methods in analysing more than a century long surface rain gauge data as well as best 
available data for other meteorological and climatological variables, or land-use and land-cover (LULC) changes, 
it has been demonstrated that extreme precipitation events have been increasing in most regions of India, and 
that such an increase appears to be closely correlated with the long-term changes of certain climatological factors 
caused by anthropogenic forcing.

Results and discussion
Definition of the climatologically homogeneous study regions using a hierarchical cluster‑
ing method. Precipitation extremes are low probability events of relatively small spatial scale occurring 
unevenly across  India22,23. For this reason, a trend analysis should be ideally performed to an optimal number 
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of regions covering the entire India, each with similar climatic rainfall characteristics to derive suitable regional 
thresholds for extremes and thus consistent trends, as well as to identify potentially unique driving factors. Fol-
lowing this principle, the trends of two threshold-based rainfall extreme indicators, i.e., the frequency and the 
intensity (see Methods), have been derived using the Indian Meteorological Department (IMD) high-resolution 
rainfall gridded dataset, arguably the best available dataset for the purpose. To define relevant study regions, we 
applied Ward’s minimum variance clustering method to the daily rainfall dataset and found it to be optimal to 
segregate India into nine different climatologically homogeneous regions (Fig. 1, also “Methods” section). In 
addition to ensure the suitability of applying the regional thresholds to define the extreme events, this segrega-
tion also allows our analysis to better reflect the heterogeneous nature of extreme events across India, as we 
perform a multivariate regression analysis within each region. The rainfall distributions of these nine regions 
(Fig. 1b) proves that their climatic conditions are indeed relatively distinct. Note that how to perform spatial 
averaging to define extremes still lacks a widely accepted solution. Among the previous works, some had chosen 
to focus on a single region, often being central  India11,12,24, while others studied the whole India by separating the 
country into four to six arbitrarily defined  regions20,25. Differing from these approaches, here we use a statistical 
method, i.e., cluster analysis, to quantitatively segregate the whole India into different regions, each containing 
clear internal similarity while displaying substantial difference with others in terms of precipitation character-
istics. Understandably, our approach in segregation leads to a higher number of regions compared to what was 
previously done (e.g., nine regions versus five regions in general). As shown in the following discussion, derived 
trends of extreme events in our study are similar to those in some previous  analyses25 over certain regions that 
largely overlap with those in the latter works. Nevertheless, due to the fact that several areas with unique pre-
cipitation characters were aggregated into the same region in the latter works, the derived trends of regional 
extreme events could thus entitle to some issues. In contrast, due to the quantitative segregation method used in 
our study, our trend analysis allows us to assess the precipitation characteristics in certain previously unstudied, 
yet climatologically interesting regions, such as our coastal region 1, a critical zone of monsoon onset rain belt.

In two out of the nine above-defined regions (regions 4 and 8), the confidence in the precipitation data was 
not sufficiently high to perform the trend analysis, owing to the number of included recording stations in the 
IMD dataset being either too low or too fluctuating during the considered period. It has been suggested that the 
varying numbers of stations included in the IMD dataset from year to year could cause certain issues in deriving 
long-term rainfall  trends10,26. Indeed, there was a sharp increase in the number of included stations for regions 4 
and 8 during the 1970’s, potentially affecting our effort of defining extreme events there (Supplementary Mate-
rial, Fig. S1).

However, in the seven remaining regions, the number of recording stations, although not exactly constant 
throughout the century, has not experienced a sharp increase, and this provides us with more confidence when 
performing the trend analysis using the data of these regions. Furthermore, to ensure the validity of our results, 
we have performed an additional regional trend analysis only on the grid cells of the seven remaining regions 
where the number of recording stations is stable throughout the century (Supplementary Material, Fig. S2). The 
trends derived in the additional analysis are very similar to those derived using all the grid cells in the regions, 
suggesting that the numerous increasing trends calculated are not due to some statistical artifact induced by an 
increasing number of recording stations. As a result, our analyses are focused on these seven remaining regions.

Trend analysis results. The frequency of extreme events has been calculated by considering the daily grid-
ded rainfall dataset. After defining the regional threshold as the 99th percentile of the local monsoon rainfall 

Figure 1.  Region clustering. (a) The nine analysis regions identified by applying Ward’s minimum variance 
clustering method to the daily rainfall data in the period of 1901–2020 (every monsoon day during this period 
has been considered for the clustering), and (b) the resulting regional rain distributions in the seven study 
regions.
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distribution, the number of grid cells where the daily rainfall exceeded this threshold has been counted for all the 
monsoon seasons during 1901–2020. The average intensity of such events has also been calculated.

Increasing trends in the intensity of extreme precipitation events have been found in all the seven regions by 
using Mann–Kendall trend test, for analysis performed on a 5% statistical significance level. Using Sen’s slope 
estimator, the rising percentages ranging from + 4% in region 7 to + 10% in region 2 have been identified (Fig. 2).

For the frequency of extreme precipitation events, we have identified increasing trends in regions 1, 2, 5, 7 and 
9, or the entire west and southwest plus a part of northeast portion of India. Since the number of annual extreme 
events in a region is dependent on the size of the region, to have comparable results across all regions, we divided 
the regional number of extremes by the number of grid cells for each region. The rising percentages in frequency 
in the increasing regions range from + 33% in region 7 to + 134% in region 9. The regions that have witnessed 
the higher increase are all located in western India, with regions 1, 5 and 9 respectively showing a + 48%, + 68% 
and + 134% increase in the frequency of extreme events. Apart from the increasing trends in above regions, we 
have also found a statistically significant decreasing trend in region 3 (north-central India), and a statistically 
insignificant increasing trend in region 6 in the east coast.

To summarize, among the total 14 trends derived here using two different indicators in seven regions, we 
have identified 12 statistically significant (95% confidence level) increasing trends and one significant decreasing 
trend. The remaining trend (frequency in region 6) showed increasing signs but did not pass the Mann–Kendall 
trend test. These results indicates that the extreme precipitation events during the ISM seasons have increased 
evidently across majority of India since 1901.

Breaking point in the middle of the twentieth century. In most derived rising trends particularly 
of the intensity of extremes, there is a sharper increase in the second part of the twentieth century compared 
to the first part. Certain previous studies also found a similar difference between the pre-1950 and post-1950 
trends and attributed it to  urbanization16. Indeed, India experienced an intense urbanization between the 1950s 
and 1980s. The other LULCs such as agricultural lands (particularly the croplands), grasslands and forests were 
also modified substantially during this  period27. Such an anthropogenic factor is believed to have an important 
impact on climate and  rainfall28, implying that the LULC changes could potentially amplify the rising trends 
of precipitation extremes in the second part of the twentieth century. To verify this difference in the trends, we 
have applied a running slope difference (RSD) t-test, a statistical method designed to detect the trend turning in 
a time  series29. We find that among the 12 statistically significant increasing trends, 10 of them display a statisti-
cally significant breaking point between 1940 and 1970, suggesting that the anthropogenic forcing resulted from 
man-made LULC changes might have had impact on the trends. The breaking points in the time series are even 
more sharp when looking at the trends in intensity.

Random forest multivariate regression. Using an ensemble multi-variate and nonlinear machine 
learning technique, i.e., random  forest30, the potential predictors behind the above-discussed evolution of ISM 

Figure 2.  Trends of extreme events. Trends in frequency (blue) and intensity (red) in each region. The 
frequency of extremes is given in number of extreme events per monsoon season per grid cell, while the 
intensity is given in mm/day. The time series plotted in dashed line (frequency in region 6) correspond to a 
statistically insignificant trend (found by performing Mann–Kendall test at the 95% confidence level).
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precipitation extremes since 1901 have been further analyzed with a synergy of best available data of LULC 
changes and certain climate variabilities. Firstly, 120 year-long multivariate input data have been used to fit a ran-
dom forest regression model against observations of extreme event indicators. Furthermore, using the success-
fully trained random forest regression model and a feature importance functionality, we were able to determine 
the most responsible variables, or effective predicting features, to the rise of extreme events. A major purpose 
of this practice is to identify the correlations between long-term (century) evolutions of certain climatological 
(rather than episodic) factors or features and the observed climate trends of the ISM precipitation extremes, thus 
providing leads for additional attribution analyses should additional data were made available and most impor-
tantly, for using advanced models to further examine the causal relations between certain effective predicting 
features and the observed extreme event trends.

Note that random forest is a nonlinear regression algorithm, meaning that unlike classical linear regression, 
it can find complex nonlinear correlations between the input features and the output result. Hence, it is better 
suited for complex systems like the climate system with different feedbacks. For example, an input parameter 
such as sea surface temperature might have had an important positive influence on the extreme events for a 
certain period of time, while at some other period, another parameter (e.g., the circulation) could become more 
influential. Random forest regression model can capture this type of behavior, and its feature importance tool also 
gives us a good insight on the variables that had the most impact on the trends throughout the whole time period.

The feature importance has been calculated using the conditional permutation method in order to determine 
the contribution percentages of each given feature in predicting the accurate values of the different extreme 
events indicators (Methods). Traditionally, the feature importance is calculated using either the Gini impurity 
decrease or the classical permutation importance. However, the presence of correlated input features, which is 
often the case with meteorological data, has been shown to possibly impact the ability of both methods to identify 
strong  predictors31. These classical feature importance methods can still correctly rank the driving features of 
the trends of extreme  events32 (ordinarily called true predictors), but they might likely lead to overestimating 
the importance of some alternative features that are correlated to the true  predictors33. Therefore, we chose to 
calculate the conditional feature importance (Strobl et al., 2008)33, which can better reflect the true impact of 
each predictor variable on the different trends, even in the presence of highly correlated features. This allows us 
to have a high confidence in the derived variables’ contribution through the feature importance. In addition, we 
also performed feature selection (Methods) in order to keep only the features showing high contributions to the 
prediction using random forest model.

Note that this feature importance only reflects the contribution of each feature to the prediction of the testing 
dataset (Methods). For example, a conditional permutation importance of 50% for the urban fraction does not 
necessarily mean that 50% of the increase in extreme events was actually due to the increase in urban fraction, 
but rather represents the importance of the urban fraction in the random forest model prediction of extremes. 
Nevertheless, by including a considerable number of features arguably for the first time, our analysis still rep-
resents a step forward from previous works using only single or a few factors. In fact, the regression scores of 
13 out of 14 regressions are very good, with accuracy ranging from 0.68 to 0.96 (Fig. S3), suggesting that our 
model succeeds in predicting the extreme events using our input data with a good confidence. Therefore, a 
feature showing a high contribution to the regression model is likely to be an effective cause for the observed 
trends. The only regression showing a low score is the frequency trend in region 3  (R2 = 0.39), meaning that we 
did not manage to find accurate predictors for this particular trend. Consequently, we do not show the feature 
importance results for this trend.

Choice of the input features. We have included seventeen different input features in the multivariate 
analysis using a random forest model (Table 1, also Supplementary Materials; Fig. S4), and merged them into five 
distinct categories in the following discussions for clarity (Fig. 3): (1) LULC changes (composed of four features: 
agricultural land, grassland, forest, and urban fractions); (2) thermodynamical parameters (temperature, dew 
point temperature, sea surface temperature or SST, land–ocean temperature gradient, and relative humidity); 
(3) dynamical circulation parameters (zonal, meridional and total surface wind speed); (4) climate variability 
indices (El Nino – Southern Oscillation or ENSO and Indian Ocean Dipole or IOD indices); and (5) convective 
instability parameters (moist static energy or MSE, convective available potential energy or CAPE, and also the 
number of monsoon depressions forming over the Bay of Bengal). The first category (LULC fractions) differs 
from other categories in the way that the LULC changes are unarguably both local and anthropogenic features, 
and their climate responses are also largely regional.

Note that in category (2), (3), and (5), the quantities of included physical parameters can be affected by, 
besides anthropogenic impacts (e.g., through global warming), global climate processes and feedback involving 
natural climate system features. The variables in each category were selected based on current knowledge and 
certain hypotheses of monsoon climatology, as detailed hereafter. Specifically, temperature and humidity are 
commonly regarded as being correlated to extreme precipitation trends, because the warming of the atmosphere 
could lead to enhanced moisture availability and hence more intense  rainfall34,35. However, it was argued that 
dew point temperature could be a better predictor of extreme events than temperature in the tropics, especially 
in  India17,18, hence, we decided to include both features. It has also been suggested that the increase in SST over 
the Arabian Sea may play a role in the enhancement of extreme events by increasing moisture  availability11,12,24, 
while other studies highlighted the more prominent role of the temperature gradient between the ocean and the 
land on monsoon  rainfall10. Another key mechanism that has been suggested as a potential cause for the rise in 
extremes in several previous studies is the monsoon circulation. While some leaned towards the  strength20,36, 
others highlighted the direction and variability of the monsoonal  flow12,19. As most of the moisture over India 
during the summer monsoon season is advected from the Arabian Sea, in order to evaluate the impact of the 
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monsoon circulation strength on the trends of extremes, we chose to use the zonal and meridional components 
of the surface wind (U and V respectively), as well as the combined wind speed as input features, all averaged 
over the Arabian Sea. In addition, some studies have also linked atmospheric instability to precipitation enhance-
ment. For instance, one of our previous  studies37 argued that the surface MSE is a useful parameter for quanti-
fying the degree of strength of the monsoon convection, while another  study36 stated that an enhancement in 

Table 1.  List of input features of the random forest regression model.

Feature Category Computation area

Urban fraction Land-Use and land cover changes Regional average

Agricultural fraction Land-Use and land cover changes Regional average

Forest fraction Land-Use and land cover changes Regional average

Grassland fraction Land-Use and land cover changes Regional average

Surface air temperature Thermodynamical parameters Regional average

Dew point temperature Thermodynamical parameters Regional average

Relative humidity Thermodynamical parameters Regional average

Sea surface temperature Thermodynamical parameters Arabian Sea

Land–Ocean temperature gradient Thermodynamical parameters Arabian Sea and Indian subcontinent

Zonal component of the wind Circulation parameters Arabian Sea

Meridional component of the wind Circulation parameters Arabian Sea

Wind speed Circulation parameters Arabian Sea

MSE Convective Instability Arabian Sea

CAPE Convective Instability Bay of Bengal

Number of depressions Convective Instability Bay of Bengal

ENSO index Natural climate variability –

IOD index Natural climate variability –

Figure 3.  Conditional permutation feature importance for the frequency trends. The most important 
selected features in the prediction of the frequency of extreme events are displayed in the regions showing 
a high regression score. The colors of the bars correspond to the five different feature categories (LULCs, 
thermodynamical, circulation, climate variability and convective instability parameters).
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convective instability, measured by calculating the MSE at different pressure levels, could also lead to enhanced 
precipitations. Furthermore, a recent  effort19 also identified the increase of convective available potential energy 
or CAPE over the Bay of Bengal as a potential contributor to the observed intensification of severe storms. The 
link between monsoon depressions forming over the Bay of Bengal and extreme precipitation events, established 
on a daily timescale, receives certain acceptance among the tropical meteorology community. Hence, we also 
included a feature representing the number of depressions per monsoon season, even though it was previously 
demonstrated that extremes did not show any correlation to the number of depressions at a decadal  timescale12. 
Lastly, we would reiterate that we use the long-term climatological evolutions instead of episodic variations of 
features in the analysis. This better serves the purpose to establish their correlations with observed climatological 
trend of the monsoonal precipitation extreme events.

Feature importance for the trends in frequency. For the trends in frequency of extreme events, a very 
wide variety of factors appear to have played important roles in influencing the observed trends (Fig. 3), as each 
of the five feature categories is well represented in the list of selected important features. The list of important fea-
tures, varying substantially from region to region, suggests that different effective predicting factors are behind 
the rise in the frequency of extremes across these regions. The thermodynamical parameters appear to be the key 
predicting factors in all the central regions (regions 6, 7 and 9), as well as in the south-western coastal region 1. 
In particular, the Arabian Sea surface temperature seems to be an important feature of the frequency of extremes 
in all three central regions, whereas the land–ocean temperature gradient seems to have had a more prominent 
role in the coastal region 1. It is interesting to note that this region is also the only region where a wind-related 
feature appears to be correlated to the trend in frequency, whereas the circulation strength is commonly thought 
to be a good indicator of the monsoon intensity, and thus could potentially drive the trends of extremes. The dew 
point temperature, which characterizes the quantity of water vapor contained in the atmosphere, also appear to 
be a top predicting factor in three of the regions. In the eastern coastal region 6, the trend of frequency seems to 
be dominated by the CAPE, calculated over the Bay of Bengal, as was previously suggested by a previous  study12. 
Region 6 is also the only region where the frequency of extremes seems to be impacted by ENSO. Furthermore, 
the LULC changes are also important predicting factors for the trends of frequency, appearing (at least one of 
its four components) among the important features in five out of six regions. The above results thus suggest that 
in causing the frequency increase of extreme events, both local anthropogenic factors and climate variabilities 
could have played active roles.

Feature importance for the trends in intensity. We find that for all regions, the most important fea-
tures related to the intensity trends of extremes are almost exclusively the LULC changes (Fig. 4). In every study 
region, we can find at least one of the four LULC fraction features in the leading important feature list, imply-
ing that they are crucial for the prediction of extreme events and thus could have played a role in substantially 
amplifying the rise in intensity of extreme events. As the evolutions of various LULC components are different 
across regions, their impact on the regional trends could differ. In general, the forest and grassland fractions have 
decreased over the course of the twentieth century in most studied regions, while agricultural lands and urban 
areas have increased along with the economic and population growth. Specifically, we find the urban fraction to 
be the most correlated feature to the intensity trends in five out of seven regions, suggesting that the urbanization 
may have had an important role in the increase in the intensity of extreme events. In the remaining two regions, 
the agricultural land fraction appears as the most important feature. Therefore, local anthropogenic factors have 
largely dominated the prediction of the rising trend of extreme intensity. On the other hand, however, the SST 
appears as an important feature in two central regions (regions 7 and 9), especially in region 9 where it is ranked 
in the second position with a relative contribution of almost 40%. The relative humidity also appears in the 
important feature lists in two of the regions (regions 3 and 5). To a smaller extent, the meridional component 
of the wind (V) and the CAPE also appear to have impacted the trends in intensity in respectively regions 1 and 
9, as in the case of frequency in both regions. Even though the trends in intensity seem to be more correlated to 
the LULC changes, other physical parameters also appear to have played a role in the intensification of extremes.

Physical explanation. LULC changes. Our machine learning study confirms what has been hypothesized 
in the earlier trend analysis, that there indeed is a strong marker of the LULC changes in every calculated trend 
particularly of the intensity of extreme events. LULC changes can impact the regional and global climate through 
several processes, though their extent and underlying mechanisms may not be well defined to this  day28. For in-
stance, LULC changes can affect the radiative budget, either by modifying the surface albedo or through effects 
on the surface latent and sensible heat fluxes, hence atmospheric water vapor or cloud properties. The LULCs 
would further affect directly or indirectly the local water cycle, by perturbing the evapotranspiration fluxes, or 
by inducing rainfall modification. In our analysis, we find that the most significantly correlated LULC feature to 
the long-term trends of extremes are the changes in urban fraction. It is hypothesized that the change in urban 
areas could modify the rainfall through various  mechanisms38. Some of them involve land surface heterogeneity 
feedbacks: convection could increase via thermal perturbations induced by the urban heat island, or the increase 
in surface  roughness39. Others are linked to urban anthropogenic emissions, in particular the aerosol indirect 
effect: urban aerosols can act as cloud condensation nuclei and thus modify cloud microphysics, radiation, and 
 precipitation40,41. Previous studies did link the rise in extreme events in some parts of India with urbanization 
by comparing the pre-urbanization and post-urbanization  trends13,16, or by analyzing rainfall at different urban 
 locations15,42. By exploiting a multivariate analysis using the longest available data, our unique result not only 
confirms what has been suspected, but also underlines the importance of the other LULC changes. These results 
are, however, spatially heterogeneous. Some regions, like the Northeastern region 2, seem to display important 
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correlations between the trends of extremes and LULC changes, particularly changes in urban fraction. Note 
that out of the seven studied regions, region 2 has experienced the most intensive urbanization, where the urban 
fraction has been leveraged from 0.3% on average in 1901 to 5.5% on average in 2015, or a spectacular + 1670% 
increase. According to our study, this tremendous increase may have contributed to the rise in the frequency and 
intensity of extreme events.

Thermodynamical parameters. Nevertheless, in certain regions, the markers of urbanization and other LULC 
changes are not that obvious. For example, in region 9, the region adjacent to the Arabian Sea, there is not 
any LULC feature appearing in the selected important features of the frequency trend. Instead, SST variations 
seem to have a dominant role in modulating both frequency and intensity indicators in this region. This could 
be explained by the fact that a warmer SST would consequently increase the quantity of water vapor over the 
Arabian Sea through evaporation. Given that the summer monsoonal winds are essentially south-westerly, this 
additional water vapor would in turn be advected to the Indian subcontinent by the monsoon circulation and 
enhance moisture supply, thus favoring the occurrence of extreme precipitation  events12. In region 1, the other 
coastal region adjacent to the Arabian Sea, the land–ocean temperature gradient appears in the important factor 
list in addition to the meridional component of the monsoon wind, suggesting that the extreme events in this 
region are more subject to processes related to the land-sea breeze effect. This finding is also explained by the 
fact that region 1 is located on the windward side of the mountain range of Western Ghats and receives directly 
the south-westerly monsoonal winds that bring moist air from the Arabian sea. However, what is surprising is 
that the wind and land–ocean temperature gradient, commonly believed to be a good indicator of the monsoon 
strength, do not appear as important predictors for precipitation extremes in the remaining regions, at the con-
sidered time scales.

Moreover, it is understood from the Clausius–Clapeyron equation that the atmospheric temperature could 
be a main driver of the extreme events  globally43, since a warmer atmosphere can contain a higher quantity of 
water vapor thus provoke more frequent and more intense rainfall. However, in our analysis, the surface air 
temperature only appears as an important predictor in region 7 and with very little contribution, whereas the 
dew point temperature is found to have modulated the trends in frequency in regions 1, 7 and 9, confirming a 
previous hypothesis stating that it is a better predictor of extremes in tropical  regions17,18. The reason behind this 
finding could be that the monsoon precipitation events can actually induce a cooling of the atmosphere due to the 
high quantity of liquid water evaporation, hence there is no positive correlation between extreme precipitation 

Figure 4.  Conditional permutation feature importance for the intensity trends. The most important selected 
features in the prediction of the intensity of extreme events are displayed in all the regions. The colors of the bars 
correspond to the five different feature categories (LULCs, thermodynamical, circulation, climate variability and 
convective instability parameters).
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events and surface air temperature. The positive correlation becomes apparent, however, when looking at the 
dew point temperature, a direct measure of the absolute humidity of the atmosphere.

Global scale climate variability. It is also interesting to note that ENSO seems to be an important predictor for 
the frequency trend in region 6. While the effects of ENSO on the average monsoon rainfall have been studied 
and some links have been  proposed44,45, the relationship between ENSO and extreme precipitation events in 
India is still not well understood. Future analyses on the correlation between ENSO and extreme precipitation 
events in this specific region would be required to assess the real impact of this large-scale climatic feature.

Convective instability parameters. Finally, the convective instability parameters appear as important predictors 
of extremes in both west-central (region 9) and east-central coastal region (region 6), especially for the trends 
of frequency. Particularly, the long-term variation of CAPE calculated over the Bay of Bengal seems to have 
some impact on the frequency of extreme events in region 6, which is located right next to the Bay of Bengal. By 
favoring occurrence of strong convective activity, increase in CAPE have been linked to wet  spells19 and to the 
intensification of extreme  rainfall46. Our findings show that it may also have an impact on the long-term trends 
of frequency of extremes, meaning that a stronger average CAPE during a monsoon season would indicate a 
higher number of extreme events, in this coastal region.

Conclusion
The trends of extreme precipitation events defined using two different indicators during the Indian summer 
monsoon season in the past 120 years have been analyzed. Instead of focusing on a few selected locations, this 
analysis uniquely covers the entire India, consisting of 9 regions segregated using a clustering method based on 
precipitation characters. It is found that the majority of India has experienced a statistically significant increase of 
monsoon precipitation extremes throughout the analyzed 120-year period. Furthermore, the effective predicting 
factors behind such an increase have also been analyzed using a nonlinear and multivariate machine learning 
regression, the random forest, based on the best available data of 17 input features describing anthropogenic 
activities, climate dynamical and physical processes, and variabilities. The results reveal that the man-made land 
use land cover changes appear to be the most critical features in predicting the observed climatological trends of 
monsoonal precipitation extremes, implying implicitly that these features might have played an important role in 
causing the discovered rise of monsoonal precipitation extremes particularly of their intensity. Whereas several 
climate variability factors including dew point temperature as well as SST, and main monsoonal wind strength, 
all over the Arabian Sea are also critical to predict the trends of extremes in several regions, especially for their 
frequency. Nevertheless, certain indicators commonly believed to be drivers for mean monsoonal rainfall strength 
such as land–ocean thermal contrast, ENSO variation or convective instability are found to be less correlated to 
the trends of precipitation extremes than expected.

Methods
Clustering of regions for analysis. The regions with similar climatological precipitation characters 
and thus suitable for performing trend analysis were defined by applying Ward’s minimum variance cluster-
ing method. Ward’s method is an agglomerative hierarchical clustering method, where each data point is ini-
tially considered as a single cluster, then grouped together by calculating the Euclidean distance between them. 
Here in our case, a data point corresponds to the daily rainfall time series of a single grid cell for the period of 
1901–2020, taking only the monsoon days (from June to September included), i.e., the total number of samples 
is equal to L = 14,640 for each data point. The number of data points N is thus equal to the number of grid cells 
in the rainfall dataset, i.e., N = 4,954. At the start, each data point is treated as one cluster, so the initial number 
of clusters is N. Then, a cluster is formed by joining the two closest data points, resulting in N-1 clusters. This 
step is repeated until one big cluster is formed. The optimal number of clusters is then determined by plotting 
the dendogram, a figure that represents graphically the distance between data points as well as the distance 
between clusters, and then choosing the number of clusters that maximizes the inter-cluster distance. We plot-
ted the dendogram using the function of Scikit-learn Python library (https:// scikit- learn. org/) applied to a NxL 
size data matrix.

Extreme events definitions. For the frequency and intensity indicators, the regional threshold is selected 
to be equal to the 99th percentile of the total monsoon rainfall distribution in the region, calculated considering 
only the rainy days of the monsoon seasons for the period 1901–2020. When the daily rainfall value of a grid cell 
exceeds this threshold, it is counted as an extreme rainfall event. The grid cells are considered individually, there-
fore for a given day, if the rainfall exceeds the thresholds at two adjacent grid cells, it is counted as two extreme 
events. To determine the frequency of extreme events in a region, we count the number of extreme rainfall event 
occurrences in the region for each monsoon season. To determine the intensity of extreme events, we calculate 
the average rainfall rate of the previously defined extreme rainfall events for each monsoon season.

Rainfall extreme trend derivation. To calculate the trends of rainfall extreme events, we performed a 
Mann–Kendall trend test, a non-parametric test which purpose is to statistically assess if there is an upward or 
downward trend in a time series. The trend tests have all been performed on the 5% significance level. We then 
used Theil-Sen estimator to calculate the slope of the established trends.

https://scikit-learn.org/
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RSD t‑test. The detailed method can be found in Zuo et al. (2019)29. We chose a trend turning timescale T 
of thirty years, since we wanted to assess the different multi-decadal trends. Let y1 and y2 be the first and last 
year of the times series. For each year y in [y1 + T, y2-T], we calculate the two slopes of the sub-time series of 
extremes of length T prior and post y. We then perform a statistical test on the slope difference. If the slope prior 
y is significantly different than the slope post y, it means that a potential trend turning may occur at year y. The 
statistical test of slope difference is performed with a t-distribution statistic.

Random forest regression. We determined the main driving factors of the different trends using the 
random forest  regression30, a non-linear supervised ensemble machine learning algorithm that uses multiple 
decision trees to fit targeted output (e.g., extreme events trends in this study) with selected input data or features 
(see “Features in random forest regression” section). It operates by constructing a multitude of decision trees 
at training time and outputting the mean predictions of the individual trees. A decision tree is constructed 
using two kinds of elements: nodes and branches. The algorithm recursively breaks down the initial dataset into 
smaller and smaller subsets by evaluating each feature and using at each node the feature that best splits the data 
(i.e., that returns the highest reduction of a particular variance metric), while in the meantime the decision tree 
is incrementally developed.

This construction process can be summarized with these steps:

– Step 1: The variance of the target is calculated (here, the target is the extreme events values).
– Step 2: The dataset is split using the different features. The resulting variance for each branch is calculated 

and subtracted from the variance before the split to obtain the variance reduction.
– Step 3: The feature with the largest variance reduction is chosen for the decision node.
– Step 4: The dataset is divided based on the values of the selected feature. This process is recursively repeated 

until all data is processed based on chosen thresholds.

The prediction of a new sample is simply calculated using the path created by the decision tree and averaging 
the values of the samples in the final node (also called leaf node).

Feature importance and feature selection. We first used the cforest function of the R Party pack-
age library to perform random forest regressions of observed extreme trends for each region using various 
input features. Up on the success of regression, we then applied the conditional permutation feature importance 
 functionality33 to determine the importance ranking of each one of the 17 input features, while minimizing the 
impact of the multi-collinearity. To perform the feature selection, we calculated the average importance of the 
features, and removed the features that showed an importance inferior to the mean importance. This finally 
yielded between 3 to 6 important selected features in the different regions, which are displayed in Figs. 3 and 4. 
To identify the driving factors in predicting the long-term trends, we used the 10-year moving averages of the 
input data and the output measures of extreme events. This manages to smooth out the noise and inter-annual 
variability while keeping the longer-term variations.

Features in random forest regression. We have selected seventeen features in random forest regression 
and feature important analysis (Table 1). For local anthropogenic activities, we included four land use and land 
cover features: agricultural land, grassland, forest, and urban fractions. In addition, we have also included certain 
climate features: surface air temperature, dew point temperature, relative humidity, sea surface temperature or 
SST, land–ocean temperature gradient, zonal as well as meridional components of the surface wind over the 
Arabian Sea, and associated combined wind speed, El Nino – Southern Oscillation or ENSO and Indian Ocean 
Dipole or IOD indices, moist static energy or MSE, and convective available potential energy or CAPE. We also 
included the number of depressions forming over the Bay of Bengal per year.

Some input features are calculated within each region, such that the input trends are region dependent. This 
is the case for the LULC changes, surface temperature, dew point temperature, and relative humidity. For these 
features, their annual values were derived from monsoon seasonal and regional means. Other features (U and V, 
wind speed, SST and MSE) have been calculated over the Arabian Sea, as the moist monsoon winds that provokes 
precipitation are essentially south-westerly, while the CAPE has been derived over the Bay of Bengal, follow-
ing considerations from previous studies. All these parameters have been calculated at the ocean surface. The 
land–ocean temperature gradient has been calculated by taking the surface air temperature difference between 
the Arabian Sea and the Indian subcontinent. Finally, we also tested the influence of large-scale climate vari-
abilities including the El-Nino Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), by using the 
Extended Multivariate ENSO Index (MEI) v2 and the Dipole Mode Index (DMI) averaged over the summer 
monsoon seasons as input features. Before fitting the model, each feature is normalized to a range of [−1, 1]. The 
list of features is detailed in Table 1.

Model accuracy. To evaluate the accuracy of the random forest model, we used the common train/test split 
method, which consists in fitting the model with a random subset of the data, and then testing the accuracy with 
the remaining testing data. This process is repeated fifty times to ensure that the random subsets cover the whole 
range of our initial dataset, the final score being the averaged value of these fifty scores. Here, 70% of the input 
data is chosen randomly to train the model, and the regression score corresponds to the coefficient of determina-
tion  R2 of the prediction, defined as:



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11985  | https://doi.org/10.1038/s41598-022-16240-0

www.nature.com/scientificreports/

where u =

∑
(

ytest − ypred
)2 is the residual sum of squares, and v =

∑
(

ytest − ytest
)2 the total sum of squares, 

 ytest and  ypred being respectively the value of the testing data and the value predicted by the model.
The best possible score is 1 and corresponds to a model that predicts exactly the right value. The score can 

also be negative if it fails to deliver any information on the data.

Data availability
We used the daily rainfall gridded dataset at 0.25° × 0.25° resolution delivered by the Indian Meteorological 
Department or  IMD47 to derive the precipitation extremes. For the physical parameters including the wind 
components, temperature and humidities, we used the twentieth Century Reanalysis Dataset version  348. For the 
ENSO index, we used the Extended Multivariate ENSO Index or MEI.ext49, it can be obtained from https:// psl. 
noaa. gov/ enso/ mei. ext/# data. For the IOD index, we used the Dipole Mode Index (DMI) calculated by NOAA 
ESRL Physical Sciences Laboratory, accessible from https:// psl. noaa. gov/ gcos_ wgsp/ Times eries/ DMI/. For the 
LULC changes, we used data reconstructed by combining high-resolution remote sensing datasets and inventory 
 archives27. For the number of monsoon depressions forming over the Bay of Bengal, we used the cyclone eAtlas 
data delivered by the IMD (http:// www. imdch ennai. gov. in/ cyclo ne_ eatlas. htm). All the other data are available 
from the corresponding authors on reasonable request.
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