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Abstract. Data assimilation is a relevant framework to merge
a dynamical model with noisy observations. When vari-
ous models are in competition, the question is to find the
model that best matches the observations. This matching
can be measured by using the model evidence, defined by
the likelihood of the observations given the model. This
study explores the performance of model selection based on
model evidence computed using data-driven data assimila-
tion, where dynamical models are emulated using machine
learning methods. In this work, the methodology is tested
with the three-variable Lorenz model and with an intermedi-
ate complexity atmospheric general circulation model (a.k.a.
the SPEEDY model). Numerical experiments show that the
data-driven implementation of the model selection algorithm
performs as well as the one that uses the dynamical model.
The technique is able to select the best model among a set
of possible models and also to characterize the spatiotempo-
ral variability of the model sensitivity. Moreover, the tech-
nique is able to detect differences among models in terms
of local dynamics in both time and space which are not re-
flected in the first two moments of the climatological prob-
ability distribution. This suggests the implementation of this
technique using available long-term observations and model
simulations.

1 Introduction

Data assimilation (DA) methods aim to provide the best es-
timation of the state of a dynamical system based on a set of
noisy and partial observations (see Carrassi et al., 2018; Re-
ich, 2019; Van Leeuwen et al., 2019, and references therein).
Current state of the art DA systems are based on robust math-
ematical grounds, allowing their use to be expanded beyond
their original aim. One application that has recently received
increasing attention is the use of DA methods for model opti-
mization and model selection. The former is concerned with
obtaining better estimates for model parameters and con-
figuration with the ultimate goal of quantifying and reduc-
ing model error and dispersion in various applications (e.g.,
Schirber et al., 2013; Ruiz et al., 2013; Ruiz and Pulido,
2015; Lauvaux et al., 2019; Kotsuki et al., 2020). Model se-
lection aims at identifying the model which best describes a
set of observations in a finite set of possible models. In me-
teorology and oceanography, model selection may be useful
for example to find the best physics for forecast applications
or for detecting the forcing terms that better explain the evo-
lution of a dynamical system for attribution purposes.

So far, model selection in the context of DA, seems to
have received less attention than model optimization. In Han-
nart et al. (2016), the authors showed that the fraction of at-
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tributable risk in the context of climate change (Pearl, 2000)
can be estimated as a by-product of two DA systems. One
of these systems is run with a model which includes forc-
ing consistent with anthropogenic emissions, and another is
run without considering those emissions. This approach was
proven to be more sensitive to differences between the two
scenarios at a lower computational cost than other available
attribution techniques. One usual approach to conduct model
selection is based on the computation of model evidence,
which is defined as the log-likelihood of the available ob-
servations for a given model configuration (Reich and Cot-
ter, 2015). Carson et al. (2018) proposed using model evi-
dence to select a model consistent with data records in pale-
oclimate science. This work succeeds in both fitting concep-
tual models and identifying the one with the most appropri-
ate orbital forcing to represent the glacial-interglacial cycle.
Estimating model evidence, however, is generally complex
for practical applications as geophysical models are usually
high-dimensional and nonlinear. In such circumstances, it is
crucial to develop and to implement DA methods which al-
low accurate estimations of model evidence.

Carrassi et al. (2017) introduced the concept of contex-
tual model evidence (CME), which can be roughly defined
as the log-likelihood of a set of observations over a short
time period for a given dynamical model. Based on this ap-
proach, the model selection can be obtained by running sev-
eral DA systems (i.e., each one using a particular dynamical
model) and then comparing their corresponding CME values.
Metref et al. (2019) extended this idea to high-dimensional
systems and studied the impact of domain localization upon
the computation of the CME in the context of an ensemble
Kalman filter (EnKF). A similar idea has been implemented
by Otsuka and Miyoshi (2015) for the online optimization
of a multimodel EnKF. They ran a particle filter that assigns
weights to each model configuration based on the likelihood
of the observations given different model configurations. The
approach successfully identifies the most accurate model im-
proving the performance of both the assimilation and the
forecast.

The articles cited above perform model selection using
classical DA methods where the different competing mod-
els that represent the dynamics of a particular system must be
solved several times at each time step. Recently, Tandeo et al.
(2015) and Lguensat et al. (2017) introduced the concept of
analog DA (AnDA). This approach can be particularly ben-
eficial in cases where the numerical model is not explicitly
known or computationally extremely expensive (as is usually
the case with state of the art numerical models of the climate
system) or when such models are not available and only the
observation dataset exists. In this case, AnDA can take ad-
vantage of existing long-term climate model simulations or
observations and perform DA by emulating the dynamical
model using nearest neighbor regression, also called analog
forecasting in meteorology (Lorenz, 1969).

In this paper, we combine the AnDA method with the
computation of the CME. The objective is to provide a
proof of concept using numerical experiments on the low-
dimensional modified Lorenz-63 toy model (Lorenz, 1963)
and the intermediate complexity atmospheric general circu-
lation model SPEEDY (Molteni, 2003). This proof of con-
cept suggests the possible use of existing model simulations
to efficiently compare different models and physics based on
observations.

The paper is organized as follows. Section 2 provides a
brief review of model evidence and introduces an algorithm
to compute CME using AnDA. Section 3 presents the nu-
merical results and Sect. 4 presents final remarks and per-
spectives for future research.

2 Methodology

Model evidence measures the ability of a dynamical model
M to describe a sequence of multivariate, noisy, and partial
observations y0:K =

(
y0, . . .,yK

)
(from a sufficiently long

time in the past and up to time K). It is a useful tool to iden-
tify the model best fitting a set of observations in a list of
competing models. In this section, after defining model ev-
idence, we discuss its computation by combining DA and
analog forecasting.

2.1 Contextual model evidence

2.1.1 Definition

Model selection or comparison is usually performed us-
ing the climatological model evidence (ME), see Metref
et al. (2019) and references therein. It corresponds to
lnp

(
y0:K |M

)
, the global log-likelihood of the observations

y0:K for the dynamical model M. This ME metric roughly
measures the adequacy between the observations available up
to timeK and the climatological distribution of the model, al-
though this global metric is probably not descriptive enough
for studying the model performance over a particular time
period or the transition between different states of the sys-
tem.

Alternatively, Carrassi et al. (2017) proposed to compute
the contextual model evidence (CME) defined as the local
log-likelihood on a short interval of time. More precisely, it
is defined as

CMEk:k+h(M)= lnp
(
yk:k+h|y0:k−1;M

)
,

where p
(
yk:k+h|y0:k−1;M

)
denotes the conditional (fore-

cast) distribution of the observations yk:k+h between times k
and k+h given the observations up to time k− 1 for model
M and h is the width of the evidencing window. As stated
in Metref et al. (2019), a key difference between CME and
ME is that the former takes into account the actual state of
the system. This information is considered in the a priori es-
timation of the state of the system at the beginning of the
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evidencing window, which is assumed to be approximately
known. Therefore, CME computes the evidence taking the
context into account, which can provide a more detailed lo-
cal evaluation of the system dynamics.

Note that as shown by Carrassi et al. (2017), for a Marko-
vian system and for independent observations

CMEk:k+h(M)=

k+h∑
i=k

lnp
(
yi |y0:i−1;M

)
=

k+h∑
i=k

CMEi(M), (1)

where CMEi(M)= lnp
(
yi |y0:i−1;M

)
is the CME in the

particular case where the evidencing window is reduced to a
single time. This last quantity corresponds to the logarithmic
score (also known as the ignorance score, see e.g., Siegert
et al., 2019 and references therein) of the forecast distribution
p
(
yi |y0:i−1;M

)
associated to model M. Also when k is set

to 0 in the CME (i.e., there is no observation prior to the
evidencing window), we obtain the ME.

The CME cannot be evaluated directly because the obser-
vations y are often incomplete, intermittent and uncertain.
To tackle these issues, a latent variable which represents the
true state of the system is introduced leading to the following
state-space model

xk =M(xk−1)+ ηk, (2)
yk =H (xk)+ εk, (3)

where xk denotes the latent state and ηk represents the model
noise (i.e., the part of the system dynamics which is not rep-
resented by the numerical model) at time k. In Eq. (3), H is
the observation operator, representing the link between the
latent state x (i.e., what we want to estimate) and the obser-
vations y. The additive term εk represents observation errors.

For a state-space model CMEk(M) can be expressed as
follows:

CMEk(M)= ln
∫
p
(
yk|xk

)
p
(
xk|y0:k−1;M

)
dxk. (4)

The forecast distribution p
(
xk|y0:k−1;M

)
, which appears in

the previous expression can again be decomposed into two
terms

p
(
xk|y0:k−1;M

)
=

∫
p(xk|xk−1;M)

p
(
xk−1|y0:k−1;M

)
dxk−1, (5)

where the analysis distribution p
(
xk−1|y0:k−1;M

)
repre-

sents the estimation of the state of the system at time k− 1
given all the previous available observations (i.e., the context
which is usually provided by a DA system).

2.1.2 Contextual model evidence and the ensemble
Kalman filter

In an ensemble Kalman filter (EnKF), the forecast distribu-
tion p

(
xk|y0:k−1;M

)
is approximated using a Monte Carlo

approach performing multiple evaluations of the model M,
initialized from a sample of states drawn from the analysis
distribution p

(
xk−1|y0:k−1;M

)
. More precisely, a sample

of the forecast distribution is generated as follows

xf
(j),k =M(xa

(j),k−1)+ η(j),k, (6)

where
{
xa
(j),k−1

}
j=1:N is a sample of N members from the

analysis distribution at time k−1 and η(j),k is a realization of
a stochastic process representing model imperfections typi-
cally drawn from a Gaussian distribution with zero mean and
covariance Q (see Tandeo et al., 2020). The different mem-
bers

{
xf
(j),k

}
j=1:N of the forecast are used to approximate

the first two moments of the forecast distribution through the
sample mean

xf
k =

1
N

N∑
j=1

xf
(j),k, (7)

and covariance

6f
k =

1
N − 1

N∑
j=1
(xf
(j),k − x

f
k)(x

f
(j),k − x

f
k)
T . (8)

When observations are available at time k, the state dis-
tribution can be updated based on the information provided
by the observations. This update is performed based on the
Bayes’ theorem assuming that both the observation likeli-
hood and the forecast distributions are Gaussian and that
their moments are well approximated by the sample mo-
ments. The update can be conducted in different ways, one
possible approach is the so-called stochastic EnKF update
(Burgers et al., 1998) in which each member of the analysis
sample is obtained as

xa
(j),k = x

f
(j),k +Kk

(
yk −H(xf

(j),k)+ ε(j),k

)
, (9)

with Kk the Kalman filter gain defined as

Kk =6
f
kH

T (H6f
kH

T
+R)−1, (10)

where H denotes the tangent linear of the observation oper-
ator H.

Equations (6)–(10) can be used sequentially to produce an
estimate of the state conditioned on previous observations
(y0:k−1) at each time k. Given an EnKF sequential cycle,
based again on Gaussian assumptions CMEk(M) can be ap-
proximated as (Carrassi et al., 2017):

CMEk(M)≈−
1
2
(yk −H(xf

k))(H6
f
kH

T
+R)−1

(yk −H(xf
k))

T
−

1
2

ln |H6f
kH

T
+R|

−
n

2
ln(2π), (11)
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where n is the number of available observations at time k.
Combining Eqs. (1) and (11) (also with Eqs. 6–10) we can
compute CMEk:k+h from an EnKF-based DA system for an
arbitrary time window [k,k+h]. When both forecast mean
and covariance are well estimated, Carrassi et al. (2017)
showed that this CME approach is able to detect the model
candidates which best describe a given set of observations.

The EnKF usually suffer from systematic underestimation
of the forecast error variance. To compensate for this issue an
ad hoc multiplicative inflation coefficient γ is usually applied
such that

6f
k←− γ6

f
k. (12)

The inflation coefficient γ can be estimated online using dif-
ferent techniques, which are based on the work of Desroziers
et al. (2005). In particular Li et al. (2009) proposed the fol-
lowing estimation approach, in which at each time k the in-
flation value is updated according to

γk+1 = ρ

(
T r(do-f

T do-f ◦R
−1)−p

T r(H6f
kH

T
◦R−1)

)
+ (1− ρ)γk, (13)

with 0≤ ρ ≤ 1 a time smoothing parameter, p the number
of observations, do-f the difference between the forecast and
the observations in the observation space and, ◦ the element-
wise product.

2.2 Data-driven contextual model evidence

2.2.1 The analog EnKF

In a DA system the numerical model is required to propagate
the information in time. Particularly, in the case of ensemble-
based assimilation techniques, the numerical model has to
be run several times (once for each of the ensemble mem-
bers and each time step). An alternative to this computa-
tionally intensive approach is to use analog forecasting. This
method, initially introduced by Lorenz (1969) in meteorol-
ogy, is a data-driven procedure which uses a catalog of histor-
ical data, most of the time corresponding to simulation runs
or analysis (i.e., outputs of DA procedures). The idea is to
search in the catalog, using an appropriate distance, the near-
est analogs of the initial condition from which we want to get
a forecast. Then, the successors of these closest analogs are
combined to get a probabilistic forecast. Analog forecasting
is popular because of its simplicity and robustness. Several
studies confirmed these advantages in the context of environ-
mental sciences (Barnett and Preisendorfer, 1978; Bannayan
and Hoogenboom, 2008; Yiou, 2014; Atencia and Zawadzki,
2015; Ayet and Tandeo, 2018; Sévellec and Drijfhout, 2018).

The combination of DA and analog forecasting has been
proposed in Tandeo et al. (2015) and Lguensat et al. (2017)
leading to the analog data assimilation (hereinafter AnDA)
method. It is a flexible framework that can be adapted to
a large set of problems. An interesting feature of AnDA is

that it can be applied locally without the need to approxi-
mate the full model. On the contrary, only a part of the state
space (e.g., a particular region or physical variable) can be
used to select the analogs and to emulate the dynamics of
that particular part of the system. This is particularly advan-
tageous when dealing with high-dimensional systems. Also,
as for most DA systems AnDA can handle complex obser-
vations with irregular spatiotemporal distributions as long as
an appropriate observation operator is available. More pre-
cisely, AnDA corresponds to running a DA algorithm using
the state-space model (Eqs. 2–3) with (2) replaced by

xk = M̂(xk−1)+ ηk, (14)

where M̂ denoting the analog-based approximation of the
dynamical model M.

An efficient statistical forecast operator used in Lguensat
et al. (2017) and detailed in Platzer et al. (2021) is the lo-
cal linear regression originally introduced in Cleveland and
Devlin (1988). It consists in first searching in the catalog for
the M-nearest neighbors (i.e., the analogs) of a given state
x along with their corresponding successors in time. Then, a
multiple linear regression is fitted between theM analogs and
their successors. The coefficients of this regression are de-
noted β(x) and α(x), where we stress that these coefficients
depend on the state of the system. Note that this regression is
able to emulate the model dynamics including nonlinearities
as it is a linear approximation applied locally in state space
and corresponds to a first-order expansion of the dynamical
model (see Platzer et al., 2021).

The combination of analog forecasting, based on local lin-
ear regressions, and the EnKF leads to the AnEnKF algo-
rithm where Eq. (6) is replaced by

xf
(j),k = α(j)(x

a
(j),k−1)x

a
(j),k−1+β(j)(x

a
(j),k−1)︸ ︷︷ ︸

M̂(j)(x
a
(j),k−1)

+ η(j),k, (15)

where the model error η(j),k is drawn from a multi-
variate Gaussian distribution N (0,6̃(j)(xa

(j),k−1)), where

6̃(j)(x
a
(j),k−1) denotes the sample covariance of the residuals

of the multiple linear regression between the analogs and the
successors (see Lguensat et al., 2017, their Sect. 3a for fur-
ther details). Once the forecast is performed using the analog
technique, the analysis update can be done as in the EnKF
using Eq. (9). Multiplicative inflation (Eq. 12) could also be
applied and estimated online using Eq. (13). The AnEnKF
has been tested on toy dynamical models in Lguensat et al.
(2017). Numerical results show that the performance of the
classical EnKF (i.e., using the true model M) and AnEnKF
(i.e., using analog forecasts M̂), is almost the same when the
size of the catalog is large enough; however, efficiently ap-
plying analog forecasting for chaotic dynamics with strong
nonlinearities and high- dimensional spaces is not always
straightforward. As mentioned in Zhen et al. (2020) the ana-
log space must be large enough to capture the dynamics of

Geosci. Model Dev., 15, 7203–7220, 2022 https://doi.org/10.5194/gmd-15-7203-2022



J. Ruiz et al.: Analog Data Assimilation for the Selection 7207

Figure 1. Schematic representation of the proposed methodology.
The procedure is iterative, from an initial to a final time index. At
time index k− 1, the procedure starts with the results of different
DA systems in (a), corresponding to different dynamical models.
In (b), each analysis state is used to find the nearest analogs. Those
analogs and corresponding successors, coming from catalogs of nu-
merical simulations, are used to build analog regressions. The re-
sulting probabilistic forecasts given in (c) are compared to the avail-
able observations at time index k. Then, the likelihoods (CMEs) are
used to compute a weight for each dynamical model.

the system, but small enough to avoid the curse of dimen-
sionality. This can be achieved using time delay embedding
and projection in an appropriate subspace. In this work, this
issue is avoided by running AnDA locally on a reduced set
of the state-space variables (see Sect. 3.2).

2.2.2 Contextual model evidence and the analog EnKF

It is straightforward to combine the CME and AnEnKF pro-
cedures in the same DA scheme. The procedure is summa-
rized in Fig. 1 and detailed in algorithm 1.

In the next section, several models
{
M(i)

}
i=1:L are in

competition and CME is used to identify those which best
describe the dynamics of the observations. Note that the time
series CMEk(M(i)) are computed independently for each
model. The combination of CME and AnEnKF has several
advantages in this context. Firstly, it is a fast procedure be-
cause it avoids running the different models at each time step
and for each ensemble member. Secondly, uncertainty in the
local linear regression is considered as a robust estimation
of model errors and contributes to increase the forecast en-
semble spread (Lguensat et al., 2017; Platzer et al., 2021).
Thirdly, it allows the CME to be computed in specific re-

Algorithm 1 Contextual model evidence using EnKF and lo-
cal linear regression forecasting.

– Initialization: sample the first ensemble,
{
xa
(j),0

}
j=1:N ∼

p(x0).

– For k = 1 :K ,
+ Forecast step:

– For each member j = 1, . . .,N propagate the previous
analysis member using the analog forecasting operator Eq.
(15).

– Compute the empirical mean forecast xf
k

(7) and covari-
ance forecast 6f

k
(8) from the ensemble members.

– Apply the multiplicative inflation factor Eq. (12).
– Compute the contextual model evidence Eq. (11).

+ Analysis step:
– Update the state distribution Eqs. (9)–(10).
– Update the inflation factor Eq. (13).

gions of the state space (e.g., in specific areas or integrated
variables), only where observations are available. This last
point is discussed in Sect. 3.2 using the SPEEDY model.

3 Results

This section presents numerical results which show that the
proposed methodology is able to identify the model which is
the most compatible with a given set of observations. A first
set of experiments is performed using a modified version of
the Lorenz-63 model. Then we focus on the more challeng-
ing intermediate complexity atmospheric general circulation
model SPEEDY.

3.1 Modified Lorenz-63 model

In this section the method is tested on a modified Lorenz-
63 model M(λ) originally introduced in Palmer (1999). It is
defined by the following system of differential equations:

dx1

dt
= 10(x2− x1)+ λcos

(
7
9
π

)
,

dx2

dt
= x1 (28− x3)− x2+ λsin

(
7
9
π

)
,

dx3

dt
= x1x2−

8
3
x3, (16)

where λ controls the magnitude of the external forcing term
which is added onto the first two components. The particu-
lar case λ= 0 corresponds to the classical Lorenz-63 model
(Lorenz, 1963). Figure 2 shows two trajectories simulated
from Eq. (16) with λ= 0 and λ= 8. When λ > 0, the addi-
tional forcing term “pushes” the trajectories towards the right
wing and the left wing is less often visited than the right one,
the opposite holding true when λ < 0. This behavior can be
clearly seen on the right hand plots in Fig. 2, which show
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the number of times the system visits different regions of the
state space.

A set of observations is generated using the classical
Lorenz-63 model M(0), referred to as the correct model
hereafter. We conduct several experiments to check if the
proposed methodology is able to identify that the observa-
tions were actually generated using the correct model M(0)

and not from another model in the list of competing models
which corresponds to the modified Lorenz models M(λ) with
λ=−8, . . .,8. In practice, the Lorenz model is integrated
using a Runge-Kutta 4 scheme with a time step dt = 0.1,
and the 3 components are observed and assimilated at ev-
ery model time step. The observation operator is H= I 3 (the
3× 3 identity matrix) and an additive Gaussian error with
covariance R = 2I 3 is used. Hereafter each experiment is
based on K = 104 DA cycles. Unless stated otherwise, the
AnEnKF is run using catalogs of size T = 104 and the ev-
idencing window size is h= 1. For the EnKF, experiments
withQ= 0 are used independently of the value of λ, while in
the AnEnKF the approach described in the previous section
is used, which in practice corresponds to a robust estimate of
the model noise.

Figure 3 shows the mean CME for different values of λ, for
different configurations and for the EnKF and the AnEnKF.
Comparing the left panels of Fig. 3 shows that the EnKF is
very sensitive to the ensemble member size N , especially
when the strength of the forcing in the modified Lorenz-63
model (i.e., the value |λ| ) increases. Applying a multiplica-
tive inflation factor (see last row of Fig. 3) permits this issue
to be solved. Hereafter, we discuss the results obtained when
both EnKF and AnEnKF algorithms are run withN = 20 en-
semble members and a multiplicative inflation factor is ap-
plied. This allows us to obtain robust results for the EnKF
at a reasonable computational cost. Note that the AnEnKF
is less sensitive to the ensemble size and that adding infla-
tion does not seem necessary here (see right panel of Fig. 3).
This may be explained by the adaptive data-driven procedure
which is used to estimate the forecast error in the AnEnKF
procedure. As expected, the CME has a larger mean value
when the correct model M(0) is used in the DA procedures
and decreases when the value of |λ| increases. Both EnKF
and AnEnKF give comparable results when multiplicative in-
flation (Eq. 13) is applied (see bottom panels of Fig. 3).

As an example, Fig. 4 (top panel) shows the analysis
for the second component x2 obtained when running the
AnEnKF with a catalog of the correct model M(0). It sug-
gests that the AnEnKF is generally able to reconstruct the
true state of the system. This can be assessed more precisely
by computing the RMSE between the true state x and the
analyzed state xa (0.50) and the mean coverage probability
of the 95% prediction interval (84.26%). Then the AnEnKF
was run with a catalog of the incorrect model M(8). As ex-
pected, the RMSE is larger (0.72) and the mean coverage
probability is also degraded (63.86%), and thus less accurate
estimates of the mean and the variance of the true state are

obtained. Note that these two quantities cannot be computed
in practical applications since the true state is not known. The
bottom panel of Fig. 4 shows that the CME obtained with the
AnEnKF run with a catalog of the incorrect model are gener-
ally smaller than the ones obtained with a catalog of the cor-
rect model. It illustrates again that the CME computed with
AnEnKF can be used to identify the correct model using only
a sequence of noisy observations and catalogs of competing
models.

This is confirmed by the results given in Table 1. The CME
associated with the correct model is larger than the one as-
sociated with the incorrect model for 68% of the assimila-
tion cycles. Note that this percentage of correct identifica-
tion increases with the catalog size T and seems to converge
to the percentage of correct identification obtained with the
EnKF (68%) when T becomes large. This is not surpris-
ing since using a larger catalog provides a better approxi-
mation of the dynamical model and thus similar results when
using EnKF and AnEnKF (see the discussion in Lguensat
et al., 2017). Table 1 also shows that CME is more precise
in identifying the correct model compared to the root mean
squared error of the forecast in the observation space defined
as RMSEf

k = ‖yk−H(x
f
k)‖. Note that according to Eq. (13),

CME depends not only on the forecast error but also on the
variance of the forecast error and this may help to identify
the correct model. Also, to highlight the advantage of using
DA to identify the correct model we perform an experiment
using only the pure analog forecasting (AnF), without DA.
For each time k, we select analogs based only on the avail-
able noisy observations and we propagate the state using the
local linear regression approach. The RMSE of each fore-
cast at time k+ 1, denoted RMSEAnF

k , is reported in Table 1.
The maximum selection probability obtained with the AnF
is 57%, which is smaller compared to the experiments using
AnDA (64% using RMSE of the forecast error and 68% us-
ing CME). This stresses the importance of having an accurate
initial conditions in order to be able to compare the forecasts
obtained with two competing models.

3.2 SPEEDY model

In this section, we discuss the implementation of CME
with AnDA for the Simplified Parameterizations, primitivE-
Equation DYnamics (SPEEDY; Molteni, 2003) which is
an intermediate complexity, atmospheric general circulation
model. The grid in SPEEDY consists of 48 points in the
south-north direction and 96 points in the west-east direction
and of 7 vertical σ levels. SPEEDY has a set of simplified
parameterizations to represent unresolved scale processes
including radiation, large scale condensation, soil-sea-ice-
atmosphere energy fluxes, boundary layer, and moist convec-
tion. A brief description of these schemes can be found in the
appendix of Molteni (2003).
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Figure 2. Simulated trajectories (a) and bivariate distributions (b) from the modified Lorenz-63 model Eq. (16) with λ= 0 and λ= 8. The
observations (dots) are generated with the correct model with λ= 0 and an additive Gaussian noise with mean 0 and variance 2I3. Figure
obtained using a time step dt = 0.01.

Table 1. Sensitivity of the percentage of correct model identification based on the CME and on the RMSE (values within parentheses) with
respect to the length of the catalog (T ) used in the AnEnKF and in the AnF. The mean and 95% confidence interval (CI) of the percentage
of correct model identification are computed for each of the algorithms using 10 repetitions of the assimilation experiment.

Approaches T = 102 T = 103 T = 104

EnKF
Mean (%) 68.64 (64.37)
CI (%) [67.59,69.70] ([63.59,65.25])

AnEnKF
Mean (%) 59.85 (58.99) 67.02 (63.33) 68.44 (64.37)
CI (%) [58.74,60.96] ([58.00,59.99]) [65.43,68.60] ([61.92,64.73]) [67.09,69.79] ([63.59,65.25])

AnF
Mean (%) − (53.38) − (57.46) − (57.71)
CI (%) [−,−] ([52.11,54.60]) [−,−] ([56.61,58.30]) [−,−] ([56.79,58.63])

3.2.1 Data-driven model selection with SPEEDY

In this work, we conduct observation simulation experiments
using this model. A 30-year run is performed using the de-
fault configuration of the model which has been shown to
produce a good representation of the main features of the cur-
rent climate (Molteni, 2003). The model is integrated with a
time step of 40 min and model states are archived at 6-h in-
tervals. This simulation is hereafter referred to as the TRUE
simulation.

To simulate imperfections in the model formulation, we
modify the value of the RHcnv parameter, which is related to
the deep convection parameterization in SPEEDY (Molteni,
2003). This parameter controls the activation of the convec-
tive parameterization and the intensity of the convective over-
turning. Lower values of the parameter lead to more frequent

convection activation and stronger vertical mass fluxes. The
TRUE simulation uses RHcnv = 0.9. Two additional simu-
lations are performed using RHcnv = 0.8 and RHcnv = 0.7
which are referred to as RH08 and RH07, respectively. Fig-
ure 5 shows that reducing RHcnv leads to an increase in mid-
level mean temperature within in mid-latitudes and in the
tropics (with some exceptions on the western Pacific and
northern Africa). This increase is related to stronger latent
heat release within the intertropical convergence zone (ITCZ,
Fig. 5e and f) and to enhanced subsidence in the Polar side of
the Hadley circulation. Precipitation produced by the convec-
tive scheme is enhanced over tropical regions which can also
contribute to the mid-level warming in this region. RH07 and
RH08 produce 12 % and 6 % more convective precipitation
than the TRUE experiment, respectively. However, the sensi-
tivity in total precipitation is much smaller due to a decrease
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Figure 3. Time-averaged CME as a function of the parameter λ used to generate the incorrect model for the EnKF (left) and AnEnKF (right)
approaches using different number of members N (rows). Adaptive inflation is used only for the results in the bottom row. The red line
indicates the time-averaged CME for the correct model (λ= 0).

in the large scale precipitation as the convective precipitation
increases. The impact of this parameter upon the mean dis-
tribution of temperature is somehow linear, since both RH08
and RH07 produce anomalies with a similar spatial pattern
but a larger amplitude for the latter.

Temperature observations are generated from the TRUE
run at each model grid point adding uncorrelated Gaussian
random errors with a standard deviation of 0.7 K. The as-
sumed error standard deviation is similar to the assumed
error of several real temperature observations provided by

radiosondes and satellite retrievals. Temperature is selected
since its horizontal distribution and its vertical gradient are
directly affected by convective processes, particularly in the
tropics, as is shown in Fig. 5.

The AnDA approach in SPEEDY is implemented over lo-
cal domains centered at a given model grid point. In this work
and for each grid point in the horizontal domain, analogs
are defined based on the value of the temperature on a 3-
dimensional box of 3×3 horizontal grid points and 3 vertical
σ levels (σ = 0.77, 0.6, and 0.42). It is important to note here
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Figure 4. (a) Time series of the second component of the Lorenz-63 model with mean analysis and 95% prediction interval obtained using
AnEnKF with the correct M(0) model (red) or using AnEnKF with the incorrect M(8) model (blue). (b) CME time series for the correct
M(0) model and the incorrect M(8) model. N = 20 members are used and an inflation factor is applied in AnEnKF.

Figure 5. The 30-year mean for the TRUE model simulation (a, d) and differences between the TRUE model simulation and the RH08
and RH07 mode simulation (b, e, c, f, respectively), for temperature at the vertical level σ = 0.5 (a, b, c, K) and total precipitation (d, e, f,
mm d−1).

that AnDA is implemented at each local domain (3× 3× 3
grid points boxes) independently from other local domains,
meaning that in fact AnDA can be applied at only one lo-
cal domain or over all local domains over a particular region
without the need to compute it over the entire global domain.
Also, at each local domain, only the observations within the

local domain are assimilated (i.e., in this case 27 temperature
observations per analysis cycle). By implementing AnDA lo-
cally we significantly increase the probability of finding rel-
evant analogs reducing the size of the catalog required for
an accurate approximation of the dynamical model. The lo-
cal implementation allows us to avoid the global integration
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Figure 6. Mean log likelihood for grid points located over northern
South America as a function of the inflation coefficient. The shade
shows the range between the maximum and minimum values over
10 repetitions of the experiment. The vertical error bars represents
the range between the maximum and minimum values of the mean
log-likelihood for the experiments with adaptive multiplicative in-
flation over 10 repetitions of the experiment. The horizontal error
bars indicate the range between the maximum and minimum values
of the estimated inflation over 10 repetitions of the experiment. Re-
sults are shown for the TRUE (blue line), RH08 (green line), and
RH07 (red line) model experiments.

of the model resulting in a substantial reduction of the com-
putational cost and providing unprecedented flexibility to the
computation of DA-based metrics.

This local implementation significantly differs from the
localized CME implementation presented in Metref et al.
(2019). In that paper the authors introduced a local computa-
tion of CME based on the localization of a global DA system.
However, in their approach the DA is performed globally and
using observations of several physical variables such as tem-
perature and wind, while in the present work AnDA is imple-
mented locally using only temperature observations within
the local domain.

As in the Lorenz-63 experiments, the adaptive multiplica-
tive inflation method indicated in algorithm 1 is used to find
the optimal inflation value corresponding to each experiment.
Figure 6 shows that CME is quite sensitive to the multiplica-
tive inflation used in AnDA. As expected, the optimal infla-
tion value (the one which produces the maximum CME) is
larger for the catalogs corresponding to the imperfect mod-
els. Moreover, if a large inflation is assumed (e.g., larger than
1.5), CME associated with RH08 becomes larger than the
one obtained with the perfect model catalog. Also, the adap-
tive inflation produces results which are close to the ones ob-

tained with the optimal fixed multiplicative inflation value
thus avoiding the need to manually tune the inflation pa-
rameter. This is important considering the results of Miyoshi
(2011), which show that for atmospheric general circulation
models, the optimal inflation parameter depends on time and
location.

In ensemble-based DA methods, the estimation of the fore-
cast error covariance from a limited size ensemble usually
leads to sampling noise. This is usually ameliorated by the
use of localization schemes that reduce the amplitude of the
covariance between distant variables. In this paper AnDA is
implemented without localization given the relatively small
size of the local domain in which DA is performed.

The AnDA experiments are conducted assimilating the
observations generated from the last 3 years of the TRUE
simulation. The catalogs for the analog forecasting are con-
structed from the first 25 years of the RH08, RH07, and
TRUE model runs and 250 analogs are used for the fore-
cast. In the SPEEDY experiments, the catalog contains over
36 000 samples (which is almost 4 times the size of the
largest catalog which we tried with the Lorenz model). Al-
though the local state space dimension that we used in
SPEEDY is much larger (27 grid points), we argue that since
there are substantial correlations among the state variables,
the effective dimension can be significantly smaller.

The number of ensemble members is 30. To increase the
evidence associated with the local dynamics of the models
the assimilation frequency is set to 24 h. To take advantage
of 6 h data, at each local domain, we perform four DA exper-
iments which are run independently from each other start-
ing at 00:00, 06:00, 12:00 and 18:00 UTC on the first day.
These 4 DA cycles are performed over the same 3-year pe-
riod. These configuration settings have been chosen based on
preliminary experiments performed over a limited number of
local domains in which the sensitivity of the results to these
parameters has been explored. The analyses obtained from
these experiments are merged to obtain a total of 4380 anal-
ysis cycles over the 3-year assimilation period (4 DA experi-
ments ×1095 cycles each).

It is important to note that the generation of the catalog
brings a significant computational cost in this approach since
it requires running the global numerical model once over a
long period of time. However, we argue that for the imple-
mentation of this technique in real data applications, avail-
able long model simulations like those produced by the Cou-
pled Model Intercomparison Project (Eyring et al., 2016) can
be used. Moreover, the lengths of these catalogs are of the
same order of magnitude as the ones used in the idealized
experiments with the SPEEDY model.

Preliminary experiments performed to optimize the con-
figuration show that results are particularly sensitive to the
assimilation frequency and to the size of the local domain
used to identify analogs. In particular, using 3 different ver-
tical levels and less frequent assimilation, results in a much
stronger sensitivity to RHcnv (i.e., larger difference in CME
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Figure 7. Percentage difference in RMSEf (a, b) and CME (c, d) for the AnDA experiments performed using the RH07 and RH08 catalogs
(a, c, e and b, d, f, respectively) versus the experiment performed with the TRUE catalog. The images (e) and (f) correspond to the difference
in RMSEAnF from the experiment based only on analog forecasting (AnF). In all panels, the gray shade indicates values which are below the
95 % statistical significance level.

associated with different catalogs). The number of analogs
affects the performance of AnDA but has a lower impact on
the relative performance of the different models.

First, it was checked that the proposed methodology is able
to identify that the temperature observations were generated
using the TRUE simulation and not the RH08 or RH07 runs.
To evaluate the statistical robustness of the results, all the
experiments were repeated 10 times using different realiza-
tions for the observation noise. The standard deviation of the
values obtained from different experiments is used to esti-
mate the 95% confidence interval for the different metrics
discussed in this section.

As described by Metref et al. (2019), model comparison in
the context of DA can be conducted using different metrics.
We compared the performance of the different models using
RMSE of the forecast error in the observation space (RMSEf)
and CME. Figure 7a and b show the percentage difference in
RMSEf and CME for the experiments with RH08 and RH07
with respect to the one using the TRUE catalog. The percent-

age difference is computed as

%DiffRMSE = (RMSEf
−RMSEf

TRUE)/RMSEf
TRUE, (17)

%DiffCME = (CME−CMETRUE)/CMETRUE, (18)

where RMSEf is the RMSE obtained with either the RH07 or
RH08 catalogs and RMSEf

TRUE is the RMSE obtained with
the TRUE catalog and the same naming convention is applied
to the CME.

The performances of the experiments using catalogs RH08
and RH07 are consistently worse than the one of the exper-
iments using the TRUE catalog (positive RMSEf percent-
age differences). Larger differences are found in the tropics
where convection is more frequent and stronger. This sug-
gests that AnDA provides a valuable hint about the source of
model imperfection.

Figure 7c and d show the percentage difference for CME.
In the case of CME, negative percentage differences indi-
cate a worse performance with respect to the experiment that
uses the TRUE catalog. The CME has a similar spatial pat-
tern as the difference in RMSE. However, for the CME, the
area where results are statistically significant is larger (see
for example Asia, Europe and Hawaii for the experiment
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Figure 8. Percentage of correct identification between the RH07 and TRUE catalog (a, c) and between the RH08 and TRUE catalogs (b, d)
using AnDA. The percentage of correct identification is computed using either RMSEf or CME (a and b, c and d respectively). The gray
shade indicate values which are below the 95 % statistical significance level. The blue line corresponds to a 50 % of correct identifications.

RH07). Figure 8 shows that the spatial pattern of the per-
centage of correct identification computed from RMSE or
CME is similar. However, the CME generally identifies the
right model more frequently and the number of grid points
at which the percentage of correct identifications is signifi-
cantly over 50 % is larger. This is mainly because CME in-
corporates the uncertainty in the quantification of the fit of
the forecast to the observations. In these experiments, an ac-
curate estimation of this uncertainty is achieved by combin-
ing the ensemble of analog forecasts and the adaptive mul-
tiplicative inflation. A mismatch between the forecast and
the observations will contribute less to the CME when the
forecast uncertainty is correctly specified. We achieved this
by the implementation of AnDA with adaptive multiplicative
inflation. This takes into account the effect of stochastic er-
rors in the initial conditions and its amplification due to the
chaotic nature of the system which is not explicitly consid-
ered in the RMSE metric. Although CME usually performs
better than the RMSE at identifying the correct model, this
is not always the case (see for example in Fig. 8 how the
probability of correct identification is larger for the RMSE
than for CME near the Equator). This result may be due to an
overestimation of the forecast error covariance6f, computed
within the analog procedure. Indeed, as explained in Eq. (11),
an augmentation of this error matrix implies a diminution of
the CME, and thus a decrease of performance of this metric.

To quantify the advantage of using DA in identifying the
catalog that best fits the observations, we compare AnDA

results with an experiment using the AnF approach (i.e.,
in which the analog forecast is initialized directly from the
noisy observations and evaluated using the RMSEAnF). Dur-
ing the same period corresponding to the DA experiment,
24 h analog forecasts are initialized every 6 h using the same
3 catalogs as in the AnDA experiments. The RMSEAnF is
used to compare the performance of the different catalogs.
Figure 7e and f show that differences in performance are
mixed when no DA is used. Larger RMSEs are associated
with the catalogs generated with imperfect models at mid-
latitudes. However, over the tropics the opposite is observed
with the imperfect catalogs producing better forecasts. More-
over, the area in which differences between the imperfect
model catalogs and the TRUE is larger in the experiments
that use AnDA. These results highlight again the importance
of using DA to quantify the performance of a dynamical
model based on noisy observations. When DA is not used,
the forecast associated to a model may be corrupted by a
large initialization error and the resulting RMSEAnF be sen-
sitive not only to the model error but also to its sensitivity to
initial conditions.

3.2.2 Standardized catalog experiments

To evaluate if the CME framework can detect differences in
the system dynamics that go beyond the change in the prob-
ability distribution of the state variables (i.e., their climato-
logical mean and standard deviation) we evaluate the abil-
ity of AnDA to detect differences in the model performance
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Figure 9. As in Fig. 8 but for the experiments in which the catalogs and observations have been standardized with respect of their respective
climatological variability (see the text for details).

when the differences in the mean and in the standard devia-
tion among the catalogs is removed. To achieve this we per-
form a standardization of the state variables and the true state
prior to the generation of the observations. The seasonal cy-
cle is taken into account in the standardization using a 60-
d centered moving window to compute the climatological
mean and standard deviation corresponding to different days
of the year. In the AnDA experiments performed using stan-
dardized catalogs and observations, the observation error has
been scaled accordingly. Results of the percentage of correct
identification for both RMSEf and CME are shown in Fig. 9.
Differences in RMSEf and CME among different catalogs
are lower than in previous experiments. This indicates that
the difference in the mean and standard deviation among the
catalogs contributes to CME. However, when only standard-
ized data are used, AnDA is still able to identify the correct
model with the higher probabilities obtained by using the
CME. RMSEf shows correct model selection probabilities
over the tropical regions where the signal is stronger; how-
ever, there are some areas over mid-latitudes where the per-
centage of correct identification is consistently below 50 %
resulting in mixed results for this metric. For some of the ar-
eas where the RMSE provides the wrong answer, the CME is
still able to provide percentages over 50 % (see for example
the northern and southern Pacific).

Figure 10a and b show the percentage of correct iden-
tification based on CME using an evidencing window of
h= 7 d. This is higher than the one obtained using a single
day (h= 1) window (as in Fig. 8c and d). For the 7 d win-

dow, the percentage of correct identification is well above
70 % over a large part of the world suggesting that the impact
of model imperfection on climatological events occurring at
time scales in the order of weeks can be correctly detected
most of the time. Also, the signal obtained when the stan-
dardized anomalies are assimilated is more clear when a 7 d
window is used (compare Fig. 10c and d with Fig. 9c and d).

3.2.3 Seasonally dependent model errors

To evaluate if the CME computed using AnDA can cap-
ture the temporal variability of model errors, the percent-
age of correct identification is computed over two subperi-
ods, one corresponding to the Northern Hemisphere summer
(June, July, and August) and the other one corresponding to
the Northern Hemisphere winter (December, January, and
February). Figure 11 shows that the sensitivity in the mid-
level mean temperature and mean precipitation in these two
periods is quite different, with some areas showing the oppo-
site sensitivity (e.g., central South America, southern North
America, southern Africa and Australia).

Figure 12 shows that the CME for both seasons is quite
different and that the evidence is generally stronger in that
hemisphere where there is summer at that time, i.e., when
convection is more frequent. Note in particular that over the
North Atlantic, Europe and Asia, the CME is stronger dur-
ing the summer. According to the SPEEDY model clima-
tology convective rain is larger during this time of the year
(not shown) and so is the sensitivity of this precipitation to
the RHconv parameter (see Fig. 11c and d). The seasonal cy-
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Figure 10. Percentage of correct identification based on the CME for a 7 d evidence window between the RH07 and TRUE catalog (a, c) and
between the RH08 and TRUE catalogs (b, d) using AnDA. The percentage of correct identification is computed assimilating temperature
observations or their standardized values (a and b, c and d, respectively). The gray shade indicates values which are below the 95 % statistical
significance level. The blue lines correspond to a 50 % of correct identification.

Figure 11. The 30-year mean difference between the TRUE model simulation and the RH07 for the Northern Hemisphere summer (June,
July, and August, a, c) and the Northern Hemisphere winter (December, January, and February, b, d) for temperature at σ = 0.5 (a, c, K)
and for convective precipitation (c, d, mm d−1).
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Figure 12. Percentage of correct identification between RH07 and TRUE catalog (a, c, e) and between the RH08 and TRUE catalogs (b,
d, f) based on CME for the Northern Hemisphere winter (December, January, and February, a, b), the Northern Hemisphere summer (June,
July, and August, c, d). The maps (e) and (f) show the difference between Northern Hemisphere winter minus summer in the percentage of
correct identification. The gray shade indicates values which are below the 95 % statistical significance level. The blue lines correspond to
50 % of correct identification.

cle is acting as a state-dependent source of model error and
the CME successfully recovered this characteristic providing
useful information about the source of the difference among
the models used to generate the different catalogs.

4 Discussion and conclusions

Model selection using data assimilation has been introduced
in Carrassi et al. (2017), applied in the context of climate
change detection and attribution in Hannart et al. (2016),
and to complex or large state model evaluation in Metref
et al. (2019). It consists of putting two or more dynamical
models in competition and uses observations to compute a
likelihood, also called CME, for each model, attributing the
highest probability to the model which provides forecasts
that better match the observations over a period of time. The
CME compares the observations with the mean of the fore-
cast distribution computed in the assimilation cycles, but also
takes into account the uncertainties described by the variance
of the forecast distribution.

The main issue related to model selection using data as-
similation is the computational cost to perform several model

runs. Recently, a data-driven data assimilation method based
on analog forecasting has been proposed in Tandeo et al.
(2015) and Lguensat et al. (2017). It consists in replacing the
physical model equations by a catalog of past observations or
numerical simulations to statistically emulate the dynamics
of the system. This current paper explores the use of such a
model-free strategy in data assimilation to compute the CME
of several dynamical models, represented by a set of numer-
ical simulations.

The proposed methodology was assessed using numeri-
cal experiments. A first set of experiments was performed
using a modified 3-variable Lorenz-63 model. It was found
in particular that using analog data assimilation gives simi-
lar results to classical data assimilation, where the dynamical
model is run at each time step. It indicates that the method is
able to provide an accurate approximation of the CME met-
ric of a dynamical model given a catalog and set of noisy
observations. A second set of experiments was done using
the intermediate complexity atmospheric general circulation
model SPEEDY. They indicate that the proposed methodol-
ogy is efficient in identifying the correct model using only
observations of a small part of the state. The numerical re-
sults also highlight the importance of using data assimilation
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compared to more direct approaches which rely only on the
forecast sensitivity without proper state initialization. As a
summary, the numerical results indicate that this technique is
efficient in selecting the best model to describe a sequence of
noisy observations, and it has various advantages: (i) it is a
low computational cost method, (ii) it can be applied locally
on a subpart of the system or using complex observation op-
erators such as integrated parameters and (iii) it uses already
existing model outputs.

This work is the first step of a more challenging project. It
shows that selecting and weighting dynamical models can
be performed inside a data assimilation framework, using
analog forecasts, and thus avoiding the need to run numer-
ical models to get predictions. This result opens up new per-
spectives for the use, for instance, of model simulations such
as the Coupled Model Intercomparison Project (CMIP), see
Eyring et al. (2016) for more details. The goal will be to
propose weighted projections of climate indices, where the
weights will be based on the ability of different climate mod-
els to represent the local dynamics and the current observa-
tions. The resulting weighted projections will improve the
estimation of the mean and standard deviation of climate in-
dices. Those results will be compared to model democracy
strategy, for instance, which gives equal weights to all cli-
mate models, but is also somehow controversial (Knutti et al.,
2019).

Implementing the combination of CME and AnDA in real-
data cases brings additional challenges. For instance, in this
work the application of the analog regression technique to
a high-dimensional problem is achieved by using local do-
mains. However, this approach does not take advantage of
the covariance structure of the model output. This structure
could be retrieved through a principal component analysis
which may allow the implementation of the analog regres-
sion in a low-dimensional space while keeping the main as-
pects of large scale circulation patterns.

Another possible application of the AnDA-CME frame-
work is in the context-weighted supermodels (Schevenhoven
et al., 2019; Schevenhoven and Carrassi, 2022), which pro-
vides a way to combine the time derivatives of different mod-
els resulting in improved short-range and long-range predic-
tions.

Code and data availability. Codes can be obtained from
the GitHub open repository: https://github.com/gustfrontar/
AnDA_SPEEDY.git (last access: 21 September 2022),
https://doi.org/10.5281/zenodo.5803356 (Ruiz and Tandeo,
2021). They include the codes for approximating the SPEEDY
model using the analog forecasting technique, some simulated data
and the specific version of AnDA used for the SPEEDY experi-
ments. AnDA is an open-code system and can be obtained from the
GitHub open repository: https://github.com/ptandeo/AnDA (last ac-
cess: 21 September 2022), https://doi.org/10.5281/zenodo.5795943
(Tandeo and Navaro, 2021).
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